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A B S T R A C T

Intensity-based multi-atlas segmentation strategies have shown to be particularly successful in segmenting brain
images of healthy subjects. However, in the same way as most of the methods in the state of the art, their
performance tends to be affected by the presence of MRI visible lesions, such as those found in multiple sclerosis
(MS) patients. Here, we present an approach to minimize the effect of the abnormal lesion intensities on multi-
atlas segmentation. We propose a new voxel/patch correspondence model for intensity-based multi-atlas label
fusion strategies that leads to more accurate similarity measures, having a key role in the final brain segmen-
tation. We present the theory of this model and integrate it into two well-known fusion strategies: Non-local
Spatial STAPLE (NLSS) and Joint Label Fusion (JLF). The experiments performed show that our proposal im-
proves the segmentation performance of the lesion areas. The results indicate a mean Dice Similarity Coefficient
(DSC) improvement of 1.96% for NLSS (3.29% inside and 0.79% around the lesion masks) and, an improvement
of 2.06% for JLF (2.31% inside and 1.42% around lesions). Furthermore, we show that, with the proposed
strategy, the well-established preprocessing step of lesion filling can be disregarded, obtaining similar or even
more accurate segmentation results.

1. Introduction

Multiple sclerosis (MS) is an inflammatory, demyelinating and
neurodegenerative disease of the central nervous system involving
immune-mediated destruction of myelin and axonal damage that affects
both white matter (WM) and gray matter (GM). MS is characterized by
the formation of focal inflammatory lesions, also called plaques. Besides
these demyelinating lesions, the disease also causes degeneration which
makes patients experiment a consequent brain volume loss, known as
atrophy, as the disease progresses.

GM atrophy in the brain has been shown to be associated with
cognitive impairment in MS (Amiri et al., 2018; Nocentini et al., 2014;
Eijlers et al., 2018), being a better predictor than WM lesion volume
(Tillema et al., 2016), and also relevant to disease progression
(Jacobsen et al., 2014). Furthermore, deep GM atrophy has been shown
to be associated with the development of definite MS and disability
progression in early relapsing remitting MS (Zivadinov et al., 2013;
Debernard et al., 2015). The effect of the disease on isolated structures
has also been studied, concluding that the thalamus atrophy is a clini-
cally relevant biomarker of the neurodegenerative disease process
(Houtchens et al., 2007).

Both MS lesions and brain atrophy, are usually measured in-vivo

from magnetic resonance images (MRI) by means of automatic or semi-
automatic algorithms. The most frequent modalities to segment WM
lesions include PD-w, FLAIR and T2-w, since lesions appear hyper-in-
tense in these sequences which makes them easier to detect. However,
cortical lesions are rarely visualized in these modalities, which makes
other sequences such as DIR, PSIR or MP-RAGE also useful for finding
MS lesions. On the other hand, brain atrophy is measured from T1-w
images (where lesions appear hypo-intense), due to the high contrast
between tissues shown in this modality. To measure the atrophy of
different brain structures, the most common procedure is to compute
structure volumes from a previous segmentation of the brain.

Several automatic methods have been proposed in the literature to
segment the brain on its structures (González-Villà et al., 2016; Iglesias
and Sabuncu, 2015), that can be classified based on the strategy fol-
lowed, including, learning-based (Kushibar et al., 2018; Fischl et al.,
2002), atlas-based (Warfield et al., 2004; Iglesias et al., 2012;
Artaechevarría et al., 2009), deformable-based (Patenaude et al., 2011),
etc. Among all the approaches proposed in the literature, multi-atlas
methods have been demonstrated to be robust and provide good seg-
mentation results on healthy subjects (González-Villà et al., 2016;
Heckemann et al., 2010; Asman and Landman, 2013). In this strategy, a
set of MR images with available manual segmentation, i.e. atlases, are
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non-rigidly registered to the target MR image. After that, the de-
formation fields obtained from these registrations are applied to the
corresponding segmentations in such a way that new pairs of images
(structural image and segmentation) are obtained, which are similar to
target. Then, these candidate segmentations of the target are fused (i.e.,
label conflicts between the candidate segmentations are resolved voxel-
wise) to obtain the final segmentation. Several fusion strategies have
been proposed in recent years (Artaechevarría et al., 2009; Huo et al.,
2017; Wang et al., 2013), being the ones helped by the structural image
intensities the ones that provide the best results (González-Villà et al.,
2016; Akhondi-Asl and Warfield, 2013; Landman and Warfield, 2012).

