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„Meno: I feel, somehow, that I like what you are
saying.
Socrates: And I, Meno, like what I am saying.
Some things I have said of which I am not
altogether confident. But that we shall be
better and braver and less helpless if we think
that we ought to enquire, than we should have
been if we indulged in the idle fancy that there
was no knowing and no use in seeking to know
what we do not know; — that is a theme upon
which I am ready to fight, in word and deed, to
the utmost of my power.

— Plato

„Every concept arises from the equation of
unequal things. Just as it is certain that one
leaf is never totally the same as another, so it is
certain that the concept "leaf" is formed by
arbitrarily discarding these individual
differences and by forgetting the distinguishing
aspects.

— Friedrich Nietzsche
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Abstract
The overall purpose of this Ph.D. thesis is to contribute to the reliable design of
composite structures subjected to fatigue-driven delamination. The aim is motivated
by a wish to reduce the amount of experimental testing needed in the dimensioning
of real components and to anticipate the mechanical response of layered structures
undergoing fatigue delamination.

From a review of the methods based on the cohesive zone model approach available
in the literature, it is detected that most of them are either limited to two dimensional
(2D) applications or they have not been fully validated in three dimensional (3D)
problems. In order to extend the general applicability of the existing methods, both
new analysis and experimental data of 3D delamination propagation are needed. In
the case of the model taken as the point of departure of the present Ph.D. thesis,
an efficient identification of the crack propagation direction and an accurate means
of calculating the energy release rate in three-dimensional structures are needed
for the 3D extension.

In the cohesive element framework, the propagation direction is computed as the
normal direction to the damage isolines. The damage isolines tracking requires
exchange of information between neighboring elements, thus post-processing global
data, which is computationally expensive. A novel approach for the evaluation of
the growth driving direction, only using local element information, has been derived.
The method can be directly implemented in a user-defined element subroutine and
be evaluated at the execution time of the analysis.

On the other hand, the computation of the mode-decomposed energy release rates
in 3D problems involving delaminations, modeled using a cohesive zone model
approach, has not been previously investigated. The J-integral is a suitable method
for calculating them, since its domain-independence can be employed to shrink
the integration domain to the cohesive interface, and reduce it to a line integral.
A numerical procedure to evaluate the mode-decomposed J-integral in curved
delamination fronts is presented. The growth driving direction criterion is used to
track the integration path along the cohesive zone and to decompose the energy
release rate.

xxi



Moreover, the fatigue damage rate model is based on the link between the damage
rate and the crack growth rate. Therefore, efficient tools to characterize the crack
growth rate curves under different loading conditions are needed to feed the numeri-
cal method. The existing methodologies for mode II fatigue testing using three-point
bending end-notched flexure (3-ENF) under constant cyclic displacement conditions
yield discontinuous delamination growth rate curves, therefore requiring a batch
of several specimens to be tested under different severity conditions in order to
fully characterize the crack growth. A variable cyclic displacement test procedure is
presented which allows the crack growth rate to be measured for the desired range
of severities with a single specimen. With this methodology, human intervention
during the test is avoided.

Finally, a benchmark test for fatigue-driven 3D crack growth has been used for model
validation. A full characterization, at the coupon level, of the interlaminar properties
of the demonstrator material has been performed. The developed fatigue method
provides accurate predictions for the fatigue benchmark tests.

xxii



Resum
L’objectiu general d’aquesta tesi doctoral és contribuir al disseny fiable d’estructures
de materials compòsits en capes sotmeses a delaminació provocada per la fatiga.
Per una banda, es pretén reduir la quantitat de proves experimentals necessàries
en el procés de disseny de components i, per l’altra, anticipar la resposta mecànica
de les estructures que pateixen delaminació a fatiga.

A partir d’una revisió dels mètodes disponibles a la bibliografia, es detecta que
la majoria d’ells es limiten a aplicacions en dues dimensions (2D) o no han estat
plenament validats en tres dimensions (3D). Per tal d’ampliar l’aplicabilitat dels
mètodes existents, es necessiten dades experimentals de propagació de la delami-
nació en 3D i el desenvolupament de nous mètodes. En el cas del model que es
pren com a punt de partida de la present tesi doctoral, es necessiten dos nous
conceptes: un mètode eficaç d’identificació de la direcció de propagació d’esquerda
i un mitjà precís de calcular l’energia disponible per a la fractura en estructures
tridimensionals.

En el marc dels elements cohesius, la direcció de propagació es pot calcular com
la direcció normal a les isolínies de dany. No obstant, per tal de traçar les isolínies
de dany, es requereix intercanviar informació entre elements veïns i, per tant, post
processar dades de forma global, que resulta computacionalment car. Es proposa
un enfocament nou per tal d’avaluar la direcció de creixement d’esquerda utilitzant,
només, la informació disponible localment a nivell d’element. El mètode es pot
implementar directament en una subrutina d’usuari d’elements finits i ser avaluada
durant l’execució de l’anàlisi.

D’altra banda, el càlcul de l’energia disponible per a la fractura descomposta en
modes en problemes 3D que impliquen delaminacions, modelades utilitzant un
model de zona cohesiva, no s’ha investigat prèviament. La integral-J és un mètode
adequat per calcular-la, ja que és independent del domini d’integració i permet
reduir-lo a la interfície cohesiva i, així, avaluar-la com una integral de línia. Es
presenta un procediment numèric per avaluar la integral-J descomposta en modes
en fronts de delaminació corbats. El criteri de direcció de creixement d’esquerda
s’utilitza per dibuixar el camí d’integració al llarg de la zona cohesiva i descompondre
l’energia disponible per a la fractura en modes.
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El model de creixement del dany a fatiga es basa en el vincle entre la velocitat
creixement del dany i la velocitat de propagació d’esquerda. Per tant, es necessiten
eines eficients per caracteritzar les corbes de velocitat de propagació d’esquerda
sota diferents condicions de càrrega per alimentar el mètode numèric. Les metodolo-
gies existents per assajos a fatiga en mode II basats en la configuració d’assaig
a flexió amb recolzament a tres punts i entalla final (3-ENF) sota condicions de
desplaçament cíclic constant produeixen corbes discontínues de la velocitat de
propagació d’esquerda. Per això, es necessita assajar un lot de diverses provetes a
diferents severitats de càrrega per caracteritzar completament la corba de velocitat
de propagació d’esquerda. Es presenta un procediment d’assaig basat en l’aplicació
d’un desplaçament cíclic variable que permet mesurar la velocitat de propagació
d’esquerda per al rang desitjat de severitats de càrrega usant una sola proveta.
Amb aquesta metodologia, s’evita la necessitat d’intervenir durant l’assaig.

Finalment, per tal de validar el model a fatiga, s’ha dissenyat una configuració
d’assaig per obtenir dades de propagació de la delaminació en estructures 3D. S’ha
dut a terme una campanya experimental de l’assaig validador. A més, s’ha realitzat
una caracterització completa de les propietats interlaminars del material validador
a nivell de proveta. El mètode de fatiga desenvolupat proporciona prediccions
precises per als assajos de referència.
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Resumen
El objetivo general de esta tesis doctoral es contribuir al diseño fiable de estructuras
de materiales compuestos en capas sometidas a deslaminación provocada por la
fatiga. Por un lado, se pretende reducir la cantidad de pruebas experimentales nece-
sarias en el proceso de diseño de componentes y, por otro, anticipar la respuesta
mecánica de las estructuras que sufren deslaminación a fatiga.

A partir de una revisión de los métodos disponibles en la bibliografía, se detecta
que la mayoría de ellos se limitan a aplicaciones en dos dimensiones (2D) o no
han sido plenamente validados en tres dimensiones (3D). Con el fin de ampliar
la aplicabilidad de los métodos existentes, se necesitan datos experimentales de
propagación de la deslaminación en 3D y el desarrollo de nuevos métodos. En el
caso del modelo que se toma como punto de partida de la presente tesis doctoral, se
necesitan dos nuevos conceptos: un método eficaz de identificación de la dirección
de propagación de grieta y un medio preciso de calcular la energía disponible para
a la fractura en estructuras tridimensionales.

En el marco de los elementos cohesivos, la dirección de propagación se puede
calcular como la dirección normal a las isolíneas de daño. No obstante, con el
fin de trazar las isolíneas de daño, se requiere intercambiar información entre
elementos vecinos y, por tanto, post procesar datos de forma global, que resulta
computacionalmente caro. Se propone un enfoque nuevo para evaluar la dirección
de crecimiento de grieta utilizando, sólo, la información disponible localmente a
nivel de elemento. El método se puede implementar directamente en una subrutina
de usuario de elementos finitos y ser evaluada durante la ejecución del análisis.

Por otra parte, el cálculo de la energía disponible para la fractura descompuesta
en modos en problemas 3D que implican deslaminaciones, moldeadas utilizando
un modelo de zona cohesiva, no se ha investigado previamente. La integral- J
es un método adecuado para calcularla, ya que es independiente del dominio
de integración y permite reducirlo a la interfaz cohesiva y, así, evaluar como una
integral de línea. Se presenta un procedimiento numérico para evaluar la integral-
J descompuesta en modos en frentes de deslaminación curvados. El criterio de
dirección de crecimiento de grieta se utiliza para dibujar el camino de integración a
lo largo de la zona cohesiva y descomponer la energía disponible para la fractura
en modos.
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El modelo de crecimiento del daño a fatiga se basa en el vínculo entre la velocidad
crecimiento del daño y la velocidad de propagación de grieta. Por tanto, se necesitan
herramientas eficientes para caracterizar las curvas de velocidad de propagación
de grieta bajo diferentes condiciones de carga para alimentar el método numérico.
Las metodologías existentes para ensayos a fatiga en modo II basados en la
configuración de ensayo a flexión con apoyo en tres puntos y entalla final (3-ENF)
bajo condiciones de desplazamiento cíclico constante producen curvas discontinuas
de la velocidad de propagación de grieta. Por ello, se necesita ensayar un lote de
varias probetas a diferentes severidades de carga para caracterizar completamente
la curva de velocidad de propagación de grieta. Se presenta un procedimiento de
ensayo basado en la aplicación de un desplazamiento cíclico variable que permite
medir la velocidad de propagación de grieta para el rango deseado de severidades
de carga usando una sola probeta. Con esta metodología, se evita la necesidad de
intervenir durante el ensayo.

Finalmente, a fin de validar el modelo a fatiga, se ha diseñado una configuración de
ensayo para obtener datos de propagación de la deslaminación en estructuras 3D.
Se ha llevado a cabo una campaña experimental del ensayo validador. Además, se
ha realizado una caracterización completa de las propiedades interlaminares del
material validador a nivel de probeta. El método de fatiga desarrollado proporciona
predicciones precisas para los ensayos de referencia.
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1Introduction

1.1 Contextual background

Composite materials are a combination of one or more constituents acting as re-
inforcements embedded in a matrix that bind them together. The advantage of
composites is that they can be tailored so that their properties are superior to those
of their components separately. However, they must be manufactured so that the
dispersion of one constituent to the other is controlled in order to achieve optimum
properties. Some of the factors that must be controlled are the interface acting as
the bond between constituents, the reinforcement relative volume, the uniformity of
the composite system or the orientation of the constituents.

Composites can be classified in many ways depending on different factors such
as the nature of the constituents or the arrangement of the reinforcement in the
matrix. The most influential factors are the reinforcement (particles and whiskers,
discontinuous fibers or continuous long fibers), the laminate configuration (single
unidirectional lamina, laminate with some laminae which have the same or different
fiber orientation, or bulk composites) and hybrid structures (different material in
various laminae or different reinforcements in a lamina) [26].

In particular, laminated composites are layered materials produced by stacking
plies which contain long continuous fibers. Fibers supply stiffness and strength
to the material in the laminate plane. Although laminated composite structures
are designed so that the highest stresses are in the fiber direction, out-of-plane
stresses may also occur in service at many types of geometric discontinuities such
as ply drops, skin-stiffener terminations, intersections, sandwich panels, free edges,
holes, cut-outs, flanges, bonded and bolted joints or impacted zones. These load
cases may damage the interface between plies (interlaminar damage), causing the
failure mechanism called delamination. Delamination is often considered the most
detrimental failure mechanism in laminated composite structures because it occurs
at relatively low load levels but still entails significant reduction of the structure’s
load carrying capacity [123].

1



As an example of practical appliaction, civil aircrafts recently released (i.e., Airbus
A380, Airbus A350XWB, Boeing 787, Embraer E-Jet, Embraer E-Jet E2, Bombardier
CRJ NextGen) make use of fiber reinforced laminated composites in the aircraft
primary structure. Composites’ unparalleled by any other material specific stiffness
and strength (stiffness and strength to weight ratio) is behind their selection to
produce light-weight structural components, thus leading to aircraft lower operational
costs. The companies also advertise a superior fatigue performance due to the use
of composites. The no-growth criterion and the damage tolerance approach are two
alternatives to deal with fatigue-driven delamination in aircraft design [144]. The
first aims to ensure that no crack propagation will ever occur over the lifetime of the
component. Conversely, the damage tolerance approach is based on a structure’s
remaining capacity to safely sustain in-service loads, even with the presence of sub-
critical sized delaminations. By allowing damage growth, lighter weight structures
can be achieved while higher load levels are acceptable.

However, the technologies associated to composites are, in general, not as mature
as for other material systems such as metals. This is evenmore evident when dealing
with delamination. The technology related to tests and computational tools to deal
with simulation of delamination in composite structures under static loads, is in the
Technology Readiness Level (TRL) 5 [102, 101], which means that the technology
has been validated at component level in a relevant environment. However, the
existing simulation tools and characterizationmethods for fatigue-driven delamination
are even less mature. In this case, they can be classified as TRL2-TRL3 [102, 101],
this meaning that they are not yet fully validated in laboratory environment. This
enforces the reliance on empirical procedures for life verification rather than life
prediction of real application structures. Indeed, the certification of an airplane is
basically based on extensive, and very costly, fatigue testing; from small components
to large substructures or full-scale. These tests are aimed in ensuring that no
catastrophic failure occurs during the service life of the aircraft. To give just an
example, in 2015, the Boeing 787 Dreamliner’s carbon composite structure was
tested during 165,000 flight cycles (five-year fatigue test) equivalent to 75 years of
service (c.f. Figure 1.1) [39].
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Fig. 1.1.: Full-scale fatigue test on Boeing 787 [39].

1.2 Motivation

Multiple models exist in the literature to deal with fatigue-driven delamination. How-
ever, although they succeed in reproducing the fatigue behavior at coupon level,
most of them are not applicable or have not been validated for simulating larger
structures. Thus, there is a need for efficient and reliable technologies and design
methodologies to account for delamination in complex layered composite structures
under fatigue loading. On the one hand, these methodologies are needed for a
proper dimensioning of the components (thus reducing the number of manufactured
specimens needed for a trial and error optimization) and, on the other hand, to
be able to anticipate the mechanical response to different infringed damage forms.
In this regard, adopting a simulation-based design approach, also called Virtual
Mechanical Testing, is a key point to achieve a reduction of development costs.

Moreover, simulation tools may also have a key role during service. If advanced
computational tools capable to predict fatigue damage growth behavior with accuracy
are available, an inspection schedule that enable detection of damage before it
becomes critical can be reliably programmed. Consequently, a damage tolerance
approach can be adopted, enabling lighter and more efficient aircraft designs.
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1.3 Objectives

The aim of the present thesis is to attain an integral approach to fatigue loading
(experimental procedures and simulation tools) which could be accepted by certifi-
cation bodies in partial replacement of expensive and time consuming fatigue tests.
The overall objectives of the thesis are:

• To investigate the existing simulation methods for fatigue-driven delamination,
with special attention to their 3D capabilities.

• To develop a new methodology to simulate fatigue-driven delamination based
on the findings of the investigation and implement it into a commercial finite
element framework.

• To devise an experimental methodology to obtain the material card that feeds
the simulation method.

• To validate the proposed methodology by comparing computational and experi-
mental tests of a demonstrator representative of arbitrarily shaped delamination
growth in a real structural component.

1.4 Thesis structure and content

Even though the present thesis has been prepared as a compendium of publications,
this document has been written as a whole. The reader is guided through an overall
view of the contributions done, while referred to the appendices when needed
of detailed descriptions. This means that the content of the publications is not
entirely included in the main body, but only some parts. Moreover, some additional
information has been included, such as the material card definition, the design and
description of the experimental procedure on the demonstrator specimen and the
comparison of the computational and experimental results, which are not published
elsewhere.

Taking into account the aforementioned, the thesis is structured as follows:
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Chapter 2 gives an review on the observed phenomenology of delamination under
fatigue loads in composite laminates. An overview of the existing computation
methods is presented. Special focus is given to those based on a cohesive zone
model approach. Moreover, an introduction to the selected cohesive zone model for
the simulation of high-cycle fatigue-driven delamination, which forms the basis of
the formulation developed in the framework of this thesis, is provided. The chapter
concludes with a review on the procedures for the experimental characterization of
interlaminar properties.

Chapter 3 deals with the improvements on the applied fatigue cohesive zone model
which consists of extending its applicability to three-dimensional analysis. To this
end, both a point-wise evaluation of the growth driving direction and a methodology to
evaluate themode decomposed energy release rates in three-dimensional structures,
are developed. Then, the presented tools are used in combination with a damage rate
model for the simulation of fatigue-driven delamination in complex three-dimensional
structures.

Chapter 4 describes an efficient methodology for the experimental characterization
of delamination growth under pure mode II fatigue loading conditions. Few insights
into the application of the proposed methodology under mixed-mode fatigue loading
conditions are also given.

Chapter 5 contains the results of the material card definition.

In Chapter 6 the proposed fatigue simulation method is validated. The design of
a demonstrator specimen undergoing varying crack front shape to obtain experi-
mental data at coupon level is defined. Quasi-static and fatigue tests results on the
demonstrator are provided and compared to numerical predictions.

Chapter 7 contains a summary of the overall conclusions.

The impact of the contributions of the thesis is highlighted in Chapter 8.

