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ARTICLE INFO ABSTRACT

Keywords: The use of Computed Tomography (CT) imaging for patients with stroke symptoms is an essential step for

Acute ischemic stroke triaging and diagnosis in many hospitals. However, the subtle expression of ischemia in acute CT images has

Brain made it hard for automated methods to extract potentially quantifiable information. In this work, we present

gi fusi and evaluate an automated deep learning tool for acute stroke lesion core segmentation from CT and CT
perfusion

S . perfusion images. For evaluation, the Ischemic Stroke Lesion Segmentation (ISLES) 2018 challenge dataset is
Automatic lesion segmentation . L . i i K
Convolutional neural networks used that includes 94 cases for training and 62 for testing. The presented method is an improved version of
CNN our workshop challenge approach that was ranked among the workshop challenge finalists. The introduced

contributions include a more regularized network training procedure, symmetric modality augmentation and
uncertainty filtering. Each of these steps is quantitatively evaluated by cross-validation on the training set.
Moreover, our proposal is evaluated against other state-of-the-art methods with a blind testing set evaluation
using the challenge website, which maintains an ongoing leaderboard for fair and direct method comparison.
The tool reaches competitive performance ranking among the top performing methods of the ISLES 2018
testing leaderboard with an average Dice similarity coefficient of 49%. In the clinical setting, this method
can provide an estimate of lesion core size and location without performing time costly magnetic resonance

imaging. The presented tool is made publicly available for the research community.

1. Introduction

Stroke is the third largest cause of death and the biggest source
of acquired disability worldwide [1]. This condition is caused by a
fatally low blood supply in a region of the brain. A shorter time
to treatment since onset is strongly linked to a better outcome [2].
The stroke lesion is initially divided in two areas: the infarct core,
composed of irreversibly damaged tissue, and the penumbra, tissue at
risk that can still be recovered if blood flow is restored. Localization
and quantification of the acute core or penumbra is of great clinical
interest since it can help evaluate the amount of tissue that could be
recovered with different treatments and take better informed decisions.

Non-contrast computed tomography (CT) imaging is fast, inexpen-
sive, ubiquitous and is already used by clinicians as an essential first
step for triage, diagnosis and treatment assessment of acute ischemic
stroke [3]. Additionally, the information in these images has good
prognostic potential, but are difficult to interpret. The infarct core is
seen through subtle texture and intensity changes, also called parenchy-
mal hypoattenuation, often masked by artifacts, noise or other tissue
abnormalities [4]. Additionally, CT perfusion (CTP) can be used to

assess the blood perfusion in the brain. To acquire CTP images, first
an intra-venous contrast agent is injected and then repeated scans are
made as it spreads through the brain. While CT shows the lesion core,
CTP more clearly shows all areas with abnormal perfusion including
both core and penumbra. The combination of both is also fast to acquire
and might provide enough reliable information for automatic analysis.

Early work on supervised methods for acute stroke detection and
segmentation using exclusively CT images relied on hand-crafted fea-
tures exploiting texture and intensity [5-8].

Recent developments on Convolutional Neural Networks (CNN) [9]
have given rise to methods with superior results that are present in the
majority of state-of-the-art biomedical segmentation frameworks [10-
13]. This trend can also be seen in the most recent methods for stroke
lesion segmentation from MR images [14-16]. More specifically, U-
shaped architectures based on the U-Net [10] are well suited for dense
semantic segmentation. These kind of architectures have seen a number
of recent improvements such as their extension for 3D volumetric
segmentation [11,17] or the introduction of long and short residual
skip connections [15,18]. Stroke lesion segmentation on CT images
shares many of the same challenges as MR imaging, but still poses an
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inherently different learning problem. Despite the promising results of
deep learning applied to brain lesion segmentation, it still presents limi-
tations for real world scenarios that severely limit its applicability. The
most critical issues include typically small size of annotated datasets
to train, domain and task dependent training procedures, highly un-
balanced class extent (i.e. much less lesion tissue than healthy) and
overfitting to the training images.