Multi-atlas label fusion strategies based on intensities exploit the
target-atlas similarity under the assumption that images with similar
appearance are more likely to have similar segmentations. A successful
approach, inspired by the non-local means method (Buades et al., 2005)
and first introduced by Coupé et al. (2011) to multi-atlas segmentation,
utilizes a patch based search strategy, i.e. search strategy that aims at
matching cubic/squared blocks of the image (patches) with the most
similar patch in a second image, to identify correspondences with the
atlases. This technique assumes that registration errors are inherent in
multi-atlas segmentation due to several facts such as the regularization
constraints involved in that process or the failure to reach a global
optimum of the objective function. In order to overcome the registra-
tion errors, these methods relax the one-to-one mapping constraint
existing in traditional weighting methods and re-compute the corre-
spondences for every voxel/patch of the target image and the atlases
before segmentation, usually based on intensity similarity. However, in
the same way as most of the proposed brain structure algorithms in the
state of the art (González-Villà et al., 2017), these strategies are de-
signed to segment healthy subjects and, their performance tends to be
affected by the presence of MS lesions.

Recently, different lesion filling approaches (Valverde et al., 2014;
Chard et al., 2010; Battaglini et al., 2012; Prados et al., 2016) have been
successfully proposed in order to minimize the effect of the abnormal
MS lesion intensities on the segmentation. Those techniques have been
demonstrated to improve tissue measurements (Valverde et al., 2014;
Chard et al., 2010; Battaglini et al., 2012; Prados et al., 2016), and have
been used ad-hoc also for brain structure segmentation (Gelineau-Morel
et al., 2012; Batista et al., 2012). While the effect of lesion filling has
been analyzed on several tissue segmentation strategies, in which in-
tensity distributions of different tissue classes are modelled, it has not
been studied the effects on patch based segmentation strategies, i.e.
strategies that are based on image patches instead of using the whole
image at once, in which patch intensities are independent to the global
intensity distributions.

In this work, we propose a new correspondence search approach for
multi-atlas label fusion, that can be applied to segment either healthy
subjects or patients with MRI visible lesions. We introduce a new cor-
respondence model, able to deal with brain irregularities, such as MS
lesions. We assume that the abnormal lesion intensities may affect the
correspondence finding on the healthy atlases, obtaining more in-
accurate matches than the ones obtained after a masked registration to
the atlas, i.e. ignoring the lesion voxels. For this reason, we force the
correspondence imposed by the registration result on the lesion areas,
whereas we redefine the patch shape on the surroundings of the lesion
to prevent these abnormal intensities from interfering in the corre-
spondence search. We integrate this model into two well-known label
fusion strategies (Non-local Spatial STAPLE (Huo et al., 2017) and Joint
Label Fusion (Wang et al., 2013)), reformulating the original methods
to improve the correspondences in the lesion areas, while maintaining
the original search model in the rest of the brain.

2. Materials and methods

2.1. Data

Public databases of patients with lesions and including both brain
parcellation and lesion annotations are uncommon. Therefore, to test
our approach in a large number of cases, we need to run the experi-
ments with simulated data. Specifically, we have simulated artificial
multiple sclerosis lesions on a database of 45 healthy patients that in-
cluded brain parcellation annotations. To simulate the lesions, 140 MS
patients from five different databases (including MICCAI’08 (Styner
et al., 2008), MICCAI’16 (Commowick et al., 2018), ISBI’15 (Carass
et al., 2017), and two in-house databases) were analyzed, and the 45
patients with larger lesion volume were selected as basis for simulation.
The selected 45 patients were paired with the annotated healthy images
based on their lateral ventricle size in order to pair similarly atrophied
brains. Once the couples were assigned, each MS patient image was
non-rigidly registered to its corresponding atlas (Avants et al., 2008)
(previous initial affine registration (Ourselin et al., 2001)), masking out
the lesion areas for more adjusted registration. Then, the normalized
intensities of the registered lesions were copied to the atlases, obtaining
a new database of simulated patients with lesion volumes ranging from
1.16–68.43ml, and voxel spacing 1× 1×1mm.

The healthy subject dataset consists of 45 T1-w MR images obtained
from the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas
Labeling database (Landman and Warfield, 2012). The images were
obtained from Open Access Series on Imaging Studies (OASIS) dataset
(Marcus et al., 2007) and labeled according to BrainCOLOR protocol
(Klein et al., 2010), including 133 labels that cover the whole brain:
subcortical structures, ventricles, cerebral WM, cerebellum, brainstem
and 98 regions in the cortex (see supplementary material for more in-
formation).

Nevertheless, the recent MRBrains 2018 challenge dataset (MICCAI,
2018) allows us to test our approach also with real data. Although this
dataset consists of 30 MRI images obtained from patients with varying
degrees of atrophy and white matter lesions, only 7 cases have been
released with both lesion and tissue segmentation available. For these 7
patients, lesion load ranges from 0.06 to 70.00ml. As we use the atlases
from the previous dataset, the 133 brain structures labels have been
combined to obtain an 8-class segmentation: background, cortical gray
matter, basal ganglia, white matter, cerebrospinal fluid in the extra-
cerebral space, ventricles, cerebellum and brainstem. Voxel spacing for
the images in this dataset is 0.9583×0.9583×3mm.

Severely atrophied brains were present in both databases. In the
first one, in spite of lesions were simulated on a cohort of healthy
subjects, their ages range from 18 up to 90 years old, and therefore,
some of them present age-related atrophy.

