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Abstract

We consider planar central configurations of the Newtonian κn-body problem consisting
in κ groups of regular n-gons of equal masses, called (κ, n)-crown. We derive the equations
of central configurations for a general (κ, n)-crown. When κ = 2 we prove the existence
of a twisted (2, n)-crown for any value of the mass ratio. Moreover, for n = 3, 4 and any
value of the mass ratio, we give the exact number of twisted (2, n)-crowns, and describe their
location. Finally, we conjecture that for any value of the mass ratio there exist exactly three
(2, n)-crowns for n ≥ 5.

1 Introduction

In the N -body problem a configuration is central if the acceleration vector for each body is a
common scalar multiple of its position vector with respect to the center of mass. The study of
central configurations allows to obtain explicit solutions of the N -body problem where the shape
remains constant up to rescaling and rotation. While much is known about specific cases, usually
involving symmetry or assuming that some bodies are infinitesimally small, less is known about
the general structure of the set of central configurations. See Saari [9] for a introduction to the
subject.

We focus on central configurations of the planar N -body problem for N = κn, consisting in
κ groups of n bodies located at the vertices of regular n-gons. In principle, no conditions on the
masses of the same gon are imposed. Nevertheless, in the case of two regular n-gons, Zhang and
Zhou [14] prove that the masses within each group must be equal. Although it is not known if
that condition is necessary for more than two regular n-gons, we will restrict our study to central
configurations such that all the bodies within the same gon have the same mass. We denote such
central configurations by (k, n)-crowns (see Definition 1).

In Corbera et al. [3], the authors prove the existence of nested (κ, n)-crowns, where the bodies
are at the vertices of κ homothetic regular n-gons (the vertices of the different n-gons are aligned),
called nested n-gons, for all κ ≥ 2 and n ≥ 2. Zhao and Chen [15] prove the existence of central
configurations of the (pn + gn)-body problem, where p regular n-gons are nested, and g regular
n-gons are rotated exactly an angle π/n with respect the other ones. Llibre and Mello [5] show
existence of (κ, n)-crowns for specific cases with κ = 3, 4.

In the case of two regular n-gons, Yu and Zhang [12] give a necessary condition for a (2, n)-
crown: either the rings are nested or they must be rotated an angle π/n. Also, Yu and Zhang
[13] wonder if the two regular n-gons can have different number of bodies, and the answer was
negative. When the two gons are nested, Moeckel and Simó [7] prove that for every mass ratio,
there are exactly two planar central configurations.

Beyond concentrating on the study of the existence of (k, n)-crowns for any given set of masses,
our main aim is, as in Moeckel and Simó [7], to count how many there are.

The main goal of the paper is twofold. First, in Section 2, we present the general equations for
central configurations of κ n-gons, each one with n bodies of the same mass. Each (κ, n)-crown is
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determined by three sequences, related to the masses, the radii of the κ circles where the different
regular n-gons are inscribed, and the angles of rotation between the different κ n-gons. We also
derive the equations for a (κ, n)-crown when all the angles of rotation are multiples of π/n, and
we show two examples with κ = 3.

Second, in Section 3, we consider the case of κ = 2 twisted rings, where the two gons are rotated
an angle π/n. In Theorem 1 we prove that for any value of the mass ratio and n ≥ 3, there exists
at least one (2, n)-crown. When n = 3 and n = 4, we give the exact number. More concretely,
for n = 3, in Theorem 2, we show that the number varies between one and three; for n = 4, in
Theorem 3, we show that for any value of the mass ratio there exists exactly three different crowns.
Moreover, in both cases, n = 3, 4, we describe the set of admissible radii where the two twisted
n-gons can be located. Finally, we conjecture that for any value of the mass ratio there exist
exactly three (2, n)-crown for n ≥ 5. Some results when κ > 2 will be presented in a forthcoming
paper.

The paper include an Appendix where the detailed proof of some technical results are given.

2 Equations and definitions for general crowns

Consider the planar Newtonian N -body problem, N = κn, consisting in κ groups of n bodies
where all n bodies in the j-th group have equal mass mj , j = 1, . . . , κ. Let qji ∈ R2, j = 1, . . . , κ,
i = 1, . . . , n, be the position of each body in a reference frame where the center of mass is at
the origin of coordinates. A central configuration of the κn-body problem is a configuration q =
(q11,q12, . . . ,qκn) ∈ R2κn such that, for a value of λ ∈ R, satisfies the equation

∇U(q) + λMq = 0, (1)

where U is the Newtonian potential

U(q) =

κ∑

j=1

n−1∑

i=1

n∑

l=i+1

m2
j

||qji − qjl||
+

κ−1∑

j=1

κ∑

l=j+1

n∑

i=1

n∑

ν=1

mjml

||qji − qlν ||
,

and M is the diagonal matrix with diagonal m1, . . . ,m1, . . . ,mκ, . . . ,mκ (each mass mj repeated
n times).

We are interested in central configurations such that all the bodies in the same group form a
regular n-gon, also called ring.

Definition 1 A central configuration formed by κ groups of n bodies in a regular n-gon such that
all the masses of the same group are equal, is called a crown of κ rings of n bodies, or simply a
(κ, n)–crown.

We denote by qj = qj1 the position of the leader of each group, so once its position is known,
all the others bodies in the same ring are fixed. Introducing polar coordinates, we can write

qj = aje
i$j , qji = qje

i2π(i−1)/n, j = 1, . . . , κ, i = 1, . . . , n, (2)

where $j ∈ (−π/n, π/n] and aj > 0 are the polar angle of the leader and the radius of the j-
th ring, j = 1, . . . , κ, respectively. Therefore, a (κ, n)-crown is determined by three sequences
(m1, . . . ,mκ), ($1, . . . , $κ) and (a1, . . . , aκ) of κ elements, with mj > 0 and aj > 0.