Deep learning has only been recently applied to CT imaging for
acute stroke with the 2018 edition of the Ischemic Stroke Lesion Seg-
mentation (ISLES) challenge. This challenge started in 2015 to provide
a platform for a fair and direct comparison of automated methods for
stroke imaging. The fourth edition in 2018 provides the first public
acute stroke dataset using CT and CTP images. From the five challenge
finalists, all deep learning based methods, four report the use of CNNs
based on the U-Net architecture [10], one of which corresponds to our
workshop challenge approach [19]. In these works, the issue of class
imbalance was alleviated mainly with the use of cost sensitive loss
functions, either class weighting [20,21] or difficulty weighting [22],
or using patches with balanced sampling strategies [19].

In this work, we present and evaluate an automated deep learning
tool for acute stroke lesion core segmentation from CT and CTP images.
The presented tool is a simpler and improved version of the method
initially submitted to the ISLES 2018 challenge, which already ranked
among the challenge finalists, referred to as the workshop challenge
approach. It achieves state-of-the-art performance while offering an
easy training procedure and fast inference times. For alleviating class
imbalance, both a patch based method with a balanced sampling
strategy and a hybrid class weighted loss function are used. The deep
learning architecture is an asymmetric encoder—decoder using long and
short residual connections as done in recent state-of-the-art networks
for dense segmentation [15,23]. Additionally, symmetric modality aug-
mentation is performed that allows to exploit the brain symmetry
property between hemispheres to find more robust image features.
The introduced improvements with respect to our workshop challenge
submission are quantified by crossvalidation on the ISLES 2018 training
set. The proposed methodology is evaluated against other state-of-the-
art methods with the blind challenge testing set submission, ranking
among the top out of 41 entries. In the treatment decision workflow,
this tool could provide a fast estimate of the lesion core location and
volume without having to perform costly MR imaging. We release this
tool to the community, available at https://github.com/NIC-VICOROB/
stroke-core-ct-segmentation.

2. Materials
2.1. Data

The ISLES 2018 challenge tackled the segmentation of stroke lesion
core from acute CT scans, taken within 8 h of stroke onset. The provided
dataset (Kistler, 2013; Maier, 2017) includes 94 labeled training images
and 62 unlabeled testing images. For each case, a CT scan, a raw CT
perfusion time series (CT-PWI) and four derived perfusion maps (CBF,
CBV, MTT and Tmax) are provided. The images were acquired as slabs
with a variable number of axial slices, ranging from 2 to 22 depending
on the patient, with 5 mm spacing and a resolution of 256 x 256. The
raw perfusion time series include between 40 and 63 volumes, acquired
1-2 s apart, of the same dimensions as the CT for each patient. The
provided gold standard was manually drawn on additional magnetic
resonance DWI trace images not included in the challenge testing set,
where the infarct core is seen more clearly, taken within 3 h of the
initial CT scan.

2.1.1. Pre-processing

From the provided modalities, we only consider the use of CT
and the four derived CT perfusion maps (CBF, CBV, MTT and Tmax),
omitting the raw CT-PWI time series. Image pre-processing is then
applied to the provided images in two steps: Firstly, the CT image is
skull stripped and, secondly, a modality augmentation to exploit the
symmetry of brain hemispheres is performed.
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CT Skull stripping. The brain mask for skull stripping is obtained from
the non-zero values of the sum of the four provided perfusion im-
ages, which did not take any value on the skull. Finally, the mask
is multiplied with the CT image, which leaves only the desired brain
tissue.