2.2. Preprocessing

The atlases used in our experiments include the 45 images from the
MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling
database (Landman and Warfield, 2012). For the atlas registration, PCA
atlas selection is performed and only the 15 most similar atlases are
used for segmentation. In the experiments performed on the simulated
dataset, since lesions are simulated in images of the same database, the
one being analyzed is excluded from the atlas selection, keeping as
candidate atlases the remaining 44 images. All the images are histo-
gram normalized and N4 (Tustison et al., 2010) bias field corrected
before registration. All the pair-wise registrations are performed using
an initial affine registration (Ourselin et al., 2001) followed by a non-
rigid (Avants et al., 2008) procedure. In all the registrations performed,
the lesions are masked-out to avoid their intensities to interfere in the
similarity metric calculation. For a fair comparison of the fusion
methods, the same registration results are used for all the strategies.
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2.3. Voxel and patch correspondences

A substantial source of error in multi-atlas label fusion is registra-
tion inaccuracy. Registration is a very complex task, which is con-
sidered one of the fundamental problems in medical image processing,
and may not always give maximum local similarity between image
patches. Because of that, some fusion strategies have successfully tried
to reduce these registration errors by means of local search windows,
that relax the traditional one-to-one mapping constraint. That is, given
the patch centered at voxel i of the target image I (℘(Ii)), it is often
possible to find a patch ℘(Ai′j) centered at voxel i′ of the atlas image j
which is more similar to ℘(Ii) than to the corresponding patch ℘(Aij)
centered at voxel i of the atlas j. This similarity is often computed based
on image intensities, which constitutes a challenge when the target
image presents visible lesions. The lesions show different intensity
profiles to that of the atlases healthy tissues, making tough the corre-
spondence search problem.

In this section, we present a new correspondence search approach
for patch-based multi-atlas segmentation (label fusion), that can be
applied to segment either healthy subjects or patients with MRI visible
lesions. A graphical representation of this idea is depicted in Fig. 1. In
order to avoid the interference of the lesions on the correspondence
search, we assume that such correspondence cannot be further im-
proved inside the lesions based on intensities and enforce them on that
areas in such a way we give more weight to the masked registration
result. Note that this premise could be applied to any intensity-based
multi-atlas label fusion strategy, not only to solve for voxel/patch
correspondences but also to estimate the final voting weights, on
weighted voting strategies, that lead to the segmentation result, as we
will see in Section 2.3.3.

In the following, we reformulate two well-known label fusion

strategies to include this idea: Non-local Spatial STAPLE (Huo et al.,
2017), and Joint Label Fusion (Wang et al., 2013).

2.3.1. Problem definition
Consider a target gray-level image (with lesions) represented as a

vector I∈ℝN×1. Let L∈ {0,1}N×1be a binary lesion mask indicating
whether a given voxel i of the target image contains or is part of a
lesion, hence Li= f(Ii∈ lesion). Note that the lesion mask is optional and
can be neglected if all voxels in it are set to 0, making the modified
algorithms behave as its originals. Consider also a set R of registered
healthy atlases with associated gray level images, A∈ℝN×R.

2.3.2. Masked Non-local Spatial STAPLE (m-NLSS)
Non-local Spatial STAPLE (NLSS) (Huo et al., 2017) is a variant of

the STAPLE (Warfield et al., 2004) algorithm from a non-local means
perspective. In NLSS, the labels of all the atlas voxels in the neighbor-
hood of the target voxel have a weight in its label assignment based on
their intensity similarity. That is, they provide a model in which they
learn which label each atlas would have observed given the perfect
correspondence with the target and integrate this model into the
STAPLE framework.

As stated before, lesion intensities may affect the result of this non-
local correspondence model, obtaining wrong voxel correspondences
and sometimes even worse than the ones obtained by the one-to-one
mapping resulting from masked registration. For this reason, following
the previously stated assumption, we define the probability of corre-
spondence between voxel i of the target image and voxel i′ of the j-th
atlas (αji´i), i.e. the non-local correspondence model, as follows:

Fig. 1. Correspondence search scheme. Search for the correspondence of voxel i of the target image I (Ii) on the atlas j (Aj). When there are not lesions in the patch of
voxel i, our model performs as the original method (best correspondence is found comparing the target patch of voxel i, i.e. ℘(Ii), to all the atlas patches of the voxels
i′ that belong to the neighborhood of i, i.e.℘ ′ ∈′A i i( ), ( )i j N . On the other hand, when there are lesions in the patch, we modify the patch shape to exclude the lesions
from the search and use the same patch shape to find the correspondence in the atlas in the same way as before. Finally, when the target voxel i is part of a lesion, we
trust the masked registration result and force the correspondence to be Aij. Note that this example is shown in 2D for simplification, where the patch size is set to
5×5 (blue and orange striped squares) and the search neighborhood to 7× 7 (green striped square). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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where ℘(·) is the set of intensities in the patch neighborhood of a given
intensity location. In this definition,

℘Li =℘ (1− Li) is the masking term that excludes lesion voxels
from the patch calculation and enforces the same patch neighborhood
size/shape in both the atlas and the target, ‖℘Li ∘ (℘(Ai´j)−℘ (Ii))‖22 is
the L2-norm between the atlas patch centered at i´ and the target patch
centered at i, εi´i2 is the Euclidean distance in physical space between i
and i´, σi and σd are the standard deviations for the intensity and dis-
tance weights, and Zα is a partition function that enforces the constraint
that

�
∑ =∈ α

´
1ii ji i´ ( ) , where i( )N is the set of voxels in the search

neighborhood of a given target voxel. δ(i´ = i) is the Dirac delta func-
tion, and ‖℘Li‖ is the number of voxels in the patch neighborhood.