Proposition 1 Consider a (κ, n)-crown with masses mj, j = 1, . . . , κ and bodies located at qji,
j = 1, . . . , κ, i = 1, . . . , n as in (2). Then, exists a constant λ such that the angles $j and the
radii aj > 0, j = 1 . . . , n, must satisfy the set of equations

mj

a2j

n−1∑

k=1

ei2πk/n − 1

(2− 2 cos(2kπ/n))3/2
+

κ∑

l=1
l 6=j

ml

n∑

k=1

ale
i($l−$j+2πk/n) − aj

(a2l + a2j − 2alaj cos($l −$j + 2πk/n))3/2
+ λaj = 0, j = 1, . . . , κ.

(3)
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Proof Due to the symmetries of the problem, only 2κ equations in (1) are independent. Thus, it
is enough to satisfy the 2κ equations related to the leaders:

∂U

∂qj
+ λmjqj = 0, j = 1, . . . , κ.

Using (2), the set of equations given in (3) are obtained.

A first question arise: how many distinct (κ, n)-crowns exists for a given set of masses. That
is, how many different sequences of radii and angles satisfy the system of equations (3) for a given
set of masses. Clearly, the set of (κ, n)-crowns is invariant under rotations (around the origin)
and dilations. In order to count the number of (κ, n)-crowns, we fix their size and identify the
rotationally equivalent configurations. Therefore, we take $1 = 0 and a1 = 1.

Definition 2 For any fixed values of κ and n, consider a configuration of κ rings of n bodies as
in (2). We say that (1, a2, . . . , aκ) and (0, $2, . . . , $κ), where aj > 0 and $j ∈ (−π/n, π/n], are
admissible if there exist a constant λ and a sequence of positive masses (m1, . . . ,mκ) such that
Equations (3) are satisfied.

The system of Equations (3) has κ − 1 degrees of freedom. It seems natural to fix the angles
$j , j = 2, . . . , κ, and look for admissible radii. A second question arise: is any sequence of angles
admissible? In the case of κ = 2 rings, the answer is no. Yu and Zhang [12] show that there
exist only two sequences of admissible angles ($1, $2): (0, 0) and (0, π/n). That is, the vertices of
the two rings are aligned, or the vertices of the second one are located at the bisector lines of the
vertices of the first ring.

In the case κ ≥ 3, as far as we know, no necessary conditions have been given in terms of
the angles $j , and all the examples known satisfy |$l − $j | = 0, π/n for all l, j. For example,
Llibre and Mello [5] show the existence of some (3, 3)-crown and also some (4, 2)-crown. Siluszyk
[10] shows numerically the existence of some (3, 2)-crowns where a2 = a3. In Figure 1 we show
two examples of crowns of three rings (with a numerical accuracy up to 10−10). In both cases,
$1 = $3 = 0 and $2 = π/n. On the left, a (3, 3)-crown with m1 = 1, m2 = 3.38825460822497
and m3 = 2.17072146363531, a1 = 1, a2 = 0.8 and a3 = 0.44. On the right, a (3, 4)-crown with
m1 = 1, m2 = 32.46470791102244, m3 = 1.074699197011822, a1 = 1, a2 = 2, and a3 = 0.4.

Figure 1: Two examples of twisted crowns. Left, a (3, 3)-crown, with radii a3 < a2 < a1. Right, a
(3, 4)-crown, with radii a3 < a1 < a2. See the text for more details.

Notice that the sequence of admissible radii has no order established beforehand.

Lemma 1 For any fixed value of κ and n, consider a sequence of ($j)
n
j=1 such that |$l −$j | =

0, π/n for all l, j. Then
κ∑

l=1
l 6=j

ml

n∑

k=1

al sin($l −$j + 2πk/n)

(a2l + a2j − 2alaj cos($l −$j + 2πk/n))3/2
= 0, j = 1, . . . , κ, (4)

for any value of mj and aj > 0, j = 1, . . . , κ.
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The proof is a straightforward calculation.

The imaginary part of the set of Equations (3) writes

mj

a2j

n−1∑

k=1

sin(2πk/n)

(2− 2 cos(2kπ/n))3/2
+

κ∑

l=1
l 6=j

ml

n∑

k=1

al sin($l −$j + 2πk/n)

(a2l + a2j − 2alaj cos($l −$j + 2πk/n))3/2
= 0, j = 1, . . . , κ.

Since the first sum is always zero, applying Lemma 1, when |$l − $j | = 0, π/n for all l, j, the
second sum also vanishes and the set of Equations (3) reduce to κ equations with κ degrees of
freedom. It is not known whether for other differences |$l −$j | different from 0, π/n Equations
(4) are satisfied for any value of mj and aj , j = 1, . . . , κ. Otherwise, when the sequence of angles
follow specific relations or proportions, it is possible that some of the κ equations in (4) vanish and
the total number of equations in (3) would also be reduced.

Proposition 2 Consider a (κ, n)-crown with masses mj, j = 1, . . . , κ and bodies located at qji,
j = 1, . . . , κ, i = 1, . . . , n as in (2), such that |$l−$j | = 0, π/n for all j, l. Then, exists a constant
λ such that the radii aj > 0 must satisfy the set of equations

− mj

a2j
Sn −

κ∑

l=1
l6=j

mlCjl(aj , al) + λaj = 0, j = 1, . . . , κ, (5)

where

Sn =
1

4

n−1∑

k=1

1

sin(kπ/n)
, (6)

and

Cjl = Cjl(aj , al) =

n∑

k=1

aj − al cos($j −$l + 2kπ/n)

(a2j + a2l − 2ajal cos($j −$l + 2kπ/n))3/2
, (7)

for j, l = 1, . . . , κ

Proof Using |$l −$j | = 0, π/n for all j, l, then all κ equations in (4) are satisfied. And the real
part of the system of equations (3) gives the system (5).