Finally, suggestions for future work are given in Chapter 9.
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2State-of-the-art

2.1 Delaminations understood as cracks in the
material

A crack can be understood as a strong discontinuous singular surface, S, which
divides a body into two sub-domains. Bounding the crack surface, there are two
initially coincident surfaces: the S+, associated with the upper sub-domain, Ω+,
and S−, associated with the lower sub-domain, Ω− (c.f. Figure 2.1). S+ and S−

represent the crack faces and they independently translate, rotate and stretch,
though their motion is constrained by the constitutive law used to describe the
interface behavior.
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Fig. 2.1.: Crack modeled as a strong discontinuous singular surface, S, dividing a body into
two sub-domains, Ω+ and Ω−.

In this regard, delaminations are cracks within the interface between adjacent layers
which, generally, are confined to propagate in the interface. Then, a laminated
structure can be split into several sub-domains, Ω1, Ω2..., each one constituting a ply,
separated by the potential crack paths, S1, S2..., which are the interfaces between
layers.
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2.1.1 Fracture modes

Crack propagation can be described through three basic fracture modes [71] (c.f.
Figure 2.2):

• Mode I: normal opening to the crack plane

• Mode II: in-plane shear opening

• Mode III: out-of-plane shear opening
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Fig. 2.2.: The three basic fracture modes.

In homogeneous materials, such as metals, a crack loaded in a combination of mode
shear modes, tends to deviate in order to keep growing under mode I conditions,
which is the fracture mode that dissipates the least energy. However, this is not the
case for delaminations in layered composite materials, where, in most cases, the
crack is restricted to grow in the interface between plies. Thus, crack propagation
can occur under any fracture mode condition, or a combination of them, depending
on the geometry of the specimen and loads. The fracture mode is then referred to
as mixed-mode.

2.2 Delamination modeling under static
loading

The most common methods for the prediction of interlaminar failure can be divided
into two main approaches: Methods purely based on fracture mechanics and meth-
ods based on the cohesive zone model (CZM) concept [49, 27], the latter combining
the framework of fracture mechanics and damage mechanics.
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In the fracture mechanics approach, usually a local Griffith’s criterion [58] is used
to predict delamination growth: the energy release rate, G, is compared to the
interlaminar fracture toughness, Gc, which is considered to be a constant material
property. Then, applying Griffith’s criterion, delamination propagation occurs at the
points where G ≥ Gc. This local energy balance criterion implies negligible fracture
process zone.

Conversely, CZMs can capture fracture energy dissipation mechanisms of quasi-
brittle materials, such as the formation of micro cracks ahead of the crack tip before
complete separation of the crack faces. Therefore, the CZM approach is a suitable
means of predicting delamination propagation when a nonnegligible fracture process
zone is present. The stress singularity at the tip of a sharp crack is removed by
accounting for a cohesive zone (CZ), where the material undergoes degradation
until complete decohesion. The mechanical behavior of the interface is usually
modeled by means of a damage variable, which is a measure of the degradation of
the mechanical properties of the material ahead of the crack tip. When the damage
variable reaches its maximum value, new crack surface is created.

A more recent approach, presented by Van der Meer et al. [174], uses the level
set method to describe the crack front location. It is a fracture mechanics based
approach. Furthermore, its variant for large process zone simulation [173] makes
use of a stiffness degrading damage variable that allows a band of damaged material
with predefined width. Conversely to most of the existing CZM formulations, the
damage variable is not a function of the local properties but it is determined by the
distance to the crack front, where the crack front is defined as the line that separates
the damage process zone and the completely damaged interface.

Since this thesis is based on the cohesive zone model approach, the concept of
cohesive law is further introduced in the following.

2.2.1 Introduction to the cohesive law

Linear elastic fracture mechanics (LEFM) was the first approach to the analysis
and modeling of cracks. As a consequence of using linear elasticity and infinitely
sharp crack tips, LEFM leads to an unrealistic phenomenon: the presence of a
stress singularity at the crack tip. However, no material is capable to withstand
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infinite stresses. Thus, Irwin [71] introduced a modification for ductile materials
which consists of considering a non-linear zone ahead of the crack tip where the
material undergoes plastic deformation.

Later, Dugdale [49] and Barenblatt [27] independently introduced the concept of
cohesive zone model. The models from Dugdale and Barenblatt account for a
fracture process zone (FPZ), called the cohesive zone (CZ), where cohesive tractions
act on the separating surfaces, thus avoiding stress singularities at the tip of sharp
cracks. In Dugdale’s model, cohesive stresses are caused by yielding of the material
and they are constant along the cohesive zone. In Barenblatt’s model, cohesive
stresses are the molecular cohesion forces, and they are a function of the separation
length between atoms. Barenblatt assumed that the length of the CZ is constant
and material specific and that the distribution of the cohesive stresses throughout
the CZ is independent on the fracture mode.

The first to apply the concept of cohesive zone model to a Finite Element framework
were Hilleborg et al. [62]. The model from Hilleborg et al. describes a micro-cracked
FPZ capable of transferring stress until complete separation. Similar to current
cohesive zone models, the distribution of cohesive stresses, σ(δ), is a function of
the separation between crack faces, δ, usually referred to as displacement jump
(c.f. Figure 2.3.a). The process of fracture initiates when the stress at the crack
tip reaches the interfacial strength, σo. Then, the cohesive law describes a stress-
softening behavior. With increasing displacement jump, δ, cohesive stresses, σ,
decrease. The amount of energy dissipated per unit of newly created crack area
in the opening process (from 0 to the critical displacement jump, δc) is the fracture
toughness, Gc:

Gc =

∫ δc

0

σ(δ)dδ (2.1)

The cohesive law can not be defined uniquely by the fracture toughness, Gc, and
the interfacial strength, σo. One of the determining factors for accuracy in the
mechanical response is the cohesive law shape. Different interpretations have been
made of the physical processes underlying at the micro-scale that may determine
its shape, such as fiber bridging [8, 61, 155, 156], small cale yielding [49], the
formation of micro cracks [62, 175] or polymer crazing/bridging [177]. The exact
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Fig. 2.3.: a) Cohesive stress distribution, σ(δ), throughout the CZ. b) Common cohesive law
shapes with the same interfacial strength, σo, and different critical displacement
jumps: δc,rec (rectangular), δc,trap (trapezoidal), δc,lin (linear), δc,bilin (bilinear).
δc,exp (exponential)= ∞ and, therefore, is not represented. The critical energy
release rate, Gc, of the linear cohesive law is the area represented in gray color.

shape of the cohesive law can be extracted from experimental tests, either by a
direct measurement [159, 155, 94, 145], or by indirect methods [120], although there
does not exist any standardized procedure. In practice, the shape of the cohesive
law may also affect the performance of the numerical solution procedure [9]. If the
shape of the cohesive law have not been obtained experimentally and there is no
previous experience on the most appropriate selection, the simplest approach is to
assume linear softening [170].

Irreversibility of the softening process

Current cohesive zone models are formulated within the framework of damage
mechanics to ensure irreversible crack propagation [121, 10, 36, 57, 167, 168]. In
continuum damage mechanics, damage is understood as the creation of micro-
surfaces of discontinuities in a continuum body [77, 82], and it is coupled with
elasticity or plasticity. Thus, it makes use of state variables, which are usually related
to the crack density and evolve monotonically with time, to degrade a macroscopic
property. On the other hand, in interface damage mechanics, the damage parameter
acts to prevent the restoration of the previous cohesive state between the interfacial
surfaces. In this regard, a thermodynamical interpretation of the irreversible process
of interlaminar fracture can be established by definition of the damage as the fraction
of dissipated specific energy, ωd to the energy necessary to create a unit of new
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surface, Gc (c.f. Figure 2.4.a for an schematic representation using a linear cohesive
law).

De =
ωd
Gc

(2.2)
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Fig. 2.4.: a) Physical interpretation of the irreversible linear cohesive law and b) irreversible
linear cohesive law implemented in the cohesive element formulation.

The evolution of the energy-based damage variable, De, depends on the interfacial
strength, σo, the fracture toughness, Gc, and the shape of the cohesive law. If the
softening is assumed linear, a linear dependence of De with the displacement jump,
δ, is obtained [99] (c.f. Figure 2.5).
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Fig. 2.5.: Evolution of the damage variables with the displacement jump.

On the other side, in the numerical implementation of cohesive zone models in
a finite element framework using cohesive elements, a finite interfacial stiffness
is needed. Therefore, an elastic region is introduced before the initiation of the

12 Chapter 2 State-of-the-art



degradation process. This elastic region is defined by a penalty stiffness, K, as
shown in Figure 2.4.b. Then, in most of the existing formulations [170] a stiffness
degrading damage variable,DK is defined to ensure the irreversibility of the softening
process. The evolution of this stiffness degrading damage variable, DK , however,
is highly nonlinear with the displacement jump, δ (c.f. Figure 2.5) and depends on
the penalty stiffness, K, which is a non-physical parameter.

2.3 Delamination under fatigue loading

2.3.1 Fatigue loading characterization

Real structures, in service conditions, are subjected to a complex, and in some cases,
random sequence of loads of different amplitude. However, the loading spectrum
introduces complexity in the experimental characterization and modeling of the
fatigue behavior. Thus, there exist several cyclic-counting algorithms (commonly
called rain-flow algorithms [107]) for reducing a spectrum of varying loading to
a load cycle histogram. Then, fatigue analysis of delamination in composites is
usually done by assuming that the fatigue load is defined as a sinusoidal cyclic
load of a given frequency and amplitude [25, 126], although other cycle shapes
(square, triangle) may occur in technical applications, such as mechanical, electrical
or architectural.

Time

𝒢max

𝒢min

𝒢

Fig. 2.6.: Sinusoidal loading cycles defined by the maximum and the minimum energy release
rates, Gmax and Gmin.
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The load is usually expressed in terms of a fracture mechanics parameter [24, 126],
normally, the stress intensity factor (SIF) or the energy release rate, G. Then, a load
cycle is completely defined by two independent parameters among the load level
(maximum or minimum load), the mean value, the load amplitude and the load ratio,
defined as:

R =
Kmin

Kmax
=

√
Gmin
Gmax

(2.3)

whereKmax andKmin are the maximum and minimum cyclic stress intensity factors
and Gmax and Gmin are the corresponding the minimum and maximum energy
release rates (c.f. Figure 2.6).

The use of fracture mechanics parameters for the characterization of the fatigue
loading is highly motivated by Paris and co-workers’ achievements in the characteri-
zation of fatigue crack growth in metals [125, 124]. Moreover, since the calculation
of the SIF in inhomogeneous materials, such as laminated composites, may be chal-
lenging [126], the energy release rate G has become the preferred parameter for the
modeling of delamination growth. Nevertheless, both parameters are equivalent.

During experimental testing, G can be obtained by measuring the change of com-
pliance with crack length, dC/da. On the other hand, for delamination modeling, G
may be either calculated analytically (only in simple specimen configurations) or by
means of numerical tools. Thus, for the analysis of delamination in structures of
complex geometry or loading, finite element analysis has become an indispensable
tool.

Two of the most common extraction methods for the energy release rate (also called
the crack extension force) are the virtual crack closure technique (VCCT) [88] and
the J-integral approach [136].

The virtual crack closure technique (VCCT) is the most widely used FE techniques
[86]. However, its application to realistic three-dimensional geometries with arbitrarily
shaped crack front requires a continuous adaptive meshing technique in order to
get a smooth front that fits with the instantaneous crack front curvature [54, 149, 70].
Alternative methods, that allow the use of stationary meshes, consist of tracing a
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smooth virtual front around the stepped front [178, 97, 98]. These techniques require
the use of algorithms to determine the normal direction to the virtual delamination
front using global information (or 18-noded elements as in [178]). This direction is
used to compute the virtually closed area and to define a local coordinate system
that enables to calculate the energy release rate components according to it.

In the context of the VCCT, Zou et al. [182, 181] used laminate theory to eliminate
high order gradients from the through thickness variations in displacement, leading to
discontinuities in stress (and strain). The stress resultant jumps and the derivatives
of the displacement jumps between the delamination surfaces are used to evaluate
the total energy release rate and its individual components. However, as it is a VCCT
based method, it still requires that the delamination front is located on the element
edges. In a more recent work, van der Meer et al. [174, 122], also working under the
assumption that higher order variations through the thickness are eliminated, makes
use of the jump in Eshelby momentum tensor over the interface between uncracked
and cracked parts to obtain the energy release rate. They use a level set model for
progressive delamination, with which the front can be located inside the elements.
Both methods are applicable to three-dimensional delamination analysis, but the
mesh requirements related to the VCCT are avoided using the level set method.

On the other hand, the path-independence of the two-dimensional J-integral makes
it very attractive in practice. For this reason, much effort has been devoted to extend
the applicability of the J-integral to three-dimensional domains [13, 48, 113, 95,
150, 68, 38, 139, 138, 55, 96]. The published extensions of the J-integral for its
evaluation in three-dimensional problems, where the crack extension force may
change along the crack front, is commonly done by means of two approaches.
The first is a point-wise evaluation of the J-integral on a cross-section of the crack
surface, resulting in a combination of a contour integral and a surface integral defined
over the area enclosed by the contour. See [138] for a detailed description. The
second approach is the equivalent domain integral over a finite volume surrounding
the crack front [95, 150]. Regardless, the applicability of most of these J-integral
extensions to three-dimensional domains is restricted to certain assumptions such
as plane-strain/stress, i.e. at the vicinity of the crack tip, or planar cracks. By
employing curvilinear coordinates, Eriksson [50] and Fernlund et al. [52] obtained
generalized expressions applicable to curved cracks with non-planar crack surfaces.
In [50], a volume-independent integral expression for the evaluation of the crack
extension force is derived from the principle of virtual work. In [52], the decrease of
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the potential energy with crack extension is employed to obtain a general path-area
independent J-integral expression for non-planar cracks with curved crack fronts.
In both cases, the mode-decomposition is not addressed.

It must be noted that, in all the aforementioned approaches for the computation of
the energy release rate in three-dimensional problems, the fracture process zone
is considered negligible. Conversely, in [92], a thick level set interface method is
presented. The model accounts for a band of damaged material of predefined
thickness. The fatigue energy release rate is calculated non-locally by numerical
integration of the variation of the free energy in the level set direction throughout the
damaged band. Nevertheless, the computation of the mode-decomposed energy
release rate in three-dimensional delamination models based on the CZM approach
has not been reported in the literature up to now.

2.3.2 Experimental observations

Much effort as been made towards a clear understanding of the factors that can
affect the behavior of delamination under fatigue loading, such as the characteristics
of the fatigue load (load ratio [106, 65, 64, 104, 161, 105, 12], mode mixity [19, 153,
118, 117, 119, 104, 46, 80, 18, 180, 11], load frequency [7], cyclic load sequence
[176]), environmental factors (temperature [153, 66, 151, 110], moisture [90, 115],
radiation [89], corrosion [63]), the fiber orientation at the interface [28, 128] or the
influence of fiber-bridging [180, 69], among others.

Recently, in 2014, Bak and co-workers presented a review on the observed phe-
nomenology and computational methods for delamination under fatigue loading
[25]. They divided the existing experimental tests in three main groups: delamina-
tion initiation, onset and propagation tests, based on the stages of fatigue-induced
damage. Initiation tests deal with the emergence of delaminations in pristine lam-
inates. It can be compared with the nucleation stage in metals. However, the
existence of initiation studies for laminated composites in the literature is very scarce.
This is, probably, due to the inhomogeneous micro-structure and the presence of
flaws and manufacturing defects in composites, which act as already "nucleated"
delaminations.
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In delamination onset studies, the delamination already exists (it is often created by
a Teflon insert or it is made by a static pre-crack) and the information being sought
is the number of cycles, N , required to make the delamination grow under a certain
load [42] (c.f. Figure 2.7.a).
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Fig. 2.7.: Qualitative representations of typical a) onset curve, and b) propagation curve.

Onset data can be fitted, as proposed by Krueger [84], by an expression of the
kind:

Gmax = B · (N)
−m (2.4)

where B and m are fitting parameters.

On the other hand, delamination propagation tests evaluate the crack growth rate,
da
dN , as a function of the load. In Figure 2.7.b, an sketch of a typical propagation
curve is represented. Three regions can be clearly identified: I) propagation arrest,
bordering the threshold value, Gth, (the load below which the crack growth becomes
inappreciable); II) log-linear crack growth, governed by a Paris’ law-based expression,
such as [46, 18]:

da

dN
= A · (Gmax)

p (2.5)

where A and p are fitting parameters; and III) fast growth, where the maximum cyclic
energy release rate, Gmax, approaches the critical value, Gc.
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Among all the aforementioned factors that may influence the fatigue behavior of
delamination, the two governing parameters that have been most widely investigated
are the load ratio and the mode mixity. It is worth mentioning that little work has been
done on the analysis of mode III fracture properties. Thus, since mode III fracture
toughness is often higher than that of mode II loading [103], as a conservative ap-
proach, the fracture properties of mode II are generally attributed to any combination
of shear mode. Then, fatigue tests under mixed-mode loading conditions are usually
performed under a combination of mode I and mode II, and the mode mixity is
defined as the amount of mode II energy release rate over the total energy release
rate:

Φ =
GII

GI + GII
(2.6)

Mode II fracture toughness, GIIc, is, in most composite materials, notably higher
than that of mode I, GIc. This is explained by the different fracture mechanisms that
take place under each loading mode, which result in different interlaminar crack
morphologies [75]. Thus, it is reasonable that, when Gmax is close to Gc, since the
delamination grows in similar conditions as those of quasi-stating growing, differ-
ences in fatigue behavior between mode loadings exist. However, these differences
diminish at low levels of fatigue loading. The effect of the mode mixity, Φ, on the
onset and propagation curves is qualitatively represented in [25] (and here repro-
duced in Figure 2.8.a), based on the behavior observed in [153] for carbon/epoxy
laminates. After review of [66, 19, 153, 161, 119, 104, 180], among others, it is con-
cluded that the fitting exponents in equations (2.4) and (2.5) vary nonmonotonically
with the mode mixity. In addition, it is also stated that the fatigue threshold, Gth, is
independent of the mode mixity, based on the convergence of the fatigue curves at
low load levels.