A more detailed and extended formulation of this method can be
found in the paper (González-Villà et al., 2018).

2.3.3. Masked Joint Label Fusion (m-JLF)
Joint Label Fusion (JLF) (Wang et al., 2013) is based on the idea

that different atlases may produce similar label errors. They assume
that the errors produced by the atlases are not independent and address
this issue by computing the intensity similarity between the target and

each pair of atlases, which allow them to estimate the probability that a
pair of atlases produce the same segmentation error.

In order to estimate this pairwise dependency matrix, the authors
first solve for the patch correspondences between the target and each
atlas, as they also assume registration errors. As these correspondences
are computed based on patch intensities, we know that the lesion in-
tensities may interfere on this local patch search, and therefore we
redefine the local search correspondence map between the atlas j and
the target as follows:
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where ℘Li is the same masking term than in Section 2.3.2, ‖℘Li ∘ (℘
(Ai´j)−℘ (Ii))‖2is the (masked) sum of squared differences of the non-
lesion voxels, i( )N is the set of voxels in the search neighborhood of a
given target voxel, and δ(i´ = i) the Dirac delta function.

In the same way lesions interfere in the local patch search, they also
have to be modelled in the pairwise dependency matrix, which esti-
mates how likely two atlases are both to produce wrong segmentation
for the target image, given the observed joint patch intensity differ-
ences. Following our assumption, we reformulate the matrix of ex-
pected pairwise joint label differences between the j-th and k-th atlases,
Mi(j,k), as follows:

Fig. 2. Evaluation procedure for both the simulated and the real databases. In the simulated database, the original MS patient is registered to the healthy space and
the intensities of the registered lesions are copied to the healthy subject. For evaluation, each of the images shown is segmented with the original methods (JLF and
NLSS) and the proposed ones (m-JLF and m-NLSS). The performance of the methods is assessed individually for each segmented image, i.e. healthy/lesioned/filled
for the simulated database and lesioned/filled for the real database, based on the DSC difference of the proposed method and the original one. Note that the
segmentation result when using the proposed method on the healthy, lesioned and filled images will be the same, i.e. the intensities inside the lesion mask are
irrelevant for our method and the atlas registration results are the same for all the images analyzed, thus, we only segment the image with lesions.
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where β is a model parameter controlling the weight distribution, ‖℘Li‖
is the number of non-lesion voxels in the patch neighborhood, Ai′ijj and
Ai′ikk are the corresponding voxels of target image voxel i, i.e. Ii, on
atlases j and k, respectively.

Finally, the voting weights that lead to the final segmentation, can
be estimated from Mi(j,k), in the same way as in the original formula-
tion (Wang et al., 2013).

2.4. Evaluation

To evaluate the usefulness of our strategy, in the first experiment,
we compare the performances of our approaches (m-NLSS and m-JLF)
with respect to the ones obtained by the original algorithms (NLSS and
JLF) when testing the following cases: (i) original MRI images of
healthy subjects (H), (ii) images with synthetic MS lesions (L), and (iii)
images with synthetic MS lesions after applying a recent lesion filling
algorithm (Valverde et al., 2014) (F). Notice that using our proposed
strategy, the intensities inside the lesion mask are not relevant and,
thus, in the three cases, we obtained the same result. In contrast, the
performance of the original algorithms varied in each case (obtaining in
what follows, NLSS(H), NLSS(L), and NLSS(F), respectively, and simi-
larly for the JLF algorithm). Fig. 2 shows the evaluated cases and the
corresponding nomenclature.

The lesion filling technique used here (Valverde et al., 2014) re-
places the lesion voxel intensities by random values of a normal dis-
tribution generated from the mean WM signal intensity of each two-
dimensional slice. As stated by their authors, this technique is a com-
promise between global and local methods, reducing the bias caused by
refilled voxels on GM and WM tissue distributions by means of global
information from the whole slice, whereas aims to reproduce more
precisely the signal variability between slices by means of re-computing
the mean signal intensity of the normal appearing WM at each slice.

In a second experiment, we tested our approaches in the 7 cases of
the MRBrains18 dataset. In this case, we compared the proposed cor-
respondence algorithms (m-NLSS and m-JLF) when segmenting the
original images (including lesions) to their originals when segmenting:
(i) the original images (NLSS(L) and JLF(L)) and (ii) the images after
applying the lesion filling algorithm (Valverde et al., 2014) (NLSS(F)
and JLF(F)). See Fig. 2 for details.