Under the hypothesis of Proposition 2, the system (5) has κ equations and 2κ unknowns: λ,
the masses mj for j = 1, . . . , κ and the radii aj , for j = 2, . . . , κ. We can eliminate λ using the
equation of the first ring j = 1, so we end up with the κ− 1 following equations:

(
Cj1 − Sn

aj
a31

)
m1 +

(
Sn
a2j
− aj
a1
C1j

)
mj +

κ∑

l=2
l 6=j

(
Cjl −

aj
a1
C1l

)
ml = 0, j = 2, . . . , κ. (8)

Furthermore, we can normalize the system (8) by setting m1 = 1. Thus, system (8) have κ − 1
equations with 2κ− 2 unknowns and writes:

(Cj1 − Snaj) +

(
Sn
a2j
− ajC1j

)
mj +

κ∑

l=2
l 6=j

(Cjl − ajC1l)ml = 0, j = 2, . . . , κ. (9)

Definition 3 Consider a (κ, n)-crown and let qj = aje
i$j , aj > 0, j = 1, . . . , κ, be the position of

the leaders of each ring. We say that the j-th and k-th rings are nested if $j −$k = 0, and are
twisted if |$j −$k| 6= 0. A (κ, n)–crown with at least two twisted rings is called a twisted crown,
whereas if all the rings are nested, is called a nested crown.

From now on, we restrict our attention to the case of two twisted rings. We prove that for any
set of masses there exists, at least, one (2, n)-crown. Furthermore, for a given set of masses we will
count the number of (2, n)-crowns in the case of n = 3, 4. We will also give a conjecture for the
general case n ≥ 5.
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3 Twisted crowns of two rings

We consider the case of twisted (2, n)-crowns, so that by Yu and Zhang [12], the only admissible
angles are $1 = 0 and $2 = π/n. Then, the set of Equations (9) reduces to

C2(a)− aSn +

(
Sn
a2
− aC1(a)

)
m = 0, (10)

where

C1(a) = C12(1, a) =
n∑

k=1

1− a cos((2k − 1)π/n)

(1 + a2 − 2a cos((2k − 1)π/n))3/2
,

C2(a) = C21(a, 1) =

n∑

k=1

a− cos((2k − 1)π/n)

(1 + a2 − 2a cos((2k − 1)π/n))3/2
,

(11)

and a = a2, m = m2. Equation (10) was also obtained by Roberts [8] and Yu and Zhang [12].

Solving Equation (10) with respect to the mass m as a function of the radius a > 0, we obtain
the following expression:

m = H(a) = a
F (a)

F (1/a)
, (12)

where
F (a) = Sna− C2(a). (13)

We have used C1(a) = a−2C2(1/a) to derive the expression (12). Notice that H(1) = 1, which
means that if the second ring is located on the same circle than the first one, then the masses of
all bodies are equal, and the regular 2n-gon central configuration is obtained.

The following result is straightforward.

Lemma 2 Let H be the function defined in (12) for a ∈ (0,∞). Then H(1/a) = 1/H(a) for any
a > 0.

Recall that, from Definition 2, an admissible sequence of radii is given by (1, a). For a (2, n)-
crown we define

A2(n) = {a > 0; (1, a) is an admissible sequence for a (2, n)-crown}. (14)

From Lemma 2 we have that if a ∈ A2(n), so is 1/a. That is, the (2, n)-crowns determined by
the sequences (1,m), (1, a) and the sequences (1, 1/m), (1, 1/a) are qualitatively the same, in the
sense that one is just the other one conveniently scaled.

The case of two twisted rings of two bodies (n = 2) is already known till 1932 from a work by
MacMillan and Bartky [6] (see also Zhang and Zhou [14]): for any positive value of m, there exists
only one central configuration. Moreover, the admissible values for the radius are 1/

√
3 < a <

√
3.

Furthermore, it is not difficult to see that when m > 1 then a < 1, so that the bigger masses are
always located in the inner ring, and the limit values a =

√
3 and a = 1/

√
3 correspond to the

limit cases m = 0 and m =∞, respectively.

Equations (10) and (12) are similar to the ones obtained by Moeckel and Simó [7] for the nested
case $1 = $2, changing cos((2k − 1)π/n) by cos(2kπ/n). In the case of nested (2, n)–crowns, the
authors prove that for any positive m there exist two central configurations. The proof is based in
the fact that the function

n∑

k=1

1

(1 + a2 − 2a cos(kπ/n))1/2

and all of its derivatives are positive. In our case the function involved is

φ(a) =
n∑

k=1

1

(1 + a2 − 2a cos((2k − 1)π/n))1/2
.

Then, function F , defined in (13) can be written as

F (a) = Sna+
dφ

da
(a).
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While in the nested (2, n)–crowns, the function F is the sum of two increasing functions in the
interval (0, 1), which implies that there exists only one root of F (a) = 0 in that interval, in the
twisted (2, n)–crowns, the function φ and its derivatives do not have constant monotonicity. So,
we can not use the same arguments and we must adopt a different approach.

Next result can be found in [8] and [1]. Both works deal with the study of relative equilibria
in the Maxwell’s ring problem plus a central mass, where the same function F appears. Its
proof is based on the fact that F (1) = Sn − C2(1) < 0, lima→0+

F (a)
a = Sn + n

2 > 0, and
lima→+∞ F (a) = lima→0+ F (1/a) = +∞.

