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1 INTRODUCTION 

Density functional theory (DFT) [1] is a form of quantum mechanics that uses the one-

electron density function, ρ, instead of the more usual wave function, Ψ, to describe a 

chemical system. Such a system is any collection of nuclei and electrons. 

During the last decade, the role of DFT in quantum chemistry has shown a rapid 

increase. With these methods, it is possible to include electron correlation at a much lower 

computational cost than using conventional ab initio correlation methods. Another 

important aspect of DFT, besides computational advantages, is the fact many commonly 

used chemical concepts, such as the electronegativity (χ) [2], the global hardness (η) [3], 

and the global softness (S) [4] receive a precise mathematical definition. In this respect, 

DFT provides a bridge that connects some traditional empirical concepts with quantum 

mechanics [1,5]. Among these common concepts, the hardness is especially significant 

since it is the cornerstone of some important principles of chemical reactivity such as the 

hard and soft acids and bases (HSAB) [3,6,7] principle and the maximum hardness 

principle (MHP) [3,6-9]. 

Besides the global parameters (χ, η, and S) [1], a number of local counterparts (e.g. the 

local hardness )(rη  [10,11], the local softness )(rs   [10,11], and the Fukui function )(rf   

[12]) have been developed. These local functions have become very useful to predict the 

regioselectivity of intermolecular and intramolecular reactions [13].  

 

1.1 The original definition of hardness 

Pearson introduced the concepts of hard and soft acids/bases and the HSAB 

principle. This principle asserts that hard acids prefer to coordinate with hard bases, while 
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the soft acids prefer to react with soft bases from both the thermodynamic and kinetic 

points of view. 

TABLE 1 and 2 here 

Tables 1 and 2 [3] show the first classification between hard and soft bases/acids. A 

soft base, e.g. −I , is very polarizable, easily oxidized and it has a low electronegativity; 

while a hard base, e.g. −F , is not much polarizable, hard to oxidize and it has a high 

electronegativity. A soft acid, e.g. Rb+, is usually a system of low positive charge and large 

size; while a hard acid, e.g. Al3+, is normally a system of high positive charge and small 

size. Generally, a hard acid or base is a system with an electron cloud difficult to deform. 

The classification of Tables 1 and 2 is qualitative. We know according to factors of 

charge, size, and charge distribution that, for instance, as a base the hydroxy anion is harder 

than the water molecule. Such simple qualitative relationships are very important. 

However, even more important is to be able to quantify their hardness to determine 

numerically how much harder is the hydroxy ion as compared to water. 

 

1.2 DFT-based global hardness and softness 

Parr and Pearson [6] first provided the analytical definition of global hardness of any 

chemical species as the second-order partial derivative of the total electronic energy, E, 

with respect to the total electron number of electrons, N, at a fixed external potential ( )rν : 
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Here ( )rν  is the potential acting on an electron at r  due to the nuclear attraction 

plus such other external forces as may be present. The term µ is the electronic chemical 
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potential, which is the negative of the electronegativity (χ) [14], as defined by Iczkowski 

and Margrave [15]. 

Hardness [16-18] is a measure of the resistance of a chemical species to change its 

electronic configuration, while electronic chemical potential measures the escaping 

tendency of an electron cloud. The reciprocal of the hardness is the softness [16-18], which 

measures the easiness of charge transfer and it is associated with high polarizability [19],  

.1
η

=S  (2) 

 
By applying the finite-difference approximation to Eq. (1), we get the operational definition 

of η as [16-18],  

,AI −≅η  (3) 
 
where I and A are the vertical ionization energy and electron affinity, respectively. These 

quantities can be directly obtained from Hartree-Fock (HF) molecular orbital calculations 

following the Koopmans’ theorem [20]. For closed-shell species one has, 

,HOMOLUMO εεη −≅  (4) 
 
where εHOMO and εLUMO are the energies of the highest occupied molecular orbital and the 

lowest unoccupied molecular orbital, respectively. 

Experimentally, the most difficult problem in Eq. (3) is usually to measure precise 

electron affinities. The reason is that most molecules have negative electron affinities and 

energy is required to force an electron on to the molecule. To measure such vertical 

negative electron affinities, the electron transmission spectroscopy technique has been 

devised [21].  

When experimental values of I and A are lacking, it is necessary to use the theory. 

