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Abstract—This paper presents a new strategy based on multi- blocks is necessary for fast, accurate, adequate faultidtoca
variate statistical analysis for fault location and classification in  gnd classification.
power distribution networks with distributed energy resources, In this scenario, there are great opportunities for artfici
variable loads, and switches enabling grid reconfiguration. The . . T . .
statistical method relies on impedance measurements acquired'nte”'gence (Al) techniques, as the increased procem@gr
at the substation buses to build a data-driven model of the and reduced costs of computers enable the application of
network operating conditions with dimensionality reduction, cutting-edge mathematical and information processinatestr
and considers a few reference scenarios representing standardgies in the search of faults. A few Al-based approaches
operating conditions and short-circuit operation to perform fault for fault location at distribution level have been proposed
location and classification with use of similarity criteria in the . . . .

recently; for instance, [3] combines principal component

principal component subspace. Moreover, this paper includes ; o
a case study with a real-based low voltage power distribution @nalysis, support vector classifiers, and feed-forwardrateu

network to test and validate the methodology. networks to perform fault location and classification inighd
Index Terms—fault location, machine leamning algorithms, distribution networks, using measurements available at th
power distribution faults, smart grids, statistical learning substation together with information about circuit braake
and relay statuses; [4] presents a data-driven mixedenteg

. INTRODUCTION linear programming algorithm for fault location relying on

smart meters at low voltage (LV) level and remote fault
indicators at medium voltage (MV) level; [5] presents a
feature selection method based on the information gain and
minimum description length discretization algorithm tthggs
V\{ith a complementary expert information system to detect
nt ., . 4 .

high-impedance faults; [6] uses continuous wavelet tiamsf

The increasing application of digital technology is grdjua
transforming old-fashioned power distribution networksoi
modern smart grids with enhanced supervision, protectind,
control features. Nevertheless, fault location and digsgion
tasks still face challenges related to limited measurese
along the feeders, usually available only at the distrdyuti : )

: . . to generate gray-scale images of transient zero-sequemee ¢
substation, and the inaccurate representation of netwark c . . .
rent signals together with a convolutional neural netwark f

ponents, such as loads, distributed generators, IIneSIhSmdfeature extraction and fault detection in resonant graumdi

status of switches [1]. As a result, many faults are 'dem'f'edistribution systems: [7] applies the Stockwell transforn
correctly only after trouble calls from affected customer

. . ) . ?hree—phase current signals and extracts features usap\s i
which may lead to unacceptable interruption times and ha’?ﬁedifferent machine learning tools with the goal of locatin
negatwe impacts for th? S-‘/S‘e”.‘ operatlon in general. Hew(:."vdifferent types of faults in power distribution grids; [&duces
in the event of a fault, information about its type and |ooati ; L . . i
should be available as soon as possible to start grid recth? multiple estimation problem in fault location by com
! . P 9 %ining support vector machines and the k-nearest neighbors
figuration and restore normal energy supply [2]. Therefor\%ith features extracted from fundamental voltage and odirre
an automated strategy capable of overcoming these S'm"’nb“sri]gnaIS' and [9] applies the Fischer-Rao registration pukth
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pices of the projecRenewable penetration levered by Efficient Low Voltagfault classification.
Distribution grids grant agreement number 773715, and University of Girona Fitting into this context. this paper presents a new stgateg
scholarship. . ' L . L
P for fault location and classification in power distribution
networks with distributed energy resources and variataedo

XXX-X-XXXX-XXXX-X/20/$xx.00 © 2020 European Union installed along the feeders that is general enough to censid



changes in the grid configuration (e.g. switch status). Thusgith
it assumes that phasor measurement units (PMU) or similar

measurement devices are deployed at the secondary of substa V(k) = [ Vi) V2,.(k) 0 Um.(k) ]T (4)
tion transformers. The methodology relies on impedance mea

surements gathered at the substation buses to build distdtis My 0 o 0

model of the network operating conditions with dimensidyal 0 oy - 0

reduction and considers a few reference scenarios repiggen Ay = ) (5)
standard operation and short-circuits to perform faulatimn : : : :

and classification based on similarity criteria in the pipat 0 0 o Amk)

component sub;p_ace. Moreover, it is capable qf distin@‘t@;h Once V;) and Ay, are computed, dimensionality reduc-
faults from variations in the standard operating condmor{ion is achieved by retaining < m principal components