Lemma 3 Let F be the function defined in (13) for n ≥ 3. Then, F is an analytic function for
a ∈ (0,∞) and the equation F (a) = 0 has at least two zeros z1 < 1 < z2.

The following Theorem prove the existence of, at least, one (2, n)-crown for any sequence of
masses (1,m).

Theorem 1 For any natural number n and any value m > 0 there exists a twisted (2, n)-crown
with masses m1 = 1 and m2 = m.

Proof It is enough to prove that the function H defined in (12) has a range from 0 to ∞. Let
be z1 < z2 < . . . < zn all the roots of the equation F (a) = 0. Therefore, they are all the zeros of
H(a) and 1/zn < . . . < 1/z1 are all its poles. Recall that H(1) = 1.

Let k be such that zk < 1 < zk+1. Suppose that 1/zk < zk+1. Then, H is continuous in
the interval [zk, 1/zk) and ranges from 0 to +∞. Now suppose that zk+1 < 1/zk. Then, H is
continuous and do not vanish in the interval (1/zk+1, zk], so it ranges from 0 to +∞.

In the next subsections we give the exact number of twisted (2, n)-crowns for n = 3, 4 and
for a fixed value of m. When n ≥ 5 we give some partial results and present a Conjecture. Our
methodology follows two steps: first, to study the set of admissible values A2(n); second, to study
the monotonicity of the function H.

3.1 Two twisted rings of three bodies

We consider a (2, 3)-crown of two twisted triangles. In this case, the function F in (13) writes:

F (a) =

√
3

3
a− 2a− 1

(1 + a2 − a)3/2
− 1

(1 + a)2
. (15)

We start with a technical result that allows us to determine the set of admissible values of a
for n = 3. The proof can be found in the Appendix.

Lemma 4 Consider the function F (a) given in (15). Then F (a) = 0 has exactly two positive
solutions z1 < 1/2 and z2 > 1 satisfying z1z2 < 1.

Proposition 3 The set of admissible radii for twisted (2, 3)-crowns is

A2(3) = (0, z1) ∪ (1/z2, z2) ∪ (1/z1,∞),

where z1 and z2 are given in Lemma 4.

Proof By definition of H in (12), its zeros are z1 and z2, and its poles are 1/z2 and 1/z1. From
Lemma 4, z1z2 < 1 and therefore 0 < z1 < 1/z2 < z2 < 1/z1. Furthermore, F (0) = 0 and
F (1) < 0. Thus, F (a) < 0 only for a ∈ (z1, z2). Combining the signs of F (a) and F (1/a), the
admissible radii a > 0 for which m = H(a) > 0 are

(0, z1) ∪ (1/z2, z2) ∪ (1/z1,∞).
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Next, in order to count the number of central configurations of two twisted equilateral triangles,
we need information of the behavior of the function H.

Lemma 5 Let H be the function given in (12) for n = 3 and a > 1. Then,

1. H has only two critical points: a local maximum at 1 < a < z2, and a local minimum at
1/z1 < a < +∞, where z1 and z2 given in Lemma 4;

2. the equation H(a) = a has only one positive solution at a = 1.

The proof can be fount in the Appendix. Recall that the behavior of H for a < 1 can be recovered
using Lemma 2.

Now, we can give the exact number of (2, 3)-crowns for any positive mass m.

Theorem 2 Let be a central configuration of the 6-body problem corresponding to a twisted (2, 3)-
crown with masses m1 = 1, m2 = m and radii a1 = 1, a2 = a. Let z1 and z2 be given in Lemma 4.
Then, there exist values m,M > 1 such that

1. for any 1 < m < m, there exists exactly three twisted (2, 3)-crowns. All of them with radius
1/z2 < a < z2.

2. For any m < m < M there exists only one twisted (2, 3)–crown with 1/z2 < a < 1.

3. For any m > M , there exists exactly three twisted (2, 3)–crowns. One of them satisfies
1/z2 < a < 1 and the other two a > 1/z1.

4. For m = 1,m,M the number of different twisted (2, 3)–crowns is exactly two.

Proof Let bem andM the values of H at the local maximum and minimum for a > 1 respectively,
given by the first statement of Lemma 5. Using the second statement of the same Lemma, we have
that m < M . The proof follows easily from Lemma 2 and the following properties of the function
H:

1. H(0) = H(z1) = H(z2) = 0 and H(1) = 1;

2. 1/z1 and 1/z2 are poles of H.

Notice that using Lemma 2, the number of (2, 3)-crowns for m < 1 are obtained.

In Figure 2, the function H is plotted. The approximate bifurcation values arem = 1.0007682...
and M = 35.70017694.... In Figure 3 we show the three (2, 3)-crowns for m = 40.
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Figure 2: Graph of the function H for n = 3 and m > 1 (right: detail for a ∈ [0.9, 1.1]). The
horizontal dotted lines correspond to the values m = M and m = m (see Theorem 2).
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Figure 3: Example of the three (2, 3)-crowns for m1 = 1 and m2 = 40. The radius of the first
ring is a1 = 1 while the radius of the second ring is a2 = 0.6190856888, a2 = 2.810336016 and
a2 = 3.665961553 respectively

3.2 Two twisted rings of four bodies

We consider (2, 4)-crowns of two twisted squares. In this case, the function F in (13) writes:

F (a) =

(
1

4
+

√
2

2

)
a− 2a−

√
2

(1 + a2 −
√

2a)3/2
− 2a+

√
2

(1 + a2 +
√

2a)3/2
. (16)

Similarly to the previous subsection, we start with a technical result about the zeros of the
function F (proof in the Appendix).