We quantitatively evaluate the segmentation results using the global
Dice Similarity Coefficient (DSC) across all the structures affected by
lesions:

=
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where Tl is the ground truth segmentation for label l, El is the estimate
for the label l, and L is the set of all the available labels.

As the presence of lesions not necessarily affect only the lesion area
segmentation itself, but also the surrounding tissues, two measures are
calculated: (1) DSC inside the lesion mask and, (2) DSC inside a mask
that includes three voxels of the lesion contour. Note that i( )N was set
to 7×7×7. Besides, to give an overview of the global performance of
the strategies, and to evaluate how the lesions affect the segmentation
of the whole brain, we also compute the mean DSC across all the
structures, and independently for white matter and cortical and sub-
cortical gray matter.

To provide a better comparison between the methods, DSC differ-
ences are shown instead of the DSC itself, being the difference of the
DSC obtained using our strategy and the original method. Notice that
these differences are computed subject by subject, which relates the
performance for the same subject with respect to the proposed methods
and their original ones.

Statistical analysis is performed using the Matlab software package.
Differences in the performance of the analyzed methods are computed
using paired-sample ttests. Moreover, the Pearson's linear correlation
coefficient is used to compute the correlation between the total lesion
volume and the changes in mean DSC.

For a fair comparison of the fusion methods all the parameters are
set to the same values in all the original and proposed methods. The
search neighborhood is set to 7×7 x 7, patch dimensions to 5×5×5
and σi, σd and β are set to 0.25, 1.5 and 2, respectively.

3. Results

3.1. Simulated MS lesions

First, we perform an analysis of the segmentation results on the
lesion areas. Fig. 3 shows the global DSC differences between the pro-
posed strategies when segmenting the images with lesions (m-JLF and
m-NLSS) and the original methods when segmenting: (1) the images
with lesions (JLF(L) and NLSS(L)) and, (2) the lesion filled images (JLF
(F) and NLSS(F)) (see Fig. 2 for setup details). Notice that each boxplot
represents the subtraction of the original method performance from our
method's. Hence, positive values indicate an improvement of our pro-
posal with respect to the depicted method. Furthermore, each boxplot
significance was assessed independently and represents the relationship
with the proposed strategy, and therefore, they are independent to each
other. Differences in performances were assessed by means of paired t-

Fig. 3. Global DSC differences on the MS simulated database. Differences between the proposed strategies (m-JLF/m-NLSS) and their corresponding original methods
on the lesion areas: inside the lesion masks and on a mask that includes three voxels of the lesion mask contour. Segmentation differences performed for (1) the
simulated patients (m-JLF ̶ JLF(L) and m-NLSS ̶ NLSS(L)) and, (2) the lesion filled generated patients (m-JLF ̶ JLF(F) and m-NLSS ̶ NLSS(F)). Statistical significance
assessed independently for each boxplot in the figure, which represents the relationship between the proposed strategy and the original method. By means of paired t-
tests, we test the null hypothesis that the true mean DSC difference between both methods (proposed and depicted) is zero.
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tests between the original strategies (shown in Fig. 3) and the proposed
ones. The results have been analyzed separately inside the lesion mask
and on a region that includes three voxels of the lesion mask contour.
As observed in the figure, inside the lesion masks the proposed corre-
spondence models (m-JLF and m-NLSS) performed significantly better
than their originals (JLF(L) and NLSS(L)) when the lesions were present
(both inside and around the lesion masks). On the other hand, ana-
lyzing the segmentation of the filled images with the original methods
(JLF(F) and NLSS(F)), we observed that inside the lesion masks the
performance was similar to that of our proposal, while around the le-
sion areas our strategy performed significantly better.

We also compared our proposals to the best possible segmentation
the original algorithms could reach, i.e. segmenting the corresponding
healthy subjects. We observed from that experiment that, inside the
lesion areas, either segmenting the simulated images (with lesions) with
the proposed methods (m-JLF and m-NLSS) or filling the lesions before
segmentation (JLF(F) and NLSS(F)) did not reach the healthy segmen-
tation performance. This behavior was expected, since the intensities of
that areas were “corrupted” both in the image with lesions and in the
filled one. However, analyzing the performance around the lesion areas,
the proposed methods (m-JLF and m-NLSS) reached similar perfor-
mance to that of the healthy segmentations (JLF(H) and NLSS(H)). On
the other hand, when it comes to the lesion filled images, both strate-
gies (JLF(F) and NLSS(F)) significantly underperformed the healthy
segmentation (JLF(H) and NLSS(H)). Besides, both original methods
(JLF(L) and NLSS(L)) significantly underperformed the best possible
segmentations (JLF(H) and NLSS(H)).