It is noteworthy that the identification of the energy release rate thresholds in fiber
reinforced epoxies is difficult from an experimental point of view [33], because the
near-threshold crack growth rates may be below the sensitivity of the measurements
devices employed in the tests. Moreover, there does not exist any standardized
criteria for the identification of the threshold values. Therefore, the thresholds are
usually defined as the energy release rate value below which a minimum detectable
increment of crack length is not exceeded during a certain number of cycles [104].
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Fig. 2.8.: a) Qualitative representation of the influence of the mode mixity in delamination
onset and propagation curves. b) Qualitative representation of the influence of the
load ratio in delamination onset and propagation curves. Figure extracted from
[22].

In practice, this number of cycles usually depends on the specific engineering
application considered.

The influence of the load ratio, R, for a given maxim load, Gmax, is also reported in
[25]. From the review of different experimental studies, such as [106, 65, 64, 104, 7,
161], the behavior described by the onset and propagation curves is summarized
as depicted in Figure 2.8.b. The effect of the load ratio, R, is attenuated as Gmax
increases. This is because, when the delamination grows in conditions close to those
of quasi-static growing, the amplitude of the fatigue load appears to be insignificant.
Moreover, the fitting exponents in equations (2.4) and (2.5), and the fatigue threshold,
Gth, increase with R.

The effect of the mode mixity and the load ratio is accounted in several phenomeno-
logical models for fatigue delamination growth. Most of them are formulated to
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describe the log-linear region of the propagation curve (region II in Figure 2.7.b),
while a few of them also capture the near-threshold (region I) and near-critical
(region III) propagation regimes. In [25], the capabilities of the existing models
are summarized in a table, which is here reproduced in Table 2.1. All the listed
phenomenological models are modifications of the Paris’ law [125, 124], where the
crack growth rate, da

dN , is expressed a function of the energy release rate, G.

Tab. 2.1.: Summary of the capabilities of the phenomenological models for fatigue crack
growth rate presented in [25].

Parameters accounted for in the model
Phenomenological Mode Load Maximum Fatigue Near-critical
model mixity, Φ ratio, R load, Gmax threshold, Gth propagation, Gc
Ramkumar and Whitcomb
[132]

X(1) - X - -

Gustafson and Hojo [59] X(1) X - - -
Russell and Street [142] X(2) X X - -
Dahlen and Springer [46] X(2) X X - -
Kardomateas et al. [78] X(3) X - X -
Kenane and Benzeggagh
[80]

X(3) X - - -

Blanco et al. [31] X(3) X - - -
Hojo et al. [65] - X X - -
Andersons et al. [17] - X X X X
Allegri et al. [12] - X X - -
Allegri et al. [11] X(3) X X - -
Martin and Murri [104] - - X X X
Shivakumar et al. [152] - - X X X

(1) Uncoupled mixed-mode behavior. The total crack growth rate is the sum of the crack growth rate of each pure
mode.

(2) Coupled but not experimentally adjustable mixed-mode behavior. The interaction between models is fixed.

(3) Coupled and experimentally adjustable mixed-mode behavior.

Finally, it should be emphasized that the experimental studies available in the litera-
ture are mainly focused on one-dimensional propagation. Thus, the experimental
research on arbitrarily shaped delamination fronts in three-dimensional specimens is
very scarce. In this regard, Pradhan and Tay [35] conducted experiments in notched
laminated under compressive fatigue loading. The delamination front was monitored
with C-scan pictures. Four batches of three specimens were employed. Each batch
was fatigued up to a certain number of cycles and each specimen was used for a
single delaminated area measurement. More recently, Sachse et al. [143] presented
an experimental and numerical study on the application of a rivetless nut plate joint to
arrest fatigue crack growth in hybrid adhesive-mechanical composite joints. During
propagation, the crack front shape and location were monitored in-situ using an
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automated air-coupled ultrasonic measurement system. During the inspections,
the fatigue test was stopeed and a reduced static load was applied. The crack
front curved and slowed significantly as it approached the bolt. Nevertheless, a set
of benchmark examples for fatigue propagation in three-dimensional problems to
obtain data for model calibration is still remaining.

2.3.3 Simulation methods for prediction of fatigue
delamination growth

One of the most recent reviews of simulation methods for delamination propagation,
by Bak et al. [25], splits them into two categories: linear elastic fracture mechanics
(LEFM) and cohesive zone model (CZM) based methods. Another very recent
review, by Pascoe [126], adds the categories of stress/strain and extended finite
element method (XFEM) based models. However, on the one hand, the two reported
expression where stress is used to describe delamination growth [133, 131], are
phenomenological models which can be rewritten in therms of LEFM parameters.
On the other hand, only two XFEM approaches [30, 21] are described in [126].
Both resort to LEFM to define the load: in [30], the basic form of the Paris’ law is
expressed in terms of the stress intensity factor; in [21], the VCCT is used to compute
the energy release rate. Moreover, any cohesive law formulation accounting for a
damage variable that evolves under fatigue loading is potentially implementable into
a XFEM framework, even though there is not any work published in the literature.
However, some examples using quasi-static cohesive law formulations are already
available [37, 111]. In view of the aforementioned, attention will be focused on LEFM
and CZM based simulation methods.

In general terms, the LEFM based methods [35, 83] directly apply any of the Paris’
law based expressions (c.f. Table 2.1) evaluated using VCCT [87, 88], or any other
technique for determining the energy release rate (as described in Section 2.3.1 ).
The strength of such methods is that, since they use a phenomenological expression
for the crack growth, any experimental evidence of the effect of the load ratio, R,
and/or the mode mixity, Φ, are easily included in the simulation (provided that the
method for characterizing the load is capable to measureR and Φ). The weaknesses
are the mesh requirements associated to the VCCT [86].
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Regarding the methods based on the CZM approach, most of the fatigue formu-
lations are extensions of the cohesive laws for quasi-static loading accounting for
an additional criterion for the development of the damage due to fatigue loading.
In contrast with VCCT, the cohesive zone model approach avoids the need for
re-meshing and, moreover, no initial crack is needed. In addition, the CZM approach
accounts for a nonnegligible fracture process zone (FPZ). On the other hand, due to
its, generally, point-wise implementation into the finite element method framework, a
local computation of the mode mixity, B, is introduced which varies along the length
of the cohesive zone. Due to the lack of efficient formulations for determining the
crack growth direction, the shear modes are not disaggregated. The cohesive zone
models for fatigue delamination can be divided in two main groups: the loading-
unloading hysteresis models, which simulate the whole load cycle to compute the
evolution of the damage variable, and the envelope load models, which only model
the maximum cyclic load.

One of the main advantages of the loading-unloading hysteresis models is that
they are capable to model variable loading spectra. In return, the models become
computationally unfeasible for high cycle fatigue simulation. Thus, they are typically
only found in low-cycle fatigue applications. On the other hand, most of the existing
loading-unloading hysteresis models are damage mechanics based models [179,
116, 141, 100, 5, 140, 166], in which the damage evolution laws are calibrated
by fitting with experimental results and the predictive capabilities are subjected to
the problem configuration. Conversely, a recently developed loading-unloading
hysteresis model [157], links the fatigue damage law with a Paris’ law based ex-
pression. The model requires the length of the cohesive zone, which is evaluated
non-locally during the simulation. In this way, the model does not make use of any
fitting parameter. The energy release rate is also computed non-locally using the
two-dimensional J-integral formulation presented in [136]. It is worth mentioning
that, in order to enable the simulation of three-dimensional structures, an extended
J-integral formulation for three dimensional cohesive interfaces is needed.
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In envelope load methods, the number of cycles is discretized and the damage
variable,D, is updated for each equilibrium sub-step. The damage at a given number
of cycles, D(Nn + ∆N) is determined by integration of the damage rate, dD

dN :

D (Nn + ∆N) = D (Nn) +

∫ Nn+∆N

Nn

dD
dN

dN (2.7)

where Nn is the current number of cycles and ∆N is the increment in cycles for the
next equilibrium substep. Since dD

dN is unknown for N ∈ ]Nn, Nn + ∆N ], the integral
of dD

dN is numerically approximated, either using 2 point Newton-Cotes quadrature
(whenever dD

dN

∣∣
Nn

and dD
dN

∣∣
Nn+∆N

are both known [140, 166, 23]), or using 1 point
Newton-Cotes quadrature (if only dD

dN

∣∣
Nn

is known [172, 129, 81, 108, 60, 114, 109,
112, 79, 90, 163, 164]). These strategies make more efficient the simulation of
high-cycle fatigue. Moreover, Turon et al. [172] incorporated a link between the
damage rate and the crack growth rate, which was later followed by other authors
[129, 60, 114, 79, 90, 23, 163, 164]. Thus, using this approach, any Paris law’ based
expression can be used. The general problematics of these CZMs is concerned
to the accurate calculation of the energy release, although different solutions are
proposed. A description of the fatigue damage rate models presented in [140, 166,
172, 129, 60, 81, 79, 23, 163, 164, 14] is given a few lines further down.

Another recent approach is the level set interface method for fatigue modeling [91].
This method is based on the envelope load approach. The crack growth rate is
used to update the level set function in each time step. Therefore, any Paris’ law
based expression can be introduced in the model. Moreover, an accurate means
of calculating the energy release rate is used. It is based on the jump in Eshelby
momentum tensor at the location of the crack front when shell theory is assumed
[174, 122]. Another advantage of this technique is that it allows the use of coarser
meshes than those needed for the other methods covered in this state-of-the-art
review. However, one limitation is that negligible FPZ must be assumed, which is
not always possible. In this regard, the authors developed a thick level set interface
method [93], which uses interface elements with a constitutive behavior controlled
by a damage variable. The damage ranges from 0 (intact) to 1 (fully damaged) as
a function of the distance to the front. This results in a band of damaged material
of a predefined width. A Paris’ law based expression is used to advance the level
set. The energy release rate, G, and mode mixity, Φ, are defined non-locally, and
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only vary in the direction along the front (in three-dimensional analysis), but not
perpendicular to it.

Finally, a combination of CZM and level set method is presented in [15]. The model
skips the limitation of the level set to thin structures using the CZM to calculate the
energy release rate. This is done by integrating the area under the quasi-static
cohesive law. The level set front location is updated using a Paris’ law based
expression. A quasi-static cohesive law works in the interface elements until the
level set reaches a given integration point. When this occurs, the damage at such
integration point is suddenly set to 1. In [15], it is shown that a fine mesh is needed
in order to avoid oscillations in the energy release rate values computed at the nodes
when the crack front falls inside the elements and is influenced by the shape of the
element boundaries.

Fatigue damage rate cohesive zone models

The basic features of the models found in the literature using a load envelope
approach are described in the following. Note that the symbols used by the original
authors in the equations that will be quoted have been replaced by a uniform
nomenclature for comparison purposes between different models.

The first fatigue damage rate model to appear for delamination propagation in
laminated composite materials was developed by Robinson et al. [140]. This
model was based on the continuum damage mechanics fatigue model proposed
by Peerlings et al. [127]. In [140], an exponential function containing three fitting
parameters, C1, C2 and C3 were used to describe the damage rate:

dD
dN

=
C1

1 + C2
eC3D

(
δ

δc

)C2

(2.8)

The parameters C1, C2 and C3 had to be adjusted, for each fracture mode, by a trial
and error approach to fit the experimentally determined crack growth rate data. Later,
Tumino and Capello [166] incorporate a variable mixed-mode adaptation by defining
an interpolation rule for the fitting parameters C1 and C2 (C3 was eliminated), which
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has to be determined a priori. The damage variable, D, was a stiffness degrading
variable (previously denoted in Section 2.2.1 as DK).

Khoramishad et al. [81] proposed a new formulation based on the model developed
by Peerlings et al. [127]. The damage evolution is related to the principal strain and
it acts to degrade the initial onset traction, τo. Likewise the former models, it relies
on fitting parameters that need to be calibrated with experimental tests. This model
is the only one reviewed here which is implemented in non-zero thickness interface
elements. Another noteworthy characteristic of the model by Khoramishad et al.
[81] is that it is based on separate damage variables for quasi-static and fatigue.

Turon et al. [172] were the first to link fracture mechanics and damage mechanics
by expressing the stiffness degrading damage rate as a function of the crack growth
rate:

dD
dN

=
1

lcz

(δc (1−D) +Dδo)2

δcδo

da

dN
(2.9)

where δo is the displacement jump at the onset of damage and lcz is an analytical
estimation of the cohesive zone length, which initially was based on Rice’s solution
for mode I [137], and latter was updated for linear orthotropic materials as a function
of the mode mixity [171]. The crack growth rate is calculated by any variant of the
Paris’ law such as the ones listed in Table 2.1. Thus, any influence of mode mixity
and load ratio on the crack growth rate is included in the model by means of the
chosen phenomenological model for the crack growth rate. The energy release rate,
needed to evaluate the Paris’ law based expression, is calculated as the total specific
work, ωtot. It is computed as the area under the quasi-static law, using instantaneous
local information at each point, but not integrating the complete failure path in the
traction-separation response. This approach leads to inaccurate computation of the
crack growth rate; the reason is explained as follows. At the beginning of each time
sub-step, static equilibrium exists. Due to an increment of the number of cycles,
the damage variable is updated integrating the damage rate in Equation (2.9). This
reduces the magnitude of the cohesive tractions in the fracture process zone, so that
the crack driving force is no longer balanced. Thus, a quasi-static damage evolution
is needed to recover the equilibrium again. This unintended static damage leads
to a non-vertical failure path, meaning the complete failure response and the total

2.3 Delamination under fatigue loading 25



dissipated energy can not be computed using instantaneous information. Moreover,
the approach used in [172] implies that there is a different crack growth rate value,
da
dN , for each point in the cohesive zone which can be difficult to interpret physically.
Also, the mode mixity is evaluated locally (the local mode mixity is denoted as B)
and it changes throughout the length of the cohesive zone. Nevertheless, the model
offers the advantage of being point-wise evaluable, which, in turn, makes it readily
applicable as a simulation tool for delamination propagation in 3D problems.

Later, the approach used by Turon et al. was adopted and simplified by Pirondi and
Moroni [129, 112]:

dD
dN

=
1

lcz

da

dN
(2.10)

In this case, the energy release rate is determined by the J-integral, which leads to
a constant da

dN value in the cohesive zone. As a counterpart, the model of Pirondi
and Moroni [129] relies on spatial information. In addition, there can not be found in
the literature any formulation for computing the mode-decomposed J-integral value
in three-dimensional analysis using a CZM approach.

In the method developed by Harper and Hallett [60] the internal variable is a traction
degrading damage variable. The damage rate is related to the crack growth rate:

dD
dN

=
1−Ds −Df,u

lfat

da

dN
(2.11)

where lfat is the length of the cohesive zone under fatigue loading, which is related
to that extracted from quasi-static simulations. The cohesive zone is split into
two parts: a zone which only accumulates static damage and a zone undergoing
fatigue damage updated by integration of Equation (2.11). Ds refers to the damage
accumulated in the static part of the cohesive zone and Df,u refers to the unintended
static damage accumulated in the fatigue part of the cohesive zone. Likewise in
the model of Turon et al. [172], the energy release rate is computed as the total
specific work. Due to the unintended contribution of Df,u, inaccurate computation
of the crack growth rate is obtained.
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In [79], Kawashita and Hallett proposed a model where fatigue damage is only
applied to the element at the crack tip. The model is based on calculating the jump
in number of cycles needed for the crack propagate the length of the element at the
crack tip, le, at the velocity of the crack growth rate, da

dN :

dD
dN

=
1−Ds
le

da

dN
(2.12)

Even though it is not required to calculate the length of the cohesive zone, a non-
local algorithm to identify the elements located at the crack tip is needed. Moreover,
le is length associated to an integration point in the crack propagation direction.
The original model [79] accounts for five possible in-plane propagation directions,
which are based on the state of the neighbouring integration points. The maximum
crack length increment is limited to le. In addition, a novel approach is used for
the calculation of the energy release rate. It is done by integration of the traction-
separation response of the most open point in the cohesive zone. This strategy
assumes that crack growth occurs under self-similar condition, i.e. the variation of
energy release rate between consecutive cohesive elements is small. The method
leads to accurate results when short target increments in crack length are used [25].
However, it requires post-processing global data. Recently, the authors presented a
method [164] based on the implementation of the model into four integration-point
interface elements (the model was originally implemented into single-integration-
point elements). This offers the advantage of exchanging spacial information within
the element domain, thus making the formulation evaluable at element level.

Tao et al. [163] incorporated two modifications to the original model of Kawashita et
al. [79]: a virtual fatigue damage variable to identify the crack tip elements using
local element information, and a strain energy release rate correction method to
enable the use of coarser meshes. This correction method uses an estimation of
the cohesive zone length extracted from quasi-static simulations.

Bak et al. [23] developed a method which avoids making use of any fitting parameter
in the link between the crack growth rate, da

dN , which is a scalar variable, and the
damage rate, dD

dN , which is a field variable. This is achieved by application of two
conditions: 1) the relation between tractions and displacement jumps is determined
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by the quasi-static cohesive law during fatigue propagation, and 2) the damage
changes discontinuously to 1 when the criterion for full damage is met:

if ωtot > G then D = 1 (2.13)

These two conditions imply that the distributions of cohesive tractions and dis-
placement jumps, δ, within the damage process zone are unchanged in the shift
between quasi-static loading and fatigue loading. Thus, the unwanted increase in
the extracted total specific work [172, 60, 163] is eliminated and this field quantity
can be determined accurately using instantaneous local information. On the other
hand, the maximum cyclic energy release rate, G, is a scalar variable determined
using the J-integral method, i.e. using global information. The lack of formulations
for three-dimensional mode-decomposed J-integral prevents the model of being
applicable to three-dimensional analysis.