Lemma 6 Consider the function F (a) given in (16). Then F (a) = 0 has exactly two positive
solutions z1 < 1 < z2 satisfying z1z2 > 1.

Notice that, the number of zeros of F is the same as in the case n = 3, but their product in this
case is bigger than one. That is an important property to determine the admissible values of a for
a (2,4)-crown.

Proposition 4 The set of admissible radii for twisted (2, 4)-crowns is

A2(4) = (0, 1/z2) ∪ (z1, 1/z1) ∪ (z2,∞),

where z1 and z2 are given in Lemma 6.

Proof By definition of H in (12), its zeros are z1 and z2, and its poles are 1/z2 and 1/z1. From
Lemma 6, we have that 0 < 1/z2 < z1 < 1 < 1/z1 < z2. Furthermore, F (0) = 0 and F (1) < 0.
Thus, F (a) < 0 only for a ∈ (z1, z2). Combining the signs of F (a) and F (1/a), the admissible
values a > 0 for which H(a) > 0 are

(0, 1/z2) ∪ (z1, 1/z1) ∪ (z2,∞).

Lemma 7 Let H be the function given in (12) for n = 4. Then, H is monotone increasing.

Finally we can establish the number of central configurations of twisted (2, 4)-crowns.

Theorem 3 Let be a central configuration of the 8-body problem corresponding to a twisted (2, 4)-
crown with masses m1 = 1, m2 = m and radii a1 = 1, a2 = a. Let z1 and z2 be given in Lemma 6.

1. For any m > 1, there exist exactly three twisted (2, 4)-crowns. One has radius a < 1/z2,
another one with z1 < a < 1/z1 and the last one with a > z2.

2. For m = 1 there exist exactly two central configurations of twisted (2, 4)-crown with radii
a = 1 and a > z2.
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Proof The proof is straightforward taking into account that z1, z2 are the zeros of H, 1/z1, 1/z2
its poles, and that H is monotone increasing, so any equation m = H(a) has three solutions, each
one in one of the intervals of the admissible set A2(4). In the case m = 1, if a 6= 1 is a solution of
H(a) = 1, the crowns with radii a and 1/a represent the same twisted crown rescaled.

3.3 Two twisted rings of n ≥ 5 bodies

The main obstruction to give the exact number of twisted (2, n)-crowns is to determine the number
of solutions of F (a) = 0, where F is defined in (13). Several authors have deal with that problem
for a general value n, but as far as we know, no one has been able to prove that F has exactly two
zeros.

It is well known that F (see Lemma 3) has at least two zeros for any n ≥ 3, denoted by z1 and
z2. Some results can be given supposing that z1 and z2 are the only positive solutions of F (a) = 0.
Roberts, in [8], shows that for n ≥ 5

0 < 1− 1

n
< z1 < 1 <

1

z1
<

n

n− 1
< z2.

Using the results recently obtained in Barrabés and Cors [2], we can give a better bound.

Lemma 8 Let be n ≥ 5 and suppose that z1 and z2 are the only positive solutions of F (a) = 0,
where F is given in (13). Then

0 < cos
(π
n

)
< z1 < 1 <

1

z1
<

1

cos
(π
n

) < z2.

Proof The results follows from the fact that for any n ≥ 5, F (an) > 0 and F (1/an) < 0, where
an = cos

(π
n

)
, as is stated in Barrabés and Cors [2], and the fact that F (1) < 0, proved in [8].

In Table 1 we show the approximate numeric values of z1 and z2 for some values of n.

n z1 z2
3 0.413887932417 1.619789608802
4 0.697380509876 1.602408486212
5 0.822182869908 1.597921728909
6 0.884321138125 1.592235355387
7 0.918990363772 1.584120901279
8 0.940138179122 1.574515176634
9 0.953949939513 1.564321826382
10 0.963459881269 1.554123467683
...

...
...

100 0.999674025507 1.352557858581
500 0.999986989988 1.279569044474
1000 0.999996754292 1.256683821749
5000 0.999999869916 1.215703126473

Table 1: Values of z1 and z2 for the values of n shown.

Conjecture 1 For any n ≥ 5:

1. The function F , defined in (13), has only two positive solutions, denoted by z1 and z2.

2. The set of admissible values for a (2, n)-crown is

A2(n) = (0, 1/z2) ∪ (z1, 1/z1) ∪ (z2,∞).

9



3. For any value of the mass ratio m > 1, there exists exactly three twisted (2, n)-crowns.

4. For m = 1, there exists exactly two twisted (2, n)-crowns.

Notice that item 2 of the above Conjecture is an immediate consequence of the first one and
Lemma 8. If z1 and z2 are the only zeros of F , we have that z1 · z2 > 1 and the set of admissible
values A2(n) is obtained. Then, using that zi and 1/zi are zeros and poles (respectively) of the
function m = H(a), its range is [0,∞) in each one of the disjoint intervals of A2(n). Then, there
exist, at least, three twisted (2, n)-crowns. For n ≤ 100, we have checked numerically also that H
is monotonic increasing, so the number of crowns is exactly three, except for m = 1, which is two.
In Figure 4 we plot the function H(a) for several values of n.

 1

 3

 5

 7

 9

 0  0.5  1  1.5  2  2.5  3  3.5

m

n

n=4

n=5

n=10

Figure 4: The curves m = H(a) for n = 4, 5, 10.
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5 Appendix

In this section we give proof of some of the Lemmas used. In some cases, one can convince himself
of the certainty of the results simply by plotting the graphic of a function. Nevertheless, we give
here a rigorous analytical proof of each one of them.