andl identifying the 9”9' configulration correctly. Furt_hema, _or columns of V() which present the largest eigenvalues
testing is conducted in a real-based LV power dlstrlbuuo;\ll(k)’m (o). As a result, Vi, is reduced to ann x r

network under different fault conditions. matrix P ;) given by (6) which represents the major trends of
This text is structured as follows: Section Il presents t e data set with some loss of information.
methodology, Section Ill describes the application examp
used to test and validate the method, Section IV includes
simulation results and discussions, and Section V preseats
conclusions. Next, consider a generic testing scenario denoted by K/,
possibly containing a fault or some deviation from the stadd
. o o o _ operating conditions, and 1&f ;) andA ;. be its eigenvector
This section introduces the multivariate statistical @sial matrix and eigenvalue matrix, respectively. For each k'amnd
used to build a data-driven model of the network operatingnsideration, the choice of an appropriate valuerofo
conditions with dimensionality reduction and provides thﬁéducev(k,) into P, is based on the similarity criteria,
theoretical background necessary to go through the re&if tx5iculated as a weighted cosine symy,. of the dot product
paper. For an in-depth explanation, see [10]. of vju and vjqoy weighted by the normalized variance
First, consider a se of reference scenarios in WhiChj\jj(k,), j = 1,---,r, as in (7). Only the the reference
distinct operating conditions of the power distributionvnerk scénariosk: € K, with standard operation or faults at the
under consideration are represented (i.e. including mdsecondary substation buses are considered to sefgaicipal
operation and short-circuits). Then, &, be then x m  components. This procedure also allows to identify theemrr

observation matrix (1) of the 'k scenario, centered (zeronetwork configuration and operating condition of the tegtin
mean) and scaled (unit variance), wittobservations referred gcenario, sincey, » should be close t0.0 if v;u andv;e),

to the number of phasor quantities sampled over time and. 1 ...  are similar.
m variables referred to measurements of phasor quantities at
every substation.

Puy=[ vigg Vam 0 Ve | (6)

Il. METHODOLOGY

T

Pkl = Z Vi) - Vi j‘j,j(k’) ™
Ti1(k) L1,2(k) "7 Tim(k) Jj=1
T21(k) T22k) 0 T2m(k) with
Xk = . . . 1)
: : . : B Ni (gt
Tna(k) Tn2(k) “°° Tnm(k) Ajik) = Zmﬂi/{)(k) (8)
The covariance matri% ;) can be computed froi ;) and . . . = . L
further decomposed in the: x m matricesV ;, and A Oncer is defined, if a fault occurred, further investigation

using eigenvalue decomposition according to (2). Columnsif conducted to identify its possible locations. In this &as
V) are the eigenvectors and contain the principal comp@-“'t Ioc_atl_on and class_|f|cat|on are performed b_y comarin
nents, which represent orthonormal vectors whose dinestige statistical model given b ;) and A, with those
express the major variability of the data and the relatiPmputed for thek < K — K, reference scenarios not
weights of the original variables. In turm, ) is a diagonal gvaluated p'rewously. The results calculated with (7) am(eq '
matrix and contains the eigenvalues, which express véitjabi In descending order. Finally, the fault buses of the trgnin
in the direction of each principal component or column cfcénarios with the highest values of (7) are identified as the
V(1. The matricesV ;, and A, can be written as (3) and most probable locations of the fault in the testing scenario
(5), respectively.
1

T T
S =—7X ®Xw =VwAwViw @)

IIl. CASE STUDY

The methodology was tested in a real-based LV power dis-
tribution network simulated in Matrix Laboratory (MATLAB)
illustrated in Fig. 1. It represents a LV distribution netkdo-
Vi = [ Vi) V2k) ' Vm(k) ] (3) cated in Catalonia, Spain, which consist of primary disititn
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Fig. 1. Diagram of the low voltage distribution network maeteiin Simulink, with2 distribution substations (S6— 0 and SS2 — 0), 41 feeder sections,
1 switch, 4 PV panels,1 industrial three-phase customer, attélresidential single-phase customers.