Symmetric modality augmentation. The use of the symmetry property
showed significant improvements on chronic stroke lesion segmenta-
tion in MR images [24]. Since typically only one hemisphere of the
brain is affected by the stroke, the brain mid-sagittal symmetry can be
exploited to assess differences between both hemispheres and locate the
lesion more accurately. In our case, we take advantage of the symmetry
property by creating a symmetric version of each provided modality. In
this way, a single patch will include information from the same spatial
location of both hemispheres. To generate the symmetric modalities
we first flip the CT images by the mid-sagittal axis. Since the images
are not perfectly centered in the volume and some are slightly rotated,
the opposing hemispheres might not be correctly aligned after the flip.
Hence, we use FSL FLIRT [25] constrained to an axial affine trans-
formation to linearly register both images and roughly align opposing
hemispheres. In this case, a linear registration is sufficient since the
symmetry features are not expected to rely on fine differences but
rather on overall differences of patch intensity, parenchyma and/or
perfusion statistics. Finally, the provided modality volumes are merged
with the symmetrically augmented and used together for segmentation
as an image with ten modality volumes. In this way, a single patch will
additionally include bilateral information of all modalities. Fig. 1 shows
an example case with the provided and augmented modalities.

3. Method

The proposed approach is a 2D patch based deep learning approach
for segmentation of the acute stroke lesion core from CT perfusion
images. Since the lesion core class represents around 5% of the brain
tissue in the training set, class imbalance is an issue that needs to
be dealt with. If no deliberate action is taken, the training set would
include fewer examples of lesion than healthy tissue, which would
bias the learning and worsen segmentation performance. Additionally,
overfitting to the training set is likely, considering the small quantity
of data, which would cause bad performance for other images. To
minimize this effect, the training is regularized by using: (a) data
augmentation with elastic deformation fields, (b) dropout layers that
introduce noisy updates during training and (c) early stopping that
interrupts training when no more generalizable knowledge can be
learned. Finally, a combination of classification uncertainty estimation
and use of highly overlapping patches further reduces outliers and
segmentation artifacts.

3.1. Class imbalance

The most common techniques to alleviate this issue for deep learn-
ing methods are three: cost sensitive loss functions, which assign dif-
ferent cost to misclassification of examples from different classes [26];
the use of patches with deliberate sampling, typically aiming to over-
represent the minority class, or multi-phase training, where a part of the
network is retrained with a different class distribution. In this work, we
propose the use of both a balanced patch sampling and a cost sensitive
loss function to alleviate the imbalance.

The employed sampling strategy is an extension of a recent proposal
for brain lesions in general [12]. The strategy has been extended to
take into account the anatomy and pathophysiology of acute stroke. In
practice, a target number of patches is set for each patient. Then, half
of the patches are extracted centered on lesion voxels and the other half
on healthy ones. These are sampled in regular spatial steps to ensure
all parts of the volume are uniformly represented. For the lesion class
sampled voxels have a random offset applied in the x and y axis before
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Fig. 1. Top row: Provided CT and derived CT perfusion maps. Bottom row: Resulting symmetrically augmented modalities.

patch extraction, as done by Guerrero et al. [15]. This offset is sampled
from a random uniform distribution and is limited to half of the patch
size to ensure the originally sampled voxel is inside the finally extracted
patch. This increases the representation of areas adjacent to the core
label, the penumbra region, while providing a degree of translational
data augmentation. The patches will be extracted centered on these
voxels. For patients with smaller lesions, several patch extractions from
the same lesion voxel and data augmentation are applied, using the
elastic deformation described in [27] with parameters « = 2.5 and y
= 0.12, to reach the target number of patches per patient. In this way,
only if the number of lesion voxels is smaller than the target number,
they will be repeated and augmented using elastic deformation. On
average, the augmented patches amount to 5% of the training set. The
use of this patch sampling strategy raised the lesion voxel fraction in
the training set from 5% to 12%.

Additionally, we use a cost sensitive loss function that is the sum
of the Generalized Dice Loss (GDL) [28] and the crossentropy loss
to further minimize the effects of class imbalance. While the crossen-
tropy loss is minimized with correct confident predictions, the GDL is
minimized by maximizing the relative overlap between prediction and
ground truth. In practice, jointly minimizing both terms provides the
crossentropy convergence properties with the balancing class weighting
of the GDL.