All the results to prove involve the problem of findings roots of an equation. To tackle the issue,
we make use of two classic tools. On one hand, we will utilize Sturm’s theorem to give a rigorous
computer-algebra assisted proof in the case of zeros of polynomials with integer coefficients. On
another hand, we will apply Theorem 2 of Voorhoeve and Van Der Poorten [11] in order to have
un upper bound of the total number of zeros of a function in an interval. We recall here that result.

Let P (a) =
∑m
k=1 pk(a), where pk are real analytic functions in an interval I = [a0, a1] ⊂ R.

Then the number of zeros of P in the interval I counted according to multiplicity, NI(P ), satisfies

NI(P ) ≤ m− 1 +
m∑

k=1

NI(W (p1, . . . , pk)) +
m−2∑

k=1

NI(W (p1, . . . , pk)), (17)

where W (p1, . . . , pk) denotes the Wronskian determinant of the functions involved.
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Finally, we also study the monotonicity of the function H. From its expression given in (12),
we have that

H ′(a) =
aF (a)F (1/a) + a2F ′(a)F (1/a) + F (a)F ′(1/a)

aF (1/a)2
. (18)

The denominator of (18) is always positive, so we will study the sign of its numerator.

5.1 Proof of Lemma 4

We want to prove that the equation F (a) = 0, where F is given in (15):

F (a) =

√
3

3
a− 2a− 1

(1 + a2 − a)3/2
− 1

(1 + a)2
,

has exactly two positive solutions z1 < 1/2 and z2 > 1 satisfying z1z2 < 1.

We notice that F (1/2) 6= 0. Then, the solutions of F (a) = 0 are the same ones of F (a) = 0,
where

F (a) =
−1

(1 + a2 − a)3/2︸ ︷︷ ︸
f1

+
1

3

√
3a3 + 2

√
3a2 +

√
3a− 3

(1 + a)2(2a− 1)︸ ︷︷ ︸
f2

= f1(a) + f2(a),

and the functions f1 and f2 are real analytic in the intervals I1 = [ε, 1/2− ε] and I2 = [1/2 + ε,K]
for any ε > 0 and K >> 1/2. We study the number of solutions of F (a) = 0 in each interval.

The following limits

lim
a→(1/2)−

F (a) = +∞, lim
a→(1/2)+

F (a) = −∞,

lim
a→0+

F (a)

a
< 0, lim

a→+∞
F (a) = +∞,

imply that the function F has at least one zero in each interval Ij , j = 1, 2 for ε small enough and
K big enough, and the total number of zeros must be odd. Applying (17), and using that f1 has
no zeros, we have that

1 ≤ NIj (F (a)) ≤ 1 +NIj (W (f1, f2)), j = 1, 2, (19)

where
W (f1, f2) =

−1

6

∆(a)

(1 + a2 − a)5/2(1 + a)3(2a− 1)2

and

∆(a) = 12
√

3a6 + 22
√

3a5 −
√

3a4 − 17
√

3a3 − (5
√

3 + 36)a2 + (63−
√

3)a− 9− 2
√

3.

We first examine the number of roots of ∆(a) in the interval I2. Introducing a translation, we
can write

∆(b+ 1/2) ≥ 3
√

3

8
b (176b2 + (18− 32

√
3)b+ 24

√
3− 27) > 0 for b > 0.

Therefore ∆(a) has no zeros in I2, and, using (19), NI2(F (a)) = 1.

Next, we study the number of roots of ∆(a) in the interval I1. On one hand we have that
∆(0) ·∆(1/2) < 0, so at least there exists one zero. On the other hand, using that a ∈ (0, 1/2),

∆′(a)√
3

> 110a4 − 55a2 + 9 > 0.

Then, ∆(a) = 0 has exactly one solution in the interval I1, so that by (19)

1 ≤ NI1(F (a)) ≤ 2.

But the total number of zeros of F in I1 must be odd because of the change of sign of F in the
interval I1. Therefore, NI1(F (a)) = 1.

Finally, we know that z1 < 1/2 and it is easy to see that F (1) < 0 and F (2) > 0, so 1 < z2 < 2.
Therefore, z1z2 < 1.
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5.2 Proof of Lemma 5

Let F be the function given in (15), and let H be defined as in (12). We look for the critical
points of H. We introduce the expression of F in the expression for H ′ (18), and multiply it by
2
√

3(1 + a2 − a)5/2(1 + a)4. Then, the critical points of H are also solutions of the equation

E(a) = p1(a) + p2(a)
√

1 + a2 − a = 0,

where

p1(a) = 4 a10 − a9 − 23 a8 +
(
−23− 2

√
3
)
a7 +

(
−1− 17

√
3
)
a6

+
(
8 + 42

√
3
)
a5 +

(
−1− 17

√
3
)
a4 +

(
−23− 2

√
3
)
a3 − 23 a2 − a+ 4,

p2(a) = −4 a10 +
(
4 + 2

√
3
)
a9 +

(
−4 + 4

√
3
)
a8 +

(
−4 + 4

√
3
)
a7 +

(
24
√
3 + 4

)
a6

+
(
26
√
3− 8

)
a5 +

(
24
√
3 + 4

)
a4 +

(
4
√
3− 4

)
a3 +

(
4
√
3− 4

)
a2 +

(
4 + 2

√
3
)
a− 4.

