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A B S T R A C T

The concept of resilience has become popular in many disciplines far beyond its original use in the field of ecology.
Despite of its wide use, it has received different definitions not always coincident. Such ambiguity is still more
evident in its quantitative characterization. Most of the available methods are heavily context dependent and
often difficult to apply in the practice. Here, we propose to define and calculate resilience starting from the data
matrices resulting from multivariate measurements of different biological metrics.

� The resilience between two field scenarios (each one characterized by their corresponding datasets) can be
conveniently captured as the difference between its respective data complexities.

� Complexity is quantified by means of the entropy associated to the spectral distribution of the singular values
of each data matrix.

� The method proposed has been illustrated with a case study in which the resilience of a river (Ebro River, NE
Spain) is calculated comparing six biological metrics associated to the phytoplankton, upstream and
downstream to a series of large reservoirs that alter the natural river flow regime.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject Area: Environmental Science
More specific subject area: Freshwater Ecology
Method name: Singular Value Decomposition Entropy
Name and reference of original
method:

Singular Value Decomposition Entropy

Resource availability: The method has been evaluated using experimental data from Sabater-Liesa et al.,
2019 [20]

Method details

The term ‘resilience’, appeared for the first time in the ecological science in 1973 [1], rapidly
influenced other scientific domains such as engineering, economics, medicine or social sciences. Since
that time many alternative definitions of resilience have been proposed [2–7]. For the purposes of this
article, we will follow Holling’s seminal concept [1], which refers to the capacity of an ecosystem to
cope with changing external conditions without losing its structural and functional characteristics.
Despite its broad use, the definitions and interpretations of resilience are still the matter of deep
discussion in the literature [2–7], particularly when they need to be applied to specific case studies.
Such difficulties are particularly challenging when resilience has to be quantified. Although there are
many methods reported in the literature, in general, they all tend to be strongly context-dependent so
that their application is only feasible for specific experiments or scenarios [2,3]. Therefore, there is a
need for general methods of resilience quantification capable of broad application and suitable to be
used in the common practice of field ecology.

Data gathered from environmental biological field monitoring typically consists of measurements
of different variables spanning on space and time, that are conveniently organized in the form of data
matrices. Extracting information from such data matrices is a problem usually addressed from
multivariate statistics [8]. Among the plethora of techniques available, here we specifically focus on
the singular value decomposition (SVD) technique (see details below), which is underlying in many of
the existing methods broadly used in multivariate data analysis. Furthermore, SVD has been
successfully applied in a large variety of scientific and technical domains ranging from signal and
image processing, genomic analysis, weather forecast, chemometrics, disease surveillance or big-data
analysis [9–15].

Here we are specifically interested in the characterization of the data complexity (organized in
appropriate matrices of empirical measurements or derived metrics) which is assumed to quantitatively
reflect the system’s own complexity. In turn, the extent of changes in system complexity between two
situations or scenarios of a given system is proposed as a general quantitative empirical metric of
resilience [16]. To that end, we make use of the so-called SVD entropy, which captures how is the
distribution of the singular values (SVs) of the data matrix analyzed (see Fig. 1). SVD entropy has found
applications in a variety of areas like econometrics [9–11], genome expression data processing [12],
image processing [13] or medical sciences [14,15].

Singular Value Decomposition of a data matrix (SVD)

Briefly, this technique consists of the decomposition of any A (m � n; m � n) matrix into a product
of three matrices as:

A ¼ U�S�VT ð1Þ

where U is an (m � m)unitary matrix, S is an (m � n) rectangular diagonal matrix with non-negative
real numbers on the diagonal, and V is an (n � n) real or complex unitary matrix and VT denotes its
transpose. The diagonal entries li of S are known as the singular values of A. The columns of U and the
columns of V are respectively called the left-singular vectors and right-singular vectors of A.
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Fig. 1. Flow-chart overview of the method showing the connection between a dataset of measurements with its complexity
quantification in terms of SVD entropy. The workflow includes the following steps: (a) SVD decomposition of the monitoring
dataset matrix A which allows obtaining the set of singular values {lA} (Eqs. (1) and (2)); (b) Calculation of the SVD entropy H(A)
(Eq. (4)) that is assimilated to the dataset complexity.
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SVD entropy

Following [10] it is possible to define a complexity measure of the dataset contained in matrix A,
using the set of singular values (li)i=1,n by means of a suitable ‘Shannon type entropy’ [17] (Fig.1). To do
so, we first arrange the singular values (li)i=1,n in decreasing order and normalize them so that:

li ¼
liP
i li

ð2Þ

with Sili ¼ 1 ð3Þ
The SVD Entropy of A denoted as H(A) is thus defined as:

H Að Þ ¼   �
Xn

i¼1

li�lnðliÞ  ð4Þ

For comparison purposes between matrices having different dimensions, H(A) is conveniently
normalized dividing by the factor ln(n) which corresponds to the maximum value attainable by H(A).
In this way, H(A) is bounded between 0 and 1:

H Að Þ ¼  
�1
lnðnÞ

Xn

i¼1

li�lnðliÞ ð5Þ

Fig. 2 shows two hypothetical examples of singular values distribution with their respective
entropies calculated using Eq. (5).

SVD entropy and resilience

For a given variable, the resilience quantification proposed here involves comparing two related
scenarios, each one characterized by its corresponding data matrix, using SVD entropy in terms of
increase/decrease of the dataset complexity. i.e., a lower entropy reflects a non-uniform distribution of
the singular values li thus corresponding to low-complexity of the underlying data; conversely, higher
SVD entropy denotes that the set of li is more evenly distributed (Fig. 2).