feeders with branches connecting the substation node to ités choice is not expected to make a negative impact on
customers (i.e. local energy producers or consumers).téh tothe accuracy of fault location, since the network behaviat a
the network hag3 buses? distribution substations (one withloads are mainly resistive and the faults are purely resisti

a 250-kVA and the other with &30-kVA transformer Dyri1,
400 V secondary)41 feeders modeled as short R-L lines (wit
£ = 5.4 for overhead lines and! = 2.7 for underground

In the reference scenarios, standard operation and faults
'hre simulated with typical hourly values of PV generation
i 5 and load consumption profiles over a year, which provides
ca'bles),1ISW|tch,20 different energy consumers (among them,,L = 365 observations per reference scenario. Although this
1 industrial, three-phase customer with kW of contracted e intervals are chosen due to the real PV generation and
power and and9 residential, single-phase customers with le§§,4 consymption profiles available for the simulations, it
than 10 kW of contracte.d power), and distributed generatiofy noteworthy that a shorter or longer time interval can be
from 4 solar photovoltaic (PV) modulesiq kWp each). In;sq 1 pyild the statistical models without loss of geritgral
total, the length of th.e primary distribution feeder cortireg In addition, the reference fault scenarios include threasp
SS4 — 010 SS2 — 0 is 325 m and the length of the longestgy i metrical faults with fault resistander — 1 applied at
lateral branch i95 . the substation and load buses at midday. Both switch sttuse

PMUs are installed at both substation nodes and samBI'% and off are considered in all training and testing scesari

phase voltage and line current phasor quantities from whichin turn, testing scenarios consist of variations in the PV
the equivalent impedance is calculated. In other words, tgeneration under normal operation, reduced 25§5, 50%,
number of variables isn = 2 x 3 = 6 in all scenarios. It is 75%, and100% of the standard operation profiles, and three-
noteworthy that the statistical models are built with im@ece phase symmetrical faults with fault resistanég- = 1Q
magnitudes only to suit the algorithm in use, as it is lineasimulated at the load buses at midday, considering the same
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PV generation and load consumption profiles as the reference
scenarios. In total32 fault scenarios are tested, since buseSALCULATED RESULTS OF(7) WITH VARIATIONS IN THE PV GENERATION
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Fig. 2. Equivalent short-circuit impedance seen atlSS9 and SS2 — 0 with three-phase faults at different buses.
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each (i.e.16 faulty buses times2 switch modes), besides Testing scenario

4 scenarios with variations in PV generation profiles under

Reference scenario

normal operation. For illustration and comparison purppS€75% PV switch off
the equivalent short-circuit impedance seen at the secpndar5% PV switch on

substation buse$s — 0 and2 — 0 in the training and testing
scenarios with faultsr = 1m$Q andRr = 19, respectively)

is plotted in Fig. 2.

IV. RESULTS ANDDISCUSSION

The deviations computed under normal operation with vari-
ations in the PV generation profiles are displayed in Table I,
considering standard operation and faults at the substatio
buses. Meanwhile, the fault location results obtained with
switch off and on are displayed in Table Il and Table IlI, re-
spectively, which describe the fault scenario k' (i.e. fauldus)
in the first column and the results obtained with the simtifari
criteria in the principal component subspace, including th
correct identification of the grid setting regarding the tstvi
mode and part of the network where the fault is in the second
column; the faulty bus: € K determined by considering the
sum of dot products calculated with (7) for all candidatedsys
given information about the right network setting, in theadh
column; the distance error between the actual fault bus & an
the calculated bug in the fourth column; and the principal
components used to compute (7) for all candidate scenarios i
the fifth column.

FAULT LOCATION RESULTS WITH SWITCH MODE OFF

Faulty bus  Grid setting Distance errors

(k) (Right/wrong) Bus (k) k-k' [m]