Calculation of hardness from Eqs. (3) and (4) is subject to several error sources [22], the 
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most important being the fact that the finite difference approximation in Eq. (1) has been 

used to derive Eqs. (3) and (4) and this approximation can only be strictly applied using an 

integer number of electrons ( 1±=∆N ) [23-25]. For this reason, it is very important to 

explore new ways to compute more accurate hardnesses [26] and this will be the main goal 

of the present work. 

 

1.3 Fukui functions  

Another reactivity index based on DFT is the Fukui function [12], first introduced in 

the 1980s by Yang and Parr. They defined the Fukui function, ( )rf  , as the partial 

derivative of ( )rρ  with respect to the number of electrons, at constant external potential 

( )rν . A Maxwell-like relation links the chemical potential µ and ( )rf   as, 
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The Fukui function describes the local alteration in the electron density of the 

system due to a change in the global number of electrons, so it reflects the character of a 

reactant to accept (donate) electrons from (to) another system, and as such it constitutes an 

important reactivity index. 

For a molecular or atomic system, the derivative of Eq. (5) is discontinuous [23-25] 

and difficult to evaluate. Consequently, Yang and Parr have provided three definitions for 

Fukui functions [12], corresponding to a reactivity index for a nucleophilic ( )rf + , 

electrophilic ( )rf − , and radical ( )rf o   attacks on the system, where is possible to apply 

the finite difference approximation in density [27], and the frontier electron-theory of 

reactivity as formulated by Fukui and collaborators [28]: 
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where the superscripts -, +, and 0 refer to the left, right, and central derivatives, 

respectively. ( )rN


1+ρ , ( )rN
ρ , and ( )rN



1−ρ  are the electronic densities of the system with 

N+1, N, and N-1 electrons, respectively. 

 

1.4 The relation between Fukui functions and hardness 

An alternative to Eqs. (3) and (4) is to use the following expression first formulated 

by Ghosh [29] and later on mathematically demonstrated by Chattaraj et al. [30]:  

( ) ( ) ( ) .''',∫∫= rdrdrfrrrf  ηη  (9) 
 

In Eq. (9), ( )rf   is the Fukui function as defined by Eq. (5). Obviously, Eq. (9) can 

be applied with the Fukui functions defined by Eqs. (6) to (8), although these equations 

have been derived using the finite difference approximation and therefore the 1±=∆N  

drawback is still present. It is worth noting that analytical definitions for the Fukui function 

that avoid this problem have been developed and they are good alternatives for the 

commonly used Eqs. (6) to (8) [31]. On the other hand, ( )', rr η  [11] is the hardness kernel, 

from which most reactivity parameters in DFT can be readily defined [32]. This hardness 

kernel is defined as the second order functional derivative of Hohenberg-Kohn universal 

density functional ( [ ]ρF ) with respect to the density, 



7 
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In Eq. (10), [ ]ρF  is an unknown and presumably very complicated functional that 

contains the kinetic energy density functional, the classical electron-electron Coulomb 

repulsion functional, and the exchange-correlation functional: 

[ ] [ ] [ ] [ ] .ρρρρ xcEJTF ++=  (11) 
 

The drawback of the Eq. (11) is that the exact expressions for [ ]ρT  and [ ]ρXCE  are 

unknown. One can employ, however, the approximate available expressions. For instance, 

using the Thomas-Fermi form [33] for the kinetic energy density functional, the Dirac 

exchange energy functional [34] for the exchange-correlation functional, and the exact form 

of the classical Coulomb repulsion functional, one gets [35]: 
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Then, from Eq. (12), it is possible to write a more compact expression of the hardness 

kernel as [32]:  

( ) ,)'()(
'

1', rrrg
rr

rr 



 −+
−

≅ δη  (13) 

 
where the first term originates from the classical Coulombic repulsion term, while the 

second comes from the kinetic and exchange and correlation terms. Far away from the 

nuclei and because of the exponential fall-off of the density, the exchange-correlation can 

be neglected and the leading term arises from the Coulombic contribution [5,11,35-39], so 

that: 

( ) .
'

1',
rr

rr
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−
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Introducing this approximation into Eq. (9), one obtains: 

( ) ( ) .''
'

1
∫∫ −

= rdrdrf
rr

rf 



η  (15) 

 
An even more simplified approximation to the hardness kernel could be: 

( ) ,)'(', rrrr  −≅δη  (16) 
 
where Eq. (16) is derived from Eq. (13) by approximating the Coulombic term, ,'/1 rr 