Taking into consideration condition 1), the damage rate model can be derived by
making use of the dependencies of the variables in the quasi-static CZM. Then, by
application of the chain rule, the damage rate is written as:

dD
dN

=

(
∂D
∂B

∂B

∂a
+
∂D
∂δ

∂δ

∂a

)
da

dN
(2.14)

In [23], the slopes of local mode mixity and displacement jump with crack growth,
∂B
∂a and ∂δ

∂a are calculated, assuming self-similar crack growth, as the slopes of
mode mixity and displacement jump along the propagation direction. Thus, in three-
dimensional analysis, the crack propagation direction must be identified in order to
compute them. Current formulations for identification of the propagation direction
require post-processing global information, which is computationally expensive.
Thus, an efficient algorithm to determine the direction of crack growth is needed.
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A more simpler approach than that used by Bak et al. [23] is used in [14], where the
damage rate is calculated as:

dD
dN

=
∂D
∂δ

∂δ

∂a

da

dN
(2.15)

Thus, the effect of the change in local mode mixity, B, during crack propagation is
not taken into account. Moreover, in [14], condition 2) is changed to:

if D (Nn) +

∫ Nn+∆N

Nn

dD
dN

dN > Dmaxs then D (Nn + ∆N) = 1 (2.16)

where Dmaxs is the quasi-static damage at the element at the crack tip, obtained by
applying the maximum value of the cyclic load. The energy release rate is computed
as the area under the traction-separation curve at the crack tip element. This
measure is used for the rest of elements forming the cohesive zone, thus leading to
a single value of crack growth rate. This strategy implies assuming self-similar crack
growth. Moreover, it remains to define an strategy for three-dimensional analysis,
where the energy release rate changes along the direction of the crack front.

In [22], benchmark studies of six of the presented computational methods [23, 172,
140, 130, 60, 79] are analyzed. The accuracy of the predicted crack growth rate
is studied and compared. It is shown that the method of Bak et al. [23] leads in
terms of robustness and accuracy. Some of the most recent methods [163, 14, 164]
were not benchmarked in [22]. Nevertheless, either they are based on any of the
previous models or they are not formulated for their applicability to 3D structures.
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2.4 Introduction to the applied cohesive zone
model for the simulation of high-cycle
fatigue-driven delamination

The point of departure of the formulation developed in this Ph.D. thesis is the
simulation method for high-cycle fatigue-driven delamination of Bak et al. [23]. The
method was formulated for its applicability to 2D structures. This thesis is aimed at
extending the original formulation to 3D. The method presented in [23] is, in turn,
an extension of the CZM for quasi-static loading proposed by Turon et al. [167,
168]. Since they form the basis of the 3D fatigue damage formulation developed in
this Ph.D. thesis, the quasi-static CZM and the 2D fatigue damage model from the
original works [167, 168, 23], and their finite element implementation, are outlined
in the following.

Kinematics of the cohesive interface

The CZM reduces the cohesive behavior to the mid-surface, S, between the upper
surface S+, and the lower surface, and S− (c.f. Figure 2.9). The deformed mid-
surface, S, is defined in the global Cartesian coordinates,X, as the average distance
between two initially coincident points,

x = X +
1

2

(
u+ + u−

)
(2.17)

where u± are the displacements of the two material points on S±.

Defining a local Cartesian coordinate system (ê1, ê2, ê3) on S, the displacement
jump across the material discontinuity (u+ − u−) can be expressed according to
the local normal and tangential directions of the midsurface:

δ = Θ
(
u+ − u−

)
(2.18)
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Fig. 2.9.: Description of the deformed element midsurface, S.

where Θ is the transformation tensor that relates the global to the local coordinate
system:

Θ = [ê1, ê2, ê3]
T (2.19)

Let η1 and η2 be isoparamteric curvilinear coordinates located on S, as represented
in Figure 2.9 (note that the isoparametric representation of the physical space is
reduced to the interfacial element midsurface). Then, the two vectors tangential to
the deformed midsurface are established as:

e′1 =
∂xi
∂η1

e′2 =
∂xi
∂η2

(2.20)
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and the direction cosines of the local Cartesian coordinate system, which are the
normal, ê3, and tangential, ê1 and ê2, unit vectors to S, can be derived from the
Equation (2.20) as follows:

ê1 =
e′1
|e′1|

ê3 =
e′1 × e′2
|e′1 × e′2|

ê2 = ê3 × ê1 (2.21)

Quasi-static constitutive model

The constitutive relation between the displacement jumps, δ, and the tractions, τ ,
between crack faces is defined as:

τj =
(
1−DK

)
Kδj for j = 1, 2

τ3 =
(
1−DK

)
Kδ3 −DKK〈−δ3〉

(2.22)

where DK ∈ [0, 1] is a scalar damage variable reducing the penalty stiffness,K, and
〈 〉 are theMacaulay brackets defined as 〈x〉 = (x+|x|). Note that, as interpenetration
of crack faces is physically prevented by contact, negative normal opening values
are avoided.

The evolution of the stiffness degrading damage variable, DK is governed by an
equivalent one-dimensional cohesive law and a damage criterion (c.f. Figure 2.10).
For the formulation of this equivalent one-dimensional cohesive law, and so that
different stages of the degrading process can be compared under changing mixed-
mode loading conditions, a non-negative scalar displacement jump is defined:

λ =

√
(δI)

2
+ (δs)

2 (2.23)
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where δI is the mode I opening, associated to the displacement jump in the normal
direction to the midsurface, and δs is the shear sliding resultant of the displacement
jumps in the tangential directions to the midsurface.

δI = 〈δ3〉, δs =

√
(δ1)

2
+ (δ2)

2 (2.24)
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Fig. 2.10.: Equivalent one-dimensional cohesive law for a given mode-mixity, B. The shad-
owed area in a) represents the fracture toughness, Gc, in b), the specific dissipated
energy, ωd, and the specific elastic energy, ωe, and in c), the total specific work,
ωtot, for a given state of damage.

Note that the two tangential (orthogonal among each other) displacement jumps, δ1
and δ2, are reduced to an equivalent shear displacement jump, δs. It is worth men-
tioning that this is due to the incapability of the original formulation [167, 168] to dis-
tinguish into modes II and III, mainly attributed to the hitherto lack of computationally-
efficient crack front tracking algorithms.

The equivalent one-dimensional interface traction, µ, is related to the equivalent
one-dimensional displacement jump, λ, with

µ =
(
1−DK

)
Kλ (2.25)

With increasing displacement jump, the traction increases to a peak value, µo, corre-
sponding to the interfacial strength, and then decreases until complete decohesion.
To ensure the correct energy dissipation during the process of fracture, the total area
under the traction-displacement jump curve is set equal to the fracture toughness,
Gc. Both the interfacial strength and the fracture toughness are material parameters
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that depend on the opening mode-mixity, B, and, together with the penalty stiffness,
K, define the shape of the constitutive law. The local mode-mixity, B, is defined in
terms of the displacement jump as:

B =
δ2
s

δ2
I + δ2

s

(2.26)

and it is equivalent to the amount of total specific work related to shear mode over
the entire total specific work, ωtot (see Figure 2.10 for an schematic representation
of ωtot).

The fracture toughness, Gc, for a given mode-mixity, is determined using the expres-
sion proposed in [29],

Gc = GIc + (GIIc − GIc)Bη (2.27)

where subscripts I and II denote the pure modes I and II values, respectively, and
η is an experimentally determined mode interaction parameter. Even though the
hypothesis of a constant shear fracture toughness is not supported by any physical
evidence, shear opening mode is, conservatively [103], treated as mode II.

Similarly to the intepolation of the fracture toughness, the interfacial strength, µo, for
a given mode-mixity is defined as:

µo =

√
(τIo)

2
+ [(τIIo − τIo)]Bη (2.28)

where τIo and τIIo are the tensile and shear interfacial strengths. If it is assumed
that the penalty stiffness of the model is mode independent. The interfacial shear
strength is set as a function of the other material properties [168]:

τIIo = τIo

√
GIIo
GIo

(2.29)
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In terms of the displacement jump, the onset, λo, and propagation, λc, of delamination
are related to the parameters of the cohesive law:

λo =
µo
K
, λc =

2Gc
µo

(2.30)

The damage criterion is formulated ensuring damage irreversibility, such that the
damage variable at the current time is determined as

DK = min

(
max

(
0,
λtc (λt − λto)
λt (λtc − λto)

)
, 1

)
∀ t ∈ [0, tc] (2.31)

Thus, the mixed-mode displacement jump associated to the current damage state
is:

λD =
λoλc

λc −DK (λc − λo)
(2.32)

As shown in Section 2.2.1, the stiffness degrading damage variable, DK , is strongly
nonlinear in terms of λD. This might hinder the performance of the numerical method
[23]. Conversely, an energy-based damage variable, De, exhibits linear dependency
with λD. De is defined in [168] and [23] as the specific dissipated energy due to
fracture, ωd, over the fracture toughness, Gc, during degradation (λo ≤ λD ≤ λc):





De = 0 for λD ≤ λo
De =

ωd
Gc

for λo ≤ λD ≤ λc

De = 1 for λD ≥ λc

(2.33)

where ωd is, in terms of the displacement jump, given as:

ωd = max

{
0,

1

2
Kλoλc

λo − λD
λo − λc

}
(2.34)
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The damage variables DK and De are related by:

De = 1− λc
(
1−DK

)
KλD

2Gc
(2.35)

Finally, the total specific work associated to the current damage state can also be
determined in terms of the displacement jump:

ωtot =
1

2
Kλo

(
λc −

(λc − λD)
2

λc − λo

)
(2.36)

Note that, during crack propagation, the µ-λ relation follows the equivalent one-
dimensional cohesive law, i.e.:

λD = λ (2.37)

and that before damage initiation (λ ≤ λo), no energy is dissipated and the total
specific work corresponds to the specific elastic energy:

ωtot =
1

2
Kλ2 (2.38)

Fatigue damage model

The method presented in [23] for the simulation of fatigue-driven delamination is
based on an envelope load approach. Thus, the damage after a given number of
cycles is determined by integration of the damage rate, dD

dN , at discrete increments in
cycles, ∆N . The cycle integration scheme is further developed in the finite element
implementation.

36 Chapter 2 State-of-the-art



Since there does not exist any methodology for the experimental characterization
of the fatigue cohesive law in the literature, most of the existing models are linked
to or calibrated using the crack growth rate, da

dN [172, 60, 130, 79, 163]. The
main challenge handled by the method from [23] is avoiding making use of any
fitting parameter in the link between the crack growth rate, da

dN , which is a scalar
variable, and the energy-based damage rate, dD

dN , which is a field variable. This is
achieved by 1) maintaining that the quasi-static relationship between tractions, τ ,
and displacement jumps, δ, during fatigue propagation, and 2) setting the damage
to 1 when the criterion for full damage is met (c.f. Equation (2.13)).

The rate of energy-based damage, dDe
dN , is better used instead of the rate of stiffness

degrading damage variable, dDK
dN , the reason being that De changes linearly with

the displacement jump, unlike DK (see Section 2.2.1). Thus, Equation (2.14) is
rewritten as:

dDe
dN

=

(
∂De
∂B

∂B

∂a
+
∂De
∂λ

∂λ

∂a

)
da

dN
(2.39)

Each of the partial derivatives in Equation (2.39) are addressed in the following.
The derivative of the energy-based damage with respect to the mode mixity, ∂De∂B ,
and the derivative of the energy-based damage with respect to the mixed-mode
displacement jump, ∂De∂λ , are scalar factors derived, by successive application of
the chain rule, as:

∂De
∂B

=
∂
(
ωd
Gc

)

∂ωd

(
∂ωd
∂λo

∂λo
∂µo

+
∂ωd
∂λc

∂λc
∂µo

)
∂µo
∂B

+



∂
(
ωd
Gc

)

∂ωd

∂ωd
∂λc

∂λc
∂Gc

+
∂
(
ωd
Gc

)

∂Gc


 ∂Gc
∂B

∂De
∂λ

=
∂
(
ωd
Gc

)

∂ωd

∂ωd
∂λ

(2.40)

Note that, in the original work [23], Gc−ωr is used instead of ωd. Nevertheless, both
expressions are equivalent.
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Due to condition 1), the partial derivatives in Equation (2.40) can be obtained using
the quasi-static dependencies. The partial derivatives are solved for the particular
application of the CZM from [167, 168] and listed in Table 2.2. The expression
for ∂De∂B , obtained after substituting the partial derivatives in Equation (2.40) by the
expressions listed in Table 2.2 is:

∂De
∂B

=
η (GIIc − GIc)B(η−1)λ

Kλcλo (λo − λc)
= FB (2.41)

Similarly, the expression for ∂De∂λ reads:

∂De
∂λ

=
1

λc − λo
= Fλ (2.42)

The rates ∂B
∂a and ∂λ

∂a in Equation (2.39) are the local point-wise change of the local
mode-mixity and the mixed-mode displacement jump with the crack propagation.
In a self-similar crack growth, ∂B∂a and ∂λ

∂a can be interpreted as the slopes of the
local mode-mixity and the mixed-mode displacement jump along the direction of
crack propagation (for further details on this assumption, the reader is referred to
the original paper [23] describing the method). Thus, being x1 the crack growth
coordinate, ∂B∂a and ∂λ

∂a can be computed as:

∂B

∂a
≈ ∂B

∂x1

∂λ

∂a
≈ ∂λ

∂x1

(2.53)

Note that, in order to compute ∂B
∂x1

and ∂λ
∂x1

in a three-dimensional model, the
propagation direction must be identified.

The last term in Equation 2.39, da
dN , is the crack growth rate, which can be expressed

by any variant of the Paris’ law [125] based on the energy release rate, G. Thus, any
experimentally observed effect on the crack growth rate, such as the effect of the
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Tab. 2.2.: Dependencies and partial derivatives of the variables in the system using the CZM
presented in [167, 168].

Dependencies Partial derivatives

λo (µo)
∂λo
∂µo

=
1

K
(2.43)

λc (µo,Gc)
∂λc
∂µo

= −2Gc
µ2
o

(2.44)
∂λc
∂Gc

=
2

µo
(2.45)

µo (B)
∂µo
∂B

=
η
(
τ2
IIo − τ2

Io

)
Bη−1

2µo
(2.46)

Gc (B)
∂Gc
∂B

= η (GIIc − GIc)Bη−1 (2.47)

ωd (λo, λc, λ)

∂ωd
∂λo

=
1

2
Kλc

λ2
o − 2λcλo + λcλ

(λo − λc)2 (2.48)
∂ωd
∂λc

=
1

2
Kλ2

o

λo − λ
(λo − λc)2 (2.49)

∂ωd
∂λ

=
1

2
Kλoλc

1

(λc − λo)
(2.50)

De (ωd,Gc)
∂
(
ωd
Gc

)

∂ωd
=

1

Gc
(2.51)

∂
(
ωd
Gc

)

∂Gc
=
−ωd
G2
c

(2.52)
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mode mixity or the load ratio, can be included in the fatigue damage model. In this
thesis, the crack growth rate, da/dN = f(Gmax, R,Φ), is assumed to depend on the
maximum cyclic energy release rate, Gmax, the load ratio, R, and the global mode
mixity, Φ, which is defined as

Φ =
GII

GI + GII
(2.54)

where subscript II denotes the shear component of the energy release rate. Note
that, likewise in the quasi-static model [167, 168], the modes II and III are not
disaggregated. Also note the difference between the displacement jump based
mode mixity, B, expressed in Equation (2.26) as a local quantity, and the energy
release rate-based mode mixity, Φ, which is extracted from global information.

For a given load ratio, R, the Paris’ law [125] like expression reads:

da

dN
=

{
A (Gmax)

p for Gth < G < Gc
0 for G ≤ Gth

(2.55)

where the exponent, p(Φ), and coefficient, A(Φ), are mode-dependent parameters
determined by [31]:

p = Φ2 (pII − pI − pm) + Φpm + pI

logA = Φ2

(
AII
AmAI

)
+ Φlog (Am) + log (AI)

(2.56)

and pI and AI are the Paris’ law like parameters for pure mode I, pII and AII are
the Paris’ law like parameters for pure mode II, pm and Am are mode interpolation
parameters, and Gth is the energy release rate threshold below which it is considered

40 Chapter 2 State-of-the-art



that no propagation occurs. Its dependence with the mode mixity is assumed to
follow a Benzeggagh-Kenane-based [29] expression, as stated in [172]:

Gth = GIth + (GIIth − GIth) Φη2 (2.57)

The maximum cyclic energy release rate, Gmax, and the global mode mixity, Φ, are
computed using the J-integral method. The original model presented in [23], is
developed for 2D analysis. In this case, the crack growth direction is defined naturally
as the only possible direction confined in the interface. Then, making use of the path
independence of the J-integral [136], the integration path domain is defined along
the crack growth direction coordinate, x1, extending the length of the CZ. However,
for the extension of the fatigue model to the analysis of delamination propagation in
3D structures, the formulation of the J-integral must be reformulated.

Finite element implementation

The analysis of delamination propagation leads to a system of nonlinear equations
that can only be solved using a numerical method. In this regard, most of the
recently developed CZMs have been implemented in a finite element framework. By
discretization into finite elements, the geometric and material nonlinearities of the
system compounded by the bulk body and the interfacial crack can be addressed.
The CZM presented in [167, 168, 23] is implemented into an 8-noded zero-thickness
user-defined element (c.f. Figure 2.11) in the commercial code ABAQUS/Standard
[160]. This interface element is compatible with three dimensional continuum el-
ements that may form the upper and lower part of the bulk body containing the
singularity.
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Fig. 2.11.: Sketch of the undeformed cohesive element. The nodes are represented as black
dots and numbered from 1 to 8 and the integration points are represented as
asterisks and numbered from 1* to 4*.
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The nodal coordinates of the undeformed interface element are arranged in vector
C in such a way that:

C =
{
C−,C+

}
(2.58)

C− =
{
X1

1 , X
1
2 , X

1
3 , ..., X

4
1 , X

4
2 , X

4
3

}T and C+ =
{
X5

1 , X
5
2 , X

5
3 , ..., X

8
1 , X

8
2 , X

8
3

}T

are the global coordinates of the nodes at the lower and upper interfaces, respectively,
where Xn

i is the i-th coordinate of the n-th node.

