The PEPPER System Application Program Interface

Pau Herrero1, Joaquim Massana2, Yenny Leal3, Lucian Nita4, Parizad Avari5, David Duce6, Arantza Aldea6, Pantelis Georgiou1, José Manuel Fernández-Real1, Mercedes Fernández-Balsells2, Nick Oliver3, Beatriz López2, Clare Martin6

1Department of Electrical and Electronic Engineering, Imperial College London, London UK
2Enginyeria Elèctrica, Electrònica i Automàtica, Universitat de Girona, Spain
3Institut d’Investigació Biomèdica de Girona Dr Josep Trueta, Spain
4Department of Research & Development, Romsof SRL, Romania
5Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Imperial College London, UK
6Department of Computing and Communication Technologies, Oxford Brookes University, Oxford, UK

Background and Aims

• PEPPER (Patient Empowerment through Predictive PERsonalised decision support) is an EU-funded H2020 project that provides a personalized decision support system for type 1 diabetes self-management [1].

• The PEPPER system includes an AI-powered insulin dose recommender [2] and a safety system comprised of different modules (predictive glucose alerts, predictive low-glucose suspend, carbohydrate recommender, dynamic insulin constraint) [3].

• PEPPER offers a dual architecture to cater for both insulin injections and insulin pump treatments.

• Users wear a real-time continuous glucose monitoring and an activity monitor that communicates to the handheld device.

• The handheld unit communicates to a secure web server that enables remote clinical supervision.

PEPPER complies with all medical software standards (IEC62304, IEC62366, SnomedCT, and HL7) and has been evaluated through a randomised cross-over clinical study.

Although PEPPER was designed to be used as a whole, it is also possible to use its multiple individual components in an independent way.

This work describes the application program interface (API) developed for this purpose.

Methods

• The PEPPER API comprises four individual APIs and a system architecture defining their interoperability:
 1. insulin dose recommender
 2. safety system
 3. handset graphical user interface
 4. web interface (backend and frontend)

• All APIs are developed in JAVA but the web interface API which is developed in C#.

• All APIs use a JSON messaging system for communication between handset and server.

Results

• The PEPPER API is currently available under different licensing agreements and its documentation can be freely accessed online.

 www.pepper.eu.com/API

Conclusion

• The PEPPER API provides a convenient way to integrate a variety of software modules into an insulin decision support system or artificial pancreas.

• The algorithms have been shown to work together, without conflict, in the PEPPER system, which has been clinically evaluated.

Acknowledgements

• This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 689810.

References