−  to 

a Dirac delta function, ),'( rr 

−δ and assuming that )(rg   is constant. This is probably the 

simplest model that one can conceive for the hardness kernel. Substitution in Eq. (9) leads 

to the following very simple and computationally cheap form for the hardness: 

( ) .2∫= rdrf η  (17) 
 

Eq. (15) was used by Liu, Proft, and Parr [39] for the calculation of the global 

hardness of the first 54 neutral atoms. The authors showed that Eq. (15) generates 

reasonable atomic global hardness values. On the other hand, in our previous work [40], we 

have tested the two simplified models of the hardness kernel (Eqs. (14) and (16)) to 

calculate the global hardness for a series of 18 neutral Lewis bases using the hybrid B3LYP 

functional and conventional ab initio correlated methods. In this study, we find that the 

cheapest model (Eq. (16)) yields the best molecular orderings by hardness when compared 

to experimental values. However, it is important to remark that despite the success of this 

simple model in ordering the molecules by hardness, this approximation does not provide 

correct estimates of global hardnesses [40]. Finally, it is worth nothing that the use of this 

approximation produces some inconsistencies. For instance, using ( ) )'(', rrrr  −≅δη  the 

global softness cannot be defined [40].  
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The goal of this paper is to continue the work of our previous study on 18 neutral 

Lewis bases [40] and to show that Eq. (17) can provide the intuitive (or experimental when 

available) molecular ordering by hardness in a series of Lewis acids (both cations and 

neutral molecules) and Lewis bases (anions). Anions are especially interesting since the 

measure of their experimental hardness is usually very difficult. 

 

1.5 Quantum molecular similarity measures  

The quantum molecular similarity measures (QMSM) quantify how similar one 

molecule is to another and for that reason they are useful parameters in studies of charge 

density redistributions [41] and quantitative structure activity relationship (QSAR) analysis 

[42]. One of the most widely used quantum molecular similarity definitions between two 

molecules A and B of densities ( )rA
ρ  and ( )'rB

ρ  was first reported in a landmark study by 

Professor Carbó-Dorca and collaborators [43,44] who showed that their similarity is given 

by, 

( ) ( ) ( ) ( ) ,''',, ∫∫ Θ=ΘΖ rdrdrrrr BABA
 ρρ  (18) 

 
( )', rr Θ  being an operator depending on two-electron coordinates. Overlap-like QMSMs 

are obtained when the ( )', rr Θ  is chosen as a Dirac delta function, ( )'rr  −δ , while the use 

of the operator '1 rr  −  or 2'1 rr  −  gives rise to Coulomb-like QMSMs and gravitational-

like QMSMs, respectively [44].  

In the particular case that ( ) ( )'rr BA
 ρρ =  one gets the so-called quantum molecular 

self-similarity of a particular molecule A, ( )ΘΖ AA, , which is very useful to quantify electron 

charge concentration [45]. 
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2 COMPUTATIONAL DETAILS 

Eqs. (15) and (17) can be generalized using the following expression: 

( ) ( ) .'')',(∫∫ Θ= rdrdrfrrrf η  (19) 
 
In this formula ( )', rr Θ  is a Dirac delta function ( )'rr  −δ  or the operator '1 rr  − . 

Introducing the three definitions of Fukui functions (Eqs. (6) to (8)) into Eq. (19)), one 

could establish three different definitions of hardness for electrophilic, nucleophilic, and 

radical attacks [30]:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫∫∫ −−
−− −Θ−=Θ=Θ−− '''',''', 11 rdrdrrrrrrrdrdrfrrrf NNNNff

 ρρρρη  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,''',2''',''', 111 ∫∫∫∫∫∫ −−− Θ−Θ+Θ= rdrdrrrrrdrdrrrrrdrdrrrr NNNNNN
 ρρρρρρ  

(20) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫∫∫ −Θ−=Θ=Θ ++
++

++ '''',''', 11 rdrdrrrrrrrdrdrfrrrf NNNNff
 ρρρρη  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and,''',2''',''', 111 ∫∫∫∫∫∫ Θ−Θ+Θ= +++ rdrdrrrrrdrdrrrrrdrdrrrr NNNNNN
 ρρρρρρ  

(21) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫∫∫ −+−+ −Θ−=Θ=Θ '''',
4
1''', 1111

00
00 rdrdrrrrrrrdrdrfrrrf NNNNff

 ρρρρη  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ].''',2''',''',
4
1

111111 ∫∫∫∫∫∫ −+−−++ Θ−Θ+Θ= rdrdrrrrrdrdrrrrrdrdrrrr NNNNNN
 ρρρρρρ

 

