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Abstract: In this paper an autonomous intervention robotic task to learn the skill of 
grasping and turning a valve is described. To resolve this challenge a set of 
different techniques are proposed, each one realizing a specific task and sending 
information to the others in a Hardware-In-Loop (HIL) simulation. To improve the 
estimation of the valve position, an Extended Kalman Filter is designed. Also to 
learn the trajectory to follow with the robotic arm, Imitation Learning approach is 
used. In addition, to perform safely the task a fuzzy system is developed which 
generates appropriate decisions. Although the achievement of this task will be used 
in an Autonomous Underwater Vehicle, for the first step this idea has been tested in 
a laboratory environment with an available robot and a sensor.  

Keywords: Autonomous Underwater Vehicle (AUV), Imitation Learning, Fuzzy 
System, Extended Kalman Filter (EKF), Valve Turning. 

1. Introduction 

Nowadays, Autonomous Underwater Vehicle (AUV) robots are used in different 
applications like seabed survey, mine cleaning, cable or pipeline tracking [1], deep 
ocean exploration with visual mapping [2] or water quality observation [3]. For 
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intervention tasks, still Remotely Operated underwater Vehicles (ROV) are used 
due to the complexity and uncertainty of the work.  ROVs are operated by one or 
two persons, usually one to keep the robot stable and another to control the 
manipulators [4]. Recently, some positive results have been achieved in the task of 
recovering objects from the seabed ones using a robotic arm [5]. 

The main goal in the European project “Persistent Autonomy through 
learNing, aDaptation, Observation and Re-plAnning (PANDORA)”[6] is to develop 
and evaluate new computational methods to make human-built robots Persistently 
Autonomous. The goal is to reduce the frequency of assistance requests 
significantly and the key to this aim is the ability to recognize failure and respond to 
it autonomously. The PANDORA project is focused on three underwater tasks, one 
of them consisting in autonomous grasping and turning a valve with a free floating 
AUV.  

The AUV uses a manipulator to grasp the correct valve on a panel and open or 
close it. Since the vehicle does not dock, it needs to hover by swimming when 
counteracting reaction forces from the turning and from the sea currents and even 
minor turbulence from the manifold. Also it must ensure that the gripper position 
and orientation of the gripper after grasping does not cause significant shear forces 
in the valve handle (T-bar shape), and break it off. To overcome the difficulties in 
this task, imitation learning techniques [7] can offer a robust solution and an easy 
way to teach the robot trajectory using the data from a set of demonstrations. This 
kind of a learning method includes the most important desirable properties of 
movement planning which are: ease of representing and learning, compactness of 
the representation, robustness against perturbations and changes in a dynamic 
environment, ease of reuse for related tasks and easy modification for new tasks, 
and ease of categorization for movement recognition. However, no standard 
approach of movement planning exists that accomplishes all these goals [8-11]. 

This paper presents the preliminary work about autonomous valve turning 
done with a real manipulator in lab conditions, not underwater. Several sensors 
have been used to estimate the distance between the gripper and the valve. Also, an 
Extended Kalman Filter (EKF) [12] has been applied to improve the estimations 
and to avoid gaps in the data. Moreover, according to the instant dynamics of the 
valve, the robot has to decide if it can approach to the valve or not. To make this 
decision, a fuzzy system has been used. 

This paper has the following format. In Section 2 the general task and the 
proposed experimental environment are explained. In Section 3 the different 
methods and their combination to solve the task are described. The obtained results 
are showed in Section 4. And finally, conclusions are exposed in Section 5. 

2. Problem description and environment 

In PANDORA project, the task of grasping and turning the valve requires a set of 
actions that have to be done successfully before the final step. It must be noticed 
that in this paper the task of grasping and turning the valve is investigated, when the 
vehicle is in the work area in front of the desired valve. 
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This task will be accomplished by Girona500 [13], which is a compact and 
lightweight AUV, with hovering capabilities and can fulfil the particular needs of 
any application by means of mission-specific payloads and a reconfigurable 
propulsion system. In this case the AUV needs to be equipped with a robotic arm.  

Before attempting the valve turning task underwater, an approach system has 
been built in the facilities of Istituto Italiano di Tecnologia (IIT), using a light 
weight robotic arm (KUKA/DLR) and an Optitrack system. 

Fig. 1. Schematic diagram for the real scenarios 

The KUKA/DLR robotic arm will be used under Cartesian impedance control 
mode [14]. The robot’s position, orientation and the fixed joint or Cartesian 
stiffness commands will be sent to the KUKA controller using the DLR’s Fast 
Research (FR) Interface libraries [15].  