In terms of whole brain segmentation performance (not only re-
stricted to the lesion areas), our proposals (m-JLF and m-NLSS) pro-
vided significantly better segmentation results than the original
methods when segmenting the simulated images (JLF(L) and NLSS(L))
and the filled images (JLF(F) and NLSS(F)), as observed in Fig. 4.
However, whereas the whole brain segmentation performance of our
NLSS nonlocal model (m-NLSS) was similar to that of the original
method when segmenting the healthy subjects (NLSS(H)), our proposal
for JLF (m-JLF) did not reach the best possible performance of the
original method (JLF(H)), which is comprehensible since the real in-
tensity information of the lesions is missing in the simulated images.

To give an overview of the whole brain segmentation performance,
the mean DSC achieved by the analyzed methods was: 85.97 ± 1.47
(JLF(L)), 86.03 ± 1.46 (m-JLF), 86.05 ± 1.47 (JLF(H)),
85.99 ± 1.46 (JLF(F)), 79.27 ± 1.35 (NLSS(L)), 79.35 ± 1.34 (m-
NLSS), 79.35 ± 1.33 (NLSS(H)), and 79.29 ± 1.34 (NLSS(F)).

In order to see where the bigger DSC changes, due to lesions, oc-
curred within the brain, we performed the same analysis on the sub-
cortical and cortical GM, and the WM separately. To do such analysis,

the resulting labels were merged before computing the DSC in three
groups: (1) cortical labels, (2) left and right cerebral WM, and (3)
subcortical structures (both thalamus, putamens, pallidums, caudates,
amygdalas, hippocampus and accumbens).

This second experiment, showed that in both methods, i.e. JLF and
NLSS, the structure which experimented more performance variance
was the WM, when comparing between our proposal (m-JLF/m-NLSS)
and the original method segmenting: (1) the healthy images (JLF (H)/
NLSS (H)) and, (2) the simulated images (JLF(L)/NLSS(L)). On the
other hand, when checking for differences between our strategy (m-
JLF/m-NLSS) and the original method segmenting the filled images
(JLF (F)/NLSS (F)), we observed that the GM was more affected than
the WM, in particular the subcortical structures, where more DSC var-
iance was appreciated. In light of these findings, we see that lesion
filling helps in achieving more accurate results than just segmenting the
un-preprocessed image, however, the improvement is more visible on
the WM than on the GM structures. The results of this analysis are
depicted in Fig. 5.

Fig. 6 shows some qualitative results obtained with the analyzed
methods. As can be observed from this figure, when the lesions are close
to the GM, the original methods ((f) and (j)) tend to segment them as
part of this tissue. On the other hand, if the lesions are filled before
segmentation ((h) and (l)), GM structures tend to be underestimated.
These two issues seem to be handled correctly by our proposals ((g) and
(k)), which results look more similar to the healthy subjects segmen-
tation ((e) and (i)) and the ground truth.

Lastly, we analyzed the extent to which total lesion volume affected
the observed changes in DSC for the evaluated methods. Significant
correlations were found on the DSC differences of the whole brain be-
tween JLF(L) and m-JLF (r=0.72, p < .001), JLF(H) and m-JLF
(r=−0.50, p < .001), JLF(F) and m-JLF (r=0.57, p < .001), NLSS
(L) and m-NLSS (r=0.86, p < .001), and between NLSS(F) and m-
NLSS (r=0.63, p < .001). However, no correlation with the lesion
load was found on the DSC changes between NLSS(H) and m-NLSS. On
the other hand, when analyzing the connection between the total lesion
load and the performance differences of segmenting the simulated (L)
and the lesion filled (F) images, correlations were found for JLF
(r=0.52, p < .001), and NLSS (r=0.67, p < .001). A more ex-
hausted analysis, separated by tissue, i.e. subcortical structures, cortical
GM and WM, is presented in Table 1.

3.2. MRBrainS 2018 challenge

On this database, the experiments performed showed that, in terms
of global DSC differences, the modified correspondence models pro-
vided, in average, better segmentation results on the lesion areas, for

Fig. 4. Mean DSC differences on the MS simulated database. Differences for the whole brain between the proposed strategies (m-JLF/m-NLSS) and their corre-
sponding original method. Segmentation performed for (1) the simulated patients (JLF(L)/NLSS(L)), (2) the healthy subjects (JLF(H)/NLSS(H)) and, (3) the lesion
filled generated patients (JLF(F) /NLSS(F)). Statistical significance assessed independently for each boxplot in the figure, which represents the relationship between
the proposed strategy and the original method. By means of paired t-tests, we test the null hypothesis that the true mean DSC difference between both methods
(proposed and depicted) is zero.
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Fig. 5. Dice differences on the MS simulated database. Differences for the gray matter (GM) (cortical and subcortical) and the white matter (WM) between the
proposed strategies (m-JLF/m-NLSS) and their corresponding original method. Segmentation performed for (1) the simulated patients (JLF(L)/NLSS(L)), (2) the
healthy subjects (JLF(H)/NLSS(H)) and, (3) the lesion filled generated patients (JLF(F) /NLSS(F)). Statistical significance assessed independently for each boxplot in
the figure, which represents the relationship between the proposed strategy and the original method. By means of paired t-tests, we test the null hypothesis that the
true mean DSC difference between both methods (proposed and depicted) is zero.