(22) 

 
Expressing Eqs. (20) to (22) as a function of the QMSMs defined above, we can write: 

( ) ( ) ( ) ( ) ,2
111
ΘΖ−ΘΖ+ΘΖ=Θ

−−−
−− NNNNNNff ρρρρρρη  (23) 

( ) ( ) ( ) ( ) and,2
111

ΘΖ−ΘΖ+ΘΖ=Θ
+++

++ NNNNNNff ρρρρρρη  (24) 

( ) ( ) ( ) ( )[ ].2
4
1

11111100 ΘΖ−ΘΖ+ΘΖ=Θ
−+−−++ NNNNNNff ρρρρρρη  (25) 

 
Thus, one can compute hardnesses from Eq. (9) with the hardness kernel 

approximations represented by Eqs. (14) and (16) by using Coulomb-like and overlap-like 

QMSMs, respectively, in Eqs. (23) to (25). 
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In our previous work [40], we showed that the simplest and computationally 

cheapest model, ( ) ( )'', rrrr  −≅ δη , affords the most reasonable hardness molecular 

ordering. We also found that the hybrid density functional B3LYP [46], second-order 

Møller Plesset (MP2) [47], and singles and doubles quadratic configuration interaction 

(QCSID) [48] methods yield qualitatively the same results, although the MP2 gives 

somewhat better results when compared to experimental hardnesses. Accordingly, we have 

used in this study the ( ) ( )'', rrrr  −≅ δη  model for the hardness kernel and the MP2 

methodology to compute hardnesses. 

The Gaussian 98 program [49] has been used to perform correlated MP2 

calculations of vertical ionization potential (I) and electron affinities (A), and molecular 

electron densities. The HOMO and LUMO orbital energies have been obtained at the HF 

level. The basis set used for all calculations has been the 6-31++G** [50]. Calculated A and 

I are always vertical values (no change in nuclear positions) computed using the MP2/6-

31++G** optimized geometry of the original system. Indeed, including electron correlation 

is quite important to compare chemical species with different number of electrons [51]. 

Thus, in the calculation of I and A values it is highly advisable to go beyond the HF method 

[22,52], the MP2 method being one of cheapest and more effective choices. Less relevant 

seems to be the effect of electron correlation in the Fukui functions [53]. 

All calculations have been done within the restricted formalism except for open-

shells systems that have been calculated using the unrestricted approach. The methodology 

employed for the calculations of the quantum molecular similarity measures has been same 

as in our previous work [40]. QMSMs have been obtained from the Gaussian 98 MP2 

generalized densities [54] using the Messem [55] program developed in our group. 
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3 RESULTS AND DISCUSSION  

The methodology explained in the previous section has been applied to a different 

set of Lewis bases (anions) and Lewis acids (cations and neutral molecules). In this study, 

we will compare the results of overlap-like Fukui self-similarity measures (OFFS) (Eqs. 

(23) to (25) with ( ) ( )'', rrrr  −≅ δη ) with those obtained from the conventional hardness 

definition (Eqs. (3) and (4)). 

It is worth noting that this study is qualitative, its main goal being to prove that 

OFFSs could be an excellent alternative to the traditional and operational forms of hardness 

for ordering molecules according to their hardness values. It is important to design new 

methods that give the correct ordering by hardness for a series of molecules. Indeed, 

application of the HSAB and the MHP principles only requires knowing whether the 

hardness of some species is greater or smaller than that of a certain system of reference. On 

the other hand, accurate theoretical values of hardness are also very relevant because in 

some cases (for instance in anions) their experimental determination is not trivial. 

Tables 1 and 2 group some Lewis bases and acids as hard, borderline or soft 

according to Pearson [3]. This classification will be used to analyze the obtained results and 

to evaluate the efficiency of the different methodologies employed to calculate the 

hardness. 

In this section, we will first analyze some anionic Lewis bases. Experimentally, it is 

very difficult to evaluate the hardness of these species since anionic Lewis bases carrying 

an extra electron are unstable. For this reason, it is not possible to measure their electron 

affinity and Eq. (3) cannot be applied to these species. In these systems, the absolute value 

of electron affinity can be larger than the ionization potential, the electron affinity 

becoming the more relevant component of the hardness as expected from the fact that much 
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energy is required to force an electron on to systems that have already an excess of 

electrons. Secondly, we will study some cationic and neutral Lewis acids. Despite cations 

are less problematic than anions, they can also present some experimental problems; e.g. 

except for monoatomic cations, second ionization potentials cannot be usually measured. 