1-8 Right 1-8 0.0 2
1-9 Right 1-8 20.6 2
1-10 Right 1-11 3.8 4
1-11 Right 1-8 58.5 2
1-12 Right 1-11 98.1 2
1-15 Right 1-11 1210 2
1-16 Right 1-8 140.7 4
2-15 Right 2-17 1942 3
2-16 Right 2-24 1221 2
2-17 Right 2-24 94.2 2
2-18 Right 2-25 109.2 4
2-19 Right 2-24 1178 2
2-21 Right 2-17 1469 4
2-22 Right 2-17 90.9 4
2-24 Right 2-24 0.0 2
2-25 Right 2-17 89.6 2

r

Std. operation Fault — 0 Fault2 — 0
Switch mode off on off on off on

0.8254 0.6126 0.0350 0.5056 0.0381 0.1426

0.7567 0.9996 0.6860 0.8864 0.1442 0.3411
50% PV switch off 0.8244 0.6355 0.0725 0.5271 0.0264 0.1179
50% PV switch on 0.7557 0.9995 0.6865 0.8856 0.1408 0.3435
25% PV switch off 0.7954 0.6385 0.1065 0.5340 0.0146 0.0865
25% PV switch on 0.7558 0.9995 0.6863 0.8852 0.1398 0.3435
0% PV switch off 0.7944 0.6587 0.1472 0.5491 0.0040 0.0651
0% PV switch on  0.7512 0.9991 0.6908 0.8834 0.1340 0.3505

TABLE Il



TABLE Il

FAULT LOCATION RESULTS WITH SWITCH MODE ON

Faulty bus
(k)

Grid setting

Distance errors
(Right/wrong) Bus (k) k-k’ [m]

1-8 Right 1-8 00 2
1-9 Right 1-9 00 2
1-10 Right 1-9 575 4
1-11 Right 1-9 575 2
1-12 Right 1-9 1518 3
1-15 Right 1-9 1747 2
1-16 Right 1-9 1397 4
2-15 Right 222 1072 2
2-16 Right 222 1012 2
2-17 Right 2-25 1092 2
2-18 Right 2-18 00 4
2-19 Right 2-25 1328 2
2-21 Right 222 605 4
2-22 Right 2-22 00 4
2-24 Right 2-22 247 3
2-25 Right 221 798 2

r

ent faults, inaccurate network representations, etc. efbes,

the method can be improved by including more reference
scenarios in the training data sets, including differenttf
timescales, operating conditions, and additional infaioma
about the network topology, data from different sources, et

V. CONCLUSIONS

The multivariate statistical case-based reasoning girate
presented in this article is capable of locating and clyissjf
faults with good accuracy. Moreover, it is also capable efid
tifying the network configuration correctly and distingiisg
faults from variations in the standard operating condgion
The procedure used to identify the correct grid configuratio
prior to the location of the fault improves the accuracy @ th
method, as it reduces the number of candidate scenarios and
limits the search to the right part of the network in all tegti
scenarios. Nonetheless, the method may provide inaccurate
results over a range of scenarios, since the fault location

problem presents multiple solutions.

The results displayed in Tables | to Il indicate that the
multivariate statistical case-based reasoning strateggar
pable of distinguishing between faults, standard opematio [1]
and variations in the standard operating conditions ctyec
Additionally, in the event of a fault, the methodology idéet  [2]
the part of the network where it occurred correctly in allesas
and the true location of the fault with good accuracy in most
cases. The fault location is identified correctly2rout of 16
scenarios when the switch is off and4nout of 16 scenarios [3l
when the switch is on, whereas the maximum distance error is
194.2 m when the switch is off (faulty bug — 15 identified as
2—17) and174.7 m when the switch is on (faulty bus—15  [4]
identified asl — 9). Despite the correct identification of the
network setting, these errors are approximately the dooble [5]
the length of the longest lateral branch and respectivalydst
for 59.8% and 53.8% of the total length from one substation [6]
to the other. Nevertheless, the actual faulty bus is amoag th
first ranked results in almost all scenarios with both switch
modes on and off when only the right network setting i
considered, which shows the importance of identifying the
grid setting correctly before performing fault location thwvi
this methodology. Consequently, the maximum errors of thié
fault location procedure remain in the same part of the ne&kwo
delimited by the switch where the point of fault is. Moreqver
the average errors of all scenarios listed in Tables Il ahd It
stand for27.0% and 23.0% of the total length from one
substation to the other, which is less than the length of thHél
longest lateral branch. The overall results are acceptablte
fault location problem is a typical multiple-solution ptem.
Furthermore, Fig. 2 evinces that the equivalent impedagaer s
at the substations is almost the same for faults at different
buses in the same part of the network and a fixed grid
configuration.

It is noteworthy that the ranking of results according to
(7) may be inaccurate over a range of scenarios due to the
differences between the training and testing scenariosén u
such as variations in the standard operating conditioffigrdi
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