The nodal displacements, relative to the global coordinates, are arranged in vectorQ
similarly to the nodal coordinates, i.e. the nodal displacements of the lower interface,
Q− =

{
u1

1, u
1
2, u

1
3, ..., u

4
1, u

4
2, u

4
3

}T , are numbered first, and the nodal displacements
of the upper interface, Q+ =

{
u5

1, u
5
2, u

5
3, ..., u

8
1, u

8
2, u

8
3

}T , are numbered second:

Q =
{
Q−,Q+

}
(2.59)

The material coordinates and the displacement fields are interpolated within the
domain of the cohesive element using isoparametric bilinear shape functions,

L1 =
1

2
(1− η1) (1− η2) ; L2 =

1

2
(1 + η1) (1− η2)

L3 =
1

2
(1 + η1) (1 + η2) ; L4 =

1

2
(1− η1) (1 + η2)

(2.60)

organized in matrix the shape function matrix,N , as follows:

N =



L1 0 0 L4 0 0

0 L1 0 ... 0 L4 0

0 0 L1 0 0 L4


 (2.61)
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According to Equation (2.17) and making use of equations (2.58)-(2.61), the coordi-
nates of the interfacial deformed midsurface are:

x =
1

2
N
(
C+ +C− +Q+ +Q−

)
(2.62)

The tangential vectors to the interfacial midsurface defined in Equation (2.20), are
arranged in the Jacobian matrix:

J = [e′1, e
′
2] where J =

1

2

∂N

∂η

(
C+ +C− +Q+ +Q−

)
(2.63)

Hence, the unit vectors, ê1, ê2, ê3, corresponding to the direction cosines of the local
Cartesian coordinate system, can be derived from J following equation (2.21).

The transformation matrix,M , computes the displacement jump in global coordi-
nates of two initially coinciding points from the nodal global displacement vector:

u+ − u− = MQ (2.64)

whereM is defined as:
M = [−N N ] (2.65)

Thus, from Equation (2.18), the displacement jump in local coordinates reads:

δ = ΘMQ (2.66)

The interface element internal force vector isderived from the principle of virtual work
at each of the sub-domains in which the body is divided by the cohesive interface
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and assuming that the resultant of the cohesive tractions must be continuous by
Newton’s Third Law [56]:

f =

∫

S̄e

NTΘT τdS̄e =

∫ 1

−1

∫ 1

−1

NTΘT τ |e′1 × e′2|dη1η2 (2.67)

where S̄e is the mid-surface of the interface element in the deformed configuration.
The element tangent stiffness matrix,Kf , reads:

Kf ≈
∫

S̄e

NTΘTDtanΘNdS̄e =

∫ 1

−1

∫ 1

−1

NTΘTDtanΘN |e′1 × e′2|dη1η2 (2.68)

whereDtan is the constitutive tangent stiffness matrix [167]:

Dtan
ij =





K

[
δ̄ij

(
1−DK −DK δ̄3j

〈−δ3〉
δ3

)
−
(

1 + δ̄3j
〈−δ3〉
δ3

)
·

(
1 + δ̄3j

〈−δ3〉
δ3

)
λcλoδiδj

δ3 (λc − λo)
] , for λD < λ < λc

δ̄ijK

(
1−DK −DK 〈−δ3〉

δ3

)
, for λ < λD < λc or λ > λc

(2.69)

where δ̄ij is the Kronecker delta and i, j = 1, 2, 3.

During fatigue loading, the number of cycles is discretized and the energy-based
damage, De, is updated for each equilibrium substep. Then, the updated De after
an increment ∆N in number of cycles is obtained as:

De (Nn + ∆N) = De (Nn) +

∫ Nn+∆N

Nn

dDe
dN

dN = De (Nn) + ∆Def (2.70)
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Since dDe
dN is unknown for N ∈ ]N,N + ∆N ], the integral of dDe

dN is approximated
using the trapezoidal rule:

∆Def ≈
1

2

(
dDe
dN

|Nn +
dDe
dN

|Nn+∆N

)
∆N (2.71)

The increment in cycles for the next equilibrium substep is determined in [23] using a
target increment in crack length, ∆at, and the crack growth rate, da

dN , from Equation
(2.55) at the current number of cycles, Nn:

∆N =
∆at
da
dN

(2.72)

However, Equation (2.70) provides accurate results only when the delamination
propagates in a self-similar way and when a very fine mesh is used. The reason
being the error committed due to the calculation of the rates ∂B

∂a and ∂λ
∂a as ∂B

∂x1
and

∂λ
∂x1

, respectively (c.f. Equation (2.53)). This error produces inaccurate computation
of the increment of the damage due to fatigue loading, ∆Def , implying that an
unintended increment of the damage, ∆Des, evolves to ensure static equilibrium.
Thus, the updated energy-based damage is given as:

De (Nn + ∆N) = De (Nn)+∆Def+∆Des (non-self-similar crack growth) (2.73)

The contribution of the quasi-static term implies that the predicted energy-based
damage, De, does not correspond to the number of cycles elapsed. In order to
overcome this situation, an adaptive cycle integration (ACI) approach, which enables
the use of coarse meshes, is proposed in [23]. The ACI approach incorporates
a point-wise modification of the cycle integration limits in Equation (2.70) and a
point-wise modification of the criterion for full damage in Equation (2.13). By using
the ACI approach, the overestimated crack growth rate caused by the unindented
increment of quasi-static damage, ∆Des, is reduced. Further details on the ACI
implementation are given in [23].
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2.5 Experimental characterization of
interlaminar properties

The material card that feeds both parts of the damage model, the quasi-static and
the fatigue parts, includes the parameters listed in Table 2.3. Additionally, the penalty
stiffness, K, and the load ratio, R, are input parameters that must be defined by
the user. In the following, the existing experimental methodologies to obtain the
parameters listed in Table 2.3 are presented.

Tab. 2.3.: Material card.

Nomenclature Property
GIc,GIIc: Mode I and mode II fracture toughnesses
η : Benzeggagh-Kenane mode interpolation parameter of the

fracture toughness [29]
τIo: Interfacial tensile strength
pI , AI : Exponent and coefficient of the Paris’ law-like expression of

Equation (2.55) under pure mode I loading conditions
pII , AII : Exponent and coefficient of the Paris’ law-like expression of

Equation (2.55) under pure mode II loading conditions
pm, Am : Mode interpolation parameters of Equation (2.56)
GIth,GIIth: Mode I and mode II energy release rate thresholds
η2 : Benzeggagh-Kenane mode interpolation parameter of the

energy release rate threshold [29, 172]

A review of the test methods for delamination resistance or fracture toughness of
fiber-reinforced polymer-matrix laminated composites was done in 1998 by Davies
et al. [47], later in 2003 by Tay [165] and more recently, in 2008 by Brunner at al.
[32]. Significant progress within the last ten years can be noted and some of the
tests methods presented in [47, 165, 32] have been yet standardized, or are being
considered for standardization.

For the determination of mode I interlaminar fracture toughness, GIc, of unidirectional
carbon or glass fiber-reinforced composites, the standard procedures ISO 15024 [1]
and ASTM D5528 [41] are based on the double cantilever beam (DCB) specimen
and are technically equivalent. A similar mode I standard test method by the JSA
was edited in conjunction with a mode II procedure, the JIS K7086 [76]. In addition,
for both carbon fiber composites manufactured from unidirectional tape or woven
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fabric, the standard EN 6033 [3], also based on the DCB specimen, was approved
in 2015 for aerospace applications.

For mode II fracture toughness, GIIc, of unidirectional carbon or glass fiber-reinforced
composites, the standard JIS K7086 [76] was the first issued. In [76], an stabilized
three-point bending end notch flexure (SENF) is proposed. It provides stable prop-
agation, though it requires a complex test set-up since the applied displacement
is controlled using the real-time measurement of the shear displacement at the
cracked end of the specimen. Later, the standard ASTM D7905 [45], for unidirec-
tional fiber arrangements, and the standard EN 6034 [4] for unidirectional and woven
fabric-made composites for aerospace applications, proposed the use of the three-
point bending end notch flexure (3ENF). However, since the ENF-test is essentially
unstable, only initiation values but not propagation data can be obtained. Another
standardized mode II test configuration, which exhibit stable crack propagation, is
the End Loaded Split (ELS). In this regard, the standard ISO 15114 [2] uses the ELS
configuration and specifies an experimental procedure to calibrate the compliance to
crack length relationship. Thus, the crack length is estimated and its measurement
can be avoided.

For mixed mode I/II fracture toughness of unidirectional carbon or glass fiber-
reinforced composites, the standard procedure ASTM D6671 [41] is based on
the mixed mode bending (MMB) test configuration.

For interfacial tensile strength, τIo, of fiber-reinforced polymer-matrix composites
there are two standards: the ASTM D7291 [44], based on producing an interlaminar
tensile stress by directly applying an out-of-plane tensile load to a flat specimen, and
the ASTM D6415 [43], based on generating an interlaminar tensile stress by applying
bending moments to curved beam specimens (four-point bend loading configuration).
Note in Equation (2.29) that, using the CZM presented in [168], the number of
interlaminar properties is reduced so that the interfacial shear strength, τIIo, is
expressed as a function of τIo, GIc and GIIc. Optionally, τIIo may be measured
instead of τIo. Then, the interfacial shear strength, τIIo, can be determined following
the standard procedure ASTM D2344 [40] for short-beam strength of high-modulus
fiber-reinforced composite materials.

Some test parameters that are currently out of the scope of the standards, such as
high and low temperature, humidity, other types of lay-ups or other types of loading
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(pi.e. mode III or higher rates) are being extensively investigated or developed
into standard procedures. Fatigue loading is also excluded from the standard
procedures, with the only exception of the standard ASTM D6115 [42], which is a
means of determining the delamination growth onset in unidirectional fiber-reinforced
laminates under mode I fatigue loading. However, fatigue crack propagation is not
considered in the ASTM D6115 [42] procedure.

Focusing on the fatigue characterization techniques, Brunner et al. [33] published a
round robin exercise onmode I fatigue delamination testing with the aim of developing
a standardized test procedure for crack growth rate data extraction. The testing
procedure was based on the DCB specimen. For a DCB fatigue test conducted under
displacement control and constant displacement amplitude, the energy release rate
decreases as the crack grows. That is, the crack growth rate curve (c.f. Figure
2.7.b) sweeps from right to left until the propagation becomes unnoticeable (near
threshold-region). Thus, the selection of the testing parameters is not critical.

In order to compute the crack growth rate, the crack length over the number of cycles
is required. Monitoring specimen crack length may be either optically done with a
traveling microscope or be estimated through the specimen’s compliance [33]. In
[134], Renart et al. developed a methodology to measure the specimen’s compliance
in real time (referred to as "dynamic compliance") and, thus, enabling to obtain a
continuous curve for the evolution of the crack length with the number of cycles.
Furthermore, in [135], a new test rig and an associated methodology is presented
which, in combination with the real time monitoring of the compliance, enables to test
several DCB specimens simultaneously in a universal testing machine (c.f. Figure
2.12). The novelty of the solution relies on being able to test several specimens at
different levels of load ratio and energy release rates in a single run.

Regarding mode II fatigue testing, there is an open discussion about which is the
best suited rig. In the round robin exercise presented in [34], both 3-ENF and CELS
test rigs were used and the Paris’ law-like fitting parameters (pII and AII ) of the
data from both configurations clearly differed. They attributed the problems in the
3-ENF configuration to the specimen shifting and the compressive stresses in the
region under the loading arm, while, for the C-ELS test, to the effects of variation
in clamping (different torques applied to the screws). In addition, the C-ELS test
involves large vertical deflections which may create the need for a correction in the
data reduction scheme to account for them and it may also entail inertial effects
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Fig. 2.12.: Multi-fatigue test device with 6 specimens.

related to the heavy weight of the clamping rig, which describes a cyclic movement
in conjunction with the specimen. Therefore, only detailed data analysis will reveal
whether 3-ENF or C-ELS is better suited for cyclic mode II fatigue delamination
characterization.

U

... ...... ...U

U

Fig. 2.13.: a) Sinusoidal shaped loading cycles with constant displacement. b) 3-ENF test
configuration, where L is the mid-span length, a is the crack length, a0 is the initial
crack length and 2h is the specimen’s total thickness of the specimen.

For mode II 3-ENF fatigue tests, the range of the crack growth rate curve swept in
a single test under constant cyclic displacement is very narrow. This results from
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Fig. 2.14.: a) Maximum energy release rate applied to the 3-ENF test as a function of the
crack length. b) Crack growth rate curve segment analyzed in a single test with
constant cyclic displacement.

the dependence of the energy release rate on the geometry of the specimen and
the configuration of the test. Indeed, in 3-ENF tests the region available for crack
propagation spans between the support and the vicinity of the loading roller, where
the through thickness compression arrests crack propagation (c.f. Figure 2.13).
The energy release rate does not evolve monotonically with the crack extension
but, as the cracks extends, it increases and then decreases, as shown in Figure
2.14.a. Thus, only a small segment of the crack growth curve is covered by a single
test. In fact, the same segment of the curve is tracked twice: first upward and then
downward (c.f. Figure 2.14.b). Hence, to construct the entire crack growth curve
requires various constant cyclic displacement tests at different load intensities. The
alternative to performing multiple tests is to implement a test with a proper variation
of the displacement. Only Tanaka and Tanaka [161], Matsubara et al. [105] and
Hojo et al. [67, 65] carried out 3-ENF fatigue tests with fiber reinforced polymer
specimens by decreasing the applied peak load as the crack propagates. In [161]
the authors conducted fatigue tests under either a constant or decreasing stress
intensity range, ∆K, to graphite/epoxy composite specimens. The same data on
crack growth rate, da/dN , with crack extension was obtained in the ∆K-constant
tests. Tanaka and Tanaka determined that fiber bridging had no influence on Mode II
crack propagation and concluded that crack growth is independent of crack extension
history. Matsubara et al. [105] used a decreasing-load test procedure based on the
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ASTM standard for metals [20]. This methodology enables the crack growth rate for
a broader range of the load intensity factor to be determined and also to approach
the low-rate region, near the threshold, by decreasing the applied load. The load
shedding can be done manually at selected crack size intervals or, alternatively, by
continuously reducing the force to adjust the normalized K-gradient, (1/K)dK/da,
to a fixed value. They conducted constant- and decreasing- load tests with glass
fibre reinforced polymer specimens and obtained identical results, confirming that
crack growth rate is independent of crack extension history. Similarly, Hojo et al. [67,
65] carried out fatigue tests under constant normalized gradient of energy release
rate, (1/G)dG/da, by measuring the specimen’s compliance and decreasing the peak
load accordingly.

In practice, incrementally shedding the force with increasing crack size requires the
continuous intervention of a technician. On the other hand, computer-controlled
stress intensity or, equivalently, energy release rate gradient techniques [147, 148],
require the crack length to be monitored in real-time, usually by means of the
specimen’s compliance. Indeed, the use of the compliance to control the machine,
or any other behavioral-based control technology, can lead to unexpected load
setpoints, i.e. unpredictable responses from the test machine.

On the other hand, onset curves (c.f. Figure 2.7.a) are built by measuring the
number of cycles required for fatigue propagation for different levels of severity of
load. The severity of load is usually defined as the ratio of the maximum cyclic
energy release rate, Gmax, to the quasi-static fracture toughness, Gc. According to
the ASTM 6115 standard [42], the onset point for each specimen can be identified
either by visual inspection of the crack length or by an increase of the specimen’s
compliance. Regarding the latter, two different criteria are recommended in [42]: a
1% and a 5% increase of the specimen’s compliance relative to the initial value. In
practice, running these tests is not only costly and time consuming, but also leads
to scattered results. If the increment in crack length criterion is used, it requires
stopping the test periodically to carry out crack length inspection. On the other
hand, if the increment of the specimen’s compliance criterion is used, it requires
also stopping the test periodically to perform quasi-static tests on the linear region
of the material. Thus, the accuracy in determining the onset point depends on the
frequency of the stops, and requires the continuous intervention of a technician. In
this regard, the methodology presented in [134] can be used to obtain a continuous
curve for the evolution of the specimen’s compliance with the number of cycles. In
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Figure 2.15, the dynamic compliance [134] of a DCB specimen is plotted against the
number of cycles for a test performed with an initial severity of 60%. The dynamic
compliance is measured during the fatigue test at a sampling rate of 1 data/cycle.
Thus, by using the real time monitoring of the specimen compliance, the identification
of the onset point is done with a precision of 1 cycle.

Fig. 2.15.: Specimen curves of the dynamic compliance [134] versus the number of cycles.
The curve indicates the number of cycles for which the compliance increases by
1%, and 5%. The reference value of the compliance has been obtained from the
first cycles.

Moreover, onset curves can be used to obtain a "fatigue limit": an energy release
rate value, Gth, below which no onset of propagation occurs.
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3Extension of the simulation
method for fatigue-driven
delamination in 3D structures

Based on the formulation reviewed in Section 2.4, there are two main requirements
that must be met in order to extend the method presented in [23] for its three-
dimensional application:

• Develop an efficient algorithm to determine the direction of crack propagation.

• Formulate a three-dimensional J-integral applicable to cohesive interfaces for
the determination of the mode-decomposed energy release rates.

In this chapter, both tools are provided together with the details of the extension of
the cohesive zone model for 3D structures undergoing fatigue delamination.

3.1 Point-wise evaluation of the growth driving
direction for arbitrarily shaped
delamination fronts using cohesive
elements

In this section, a local algorithm to determine the growth driving direction in CZM is
presented. It can be evaluated at any point within the cohesive zone at the same
time the damage state is being computed. Therefore, it can be used to enhance
the cohesive element formulation under static loading, preserving the local nature
of the formulation. Moreover, it is an efficient alternative to the existing nonlocal
propagation direction algorithms used in the methods for fatigue simulation.
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3.1.1 Determination of the growth driving direction

In the framework of LEFM, the propagation direction is assumed to be the normal
direction to the crack front, where the crack front is the line separating the uncracked
and cracked parts (see Figure 3.1.a). In contrast to LEFM, the CZM technique
accounts for a band of damaged interface of variable length, called the fracture
process zone, FPZ (light grey band in Figure 3.1.b). Therefore, the propagation
direction, understood as the normal to the crack front line, can not be defined in the
CZM framework. In this work, the concept of “growth driving direction” is introduced
for CZM as the analogous to the propagation direction. It is assumed to be normal
to a given damage isoline and it can be calculated at any point within the FPZ. This
definition follows naturally from the LEFM definition and provides the exact same
result in the limiting case where the length of the fracture process zone goes to
zero.
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Fig. 3.1.: a) The propagation direction is assumed to be the normal direction to the crack
front in the LEFM framework. b) The growth driving direction is assumed to be the
normal direction to a damage isoline in the CZM framework. The energy-based
damage variable, De.