 

3.1 Lewis Bases 

Table 3 collects the MP2 hardness values of different anionic Lewis bases calculated 

with the operational expressions given by Eqs. (3) and (4) and with the alternative 

procedure that employs OFSS measures (Eqs. (23) to (25)). 

TABLE 3 here 

Due to different molecular polarizabilities and diverse electronegativities [56,57] of 

the central atoms is reasonable to expect the following relations among the several Lewis 

bases analyzed here: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,PHNH,SHOH,BrClF 22
−−−−−−− >>>> ηηηηηηη  

( ) ( ) ( ) ( ) ( ) ( ) ,NONO,CHNHOHF 2332
−−−−−− >>>> ηηηηηη  

( ) ( ) ( ) ( ) ( ) ( ) .SiHCHand,SiHPHSHCl 3332
−−−−−− >>>> ηηηηηη  

(26) 

 
For instance, the −OH  anion is harder than the −SH  species because the oxygen atom 

attracts more its electrons than the sulfur atom ( ( ) ( )SO χχ > ). As a consequence, the 

electronic cloud of the −SH  species is more polarizable and it is more difficult to change 

the electronic configuration of −OH  than that of −SH . Similar arguments can be provided 

to justify the rest of relationships. 

Among the five methods used to calculate the hardness, the only method that affords 

the qualitative ordering predicted by Eq. (26) is the method based on electrophilic OFSS 
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measures, ( )[ ]'rrff
 −−− δη . The method that uses radical OFSS measures, ( )[ ]'00 rrff

 −δη , 

erroneously predicts −− > 33 CHSiH . On the other hand, the method based on the traditional 

hardness definition represented by Eq. (3), 1η , produces the same error and in addition 

incorrectly yields the relation −− > 23 PHSiH . These two errors are also reproduced by the 

hardness calculated with Eq. (4), 2η , that additionally wrongly gives the same hardness for 

−
2PH  and −

2NH . 

The method based on the calculation of nucleophilic OFSS measures, 

( )[ ]'rrff
 −++ δη , is the one that yields the worst results. This can be rationalized by taking 

into account that these molecules due their inherent basic character do not undergo 

nucleophilic attacks, and therefore the nucleophilic OFSS measures are inadequate to 

calculate the hardness in Lewis bases. 

Alkyl groups [58] are usually regarded as electron-donating (+I) substituents. 

However, there are also many examples that the chemical behavior of the methyl group has 

been interpreted considering that alkyl groups are electron-withdrawing (-I) when 

compared to hydrogen [59]. This is the case of some anionic species such as −OCH3 . In 

this anion, the alkyl group, instead of transferring charge to the central atom, is used to 

delocalize part of the electronic density of the central atom. In particular, calculations at the 

MP2/6-31++G** level of theory show that the oxygen atom decreases its negative 

Mulliken population by 0.326 electrons when going from the hydroxy to the methoxy 

anion, indicating that the methyl group in the methoxy anion acts as an electron acceptor. In 

such a case, the effect of the substitution of a hydrogen atom by an alkyl group generates a 
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softer system that has fewer electrons in the central atom and a more polarizable electronic 

cloud. Based on these arguments, one could expect the following relations: 

( ) ( ) ( ) ( ) and,SCHSH,OCHOH 33
−−−− >> ηηηη  

( ) ( ) ( )( ) .NCHNHCHNH 2332
−−− >> ηηη  

(27) 

 
The first relation in Eq. (27) is fulfilled by 1η , 2η , ( )[ ]'rrff

 −−− δη , and 

( )[ ]'00 rrff
 −δη , while the second is satisfied by 1η , 2η , and ( )[ ]'00 rrff

 −δη , but 

surprisingly not by ( )[ ]'rrff
 −−− δη , although according to ( )[ ]'rrff

 −−− δη  the hardnesses 

of −SH  and −SCH3  are quite similar. Finally, all methods fail in predicting the last relation. 

The classification of the molecules given by Eqs. (26) and (27) is not followed 

precisely by any of the theoretical methods employed. Probably even more interesting than 

to analyze the exact position of each molecule given by the different methods is to discuss 

the general trends. To this end, Table 4 contains the ordering by hardness of the different 

molecules for the different methods employed. Dark grey cells in this Table represent hard 

systems according to Table 1, while grey and white cells represent borderline and soft 

species, respectively. 