However, despite the use of both techniques, the overlap segmen-
tation is decreased when bigger patch sizes are considered due to
worsened imbalance, since larger patch sizes will tend to include a
bigger ratio of healthy to lesion voxels. After empirical testing with
several patch sizes ranging from 16 x 16 to 96 x 96, we choose a
patch size of 64 x 64 that offers the best compromise between a large
receptive field and worsened class imbalance.

3.2. Deep learning architecture

The employed network, depicted in Fig. 2, is a 2D asymmetric resid-
ual encoder—decoder that produces whole patch predictions. It is based
on recent state-of-the-art networks for chronic stroke [15] and related
biomedical tasks [11]. The network has five resolution steps with 8 base
filters, which are doubled in each step, resulting in a latent space with
128 feature maps of 4 x 4 resolution. It has long and short residual con-
nections to ease gradient flow, which improves convergence properties
and allows for better accuracy [29]. The asymmetry comes from the
reduced number of parameters found in the decoder branch. It has been

shown that the role of the decoder is not as critical and its complexity
can be reduced without damaging the performance [23]. In this way,
the residual blocks have two convolutional layers in the encoder and
one in the decoder, resulting in 75% and 25% of the parameters in each
respectively. Additionally, it includes prediction dropout layers that
will be used for estimating the uncertainty in classification to minimize
outliers.

3.3. Pipeline overview

In this section we will briefly describe the different parts of the
training and testing pipeline to train the network and use it to segment
the desired images.

Training. In the training phase, the randomly initialized network
weights are trained with patch training and validation sets built from
the provided images. A total of 376,000 patches, 4000 from each case,
of size 64 x 64 are extracted using the sampling strategy described in
Section 3.1 to create the training set. The sum of the Generalized Dice
and Crossentropy loss is used as the objective function. During training,
the weights are updated with the Adadelta optimizer [30], which
requires no manual tuning of learning rate. After several empirical tests,
we use a batch size of 64 patches during training since it provides
a good compromise between sensitivity and overfitting. The batch
size determines the number patches whose gradients will be averaged
before a network weight update during training. A bigger batch size
averages the gradients of more patches, which improves the overall
accuracy while giving less weight to errors in individual samples. To
further minimize overfitting, early stopping with a patience of ten
epochs is performed when the sum of error rate and L1 loss on the
validation set reaches a global minimum. We set the low number of
ten patience epochs to avoid excessive overfitting to the validation set,
given the small size of the dataset. Although further training might still
improve the validation metrics it could be at the cost of overfitting
to the validation images and worsening the performance with testing
images. In practice, the networks are trained for a maximum of 100
epochs or until the early stopping condition has been met, storing
the network weights with the best validation metrics. The number of
training epochs ranges from 20 to 40 for the reported experiments.
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Fig. 2. Diagram of the employed deep learning architecture, an asymmetrical residual encoder-decoder CNN. Gray rectangles represent feature maps with the number of features
indicated either on top or bottom. For the convolutional layers, [S,,Sy @K, xK, ] indicates the strides and kernel size in each axis respectively. Red arrows mark the location where

dropout is applied at prediction time for average uncertainty filtering.

Testing. In the testing phase we predict the class probability distribu-
tion for each voxel of a given image with the trained network. Firstly,
patches are extracted from the whole image at regular spatial intervals
to make sure all parts of the volume are represented. Furthermore, a
degree of overlap is considered to improve spatial label coherence and
minimize boundary artifacts. Each extracted patch is forward passed
through the network and its predicted probabilities accumulated into a
common space, preserving its spatial location. Finally, the average of
accumulated probabilities in each voxel is made. Additionally, uncer-
tainty filtering by averaging is applied to each patch forwarded through
the network. It has been shown that a patch predicted while using
dropout can be considered a Monte Carlo sample from the unknown
classification probability distribution [31]. In our case, for each patch,
3 forward passes are performed with a voxel-wise prediction dropout
rate of 10%. As suggested by [32], dropout in prediction is only
performed in the deepest resolution steps as seen in Fig. 2. Finally, the
probability distribution is computed as the voxel-wise average of the
three noisy predictions.