Fig. 6. Structural images and segmentation results obtained for the analyzed cases. (a) Original healthy T1-w image, (b) simulated MS lesions on the healthy T1-w
image, (c) lesion mask, (d) T1-w image after filling the lesions. Segmentation results of JLF on (e) the healthy subject, (f) simulated MS patient, and (h) lesion filled
image; and NLSS on (i) the healthy subject, (j) simulated MS patient, and (l) lesion filled image. Proposed strategies for (g) JLF and, (k) NLSS.
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both JLF and NLSS methods. On the other hand, analyzing the perfor-
mance of the methods inside and around the lesion masks separately,
we observed that inside the lesion masks, m-JLF over-performed JLF(L)
on six cases out of seven, whereas m-NLSS showed better performance
than NLSS(L) on five of the seven cases. When it comes to the sur-
roundings of the lesions (around lesions), the proposed correspondence
models always provided better segmentation results than their corre-
sponding originals.

In terms of the effect of the lesions on the overall performance of the
brain, we observed that, with the proposed correspondence models, m-
JLF improved its original, in mean, over the 0.1% (77.72 ± 2.15 vs:
77.82 ± 2.12), whereas m-NLSS improved a 0.09% (74.42 ± 1.95 vs:
74.51 ± 1.94). On the other hand, filling the lesions before segmen-
tation improved the original results on 0.21% for JLF(F)
(77.93 ± 2.11) and 0.03% for NLSS(F) (74.45 ± 1.90).

Fig. 7 shows some qualitative segmentation results obtained with
the original and the proposed correspondence models for both JLF and
NLSS methods. From this figure we can observe that the original
methods (JLF(L) and NLSS(L)) tend to segment the white matter lesions
as part of the lateral ventricles, whereas the proposed non-local models
(m-JLF and m-NLSS) as well as the original methods when segmenting
the filled images (JLF(F) and NLSS(F)) tend to adjust better the edge
between the two structures.

4. Discussion

In this work, we have presented an approach to solve for voxel/
patch correspondences on intensity based multi-atlas label fusion seg-
mentation when MRI visible lesions are present. We have presented the
theory to apply this approach to two well-known label fusion strategies:
Joint Label Fusion (JLF) and Non-local Spatial STAPLE (NLSS). Our
proposal performs as well as the original strategy when segmenting
healthy subjects, whereas the experiments performed showed that
minimizes the effect of the lesions when segmenting lesioned brains,
obtaining significantly better results than the original method.

Furthermore, when comparing our approach to the common lesion
filling (Valverde et al., 2014) technique, the results obtained for the MS
simulated database showed that, masking out the lesions with our ap-
proach leads to significantly better segmentation results than filling
them before segmentation. On the other hand, when the analysis was
performed on the MRBrainS18 dataset, the results showed that filling
the lesions outperformed the segmentation result of our proposal for
JLF method, whereas the proposal for NLSS achieved better results than
lesion filling. However, the results on this second database have to be
interpreted carefully, since the amount of analyzed data (only seven
images) is small.

WM lesions are usually segmented on FLAIR, T2-w or PD sequences,
where they appear larger than in T1-w and, sometimes, lesions that are

Table 1
Pearson's correlation between the total lesion load and the DSC differences seen between pairs of methods (ref ̶ other). Values calculated independently for the
subcortical structures (subcort.), cortical gray matter (cortical) and white matter (WM).

Lesions (L) Healthy (H) Filled (F) Proposed

Subcort. Cortical WM Subcort. Cortical WM Subcort. Cortical WM Subcort. Cortical WM

JLF p-val 0.0024 <0.0001 <0.0001 0.0531 0.0003 <0.0001 0.5967 0.0099 0.2573 ref ref ref
R 0.4580 0.6746 0.8405 −0.2936 −0.5234 −0.6243 −0.0820 0.3847 0.1745 ref ref ref
p-val 0.0004 0.0005 <0.0001 0.7262 0.0008 0.0009 ref ref ref – – –
R 0.5099 0.5058 0.8354 −0.0543 −0.4854 −0.4834 ref ref ref – – –

NLSS p-val <0.0001 <0.0001 <0.0001 0.0054 0.0001 0.3220 0.1070 <0.0001 0.2900 ref ref ref
R 0.7772 0.6041 0.7861 −0.4125 0.5622 −0.1528 −0.2463 0.7717 0.1631 ref ref ref
p-val <0.0001 0.0150 <0.0001 0.8540 0.0013 0.0410 ref ref ref – – –
R 0.8199 0.3644 0.7999 0.0286 −0.4704 −0.3094 ref ref ref – – –

Fig. 7. Qualitative segmentation results of patient “5” from the MRBrainS18 database obtained with the analyzed methods. The image shows (a) the original T1-w
image, (b) the superimposed lesion mask, (c) the lesion filled (Valverde et al., 2014) T1-w image, (d) the segmentation ground truth, and the segmentation results for
the original T1-w image segmented with (e) JLF, (h) NLSS, (f) our proposal for JLF (m-JLF), and (i) our proposal for NLSS (m-NLSS); and the segmentation results for
the lesion filled T1-w image segmented with (g) JLF, and (j) NLSS.
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visible in those sequences are not perceptible in T1-w images. When
using filling techniques, one has to be careful, since we can be cor-
rupting image intensities that were correct, due to inaccurate segmen-
tations. While it has been demonstrated to improve the results for
segmentation techniques in which intensity distributions of different
tissue classes are modelled, it has not been studied how it affects patch
based segmentation strategies, in which patch intensities are in-
dependent to the global intensity distributions.