TABLE 4 here 

Results in Table 4 show that the method based on ( )[ ]'rrff
 −−− δη  measures is the 

only one that exactly reproduces the classification of Table 1. Furthermore, −H  is the 

softest molecule among the studied set and the only method that places it in its correct 

position is the method based on electrophilic OFSS measures, ( )[ ]'rrff
 −−− δη . 

The ( )[ ]'00 rrff
 −δη  also gives generally correct results, although it overestimates 

the hardness of −
2NO . Finally, it is clearly seen in Table 4 that 1η  and 2η  erroneously 
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classify several systems. For instance, the −NHCH3  and ( ) −NCH 23 species, which belong 

to the group of hard molecules, are considered as soft molecules, whereas a soft molecule 

such as −H  shows the same hardness as hard molecules like −OH  and −Cl . 

 

3.2 Lewis Acids 

Table 5 contains the hardness of the different Lewis acids calculated using the 

conventional expressions given by Eqs. (3) and (4) and the OFSS measures of Eqs. (23) to 

(25). Based on the definition of hardness and the qualitative ordering of Table 2, we can 

expect the following relations among the several Lewis acids analyzed here, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,GaAl,CaMgBe,KNaLi 33222 ++++++++ >>>>> ηηηηηηηη  

( ) ( ) ( ) ( ) ( ) ( ) .BrClFand,NaMgAl 222
23 ηηηηηη >>>> +++  

(28) 

 
These relations are fulfilled by all theoretical methods analyzed, except for the nucleophilic 

OFSS measures, ( )[ ]'rrff
 −++ δη , that predicts Ga3+ to be harder than Al3+. On the same 

grounds one can also predict the following relations, 

( ) ( ) ( ) ( ) ( ) ( ) ,BBrBClBF,KCaGa 333
23 ηηηηηη >>>> +++  

( ) ( ) ( ) ( ) ( ) .SOSOand,AlBrAlClAlF 23333 ηηηηη >>>  (29) 

 
The first relation in Eq. (29) is correctly predicted only by the OFSS measures, 

while 1η  and 2η  hardness values are the unique methods that properly place the systems 

according the second and third relations of Eq. (29). It is worth noting that despite the fact 

that classification in Table 2 predicts SO3 to be harder than SO2, experimentally the 

opposite trend is found, although the difference of experimental hardness between SO2 and 
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SO3 is only 0.2 eV. All theoretical methods in Table 5 predict ( ) ( )23 SOSO ηη > , except the 

radical OFSS measures, ( )[ ]'00 rrff
 −δη . 

TABLE 5 here 

The molecular ordering by hardness obtained with the ( )[ ]'rrff
 −++ δη  measures of 

Lewis acids is better when compared to the ordering obtained using the same measures in 

the Lewis basis of the preceding section. However, the results derived from nucleophilic 

OFSS measures are still worse than those based on the use of radical and electrophilic 

OFSS measures. The failure of ( )[ ]'rrff
 −++ δη  is somewhat unexpected if one considers 

that these molecules due their intrinsic acid character undergo nucleophilic attacks, and 

therefore the nucleophilic OFSS measures should be adequate to calculate the hardness in 

Lewis acids. However, it is also true that being the hardness a measure of the resistance of a 

chemical species to change its electronic configuration, one should include in the 

calculation the effects of both adding one electron to the system and removing one electron 

from it. These two effects are fundamental to correctly define the curvature of the E vs. N 

function, i.e., the hardness (Eq. (1)). In this sense, being ( )rf 0  the only Fukui function that 

incorporates these two effects, the use of  ( )[ ]'00 rrff
 −δη  to order the systems by hardness 

seems to be more reasonable than the use of either ( )[ ]'rrff
 −++ δη  or ( )[ ]'rrff

 −−− δη . This 

fact was already pointed out by Gázquez who showed that I could be written as [60]:  

( ) ( ) ( ) ,''',
2
1
∫∫ −−+−= rdrdrfrrrfI o  ηµ  (30) 

and A as: 

( ) ( ) ( ) ,''',
2
1
∫∫ +++−= rdrdrfrrrfA o  ηµ  (31) 
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and that according to Eq. (5): 

( ) ( ) ( ) .''',∫∫=−= rdrdrfrrrfAI oo  ηη  (32) 
 