Post-processing. In the post-processing phase, a binary segmentation is
produced from the predicted probability maps. It is performed in two
steps, first the probabilities are binarized according to a threshold T
and then a connected component filtering removes lesions smaller than
S,in vOxels. The parameters T and Smin that optimize the DSC and HD
of the tool are found through grid search for each evaluation. More
specifically, we test 9 different thresholds T, from 0.1 to 0.9 in 0.1 steps,
and 6 minimum lesion sizes (Smin) ranging from 10 to 500 voxels. Each
combination of these parameters is then used to binarize the predicted
probability maps and compute segmentation metrics. We select the T
and Smin that jointly optimize the DSC and HD metrics, the ones used
to rank the ISLES 2018 challenge workshop participants.

3.4. Implementation details
The proposed method has been implemented with Python, using the

Torch scientific computing framework [33]. All experiments have been
run on a GNU/Linux machine running Ubuntu 18.04 with 64 GB of

RAM memory and an Intel® Core™ i7-7800X CPU. The network training
and testing has been done with an NVIDIA TITAN X GPU (NVIDIA corp,
United States) with 12 GB G5X memory.

4. Evaluation and results

The proposed methodology is evaluated with a crossvalidation ex-
periment showing the improvements against our initial workshop chal-
lenge approach and with an external blind evaluation against state-
of-the-art methods using the testing set. The evaluation metrics for
both experiments include the Dice similarity coefficient (DSC) [34] and
Hausdorff distance (HD), the ones considered to rank the workshop
challenge participants. Additionally, we also consider other metrics
more relevant to the clinical setting such as positive predictive value
(PPV), sensitivity and coefficient of determination (COD), also called
R?, between the predicted and true core volume. Finally, we con-
sider the dependent t-test for paired samples to assess the statistical
significance of differences between the evaluation results.

4.1. Crossvalidation experiment

The purpose of this experiment is to quantitatively assess the im-
provements introduced to the proposed method with respect to our
workshop challenge approach (the baseline). Mainly, the improvements
come from a more regularized network training procedure, symmetric
modality augmentation and uncertainty filtering. Additionally, a single
network is used in contrast with the two networks in cascade configura-
tion of the baseline. Thanks to the added improvements we can avoid
the use of the second model, which simplifies the training procedure
and reduces inference times. The current more regularized training
procedure uses the sum of GDL and crossentropy as loss function and
the sum of L1 loss and error rate for early stopping. However, for the
baseline approach [19] the networks were trained using crossentropy
as loss function and a probabilistic Dice loss [28] for early stopping.
Additionally, we are able to use bigger 64 x 64 patches without a
decrease in segmentation performance as it happened with the baseline,
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Fig. 3. Loss and accuracy plots for a single cross-validation fold.

where using 64 x 64 patches resulted in 4% lower DSC than using
48 x 48. The bigger patch size of 64 x 64 offers a bigger receptive
field from which to learn features.

The experiment consisted of four evaluations, first the baseline and
then three with the incremental improvements that comprise the pro-
posed method. Each evaluation is performed in 5 crossvalidation folds
across the 94 labeled images of the ISLES 2018 dataset, having 75 train-
ing and 19 validation images for each fold. Since some scans correspond
to different regions of the same patient, we ensure that all the same
patient scans are within the same set. In each fold, a single network
is trained with the training patches and then the validation volumes
are predicted, resulting in a probability map for each case. After all
five folds have finished there will be one predicted probability map for
each of the 94 training images. Finally, the probability maps are post-
processed using T and Smin, found through grid search, that achieve
the best segmentation metrics across all folds of the crossvalidation.