It is easy to check that E(1) > 0, E(2) < 0 and E(4) > 0, so at least there exist two roots
of H ′ = 0 located in I1 = [1, 2] and I2 = [2, 4]. Thus, NIj (H ′) ≥ 1, j = 1, 2. We also consider
the interval I3 = [4,∞). Therefore, applying (17), the number of roots (counting multiplicity) of
H ′ = 0 in each interval is bounded by

NIj (H ′) ≤ 1 +NIj (p1) +NIj (W (p1, f2)), j = 1, 2, 3,

where f2(a) = p2(a)
√

1 + a2 − a.
Using Descarte’s rule (after a suitable translation if needed), it is not difficult to see the following

properties:

• p1 has only one zero for a > 1 located in I2.

•
√

1 + a2 − aW (p1, f2) = (a − 1)p3(a), where p3(a) is a polynomial of degree 20 with only
one zero for a > 1 located at I3.

Then, it follows that NIj (H ′) = 1, for j = 1, 2. Finally, to see that there are no roots in [4,∞), it
is enough to see that p21(a)− (1 + a2 − a)p22(a) > 0 in that interval.

So far, we have seen that there exist a critical point of H in [1, 2] and another one in [2, 4]. To
finish the proof of the first statement, notice that H(1) = 1 and H(z2) = 0 and z1 is a pole of H.
Thus, the first critical point must be a local maximum at (1, z2) and the second one must be a
local minimum at (1/z1,∞). See Figure 2.

The second statement claims that the only positive solution of H(a) = a is a = 1. The equation
can be written as √

3

3
(a2 − 1) =

a(a− 1)(a2 − a+ 1)

(a2 − a+ 1)3/2
+
a(1− a2)

(1 + a)2
.

Clearly the equation has a = 1 as a solution. Simplifying by the term a − 1 at both sides and
rearranging we obtain √

3

3
(a+ 1) +

a

(1 + a)
=

a

(a2 − a+ 1)1/2
.

The study of the derivative of the functions of both sides of the equations leads quickly to the
conclusion that the equation has no positive solutions. Therefore, a = 1 is the only positive
solution of H(a) = 0. This concludes the proof.

5.3 Proof of Lemma 6

We want to proof that the function F (a) given in (16):

F (a) =

(
1

4
+

√
2

2

)
a− 2a−

√
2

(1 + a2 −
√

2a)3/2
− 2a+

√
2

(1 + a2 +
√

2a)3/2
,
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has exactly two positive roots z1 and z2 satisfying z1z2 > 1.

We introduce the change a = b
√

2/2 and the function writes

F (b) =

√
2 + 4

8
b− 4(b− 1)

(b2 − 2b+ 2)3/2
− 4(b+ 1)

(b2 + 2b+ 2)3/2

It is not difficult to see that F (
√

2) < 0,

lim
b→0

F (b)

b
> 0, and lim

b→+∞
F (b) = +∞.

Therefore, there exist at least one root in (0,
√

2), and in (
√

2,∞) (respectively in the intervals
(0, 1) and (1,∞) in the variable a).

Let F be

F (b) =
(b4 + 4)3/2

4
F (b) =

√
2 + 4

32
b(b4 + 4)3/2

︸ ︷︷ ︸
f1

+(−(b− 1)(b2 + 2b+ 2)3/2 − (b+ 1)(b2 − 2b+ 2)3/2)︸ ︷︷ ︸
f2

= f1(b) + f2(b)

Consider the intervals I1 = [ε,
√

2] and I2 = [
√

2,M ], for ε > 0 small enough and M >>
√

2
big enough. We know that there exists already one root of F (b) = 0 in each interval. Using that
f1(b) 6= 0 for b > 0 and applying (17), we have that

1 ≤ NIj (F (b)) ≤ 1 +NIj (W (f1, f2)), j = 1, 2.

where

W (f1, f2) =

√
2 + 4

32
(b4 + 4)1/2

(
p1(b)(b2 − 2b+ 2)5/2 + p2(b)(b2 + 2b+ 2)5/2

)
,

and p1(b) = 3b3 + 7b2 + 5b + 2 and p2(b) = 3b3 − 7b2 + 5b − 2. On one hand, p1(b) > 0 for b > 0
and p2(b) > 0 only for b > b0 ' 1.528181327... (the only real root of p2). Then, W (f1, f2) has no
zeros for b ≥ b0. On the other hand, the roots of W (f1, f2) = 0 will be also roots of

p1(b)2(b2 − 2b+ 2)5 − p2(b)2(b2 + 2b+ 2)5 = 0.

The equation corresponds to a polynomial of degree 12 with only two real roots. By a Bolzano
argument, only one of the roots is smaller that b0 and could be a zero of W (f1, f2). Therefore,
we have that NIj (W (f1, f2)) ≤ 1, j = 1, 2. Using the fact that there is a change of sign in each
interval we conclude that

NIj (F ) = 1, j = 1, 2.

To finish the proof of the Lemma, using a Bolzano’s argument we have that 13
20 < z1 <

7
10 and

8
5 < z1 <

33
20 . Therefore, z1z2 > 1.

5.4 Proof of Lemma 7

We want to prove that the function H(a) given in (12) for n = 4 is monotonic increasing. Recall
that from Lemma 2, it is enough to show that H ′(a) > 0 for a ∈ (0, 1], or equivalently, that the
numerator of (18) is positive. Multiplying that expression by x3y3, where

x =

√
1 + a2 −

√
2a, y =

√
1 + a2 +

√
2a,

and simplifying, we get that H ′(a) > 0 is equivalent to

Q0 +Q1x+Q2y +Q3xy > 0, (20)
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where

Q0 = 256
(

4
√

2− 9
) (
a2 − a− 1

) (
a2 + a− 1

)
a4,

Q1 = 14
(√

2− 4
) (
a4 − a3 + a2 − a+ 1

) (
4a2 + 7

√
2a+ 4

)
(a+ 1)

(
1 + a2 −

√
2a
)2
,

Q2 = −14
(√

2− 4
) (
a4 − a3 + a2 − a+ 1

) (
4a2 − 7

√
2a+ 4

)
(a+ 1)

(
1 + a2 +

√
2a
)2
,

Q3 =
(

147 a8 +
(

2304− 1024
√

2
)
a5 + 294 a4 +

(
2304− 1024

√
2
)
a3 + 147

)
a.