A linear regression using the calculated hardness and the experimental values as the 

y and x components, respectively, shows that 1η  and 2η  produce better results (r2=0.98) 

than the OFSS measures ( ( )[ ]'00 rrff
 −δη  and ( )[ ]'rrff

 −−− δη , r2=0.93 and r2=0.94, 

respectively). The improvement of the values obtained with 1η  and 2η  with respect to the 

results of the preceding section and those obtained in our previous work [40], are related to 

the fact that for Lewis acids the main component of the hardness computed with Eq. (3) is 

the ionization potential, while in Lewis bases the electron affinity is quite large and it can 

be even more important than the ionization potential. So 1η  and 2η  give good results in 

Lewis acids because the conventional ab initio and DFT methods provide reasonable 

ionization potentials, as shown by several authors [61]. More difficult is the theoretical 

study of the electron affinities [62]. The results obtained using OFSS measures in Lewis 

acids are not as impressive as those presented in the previous section and in our previous 

work for Lewis bases, although they give still excellent results and are a good alternative 

for systems having experimental or theoretical I or A that are difficult to determine.  

 

4 CONCLUSIONS 

In this paper, we have tested an approximate hardness kernel, ( ) ( )'', rrrr  −≅ δη , for 

the evaluation of the global hardness in a series of anionic Lewis bases and neutral and 

cationic Lewis acids. Since the most common operative expressions to calculate the 

hardness of a system are quite approximate, it is very important to explore new methods to 

calculate hardnesses. In the case of Lewis bases, the intuitive order of hardness supported 
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by polarizability and electronegativity arguments and given by Eqs. (26) and (27) is better 

reproduced by the methods based on radical and electrophilic OFSS measures than by 

methods based on the common operational expressions (Eqs. (3) and (4)). For Lewis acids 

the molecular order by hardness is in most cases correctly reproduced by ( )[ ]'00 rrff
 −δη , 

( )[ ]'rrff
 −−− δη , and by Eqs. (3) and (4). Despite both radical and electrophilic OFSS 

measures provide excellent molecular classifications by hardness for Lewis acids and bases, 

we recommend the use of radical OFSS measures since ( )rf 0  is the only Fukui function 

that includes in some way the effects of adding electron charge to the system and removing 

charge from it. 

As a whole, we have shown here that the calculation of hardness for both acids and 

bases through the use of radical OFSS measures is a very good alternative to the 

operational expressions, especially if one wants to know whether a system is harder or 

softer than a molecule of reference, as required by the MHP and HSAB principles.  
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Table 1 

Qualitative classification of Lewis bases.a 

Hard Borderline Soft 

−F , OH2 , −OH , ROH , −RO , 

 OR 2 , 3NH , −
2NH , 2RNH , 

−RNH , −NR 2 , −Cl , −
3NO  

256 NHHC , NHC 55 , 

−Br , −
2NO  

SH2 , −HS , RSH , −RS ,  

SR 2 , −
2PH , −

3CH ,  

−
3SiH , −H , −I  

a From Ref. [3]. 
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Table 2 

Qualitative classification of Lewis acids.a 

Hard Borderline Soft 

+Li , +Na , +K , +2Be , +2Mg ,  
+2Ca , +3Al , +3Ga , +3Fe , 3BF , 

 3BCl , 3)OR(B , 3SO , 2CO , 2F  

+2Fe , 2SO , +2Ni ,  
+2Cu , +2Zn , +2Pb  

+Au , +2Pd , +2Pt ,  
+Cu , +Ag , 2Br  

a From Ref. [3]. 
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Table 3 

Calculated hardness for the anionic Lewis bases studied. 1η  is obtained using Eq. (3), 2η  is 

calculated from Eq. (4), while ( )[ ]'rrff
 −−− δη , ( )[ ]'rrff

 −++ δη , and ( )[ ]'00 rrff
 −δη  values are 

derived from Eqs. (23) to (25), respectively. 