Growth driving direction using cohesive elements

Consider a laminated structure undergoing a delamination crack restricted to prop-
agate in the interface between two adjacent plies. The degradation process of
the material ahead of the crack tip is modeled using the bilinear CZM formulation
developed in [167, 168]. As detailed in 2.4, the process of the degradation of the
interface properties is governed by an energy-based damage variable, De, defined
in Equation (2.33) as the ratio between the specific dissipated energy, ωd, and the
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fracture toughness, Gc. Thus, De is a scalar quantity that measures the degree
of crack development: when De equals 0, the degradation process is yet to start,
while, when De equals 1, the crack is completely developed. The total specific work,
ωtot, corresponding to a given state of damage is the sum of the specific dissipated
energy, ωd, and the specific elastic energy, ωe.

To ensure the proper energy dissipation under mixed-mode conditions, a one-
dimensional cohesive law relates the equivalent mixed-mode traction, µ, to the
equivalent mixed-mode displacement jump, λ. Such constitutive law is formed by
an initial elastic region, before damage initiation, and a softening region. When the
area under the one-dimensional traction-displacement jump curve is equal to the
fracture toughness, Gc, a new crack surface is formed. The Benzeggagh-Kenane
criterion [29] is used to define the mixed-mode displacement jumps at which the
onset of damage, λo, and propagation, λc, occur. A sketch of the equivalent one
dimensional bilinear law is represented in Figure 2.10 for a given mode-mixity, B.

Complying with the cohesive element definition, the interfacial tractions and displace-
ment jumps are evaluated at the interfacial deformed midsurface, S, and determined
by its local orientation. Thus, the normal and tangential traction components, acting
on a unit deformed interfacial midsurface area, are conjugated to the normal and
tangential displacement jumps across the material discontinuity. For the analysis of
delamination propagation in three-dimensional structures, the interfacial midsurface
is defined by the Cartesian coordinates xi, with i = 1, 2, 3. The local Cartesian coor-
dinate system located on the deformed midsurface is defined by two tangential unit
vectors, ê1 and ê2, and a normal unit vector, ê3. Assuming that the crack propagation
is confined to the interface, the vector defining the growth driving direction must
belong to the plane spanned by the tangential vectors ê1 and ê2 at the point pi where
the direction is evaluated. Thus, the three-dimensional problem, can be solved in a
two-dimensional space defined by the local Cartesian coordinates (e1, e2), where el,
with l = 1, 2, are the coordinates spanned by the unit vectors êl.

Then, for any given distribution of De (e1, e2), the growth driving direction at any
point on the midsurface is assumed normal to the damage isolines, following the
discussion related to Figure 3.1, i.e. is given by the negative of the gradient vector:

−∇De (e1, e2) (3.1)
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Growth driving direction criteria

The growth driving direction at any point pi, contained in S, is defined in this work
as the one that provides the largest rate of decrease of De. This is the direction
of the negative gradient of De, defined in the local Cartesian coordinate system
(e1, e2) with origin at pi (see Equation (3.1)). However, polar coordinates are most
appropriate when looking for a direction from a pole (See Figure 3.2). Thus, the
growth driving direction can be found by identifying the angle ϕ that minimizes the
slope of De with respect to the radial coordinate, ρ:

min
ϕ

∂De
∂ρ

(3.2)

Calculation of the J-Integral  

Midurface, 𝑆  

𝒟𝑒 = 1 𝒟𝑒 = 0 

e2 

e1 

φ 

𝑝 𝑖 

Cohesive zone 

ρ 

ρ 

Fig. 3.2.: The growth driving direction evaluated at point pi is embedded in the tangential
plane spanned by the local Cartesian coordinates e1 and e2.
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Considering the energy-based damage, De, dependent on both the mode mixity, B,
and the mixed-mode displacement jump, λ, and by application of the chain rule, the
angle ϕ that minimizes Equation (3.2) can be found by solving:

∂

∂ϕ

∂De (B, λ)

∂ρ
=

∂

∂ϕ

(
∂De
∂B

∂B

∂ρ
+
∂De
∂λ

∂λ

∂ρ

)
= 0 (3.3)

and by checking its convexity:

∂2

∂ϕ2

∂De (B, λ)

∂ρ
=

∂2

∂ϕ2

(
∂De
∂B

∂B

∂ρ
+
∂De
∂λ

∂λ

∂ρ

)
> 0 (3.4)

However, equations (3.3) and (3.4) are equal to zero in the elastic regime (λ ∈ [0, λo]),
since the energy based damage variable, De, is also equal to zero (see Equation
(2.33). In order to compute the growth driving direction before the initiation of the
degradation process, another criterion, based on the ratio between the total specific
work, ωtot and the fracture toughness, Gc, can be formulated such that the growth
driving direction can be found by solving:

min
ϕ

∂
(
ωtot
Gc (B, λ)

)

∂ρ
(3.5)

Note that, similarly to the energy-based damage, De, the ratio between the total
specific work and the fracture toughness, ωtotGc , is dependent on both the mode mixity,
B, and the mixed-mode displacement jump, λ.

Finally, for the sake of simplicity, a third criterion, which is also active before damage
initiation, can be formulated only taking into account the mixed-mode displacement
jump field, λ:

min
ϕ

∂λ

∂ρ
(3.6)
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The general expressions to solve for each of the criteria are listed in Appendix A.

In summary, three different criteria are presented depending on the quantity being
analyzed: the energy-based damage, De, (Criterion 1), the total specific work over
the fracture toughness, ωtotGc (Criterion 2), and the mixed-mode displacement jump,
λ, (Criterion 3). The evolution of these quantities along the growth driving direction
are sketched in Figure 3.3 for an interface opened under pure mode I conditions.
The three criteria are listed in Table 3.1 and presented in the following.
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Fig. 3.3.: Quantities being minimized in each criterion for a pure mode I opened interface.

Criterion 1. The growth driving direction is defined by the negative gradient of the
energy-based damage variable, De. This is equivalent to computing the negative
gradient of the ratio between the specific dissipated energy, ωd (see Figure 2.10.b),
and the fracture toughness, Gc. Since Criterion 1 is based on the energy-based
damage distribution, De, it is only active once the degradation process is already
initiated. Moreover, Criterion 1 is an energy-based approach that depends on the
kinematics and the constitutive law of the cohesive element. Since the cohesive law
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Tab. 3.1.: Summary of the criteria to determine the growth driving direction.

Criterion Function Nomenclature Approach LimitationsID to solve

1 −∇De De: Energy-based Energy-based Not active
damage in elastic regime

2 −∇ωtot
Gc

ωtot: total specific

Energy-based

May depend
work on the specific

Gc: fracture elastic energy
toughness in CZM

3 −∇λ
λ: mixed-mode

Geometrical
Independent of

opening interface
displacement properties

is usually mode-dependent, an uneven distribution of mode-mixity, B, can affect the
gradient vector.

Criterion 2. The growth driving direction is defined by the negative gradient of the
ratio between the total specific work, ωtot (see Figure 2.10.c), and the fracture
toughness, Gc. Thus, both the specific dissipated energy, ωd, and the specific
elastic energy, ωe, are included in the computation of Criterion 2. Since, as soon
as two initially coinciding points separate from each other some elastic energy is
stored, Criterion 2 is active before any energy dissipation due to fracture takes place.
Moreover, this approach depends on both the kinematics and the constitutive law of
the cohesive element and, therefore, can be affected by the variation in mode-mixity,
B, with the direction.

It is worth to mention that, with the constitutive model used in this work, presented
in 2.4, criteria 1 and 2 lead to the same growth driving direction results. However,
since both the conservative and non-conservative work are computed in Criterion 2,
in contrast to Criterion 1, in which only the non-conservative work is quantified, both
criteria might provide different results when using other CZ formulations that allow
the definition of mode-dependent penalty stiffness, K [169].
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Criterion 3. The growth driving direction is defined by the negative gradient of the
mixed-mode displacement jump, λ. This is a pure geometrical approach, since the
only governing parameter is the mixed-mode displacement jump. Thus, the solution
only depends on the kinematics of the cohesive element. Indeed, changes in the
cohesive law due to variation in mode-mixity, B, with direction are not affecting
Criterion 3.

Formulation of Criterion 1 for the identification of the growth driving
direction

A complete description of the derivation of Criterion 1 is presented in this section.
Moreover, the formulation for the evaluation of the growth driving direction using
criteria 2 and 3 is given in Appendix A.

It can be seen, from equations (3.3) and (3.4), that, in order to find the growth driving
direction using Criterion 1, the radial slope of the energy-based damage,∂De∂ρ , must
be minimized as a function of the angle ϕ. Each of the terms in equations (3.3) and
(3.4) are addressed in the following.

The derivative of the energy-based damage with respect to the mode mixity, ∂De∂B ,
and the derivative of the energy-based damage with respect to the mixed-mode
displacement jump, ∂De∂λ , are expressed in equations (2.41) and (2.42).

Furthermore, the radial slope of the mixed-mode displacement jump, ∂λ∂ρ , in equations
(3.3) and (3.4) is addressed in the following. Taking into account the dependency
of the mixed-mode displacement jump, λ (Equation (2.23)), on the normal and
tangential displacement jumps, arranged in vector δi, and by application of the chain
rule, the following expression is obtained:

∂λ

∂ρ
=

∂λ

∂δj

∂δj
∂ρ

(3.7)
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The first term in the right hand side of Equation (3.7) reads:

∂λ

∂δj
=

{
δ1
λ
,
δ2
λ
,
〈δ3〉
λ

}T
= Aj (3.8)

and the second term in the right hand side of Equation (3.7) is the derivative of the
displacement jumps, δj , with respect to the radial coordinate, ρ, which is obtained
as follows:

∂δj
∂ρ

=
∂Θji

∂ρ
MimQm + Θji

∂Mim

∂ρ
Qm (3.9)

whereΘji is the rotationmatrix that relates the global to the local Cartesian coordinate
system andMim is the transformation matrix that relates the global displacement
jump with the nodal global displacement, Qm.

The derivative of the rotation matrix, Θji, with respect to the radial coordinate, ρ,
can be approximated to zero, by assuming that the curvature of the interface within
the element domain is small. Moreover, its derivation leads to a complex expression
that would increase the difficulty of the formulation and its further implementation
into FE without a substantial improvement in the accuracy of the solution. For the
sake of simplicity, in the following it is assumed that ∂Θji

∂ρ = 0. Therefore, only the
second summand in the right hand side of Equation (3.9) is addressed.

The derivative of the transformation matrix, Mim, with respect to the local polar
coordinate, ρ, is obtained by successive application of the chain rule:

∂Mim

∂ρ
=
∂Mim

∂ηα

∂ηα
∂el

∂el
∂ρ

(3.10)
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The first partial derivative in the right hand side of Equation (3.10) is the variation of
the transformation matrix,Mim, with the isoparametric coordinates of the cohesive
element formulation, ηα:

∂Mim

∂ηα
=

[
−∂Nik
∂ηα

,
∂Nik
∂ηα

]
= Eimα (3.11)

whereNik is the shape function matrix and the subscript k runs from 1 to the number
of degrees of freedom of each of top and bottom surface of the cohesive element.
In case of an eight-noded element, k = 1...12.

The derivative ∂ηα
∂el

is the inverse matrix of the two vectors tangential to the de-
formed midsurface, described in Equation (2.20) and expressed in local tangential
coordinates, these being:

∂el
∂ηα

= Θli
1

2

∂Nik
∂ηα

(
C+
k + C−k +Q+

k +Q−k
)

= ΘliJiα (3.12)

where Jiα is the Jacobian matrix defined in Equation (2.63). Thus, let matrix Gαl be
defined as:

Gαl = (ΘliJiα)
−1

=

[
∂η1
∂e1

∂η2
∂e1

∂η1
∂e2

∂η2
∂e2

]
(3.13)

Using the following transformation relation:

[
e1

e2

]
=

[
ρ cos(ϕ)

ρ sin(ϕ)

]
(3.14)
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the derivative of the local Cartesian coordinates, el, with respect to the radial coordi-
nate, ρ, reads:

∂el
∂ρ

=

[
cos(ϕ)

sin(ϕ)

]
(3.15)

Then, the slope of the mixed-mode displacement jump, λ, with respect to the radial
coordinate, ρ, is obtained using equations (3.8)-(3.15) in Equation (3.7):

∂λ

∂ρ
= AjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (3.16)

The same procedure can be applied to find the radial slope of the mode mixity, ∂B∂ρ ,
in equations (3.3) and (3.4). Taking into account the dependency of the mode mixity,
B, defined in Equation (2.26), on the displacement jumps, δj , the radial slope ∂B

∂ρ is
obtained by applying the chain rule as:

∂B

∂ρ
=
∂B

∂δj

∂δj
∂ρ

(3.17)

where the derivative of the mode mixity, B, with respect to the displacement jumps,
δj , reads:

∂B

∂δj
=

{
2δ1〈δ3〉2
λ4

,
2δ2〈δ3〉2
λ4

, −2δ2
s〈δ3〉
λ4

}T
= Oj (3.18)

and ∂δj
∂ρ is developed through equations (3.9)-(3.15). Hence, the radial slope ∂B

∂ρ is
given by:

∂B

∂ρ
= OjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (3.19)

3.1 Point-wise evaluation of the growth driving direction for arbitrarily shaped... 63



Finally, let matrix Vα be:

Vα = FBOjΘjiEimαQm (3.20)

and matrixWα be:

Wα = FλAjΘjiEimαQm (3.21)

then, the growth driving direction according to Criterion 1 is found using equations
(3.16) and (3.19)-(3.21) in Equation (3.3), solving for the angular coordinate, ϕ:

ϕ = atan
(
− (V1 +W1)G11 + (V2 +W2)G21

(V1 +W1)G12 + (V2 +W2)G22

)
(3.22)

and fulfilling the condition for convexity (Equation (3.4)):

(Vα +Wα) (Gα1 (− cosϕ) +Gα2 (− sinϕ)) > 0 (3.23)

Once ϕ is identified, the transformation of the global Cartesian coordinates, Xi, into
the local Cartesian coordinates that are located on the midsurface and oriented
according to the growth driving direction is done by means of the following rotation
matrix:

Rri = TrjΘji (3.24)
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where Trj is:

Trj =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 (3.25)

As shown, all the information necessary to evaluate Criterion 1 (and also criteria
2 and 3, as demonstrated in Appendix A) are the global nodal coordinates, Cm
and displacements Qm. Using the cohesive element formulation in [167, 168], this
information is available at the element level and, thus, the presented growth driving
direction algorithms can be implemented into a user-defined element subroutine and
evaluated at any point in the cohesive zone without any additional post-processing
or non-local information.

3.1.2 One-element validation examples

The following one-element studies serve to validate the formulation of the growth
driving direction criteria presented in Section 3.1.1. The proposed method has been
implemented in a MATLAB program. The eight-noded cohesive element used is
illustrated in Figure 2.11. The kinematics and constitutive law associated to the
element are detailed in 2.4. Newton-Cotes integration scheme is used, with 2x2
integration points located at the midsurface vertexes. The undeformed element is
0.1 mm wide, 0.1 mm long and has zero thickness. The cohesive properties are
listed in Table 3.2. Three different loading cases (A, B and C) have been analyzed.
The applied nodal displacements are listed in Table 3.3 for each case. The growth
driving direction is calculated at a point p (η1, η2) located on the midsurface, with
natural coordinates (−0.5,−0.5). The results of the angle ϕ obtained in each case
are listed in Table 3.3 for the three criteria.

Case A is a pure mode I-opened element. The distribution of the mixed-mode
displacement jump, λ, along the element midsurface is projected on the deformed
element midsurface in Figure 3.4, where the point p is highlighted in white. Integation
points 1 and 2 have the lowest λ value, while points 3 and 4 are the most opened.
As illustrated, the growth driving direction according to Criterion 3 is determined by
the greatest rate of decrease of λ. The other quantities being analyzed in criteria
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Tab. 3.2.: Cohesive law properties used in the one-element case studies.

Interface properties
GIc: Mode I fracture toughness 0.3 N/mm
GIIc: Shear mode fracture toughness 0.7 N/mm
τIc: Mode I interlaminar strength 50 MPa
τIIc: Shear mode interlaminar strengths 76.4 MPa
η: Benzeggagh-Kenane’s interpolation parameter [29] 2 -
K: penalty stiffness 1E5 N/mm3

Tab. 3.3.: Loading conditions and growth driving direction results at point p from the one-
element case studies.

Case ID Loading conditions Nodal displacements ϕ at point p (deg)
(mm) Crit. 1 Crit. 2 Crit. 3

A

u5
3 = 0.005

270.0 270.0 270.0Pure mode I u6
3 = 0.005

B constant u7
3 = 0.01
u8

3 = 0.01

B

u5
1 = u5

2 = u5
3 = 0.001

225.3 225.3 225.3Mixed mode I-shear u6
1 = u6

2 = u6
3 = 0.002

B constant u7
1 = u7

2 = u7
3 = 0.003

u8
1 = u8

2 = u8
3 = 0.002

C

u5
1 =
√

2 · 0.008

225.0 225.0 45.0Mixed mode I-shear u6
1 = u6

3 = 0.008

same λ at nodes u7
3 =
√

2 · 0.008
u8

1 = u8
3 = 0.008
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1 and 2, De and ωtot
Gc respectively, are represented in Figure 3.5, as well as the

mode-mixity, B. Like the B-distribution along the element midsurface is constant,
the growth driving direction is only defined by the direction that minimizes the slope
of the mixed-mode displacement jump. Therefore, in Case A only, the kinematics of
the element governs the growth driving direction, independently of which criteria is
used.
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Fig. 3.4.: Mixed-mode displacement jump distribution at the element midsurface for Case A
loading conditions. The growth driving direction is analyzed at point p, indicated
with a white circle, and the result is listed in Table 3.3.