Although the KUKA/DLR is a different kind of manipulator than the one that 
is going to be attached to the Girona500 robot, the goal of this paper is to learn the 
attained trajectory during the experiment, not the specific kinematics of the 
manipulator. The available sensor in the AUV will be simulated using the Optitrack 
system, which lets you get the 3D position and orientation of a rigid body using a 
set of cameras and markers, see Fig. 1. This system gives the position and 
orientation with good precision and high frequency. In this problem we will focus 
our interest on the distance between the valve and the end effector; therefore we 
will mark these two elements to be tracked by the Optitrack system.  

The real AUVs can acquire data from one camera, but the precision and 
sampling frequency of the Optitrack’s data are much better. To improve the camera 
information, the robot has more sensors, in this case the gyro-enhanced Attitude and 
Heading Reference System (AHRS) will be used. The camera and the AHRS will 
be combined using an EKF to improve the estimation. Both sensors are simulated 
using the Optitrack’s data. 

Finally, the last difference between the two environments is the fact that 
underwater the valve will be fixed and the robot will move, but in the lab the 
situation is the opposite. 
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3. Experimental set-up and results 

In this section the experimental set-up details, the process, and the results are 
described step by step. The diagram of the set-up is shown in Fig. 2. 

 
Fig. 2. Flowchart of the system: This diagram represents how the data flow from the Optitrack system 
to the different phases of experiment to finally convert in commands to the robot. The learning phase 

is not included because it is done offline with the recorded data 

3.1. Data processing phase 

In this phase, an EKF is designed to estimate the position. The EKF is an extension 
of Kalman Filter (KF) [12], able to work with non-linear functions. The KF uses 
measurements with noise and an approximated model of the process studied to 
produce measures of the state, which are more accurate than those based on single 
measurements. Previous works have proved the advantages of using an EKF to 
track objects [16, 17]. 

In this task the movement of the end effector towards the valve is represented 
as a model with a constant acceleration, and the measurements of the system are the 
position of the valve obtained using a camera, and the acceleration of the vehicle 
obtained using an AHRS. The orientation of the vehicle is also considered as a 
control signal. 

The reference frame has the center in the valve position. In this way we avoid 
the differences between the two environments and solve the problem of changing 
the position of the valve. In this case, the mobile part in the coordinate system will 
be the end-effector and the base of the robot, all movements of the valve will be 
reflected in these two elements. The next equation shows the homogeneous 
transformation Matrix done to convert the data from the Optitrack frame to the 
valve frame, in this case a composed matrix is used with translation and standard 
rotation with RPY Matrix: 
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The two inputs of EKF are generated using different samples rates from the 

Optitrack’s data. The data selected to generate one sensor will never be used to 
generate the data of the other, making both sensors independents. Moreover, 
appropriate noise is added to the signals, using a precision similar to the sensors, for 
the camera it is ± 0.005 m, and for the AHRS it is ± 0.5 m/s2. 

3.2. Learning phase and trajectory execution 

A robot should be able to acquire new skills using various forms of learning and 
when direct physical contact to the robot is possible, kinaesthetic teaching offers a 
user-friendly and intuitive method to demonstrate new skills to a robot by manually 
guiding the robot’s arm through the motion. 

Briefly, using several demonstrations of a similar task, the robot creates a 
compact model of the skill by taking into account the variations and correlations 
observed along the movement. The positional constraints of the demonstrated skill 
are represented as a matrix of dynamical systems encoding robustly position 
trajectories. The Dynamic Movement Primitives (DMP) framework, which is used 
in this paper, was originally proposed by I j s p e e r t  et al. [7] and after that in  
[18-20]. 

M examples of a skill are demonstrated to the robot with different initial 
positions. Each demonstration { }Mm ,,1…∈  consists of a set of mT  positions x , 
velocities x�  and accelerations x��  of the end-effector in Cartesian space, where each 
position has three dimensions. Using the datasets from demonstrations, a mixture of 
K  proportional-derivative systems is created as a model of the skill [20].  

In this approach a decay term defined by a canonical system ss α−=�  is used 
to create an implicit time dependency property α)ln(st −= , in which the initial 
value for s  is 1 and converges to zero. Also for the backward movement, which is 
used in retracting mode, a complementary equation is used to generate time starting 
from the final time to the initial time.  

A set of K Gaussians is defined in time space, with centres T
iμ  equally 

distributed in time, and variance parameters set to a constant value inversely 
proportional to the number of states. By determining the weights )(thi  through the 
decay term s , the system will sequentially converge to the set of attractors in 
Cartesian space defined by centres X

iμ  and stiffness matrices ki
P , which are 

learned from the observed data, either incrementally or in a batch mode. 
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The desired acceleration to generate the trajectory is computed using the next 
equation, where x  and �x  are the current position and velocity and kv  defines the 
damping factor: 

(2) ( )
1

ˆ ( ) .
K

P X v
i i i

i

x h t k x k xμ
=

⎡ ⎤= − −⎣ ⎦∑�� �  

 

 
Fig. 3. In dense line you can see all the trajectories in 2D, given by demonstration. The broken line 

ellipsoids are the states learned by the algorithm to represent the trajectory and in dotted line you can 
see one trajectory produced using the learning part 

It can be seen that for parts of the movement where the variations across the 
different demonstrations are large, the reference trajectory does not need to be 
tracked precisely. By using this information, the controller can focus on the other 
constraints of the task, such as collision avoidance. On the other hand, for other 
parts of the movement, exhibiting strong invariance across the demonstrations 
should be tracked precisely. 