Molecule 1η a 
2η a ( )[ ]'rrff



−−− δη b ( )[ ]'rrff
 −++ δη b ( )[ ]'00 rrff

 −δη b 

−F  19.3 17.1 0.07284 0.00541 0.01959 

−Cl  12.3 11.0 0.01675 0.00133 0.00447 

−Br  10.6 9.7 0.01092 0.00090 0.00287 

−OH  8.9 7.5 0.03742 0.00109 0.00917 

−OCH3  7.5 6.2 0.03559 0.00053 0.00881 

−SH  7.9 7.0 0.00996 0.00130 0.00258 

−SCH3  6.7 5.7 0.01045 0.00063 0.00250 

−
2NH  6.8 5.8 0.01553 0.00068 0.00378 

−NHCH3  5.7 4.7 0.01739 0.00057 0.00422 

( ) −NCH 23  5.8 4.7 0.01490 0.00040 0.00333 

−
2PH  6.6 5.8 0.00474 0.00076 0.00114 

−
3NO  13.9 12.4 0.04771 0.01297 0.01269 

−
2NO  12.8 10.6 0.01454 0.01770 0.00516 

−
3CH  5.6 4.9 0.00594 0.00560 0.00068 

−
3SiH  6.9 6.2 0.00427 0.00055 0.00100 

−H  10.3 8.6 0.00281 0.00116 0.00112 
a units are eV. 

b units are atomic units. 
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Table 4 

Arrangement of the different Lewis bases according to the calculated hardnesses in Table 3 

for the different methods studied. The hardness decreases in going down through a column. 

The cells in dark grey correspond to hard molecules according to Table 1, while those in 

light grey or white represent borderline and soft molecules, respectively. 

1η  
2η  ( )[ ]'rrff

 −−− δη  ( )[ ]'rrff
 −++ δη  ( )[ ]'00 rrff

 −δη  

F- F- F- NO2- F- 

NO3- NO3- NO3- NO3- NO3- 

NO2- Cl- OH- CH3- OH- 

Cl- NO2- CH3O- F- CH3O- 

Br- Br- CH3NH- Cl- NO2- 

H- H- Cl- SH- Cl- 

OH- OH- NH2- H- CH3NH- 

SH- SH- (CH3)2N- OH- NH2- 

CH3O- SiH3- NO2- Br- (CH3)2N- 

SiH3- CH3O- Br- PH2- Br- 

NH2- PH2- CH3S- NH2- SH- 

CH3S- NH2- SH- CH3S- CH3S- 

PH2- CH3S- CH3- CH3NH- PH2- 

(CH3)2N- CH3- PH2- SiH3- H- 

CH3NH- (CH3)2N- SiH3- CH3O- SiH3- 

CH3- CH3NH- H- (CH3)2N- CH3- 
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Table 5 

Calculated harness for the neutral and cations Lewis acids studied, 1η  is obtained using Eq. 

(3), 2η  is calculated from Eq. (4), while ( )[ ]'rrff
 −−− δη , ( )[ ]'rrff

 −++ δη , and ( )[ ]'00 rrff
 −δη  

values are derived from Eqs. (23) to (25), respectively. 

Molecule 1η a 
2η a ( )[ ]'rrff

 −−− δη b ( )[ ]'rrff
 −++ δη b ( )[ ]'00 rrff

 −δη b Exp.a,c 

+Li  70.6 70.3 0.73612 0.00208 0.19305 70.2 
+Na  44.2 43.5 0.37459 0.00137 0.09492 42.2 
+K  27.9 27.4 0.06390 0.00074 0.01642 27.2 
+2Be  136.1 135.1 1.75970 0.01022 0.47655 135.6 
+2Mg  67.2 66.0 0.55269 0.00459 0.14235 45.0 
+2Ca  39.8 39.1 0.09007 0.00206 0.02375 39.4 
+3Al  93.9 92.5 0.79781 0.00956 0.20838 91.6 
+3Ga  37.6 36.4 0.43968 0.01059 0.11575 33.2 

3BF  19.5 17.6 0.03360 0.00083 0.00825 19.4 

3BCl  13.8 12.2 0.00860 0.00973 0.00438 11.2 

3BBr  12.5 10.8 0.01118 0.00807 0.00473 9.8 

3AlF  17.8 15.4 0.02762 0.00234 0.00728 11.8 

3AlCl  13.4 12.5 0.00789 0.00249 0.00251 - 

3AlBr  12.3 11.1 0.01202 0.00163 0.00351 - 

2F  19.8 14.6 0.05069 0.06496 0.02331 12.6 

2Cl  12.7 10.7 0.01233 0.01115 0.00563 9.2 

2Br  10.8 9.5 0.00944 0.00730 0.00429 8.0 

2CO  16.3 18.6 0.03044 0.02812 0.01596 17.6 

3SO  15.1 11.9 0.01694 0.00583 0.00537 11.0 

2SO  13.1 11.7 0.01600 0.01323 0.00687 11.2 
a units in eV. 

b units are atomic units. 

c experimental values from Refs. [3,63,64] obtained using Eq. (3). 