Assume for a moment that for a ∈ (0, 1]

Q2 +Q3x > 0, and R0 +R1x > 0, (21)

where R0 = Q0 +Q2 and R1 = Q1 +Q3. Then, using these inequalities and the fact than y > 1,
the expression (20) satisfies

Q0 +Q1x+Q2y +Q3xy = Q0 +Q1x+ (Q2 +Q3x)y > R0 +R1x > 0,

and the proof of the Lemma is finished.

It remains to prove the two claims (21). We use a rational parametrization (see, for example,
[4], where the authors apply the methodology to some problems of central configurations) given
by the change

a
√

2− 1 =
t2 − 1

2t
, t ∈ I =

(√
2− 1,

√
2− 1 +

√
4− s

√
2

]
,

(recall a ∈ (0, 1]). Then,

Q2 +Q3x =
2
√

2− 1

32768 t11
p(t), (22)

R0 +R1x =

√
2− 4

65536 t12
(t+ 1−

√
2)q(t), (23)

where p(t) and q(t) are polynomials of degree 22 and 23, respectively.

In (22), we bound from below p(t) by deleting the terms of order bigger than 19, and replacing
the coefficients of the other orders ai by baic (the floor function):

p(t) > 63196 t18 − 126225 t17 − 624027 t16 + 61908 t15 + 3070770 t14 + 1765978 t13

− 6817833 t12 − 1430685 t11 + 5388132 t10 − 211516 t9 + 2666042 t8 − 4291425 t7+

2330295 t6 − 590575 t5 + 45780 t4 + 13874 t3 − 4517 t2 + 563 t− 28.

The later polynomial does not have zeros in the interval I applying Sturm’s theorem and it is
positive for t ∈ I. Thus, p(t) > 0 for t ∈ I.

In (23), the multiplying constant is negative, so we want to see that q(t) < 0 for t ∈ I. In this
case we bound from above q(t) by replacing its coefficients ai by daie (the ceil function).

q(t) < 14 t23 + 261 t22 + 1520 t21 + 775 t20 − 16986 t19 + 42195 t18 + 725386 t17 + 1605760 t16

− 3234196 t15 − 15882376 t14 − 9672761 t13 + 28027022 t12 + 20951111 t11 − 20101757 t10

− 8955856 t9 + 3502769 t8 + 3324573 t7 − 2004050 t6 + 323005 t5 + 38192 t4

− 26449 t3 + 6058 t2 − 723 t+ 34.

Again, the later does not have zeros in the interval I applying Sturm’s theorem and it is negative
for t ∈ I. Therefore, q(t) > 0 for t ∈ I.

14



References
[1] D. Bang and B. Elmabsout. Restricted n+1-body problem: existence and stability of relative

equilibria. Celestial Mech. Dynam. Astronom., 89(4):305–318, 2004.

[2] E. Barrabés and J.M. Cors. On strictly convex central configurations of the 2n-body problem.
Journal of Dynamics and Differential Equations, 2018. DOI: 10.1007/s10884-018-9708-5.

[3] M. Corbera, J. Delgado, and J. Llibre. On the existence of central configurations of p nested
n-gons. Qualitative Theory of Dynamical Systems, 8:255–265, 2009.

[4] A. Gasull, J.T. Lázaro, and J. Torregrosa. Rational parametrizations approach for solving
equations in some dynamical systems problems. Qualitative Theory of Dynamical Systems,
To appear. 2019.

[5] J. Llibre and L.F. Mello. Triple and quadruple nested central configurations for the planar
n-body problem. Physica D: Nonlinear Phenomena, 238(5):563–571, 2009.

[6] W. D. MacMillan and W. Bartky. Permanent configurations in the problem of four bodies.
Transactions of the American Mathematical Society, 34:838–874, 1932.

[7] R. Moeckel and C. Simó. Bifurcation of spatial central configurations from planar ones. SIAM
J. on Mathematical Analysis, 26:978–998, 1995.

[8] G.E. Roberts. Existence and Stability of Relative Equilibria in the N-Body Problem. PhD
thesis, Boston University, 1999.

[9] D.G. Saari. Collisions, rings, and other Newtonian N -body problems, volume 104 of CBMS
Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences,
2005.

[10] A. Siluszyk. On a Class of Central Configurations in the Planar 3n -Body Problem Mathe-
matics in Computer Science, 11(3-4):457–467, 2017.

[11] Voorhoeve, M. and Van Der Poorten, A.J. Wronskian determinants and the zeros of certain
functions. Indagationes Mathematicae. 78 (5): 417–424, 1975.

[12] X. Yu and S. Zhang. Twisted angles for central configurations formed by two twisted regular
polygons. Journal of Differential Equations, 253:2106–2122, 2012.

[13] X. Yu and S. Zhang. Central configurations formed by two twisted regular polygons. Journal
of Mathematical Analysis and Applications, 425:372–380, 2015.

[14] S. Zhang and Q. Zhou. Periodic solutions for planar 2n-body problems. Proceedings of the
American Mathematical Society, 131(7):2161–2170, 2002.

[15] F. Zhao and J. Chen. Central configurations for pn + gn-body problems. Celestial Mech.
Dynam. Astronom., 121(1):101–106, 2015.

15