3.3. Reproduction phase 

A fuzzy system is used to generate a decision command based on linguistic 
variables and rules.  In a fuzzy system the fuzzifier section maps the crisp inputs 
into some fuzzy sets. Then the fuzzy inference engine uses fuzzy IF-THEN rules 
from the defined rule base to reason for the fuzzy output. The generated output in a 
fuzzy term is converted back to the crisp value by the defuzzifier section [21]. 

Since we are using EKF to make estimation and fill in the gaps from our 
sensor data, when we do not receive data for a while the uncertainty becomes bigger 
and bigger. In addition, the robot or the operator needs to know about the dynamics 
of the valve and decide if it can be approached, because if the relative movement 
exceeds the normal range we may miss the valve or break it off. Therefore, the first 
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input for our fuzzy system is an estimated movement between the valve and the 
arm. And the second input is receiving the data delay from the sensor. The output of 
the fuzzy system is a numerical command in the continuous range of grasping, 
waiting, and retracting actions [−1, 1].  

Here, we use Sugeno inference which consists of product inference engine, 
singleton fuzzifier, and center average defuzzifier. We use Gaussian membership 
functions in our fuzzy sets, and the designed fuzzy rule base is showed in  
Table 1. 

Table 1. Fuzzy rule base 

 Relative Movement 

Sensor 
Delay 

 Small Medium Big 
Low Forward Stop Backward 

Medium Forward Stop Backward 
High Stop Backward Backward 

After defining the rules for the system, let w  be the output value of each step 
and z  be the weight for each rule, then the final output of the fuzzy system is [21]:  

(3) 
1

1

FinalOutput .

N

i i
i

N

i
i

w z

w

=

=

=
∑

∑
 

Finally, with the input of the distance between the end effector and the valve, 
and with the decision of the fuzzy system the learning part generates a proportional 
movement with respect to the position to move the robot. The result is evaluated 
and if the condition of grasping the valve is completed, an instruction is sent to turn 
the valve, in the other case the new position is sent to the KUKA robotic arm. 

3.4. Complete experiment 

 

  
(a) (b) (c) 

Fig. 4. This set of images represents the process of one demonstration of the task of  
grasping the valve 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

Fig. 5. The set of images show the whole process of reproducing the task with perturbations. 
Images (a) and (b), the robot reaches the initial common position, from any position. Images (c) 
and (d), the valve is not stable and the robot moves to a safer position. Image (e). Image (f), the 
valve is stable in a new position, so the robot moves to grasp it. Image (g), the robot has grasped 

the valve and finished the trajectory. Images (h) and (i), the robot does the 90º turning 
 

 

 

Fig. 6. In this set of images we can see two different trajectories which are done by the end effector to 
grasp and turn the valve. In the left figure we can see the changes in the trajectory, moving forward or 
backward, depending on the stability of the valve position. On the other side, the trajectory on the right 
figure shows a clean trajectory going only forward to the valve, in this case the valve has been stable 

during the process
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In the final experiment all steps of the operation (from learning until valve 
turning) in a complete loop are accomplished by the robot appropriately and 
effectively, see Figs 4, 5 and 6. The designed system is capable of providing a 
smooth trajectory, compensating small perturbations in sensors, analysing the 
safeties of the situation and moving forward or backward with smooth changes, 
tracking the trajectory efficiently, and detecting the end of the trajectory and turning 
the valve. In future works the turning phase will be learned by the robot instead of 
using pre-programmed commands. 

4. Conclusions 

The proposed combination of techniques in this paper has allowed a robotic arm to 
learn the skill to follow a trajectory, grasp a valve and turn it. This experiment has 
been done as a simulated scenario of an underwater operation with an AUV. 

During this experiment the robot has been tracking the distance between the 
valve and the end effector of the robotic arm, doing a mixture of different kind of 
measurements using the EKF which generates a smooth movement of the robot and 
more stability in the control of the position. Moreover, the learning part has 
provided the ability to extract the important restrictions of a set of trajectories and 
offer the adaptability and robustness to follow the trajectory. In addition, the 
method has proved the possibility of utilizing a fuzzy system to study the dynamic 
behaviour of the valve and choose a proper action. 
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