Fig. 3 shows loss and accuracy plots for a single cross-validation
fold, since the other folds were of similar nature. Additionally, it shows
the early stopping metric value, the L1 loss plus error rate, and the
segmentation DSC of the validation images. The figure shows how
the loss function evaluated on the validation set increases, instead of
decreasing, while the validation accuracy improves. For this reason,
we do not use the validation loss and instead use the sum of L1 loss
and Error rate as a monitored metric on the patch validation set for
early stopping, since it is more correlated with segmentation DSC of
the validation images. In this case, the early stopping metric reaches
a global minimum in epoch 20 where the segmentation DSC begins to
stabilize. Although further training might still improve the validation
metrics it might be at the cost of overfitting to it and worsening the
performance with testing images.

Table 1 shows the evaluation metrics obtained from the baseline
and incremental improvements. Compared with the baseline, the reg-
ularized training procedure with a single model significantly improves
the DSC and sensitivity (p < 0.02). When augmented modalities are
additionally considered, the PPV significantly improves although the
sensitivity is reduced (p < 0.05). Moreover, when uncertainty filtering
is considered the HD is significantly reduced at the expense of a lower
sensitivity (p < 0.03). In general, all introduced improvements raise the
COD, meaning that the estimated volume is closer to the gold standard.
In summary, the proposed tool provides significantly better DSC, HD
and PPV (p < 0.05) than the baseline with a marginal higher sensitivity.

Fig. 4 shows qualitative evaluations of the incremental improve-
ments for three representative cases. As compared with the baseline,
the regularized training achieves better sensitivity and specificity in
all cases, reducing the amount of false positives and negatives. The
addition of symmetric modalities overall improves lesion localization
but can reduce the sensitivity for some samples. For instance, the use
of symmetric modalities increases the false positives in the middle row
case. Finally, the bottom row is a good example of the effect of uncer-
tainty filtering in the majority of cases, improving lesion localization
and estimated volume. However, in some cases it may also introduce
additional outliers as seen in the top row case, where false positives
appear in the upper part of the lesion.

4.2. ISLES 2018 testing evaluation

For segmentation of the 62 unlabeled testing images from the ISLES
2018 dataset, we used all five networks, one from each fold, that were
trained for the crossvalidation evaluation with all improvements. An
averaging approach is used where each patch is passed through the five
trained models and the five predictions are averaged together to pro-
duce a single patch prediction. In this way, bootstrap aggregation [35]
is performed, where each network is trained with a different subset
of training data. Finally, the resulting class probability maps of the
testing images are binarized using the previously computed optimal
parameters T = 0.2 and S,,;,, = 200 from the crossvalidation experiment.
Table 2 shows ongoing benchmark leaderboard of the ISLES 2018
testing set sorted by average DSC, where the proposed methodology
ranks among the top entries out of 41 participants.

5. Discussion

The results of the ISLES 2018 testing set evaluation show that the
proposed methodology achieves state-of-the-art performance ranking
2nd in the ongoing benchmark leaderboard among 41 submissions. The
approach by Song et al. [20] manages to achieve a 2% higher DSC
by additionally using the 40 or more volumes that comprise each raw
perfusion time series (CT-PWI) to further extract features for segmenta-
tion. The use of the raw perfusion time series would involve an increase
in memory requirements and processing time, additionally making the
training procedure more complex. In our case, we still use some of the
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Fig. 4. Lesion core segmentation masks of the baseline and incremental improvements. True positives are denoted in green, false positives in red and false negatives in blue. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Evaluation metrics of the crossvalidation experiment in the ISLES 2018 training set. The baseline results correspond to our workshop
challenge approach while Single refers to the current approach using a single network. The evaluated improvements are three: the
regularized training (RT), symmetric modality augmentation (SM) and the uncertainty filtering (UF).

Method T S in DSC (%) PPV (%) Sens. (%) HD R?