3.1 Point-wise evaluation of the growth driving direction for arbitrarily shaped... 67



0
0.05

0.1

0

0.05

0.1

0

0.005

0.01

X1 (mm)X2 (mm)

a) λ(mm)

X
3
(m

m
)

5

6

7

8

9

10
x 10

−3

0
0.05

0.1

0

0.05

0.1

0

0.005

0.01

X1 (mm)X2 (mm)

b)

X
3
(m

m
)

B

0

0.2

0.4

0.6

0.8

1

0
0.05

0.1

0

0.05

0.1

0

0.005

0.01

X1 (mm)X2 (mm)

d)

X
3
(m

m
)

ωtot

Gc

0

0.2

0.4

0.6

0.8

1

0
0.05

0.1

0

0.05

0.1

0

0.005

0.01

X1 (mm)X2 (mm)

c)

X
3
(m

m
)

De

0

0.2

0.4

0.6

0.8

1

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

Fig. 3.5.: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage,
De, and d) total specific work over the fracture toughness, ωtotGc , distributions at the
element midsurface for Case A loading conditions. The point p, where the growth
driving direction is analyzed, is indicated with a white circle.
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On the other hand, in Case B, the element is opened under constant mixed mode
I-shear opening conditions (See Figure 3.6). In this case, λ linearly increases along
the midsurface diagonal direction, from integration point 1 to integration point 3.
However, B is constant and, thus, also the constitutive law associated to it. Again,
in Case B, the growth driving direction is only defined by the direction that minimizes
the slope of the mixed-mode displacement jump, λ. Therefore, it is governed by
the kinematics of the cohesive element and there is agreement between the three
criteria.
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Finally, in Case C, all the integration points have the same λ-value, although the
mode-mixity, B, changes from 0 to 1 along the midsurface diagonal direction (See
Figure 3.7). At integration point 1, only shear sliding displacement is applied, while
at the opposite corner, at integration point 3, there is only mode I opening. At the
integration points 2 and 4, there is 50% mixed-mode opening. On the other hand,
λ is lower at the center part of the element midsurface than at the corners and its
distribution is determined by the interpolation functions. Criterion 3 is only affected
by the λ-interpolation and results in the direction that points to the center of the
element. Furthermore, due to the uneven B-distribution, the constitutive law is
not constant. With the cohesive properties used in these studies, the direction of
steepest negative slopes of De and ωtot

Gc coincides with the direction that maximizes
the rate of increase of B. Note that, when evaluated at point p, this is the direction
of largest slope of λ. Therefore, Criterion 3 and criteria 1 and 2 point to opposite
directions.
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In addition, the slopes ∆De
∆ρ , ∆(ωtot/Gc)

∆ρ and ∆λ
∆ρ have been numerically evaluated

using a central difference at every 1 degree at point p under Case C loading condi-
tions using a perturbation size for the radius of ρ =0.001 mm. Thus, the slope of
any quantity f(ρ, ϕ) has been calculated as:

∆f

∆ρ
=
f(0.001, ϕ)− f(−0.001, ϕ)

2 · 0.001
(3.26)

The resulting slopes are represented in Figure 3.8. The disagreement between
Criterion 3 and criteria 1 and 2 can be observed. For Criterion 3, the angle ϕ that
minimizes ∆λ

∆ρ is 45 degrees, while for criteria 1 and 2, the angle that minimizes ∆De
∆ρ

and ∆(ωtot/Gc)
∆ρ , respectively, amounts 225 degrees. Note that these results are in

agreement with the results obtained by implementing the formulation developed in
Section 3.1.1.
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Fig. 3.8.: Slopes in the radial direction, ρ, of the energy-based damage, De, the total specific
work over the fracture toughness, ωtotGc , and the mixed-mode displacement jump, λ,
as a function of the angle ϕ evaluated at point p for Case C loading conditions. The
slopes have been calculated using a central difference with a perturbation for the
radius of 0.001 mm. The values ∆De

∆ρ
, ∆(ωtot/Gc)

∆ρ
and ∆λ

∆ρ
have been normalized

by their maximum value.
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Tab. 3.4.: Laminate properties used in the partially reinforced ELS simulation study.

Laminate properties
E11: Longitudinal Young’s modulus 154 GPa
E22 = E33: Transversal Young’s modulus 8.5 GPa
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa
G23: Shear modulus in the transversal plane 3.036 GPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 -
µ23: Poison’s coefficient in the transversal plane 0.4 -

Tab. 3.5.: Interface properties used in the partially reinforced ELS simulation study. The
nomenclature of the interface properties is defined in 2.4.

Interface properties
GIc: Mode I fracture toughness 0.3 N/mm
GIIc: Shear mode fracture toughness 3 N/mm
τIc: Mode I interlaminar strength 10 MPa
τIIc: Shear mode interlaminar strengths 31.62 MPa
η: Benzeggagh-Kenane’s interpolation parameter [29] 2 -
K: penalty stiffness 1E5 N/mm3

3.1.3 Three-Dimensional application

To exemplify the applicability of the presented formulation, a three-dimensional
model with a non-straight crack front is used. The test configuration is a End-Loaded
Split (ELS) test on a symmetric run-out specimen with a midplane initial defect. A
Teflon insert acts as an initial straight delamination (see Figure 3.9). Moreover, the
middle width of the specimen is stiffened by bonding CFRP reinforcements on the
upper and lower faces. During propagation, the crack front shape changes when it
approaches the reinforced region. The formulation presented in Section 3.1.1 can
be used to evaluate the growth driving criteria at any given loading state during the
quasi-static simulation. To this end, the method in [167, 168] has been enhanced
with the growth driving direction calculation and implemented in ABAQUS [160]
as a UEL subroutine. The user-defined cohesive elements that model the middle
interface are 0.2 mm x 0.5 mm. The laminate and interface properties used in the
simulation are listed in tables 3.4 and 3.5.

The historical evolution of the 0.5-valued damage isoline is plotted in Figure 3.10.a.
The energy-based damage,De, distribution is projected on the deformed midsurface,

74 Chapter 3 Extension of the simulation method for fatigue-driven delamination in 3D structures



λλD
μ

ωtot

λλcλo λD

μ

μ

ωd

λλD

a) b)

c)

1

2
3

4

5
8 0 thickness

X1X2

X3
6

7

1*

2*
3*

4*

    e
μ (1 -  )o 

Intact

Delaminated

Propagation 
direction

Crack front

a)

c

 -S

 Scoh

x1

x2x3

 X 1

 X 2

+S

 S o

 X 3

k+1
P

* k
h

ois l ie ng ea smaD

htap noitargetnI

1
θ

2
θ

3θ
2

Φ
3

Φ

 X 1

 
X 2

 
X 3

S0

S2

S1

 
Scoh

P

dl
2

1
θ2θ

3θ S1

Γ

T

S1

Γ

1
θ

3θ
Crack surface

P

a) b)

a) b)

Intact

Delaminated

Propagation 
direction

Crack front

Intact

Delaminated

CZ

e
=1

e
=0

Growth driving 
direction

e
isolines

htap noitargetnI

Γ
1θ

3θ

Delamination surface

0 
th

ic
kn

es
s

δ

T(δ)

Interface between plies

μo 

 P o

 -P

 +P

ê1

ê3

P

ê2

.

k
P

* k+1
P

X1

X2X3
steel block

Teflon insert
Unidirectional 
CFRP 
reinforcements

u = prescribed 3

displacement
u =u =01 2

u =u =02 3

Unidirectional
CFRP plate

140

40

30

3

1.
5

85

12
.5

Part of the mid-surface represented

sliding 
fixture

X1

X2X3

X  symm2

a)

b)

u = prescribed 3

displacement

u =u =01 3

u =02

1 2

Fig. 3.9.: a) Sketch of the partially reinforced ELS specimen. The grey-shadowed area
represents the Teflon insert. The blue-shadowed area is the area represented in
figures 3.10.b, 3.11 and 3.16. b) Simplified model for FE simulation and dimensions
(units in mm).

in Figure 3.10.c, for a prescribed displacement of 32.55mm. Only the blue-shadowed
area in Figure 3.9 is represented. The crack growth direction is evaluated at each
integration point within the FPZ using criteria 1, 2 and 3, and represented in Figure
3.11. Note that criteria 1 (Figure 3.11.a) and 2 (Figure 3.11.b) are coincident
except from at the elastic region, where no results from Criterion 1 can be obtained.
By comparison of figures 3.11.b and 3.11.c, it can be observed that Criterion 3
only differs from criteria 1 and 2 at a region located at the upper left part of the
cohesive zone (X1 < 85 mm and X2 > 10 mm). Indeed, the mode-mixity, B, is
constant and equal to 1 in the entire cohesive zone, except for this region, where
it locally decreases to 0.6 (see Figure 3.11.d). As demonstrated in Section 3.1.2,
under constant B conditions, the growth driving direction is only governed by the
kinematics of the cohesive elements. Therefore, evaluating any of the three criteria
results in the same growth driving direction solution. On the other hand, only criteria
1 and 2 are affected by changes in the mode-dependent constitutive law, leading to
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different results, if compared to Criterion 3, at the region where the mode-mixity, B,
varies.
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Fig. 3.10.: a) Historical evolution of the 0.5-valued damage isoline. b) Reaction force vs
prescribed displacement curve with the current loading state highlighted in red. c)
Energy-based damage projected on the deformed midsurface.

In addition, four damage isolines have been traced. The damage isolines are
constructed by connecting integration points with the same damage value. The first
damage isoline, represented in Figure 3.12.a, is the line connecting the completely
damaged integration points adjacent to the damage process zone. At each point
on the damage isoline, the geometrical normal direction has been approximated
by the normal to the slope of a second degree polynomial expression fitted to five
consecutive points represented in white in Figure 3.12.a): the current point and the
two preceding and the two succeeding points. Therefore, the approximated normal
direction is computed by post-processing global information and it is heavily affected
by the discretization and the choice of the fitting function. The results are compared
to the local growth driving direction criteria developed in Section 3.1.1 in Figure
3.12.b. The same analysis is done with a 0.5-valued damage isoline (Figure 3.13),
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a 0.1-valued damage isoline (Figure 3.14) and the line connecting the undamaged
integration points adjacent to the damage process zone (Figure 3.15). Note that,
although for comparison purposes the growth driving direction is evaluated in a
discrete manner at the same points where the approximated normal direction is
computed, it is a continuous field that can be evaluated at any point, as shown in
Figure 3.11.

Finally, three different FE models with element sizes 0.5 x 0.2 mm, 1 x 1.25 mm and
2.5 x 2.5 mm (see Figure 3.16) are used to compare the element size effect on both
the approximated normal direction to the 1-valued damage isoline, evaluated by
using global information, and the predicted growth driving direction using Criterion
1, evaluated point-wise at the element level. The results are obtained using the
information of the points on the 1-valued damage isoline traced in Figure 3.17 for the
three meshes. The direction obtained along the damage isoline using both methods
is plotted in Figure 3.18.
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Fig. 3.16.: Growth driving direction resulting from the evaluation of Criterion 1 using three
different element sizes.
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3.1.4 Discussion

Three different growth driving direction criteria have been proposed as element-level
algorithms, that can be evaluated at any point within the cohesive zone. Criteria
1 and 2 are energetically-based formulations that account for both the kinematics
and the constitutive law of the interface element. On the other hand, Criterion 3
is a geometrical approach, which only accounts for the kinematics of the interface
element. Therefore, when the mode-mixity,B, is not constant, criteria 1 and 2 are the
most appropriate. Moreover, Criterion 2 computes the rate of decrease of both the
specific elastic energy, ωe, and the dissipated energy, ωd, normalized to the fracture
toughness, Gc. On the contrary, Criterion 1 only computes the rate of decrease of the
dissipated energy, ωd, normalized to the fracture toughness, Gc, which is equivalent
to computing the rate of decrease of the energy-based damage, De. On this basis,
Criterion 1 is not active before damage initiation, while Criterion 2 can be computed
as soon as some separation between two initially coinciding points at the interface
occurs. The three criteria have been presented for completeness, since they can
be developed for other CZM formulations following the methodology described in
Section 3.1.1. With the CZM used in this work, criteria 1 and 2 lead to the same
growth driving direction solution at the damaged region. However, different results
may be obtained if a mode-dependent penalty-stiffness is used, which could render
the specific elastic energy of Criterion 2 dependent on growth driving direction.

The implementation of the formulation for the proposed growth driving direction
criteria has been validated with one-element case studies in Section 3.1.2. The
distribution of the quantities being analyzed have been projected on the element
midsurface for visual verification (see figures 3.5-3.7 for different loading cases). In
addition, the slopes of such quantities have been numerically evaluated at different
orientations around a given evaluation point under Case C loading conditions (Figure
3.8). The orientation that results in lowest slopes coincides with the angle of growth
driving direction predicted by each criteria, respectively.

Finally, the capabilities of the presented formulation are demonstrated in Section
3.1.3 using a three-dimensional run-out specimen loaded under ELS test conditions
(Figure 3.9). The crack front propagates with non-straight shape due to the rein-
forcements bonded at the middle width of the specimen Figure 3.10. The growth
driving direction criteria are evaluated at all the integration points within the cohesive
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zone for a given loading state with large deformations (Figure 3.11). The results
from the three criteria differ only at those regions where the mode-mixity, B, is not
constant, as already demonstrated in Section 3.1.2. Moreover, the resulting crack
growth driving direction is compared with the geometrical normal direction of four
different damage isolines computed by post-processing global information (figures
3.12-3.15). Both results are in good agreement, although the agreement is higher
between the geometrical normal direction to the damage isolines derived from global
information and the results from criteria 1 and 2, than from Criterion 3, specially at
the non-constant mode-mixity, B, region. It is noteworthy that the global description
of the damage isoline is highly dependent on the methodology used to compute it,
mainly the number of points taken into account and its fitting. Therefore, in a FE
framework, the computation of the approximated normal direction to the damage
isoline using global information may, in some cases, misrepresent the actual normal
direction. Indeed, the local computation of the negative gradient of the energy-based
damage, De, by means of Criterion 1 is the exact normal to the damage isolines.
The fitting of the points forming the damage isoline, that leads to an approximate
global description of it, is only used to validate the implementation of the formulation
presented. To close, the effect of the mesh size on the determination of the normal
direction to the 1-valued damage isoline is analyzed using both methods (Figure
3.18): the approximated normal direction using global information and the growth
driving direction obtained by evaluating Criterion 1. The results show that the growth
driving direction, evaluated locally, shows less sensitivity to the element size. Indeed,
the growth driving direction is a continuum field which does not explicitly depend on
the mesh size, but it implicitly does, due to discretization of the displacement field in
the FEM [24].
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3.2 Evaluation of the mode-decomposed
energy release rates for arbitrarily shaped
delamination fronts using cohesive
elements

3.2.1 Formulation of the mode-decomposed energy
release rates

In this section, the formulation of the mode-decomposed energy release rates in
three-dimensional delaminations, modeled using a cohesive zone model approach,
is presented. The point of departure is the generalized J-integral for non-planar
curved cracks obtained by Fernlund et al. [52].

Assessment of the energy release rate by means of the J-integral
formulation in curvilinear coordinates

Consider an elastic body (c.f. Figure 3.19), with a crack, subjected to prescribed
tractions, T , and displacements, u, along parts of its boundary surface (Note that T
and u are physical entities which are not yet described in any particular coordinate
basis). In a general three dimensional domain, both the crack surfaces and the
crack front may be curved. Let θi, i = 1, 2, 3, be an orthogonal curvilinear coordinate
system with origin at a given point P along the crack front. This local coordinate
system is oriented such that, at point P , θ3 is normal to the crack surface in the un-
deformed configuration where the crack surfaces are coinciding, θ2 is the coordinate
along the crack front and θ1 is the direction of crack propagation, which is always
tangent to the crack surface and perpendicular to θ2 and θ3.
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Fig. 3.19.: a) Three-dimensional body undergoing a delamination with curved front and
non-planar crack surfaces. b) The integration domain is a slice of infinitesimal
thickness, dl2.

Let us focus on a thin slice of elemental thickness, dl2, of the cracked body, which
contains P (c.f. Figure 3.19). Note that an infinitesimal length segment, dli along a
curvilinear axis, θi is given by:

dli =
√
giidθ

i (3.27)

where gij is the covariant metric tensor. In the absence of body forces, the change
in potential energy, Π, per unit of newly created crack area is [52]:

−dΠ

dA
= −

∫

V

dW

dA
dV +

∫

S

T i
dui
dA

dS (3.28)

where dA is the elemental crack area extension, V the volume of the slice, S is
the surface surrounding V ,W is the strain energy density, T i are the contravariant
components of the traction vector and ui are the covariant components of the
displacement vector.

The infinitesimal thickness of the slice, allows to lump the three-dimensional slice
into a surface S1, defined by θ2 = 0 (dl2 → 0). Then, by application of Green’s
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theorem, and under the assumption of small deformations, elastic material behavior,
symmetry of the stress tensor and equilibrium conditions, the decrease in potential
energy per unit area extension is expressed, in [52], as a contour integral and an
area integral on the surface S1:

J = −dΠ

dA
=

1√
g11

∮

Γ

(
Wn1 − T i

∂ui
∂θ1

)
dΓ − 1√

g11g22

∫

S1

∂

∂θ2

(
σi2

∂ui
∂θ1

)
dS

(3.29)

where Γ is the contour enclosing S1 in the clockwise direction and nj is the outward
unit normal vector on Γ . Note that in [52], the curvilinear coordinate system is rotated
90◦ around the θ1-coordinate.

The J-integral is equivalent to the energy release rate, G, for an elastic material
response. In a three-dimensional body, the energy release rate may vary along
the crack front. Therefore, in order to assess the delamination extension force in
three-dimensional problems, it is customary to compute the point-wise value of J as
a function of the crack front position, P .