Fig. 2. Two hypothetical distributions of singular values (arbitrary scale) highlighting a low and high entropy (complexity)
profiles and their respective entropies (calculated using Eq. (5)).
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A system that is able to maintain its complexity after a perturbation will be qualified as
‘resilient’, while the opposite behavior would be indicative of a lack of resilience. Let us
considered a system in two states A and B, each one characterized by the corresponding matrices
of measurements or metrics of their respective variables. The difference in complexity between
states A and B of such a system (expressed as the corresponding difference on SVD entropies)
can be related to the system’s resilience. Since high resilience is associated with low changes in
data complexity, a suitable and general measure of resilience can be conveniently captured by
the following equation:

Resilience  A; Bð Þ ¼ 1 � H Að Þ � H Bð Þj j ¼ 1 � DHj j ð6Þ
Since H is always comprised between 0 and 1, this resilience index is comprised between 0 and 1

too. Resilience equals 1 if H(A) = H(B) corresponding to a lack of change in complexity between A and B
scenarios, and thus to a maximum resilience. Conversely, if H(A) = 1 and H(B) = 0 (or the opposite) then
resilience becomes 0 thus reflecting a maximum change in complexity between the scenarios
compared. The whole process is summarized in Fig. 3.

Fig. 3. Flowchart for the calculation of resilience, comparing the variation of entropy (complexity) between two related data
matrices. The workflow includes the following steps: (a) SVD decomposition of the two monitoring dataset matrices A and B,
which allows obtaining the sets of singular values {lA} and {lB} (Eqs. (1) and (2)); (b) Calculation of the SVD entropies H(A) and
H(B) (Eq. (4)) that are assimilated to the respective datasets complexities; (c) Calculation of the system’s resilience (Eq. (6)).
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Method validation using a case study

The foregoing method was tested in a stretch of the Ebro River basin (NE Spain). The Ebro basin is
located in the Northeastern part of the Iberian Peninsula occupying a total surface of 85362 km2. The
main river is 910 km length and flows from the Cantabrian Mountains to the Mediterranean Sea. In
terms of water flow the Ebro River is the largest one in the Iberian Peninsula (mean annual discharge
435 m3 s�1). The middle course of Ebro mainstream is affected by three consecutive large reservoirs,
Mequinenza (1500 Hm3), Riba-roja (210 Hm3) and Flix (11 Hm3) [18,19], causing major changes in the
hydromorphological dynamics (flood peaks alteration, retention of sediments, etc.) that are reflected
on the ecological status of the river. The purpose of our exercise aimed at quantifying the system
resilience comparing the data measured upstream and downstream to the reservoirs.

Biological data used in the present study were published elsewhere [20–23]. Twelve sites located in
the mid-lower course from Zaragoza to the proximity of the river mouth were selected (Fig. 4). The
first six sites were located upstream to the reservoirs, while the remaining were downstream. Six
biological variables related to the phytoplankton were considered. They included metrics related to
the algal community structure (Shannon-Wiener diversity, number of species, cell density, biovolume,
and chlorophyll-a concentration) and function (alkaline phosphatase activity, APA). Datasets used can
be found in [23].

We constructed two dataset matrices for every measured biological variable, for the upstream and
downstream sites respectively. Every matrix is constituted by a table of sites � time. These are handled
as rectangular matrices of m columns (m: number of spatial sites) and n rows (n: number of
campaigns). The method outlined above was applied to each of the six metrics considered. The main
results are summarized in Table 1 and Figs. 5 and 6.

Fig. 4. Area of study: The Ebro river middle course, showing the sampling points located upstream and downstream to the
reservoirs.
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The spectra or distribution of the singular values used in the calculation of the entropies of the
biological metrics considered is shown in Fig. 5. The entropies, calculated using Eq. (5), had values in
the range 0.38–0.72 (i.e., 38% to 72% of its maximum value). Four out of the six variables measured (all
except chlorophyll-a and, in a less extent, the number of species) exhibited higher entropy
(complexity) in the sites located upstream to the reservoirs (and thus subjected to a more natural
hydrologic regime) than those located downstream (regulated regime) (Table 1, Fig. 5). Resilience was

Fig. 5. Distribution of the singular values for the biological metrics considered, upstream and downstream to the reservoirs.
Note that the scales of the vertical axis are different for each biological metrics.

Table 1
Results of complexity (singular value entropy), resilience (complexity maintenance), for the biological metrics considered
upstream (UP) and downstream (DOWN) to the reservoirs.

METRICS SVD-Entropy (Complexity) Resilience

H (UP) H (DOWN) 1 � |DH|

APA 0.638 0.389 0.751
Biovolume 0.685 0.538 0.853
Cell Density 0.521 0.457 0.936
Chlorophyll-a 0.525 0.723 0.802
Diversity 0.596 0.562 0.967
Number of Species 0.520 0.590 0.930
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quantified using Eq. (6) for the six biological metrics studied. Values obtained were in the range
0.75–0.97, that correspond to APA and diversity respectively. The high resilience values obtained for
diversity (0.967) and the number of species (0.930) is also perceptible from the tight closeness of the
singular values distribution for the upstream and downstream as shown in Fig. 5e and f. Altogether,
the medium to high resilience values quantified indicates that the system is likely capable to recover
its complexity after the perturbation caused by the reservoirs, at least for the six variables examined.
A deeper discussion and interpretation of the results can be found in [23].

In summary, the foregoing example highlights the generality and broad applicability of the
proposed method of resilience quantification consisting of comparing the complexity of two data
blocks (matrices) in terms of their respective singular value entropy.
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