Baseline 4 200 49.0+23.6 46.9 +29.5 572 +26.7 29.5+ 189 .67
Single +RT .1 300 53.5+24.6 51.8+28.9 66.0 +25.5 29.8 +£23.9 .74
Single +RT +SM 2 200 54.8 +24.8 583+29.8 63.7+25.3 26.6 +19.9 .78
Single +RT +SM +UF 2 200 547+242 57.8+29.1 60.9 +25.0 235+15.8 .82

Table 2

Top 10 entries of the ongoing benchmark leaderboard, last accessed 25/06/2019, of
ISLES 2018 testing set as ranked by average DSC. The entry of the presented tool is
highlighted in bold. *Values divided by 1,000,000.

Rank User DSC PPV Sensitivity HD*

1 songtl [20] 0.51 +£0.31 0.55+£0.36 0.55+0.34 19.4 £39.5
2 clera2 (ours) 0.49 +0.31 0.51+0.36 0.57+0.35 11.3+31.6
3 pengll [21] 0.49 +0.31 0.56 +0.37 0.53+0.33 19.4+39.5
4 zhans10 0.49 +£0.32 0.53+0.35 0.54 +0.35 17.7£38.2
5 cheny11 [36] 0.48 £0.32 0.59 +0.38 0.46 +0.33 9.7+29.6
6 lilic2 0.48 +0.32 0.48 +0.34 0.6 +0.36 17.7+38.2
7 liliy8 0.48 +£0.31 0.5+0.36 0.55+0.34 19.4+£39.5
8 liliy2 0.47 £0.32 0.53 +£0.36 0.47 £0.32 16.1 £36.8
9 xiaoh3 [22] 0.47 +£0.31 0.56 +0.37 0.49 +0.33 19.4+39.5
10 zhuoj2 0.47 +£0.32 0.51+0.36 0.54 +0.36 11.3+31.6

information obtained from the absorption curve parametrization of the
raw perfusion time series in the 4 perfusion parameter maps (CBF, CBV,
MTT and Tmax). Despite the potential performance improvement of
also processing the raw time series as shown by Song et al. [20], we
avoid it in favor of reducing the training complexity and provide faster
inference times.

The crossvalidation experiment shows the big influence that class
imbalance and training regularization can have on segmentation per-
formance. For instance, the class weighting properties of the focal loss
allow the use of bigger 64 x 64 patches without worsened imbalance
and provides a DSC improvement of 4.5% over the baseline. However,
this patch size is too small to fit both brain hemispheres simultaneously
and makes implausible exploiting symmetrical features. The use of
symmetric modality augmentation allows learning of these features

without having to use bigger patches that would worsen class imbal-
ance. Despite the overall improvement from augmented modalities,
some cases are actually worsened, as seen in the middle row of Fig. 4
with a lower PPV that increases false positives. Finally, we noted that
the use of uncertainty filtering significantly reduced outliers but also
harmed segmentation performance with bigger dropout rates. We found
that averaging the output of several passes with a low dropout rate of
10% in prediction was enough to reduce outliers without significantly
harming the overlap performance. Despite the marginally worsened
DSC, PPV and sensitivity that uncertainty filtering provides, we believe
the significantly reduced HD and better estimation of the core volume
are more desirable properties in the clinical setting. Additionally, since
each patch will require the average of three noisy predictions, this
effectively triples the network inference time. However, even when
considering the pre-processing step, segmentation of the largest images
typically takes under two minutes in our system.

6. Conclusions

In this work, we presented and evaluated an automated method
for acute stroke lesion core segmentation from CT and CTP images.
The presented tool achieves state-of-the-art performance while using a
simple training procedure with a single network. The training requires
minimal tuning of parameters thanks to the Adadelta optimizer and a
robust class imbalance handling using balanced patch sampling and a
class weighting loss function. We improve segmentation performance
with a novel way of using the symmetry property of brain hemispheres
in patch based methods. We also explore the use of prediction dropout
layers to reduce outliers and improve lesion core volume estimation, a
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predictor of clinical severity and outcome in ischemic stroke [37]. This
tool can provide with an estimate of core location and volume without
acquiring time costly MR images. In the clinical setting, this estimate
can be used to guide treatment decisions or help assess the need for
further MR imaging. A trainable implementation of the presented tool
is freely released for the research community.
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