Differences in the trend of the results seen in both databases could
be explained by the nature of the lesions. In the simulated dataset, le-
sions were located with no restriction on the affected structures,
whereas in the seven images of the MRBrainS18 database, lesions did
not affect any other structure than the WM. Because lesion filling
techniques tend to fill all lesions with white matter-like intensities,
these wrong intensities may be affecting the segmentation result of non-
white matter lesions on the simulated database. We believe that, for this
reason, lesion filling underperformed our proposal on the simulated
database, whereas it worked better on the MRBrains18.

The small improvements seen on the whole brain segmentation are
due to the lesion volumes being very small compared to the rest of the
brain. Thus, a big improvement on small lesion areas will never have a
big impact on the whole brain segmentation result. Furthermore, low
values seen in the MRBrainS18 database for the whole brain mean DSC
in all the analyzed strategies compared to the state of the art could be
caused by the low resolution of the analyzed images and different la-
beling protocol of the atlases used with respect to the ground truth.
However, the purpose of using this database was to compare the
modified methods to their originals, which are equally affected by the
low resolution and labeling protocols.

The analysis performed on the simulated data, showed that the le-
sion load has an important effect on the performance differences seen
between the proposed methods and the rest of the strategies analyzed.
In short, larger improvement was seen on the proposed strategies
compared to the corresponding original methods when segmenting
images with larger lesion loads. This makes us believe that either our
proposal works better with larger lesion loads or either the original
strategies are strongly affected by large lesion volumes. However, given
that strong correlations were also found for healthy-lesions differences
when applying the original segmentation strategies, we may conclude
that large lesion loads have a bigger effect on the whole brain seg-
mentation results of the original methods. This effect has shown to be
mitigated with our proposal for NLSS, achieving similar results than the
original strategy when segmenting the corresponding healthy subjects.
On the other hand, although the results obtained with our proposal for
JLF are better than those obtained with the original method, still do not
reach the performance obtained for the healthy images.

In all the experiments performed, we used lesion masks that were
manually annotated. However, expert annotated masks are not always
available in practice, which generates a need of automatic methods able
to come up with it. In this regard, automatic lesion segmentation has
become a well-studied field, in the medical imaging community
(Valverde et al., 2017; Roura et al., 2015; Tomas-Fernandez and
Warfield, 2015). As a proof, several lesion segmentation challenges
(Styner et al., 2008; Commowick et al., 2018; Carass et al., 2017; White
Matter Hyperintensities Segmentation Challenge, 2018) have been
conducted in recent years, in which successful strategies (Valverde
et al., 2017), able to achieve segmentation results that are close to
human expert inter-rater variability, have been presented. For this
reason, we believe that feeding the proposed strategy with auto-
matically segmented lesion masks, instead of manually annotated ones,
would not have a significant impact on the final brain parcellation.

Integrated segmentation algorithms by which not only brain struc-
tures but also lesions can be segmented could be beneficial for the
community (Amiri et al., 2018). The nature of multi-atlas strategies
makes them flexible to label edits integration. For this reason, ex-
tending the theory of the analyzed methods to force the label decision

inside the lesion mask would be straightforward, as we did in our
previous work (González-Villà et al., 2018), where we extended the
theory of NLSS to include a second mask that forced the label decision
in case it was beforehand known and enabled seamless integration of
manual edits.

The present study is not free of limitations. The most important one
is the lack of public databases with both annotated lesions and brain
structures ground truth. The limited amount of real patient images used
in this study is not enough to extract statistically significant conclusions
on real data, and thus, we extracted them from simulated images.

In conclusion, the results of this study show that the proposed
correspondence models improve the segmentation results when MRI
visible lesions are present, whereas they behave as the original method
when they are not. When comparing to lesion filling, simulated data
show that our proposals perform overall better, while on the seven-case
real dataset, our correspondence model only outperforms lesion filling
in one of the two analyzed methods (NLSS). Besides, using the proposed
method we eliminate the preprocessing steps required by lesion filling
and make the results more robust, since it is indifferent to the quality of
filling method. Although our proposals obtain better segmentation re-
sults on the lesion areas (inside + around) and, on the whole brain, the
experiments performed demonstrate that voxel/patch correspondences
inside the lesion itself could be further improved. Thus, as a future
work, we plan to improve our model, relaxing the one-to-one corre-
spondence imposed inside the lesions and estimate them by means of
interpolation of the neighboring ones (outside the lesions).
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