Application to cohesive interfaces

When applied to delamination modeling in laminated composite materials, the co-
hesive behavior is lumped into the interface between subsequent plies. In [52],
it is demonstrated that the J-integral of Equation (3.29), generalized in terms of
curvilinear coordinates for cracks with curved front and non-planar crack surfaces,
is path-area-independent. Then, for the measurement of the delamination extension
force in 3D laminated structures modeled using a CZM approach, the path-area-
independence of Equation (3.29) can be employed to shrink the contour Γ to the
upper and lower crack surfaces (c.f. Figure 3.20), similarly to what is done with
the two-dimensional form of the J-integral [136]. Therefore, the term related to
the surface in Equation (3.29) vanishes due to the zero-thickness of the cohesive
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interface. Moreover, the contribution from the strain energy term within the cohesive
interface also vanishes and Equation (3.29) is reduced to:

J = − 1√
g11

∮

Γ

(
T i
∂ui
∂θ1

)
dΓ (3.30)
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Fig. 3.20.: The integration path, Γ , is reduced to the cohesive interface.

Let σij be the contravariant components of the cohesive stress tensor. Then, the
contravariant traction vector at the crack faces is given by:

T i = σijnj (3.31)

being nj is the outward unit normal vector on the contour Γ , i.e. on the crack
surfaces. Thus, nj vanishes for j 6= 3, and Equation (3.30) reads:

J = − 1√
g11

∫

Γ

(
σi3

∂u+
i

∂θ1
+ σi3

∂u−i
∂θ1

)
dθ1 (3.32)

where u+ and u− are the displacements at the upper (+) and lower (−) crack
surfaces, respectively. Finally, introducing the displacement jump as the separation
of two initially coinciding points on the interface, defined as:

δi =
(
u+
i − u−i

)
(3.33)
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the curvilinear CZ J-integral, when applied to cohesive interfaces, can be expressed
as:

J = − 1√
g11

∫

CZ

(
σi3

∂δi
∂θ1

)
dθ1 (3.34)

Observe, in Figure 3.20, that the integration path is the entire CZ so that all the
cohesive stresses contribute to the CZ J-integral.

Integration paths

As demonstrated in Section 3.2.1, the integration domain of the curvilinear CZ
J-integral applied to cohesive interfaces is a slice of infinitesimal thickness, dl2,
lumped into the delamination interface. Thus, the integration domain is reduced
to a path contained in the delamination interface which follows the direction of
crack propagation, θ1. In order to compute the J-distribution in three-dimensional
structures, the interface can be divided into infinite slices. Obviously, the J-value
of each slice is unique, and is obtained when the integration path is covered in its
entirety, i.e. going through the entire cohesive zone, from the completely damaged
zone (point 1 in Figure 3.20, with zero cohesive stress) until the end of the zone in
elastic regime (point 2 in Figure 3.20, with zero cohesive stress).

In LEFM, the propagation direction, θ1, is assumed to be the normal to the crack
front at the point P , where the crack front is the line separating the damaged and
undamaged parts (c.f. Figure 3.21.a). However, the definition of the propagation
direction as the normal to the crack front does not apply for CZM, due to existence
of a cohesive zone of variable length. Making use of Criterion 2 for growth driving
direction (GDD) presented in Section 3.1, θ1 can be defined according to the GDD.
In this way, the integration paths, defined along the θ1-coordinate, never intersect
and the three-dimensional structure can be understood as the aggregation of infinite
individual slices of infinitesimal thickness which contain a crack propagating in the
GDD. It is worth to mention that the damage isolines may not be parallel along the
CZ, leading to slices with double curvature if, in addition, the cohesive interface
mid-surface is non-planar.
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Fig. 3.21.: The growth driving direction is assumed to be the normal direction to the energy-
based damage isolines in the CZM framework. The integration paths are tangent
at the local GDD direction.

It is noted that, for the computation of the J-value in cohesive interfaces using
Equation (3.34), the contribution of the stress, σi3, and displacement jump slope in
the GDD direction, ∂δi∂θ1 , in the elastic regime is needed. Criterion 2 is chosen over
Criterion 1 because it is also active in the elastic regime. Both the conservative and
the non-conservative work are computed using Criterion 2. Thus, since, as soon
as two initially coinciding points separate from each other some elastic energy is
stored, this criterion is active before any energy dissipation due to fracture takes
place. Moreover, using the CZM presented in [168] once the damage is initiated,
both criteria lead to the same GDD solution.

Mode-decomposition of the CZ J-integral for its application to cohesive
interfaces

Mode I is defined normal to the cohesive interface mid-surface, mode II, tangent to
the mid-surface in the propagation direction and mode III, tangent to the mid-surface
and perpendicular to mode II. Moreover, it is assumed that the GDD is defined as the
direction equivalent to crack propagation direction when a CZM approach is used.
Thus, the mode II direction is defined coincident to the GDD, whereas the mode III
direction is defined perpendicular to it. Indeed, since θi are orthogonal curvilinear
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coordinates, the local covariant and contravariant basis vectors are coincident. The
local basis vectors are aligned with the three loading modes directions, since θ1 is
locally coincident with the GDD (i.e. tangent to the mid-surface), θ3 is normal to the
mid-surface, and θ2 is normal to θ1 and θ3.

At an interface modeled using a CZM approach, only three uncoupled components of
cohesive stresses (σ13, σ23 and σ33) result from the displacements jumps between
crack faces (δ1, δ2, δ3). Stresses are expressed in the local contravariant basis
vectors and displacements jumps in the local covariant basis vectors of the curvilinear
crack coordinate system, θi. Therefore, necessarily, the quantities σ13 and ∂δ1

∂θ1

contribute to mode II, σ23 and ∂δ2
∂θ1

, to mode III, and σ33 and ∂δ3
∂θ1

, to mode I crack
loading. Hence, the mode-decomposed CZ J-integrals are defined according to the
local θi coordinate system such that the terms with i = 3 are attributed to Mode I,
the terms with i = 1, to Mode II and the terms with i = 2, to Mode III:

JI = − 1√
g11

∫

CZ

(
σ33 ∂δ3

∂θ1

)
dθ1

JII = − 1√
g11

∫

CZ

(
σ13 ∂δ1

∂θ1

)
dθ1

JIII = − 1√
g11

∫

CZ

(
σ23 ∂δ2

∂θ1

)
dθ1

(3.35)

For 3D planar cracks, described by a rectangular Cartesian coordinate system, the
mode decomposed CZ J-integrals in Equation (3.35) evaluated at the cohesive
interface, are in agreement with that in [138, 51].

3.2.2 Discretization with the Finite Element Method

To numerically integrate Equation (3.35), trapezoidal integration is employed (al-
though any other numerical integration method could be used). Thus, the curved
integration pathline is discretized into small linear subintervals tangent to the curvilin-
ear coordinate θ1. The quantities in the integrand of Equation (3.35) must, thereby,
be defined according to the local Cartesian coordinate system, xi. The coordinates
xi are oriented in such a way that x1 and x2 are the tangential and normal coordi-
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nates to the GDD, respectively, with locally coincident direction with the covariant
and contravariant basis vectors of the orthogonal curvilinear coordinate system, θi.
The tracking of the integration path, as well as its limits, are further addressed.

The derivative of the displacement jumps, δi, with respect to x1, the local Cartesian
coordinate aligned with the GDD, is addressed in the following. Xj is the Carte-
sian reference system, xi is the local Cartesian coordinate system and Rij is the
transformation tensor which relates the global to the local coordinate system. By
assuming that the derivative of Rij with respect to x1 can be omitted, the derivative
∂δi
∂x1

reads:

∂δi
∂x1

= Rij
∂Mjm

∂x1
Qm (3.36)

The derivative of the transformation matrix,Mjm, with respect to the local coordinate,
x1, is obtained by application of the chain rule:

∂Mjm

∂x1
=
∂Mjm

∂ηα

∂ηα
∂x1

(3.37)

The first partial derivative in the right hand side of Equation (3.37) is the variation of
the transformation matrix,Mjm, with the isoparametric coordinates of the cohesive
element formulation, ηα (α=1,2), which is addressed in Section 3.1.1.

Finally, the derivatives ∂ηα
∂x1

are the inverse of the derivatives of the local coordinate,
x1, with respect to the isoparametric coordinates, ηα, defined as:

∂x1

∂ηα
= R1j

1

2

∂Njk
∂ηα

(
C+
k + C−k +Q+

k +Q−k
)

(3.38)
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Tracking of the integration paths

Using the formulation described above, the delamination extension force, which
may vary for every slice, can be evaluated everywhere within the CZ. Moreover, any
point within the CZ belongs to a single slice, i.e. to a single integration path, which is
defined according to the local GDD. Therefore, one can randomly select any location
of the CZ and, by means of the GDD, identify the tangent to the integration pathline
at that point in order to move, either forward or backward, along the integration path.
The delamination extension force corresponding to such slice is obtained when the
path is tracked in its entirety.

Consider a point, P k, belonging to the CZ. In order to assess the delamination
extension force at the slice which the point P k belongs to, the numerical integration
of Equation (3.35) is performed along the integration path, defined tangent to the
local GDD direction and limited by vanishing stress conditions at both ends (c.f.
Figure 3.20). In the general case, the initial point P k is not located at one end of the
integration path, i.e. point P k is located in the middle of the CZ. In this case, the
path will be tracked from P k in the GDD and in the opposite direction to GDD: In the
positive GDD until vanishing elastic stress is reached (point 2 in Figure 3.20); in the
negative GDD until the intersection with the 1-valued energy-based damage isoline,
where the cohesive stress also equals zero (point 1 in Figure 3.20).
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Fig. 3.22.: Point P k is a point on the integration path of a curved cohesive interface, S̄coh.
The following point on the integration path, P k+1, is found by projecting point
∗P k+1 along the normal direction to the interface at point P k. Point ∗P k+1 is at a
∗h distance from P k in the tangential GDD.
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In order to move along the integration path, the following procedure is applied.
Starting from P k, the next point along the integration path is established by moving
in a straight line a ∗hk-length step further in the local GDD, which is tangent to the
cohesive interface mid-surface, S̄coh, at P k. Then, a new point, ∗P k+1, in the space
is found. Nevertheless, ∗P k+1 is not necessarily placed on the mid-surface, S̄coh.
This becomes evident when S̄coh is highly non-planar (c.f. Figure 3.22). Thus, the
real next point constituting the integration path, P k+1, is found by performing the
projection of ∗P k+1 on S̄coh in the normal x3-direction of point P k.

FE-discretized mode-decomposed CZ J-integral

After discretization of the cohesive interface into FE, the numerical integration of
Equation (3.35), performed by means of the trapezoidal rule, reads:

JI w
∑

k


hk


σ

k
33
∂δk3
∂x1

+ σk+1
33

∂δk+1
3

∂x1

2






JII w
∑

k


hk


σ

k
13
∂δk1
∂x1

+ σk+1
13

∂δk+1
1

∂x1

2






JIII w
∑

k


hk


σ

k
23
∂δk2
∂x1

+ σk+1
23

∂δk+1
2

∂x1

2






(3.39)

where hk is the integration interval length, approximated to the Euclidean distance
between two consecutive points along the integration path, P k and P k+1.

3.2.3 Comparison with mode-decomposed energy
release rates extracted by VCCT

The capabilities of the presented CZ J-integral formulation are assessed by com-
parison with the energy release rate mode-components of a moment-loaded DCB
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model obtained by VCCT. The unidirectional composite specimen is 30 mm long, 6
mm wide and 3 mm thick (Figure 3.23). The elastic properties of the laminate and
the fracture properties of the interface are listed in Tables 3.6 and 3.7, respectively.
The specimen arms are modeled in the commercial FE code ABAQUS [160] using
C3D8I hexahedral elements. The undeformed elements are 0.4 mm wide, 0.2 mm
long and 0.5 mm thick. The delamination front is completely straight and located
at the mid-surface at a distance of 15.1 mm from the loading application edges. A
combined I, II and III fracture mode is created by application of four force couples
(Figure 3.23). M1 andM2 generate uneven opening Y -moments at the upper and
lower arms, respectively. M3 and M4 generate even tearing Z-moments at both
arms. The resultant bending moments are listed in Table 3.8.

Tab. 3.6.: Elastic properties of the laminate used in the simulation studies of the moment-
loaded DCB and the ELS specimens.

Laminate properties
E11: Longitudinal Young’s modulus 154 GPa
E22 = E33: transversal Young’s modulus 8.5 GPa
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa
G23: Shear modulus in the transversal plane 3.0 GPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 -
µ23: Poison’s coefficient in the transversal plane 0.4 -

Tab. 3.7.: Fracture properties of the interface used in the simulation study of the moment-
loaded DCB specimen.

Interface properties
GIc: Mode I fracture toughness 0.3 N/mm
GIIc = GIIIc: Modes II and III fracture toughness 3 N/mm
τIc: Mode I interlaminar strength 10 MPa
τIIc = τIIIc: Modes II and III interlaminar strengths [168] 31.62 MPa
η: Benzeggagh-Kenane’s interpolation parameter [29] 2 -
K: penalty stiffness 105 N/mm3

In the FE analysis using the VCCT, the energy release rate is evaluated locally at
every node forming the delamination front. A local crack coordinate system defines
the mode-components, such that mode II and mode III are normal and tangential to
the delamination front, respectively, and mode I is normal to mode II and III directions.
For a straight front, like the one in study, the orientation of this local coordinate
system is constant along the front and aligned with the mesh [85].
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Fig. 3.23.: DCB specimen dimensions with four force couples: M1 andM2 generate uneven
opening Y -moments, whileM3 andM4 generate even tearing Z-moments.

Tab. 3.8.: Bending moment resultants from the application of the four force couples to the
double-cantilevered-beam model.

Bending moment [Nmm]
M1 270
M2 135
M3 960
M4 960

For the evaluation of the J-values, the interface undergoing delamination has been
modeled using user-defined cohesive elements. To this end, the method presented
in [167, 168] has been enhanced with the formulation for the numerical evaluation
of the mode-decomposed CZ J-integral presented in Section 3.2.2. For comparison
purposes with VCCT, a fixed GDD is defined normal to the straight delamination
front.

The mode-decomposed energy release rate distributions along the width of the
specimen, from both the VCCT and the CZ J-integral extraction methods, are plotted
in Figure 3.24.
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Fig. 3.24.: Comparison of the mode-components of strain energy release rate between VCCT
and CZ J-integral extraction methods.

3.2.4 Application to a partially reinforced ELS
specimen

In the ELS specimen presented in Section 3.1.3, the reinforcements do not span the
entire width of the specimen in order to promote a curved delamination. Moreover,
the specimen bends due to application of the end loading, resulting in a curved
delamination front in a non-planar interface. Therefore, the partially reinforced ELS
specimen is considered to be suitable to exemplify the applicability of the generalized
CZ J-integral methodology for 3D curved and non-planar delamination fronts.

The mid-surface is modeled using user-defined cohesive elements which incorporate
the formulation presented in [167, 168], enhanced with Criterion 2 for GDD presented
in Section 3.1 and the CZ J-integral formulation described in Section 3.2.2. The
undeformed cohesive elements are 0.27 mmwide, 0.23 mm long and have zero thick-
ness. Only one half of the specimen is modeled exploiting X2-symmetry to reduce
the required computational resources. The elastic properties of the laminate and
the fracture properties of the interface are listed in Tables 3.6 and 3.9, respectively.
Note that, as a simple way to check the CZ J-integral implementation, the fracture
toughness is set to be mode independent (Gc = GIc = GIIc = GIIIc = 2 N/mm), in
order to ensure a constant J-value (J = Gc) during static crack propagation. Thus,
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Tab. 3.9.: Fracture properties of the interface used in the simulation study of the ELS speci-
men.

Interface properties
GIc = GIIc = GIIIc: Mode-independent fracture toughness 2 N/mm
τIc = τIIc = τIIIc: Mode-independent interlaminar strength 35 MPa
K: penalty stiffness 105 N/mm3

the sum of the three mode-decomposed CZ J-integrals in Equation (3.39) must be
constant and equal to 2 N/mm at every slice, regardless of the loading mode. In the
following figures, only the blue-shadowed area of the mid-surface in Figure 3.9 is
represented.

The historical evolution of the 0.5-valued energy-based damage isoline is plotted
in Figure 3.25.a. The energy-based damage, De, distribution is projected on the
deformed mid-surface, in Figure 3.25.c, for a prescribed end displacement of 27.7
mm. The GDD distribution within the CZ is represented in Figure 3.26. As mentioned
in Section 3.2.2, the CZ J-integral can be evaluated at any point within the CZ and,
therefore, infinite integration paths can be tracked. For illustrative purposes, only
a few selected integration paths are plotted on top of the GDD distribution. Note
that the trajectory of the integration paths is established according to the GDD.
Thus, since the ωtot

Gc isolines are not parallel, the integration paths are curved lines
throughout the CZ.

The total J-value is evaluated at each of the 30,000 integration points forming the
CZ. The result is represented in Figure 3.27.a. The step length ∗hk used is 0.3
mm. Note that the J-distribution is constant and equal to the fracture toughness,
which, during static propagation and for any mode mixity, amounts 2 N/mm. The
decomposition of the CZ J-integral into modes, computed according to Equation
(3.39), is also represented in Figure 3.27.
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Fig. 3.25.: a) Historical evolution of the 0.5-valued energy-based damage isoline extracted
at the integration points. b) Reaction force vs prescribed displacement curve with
the current loading state highlighted in red. c) Energy-damage projected on the
deformed mid-surface at the current loading stated marked in (b).

Fig. 3.26.: Growth driving direction (GDD) distribution along the cohesive zone and a few
selected integration paths (black solid lines) plotted on top of it.The current loading
state is marked in Figure 3.25.b.
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Fig. 3.27.: Distribution of a) Jtotal/Gc (where Jtotal = JI + JII + JIII and Gc=2 N/mm), b)
JI , c) JII and d) JIII within the cohesive zone at current loading state marked in
Figure 3.25.b.
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3.2.5 Discussion

A comparison of the mode-components of the CZ J-integral with the energy release
rates extracted from VCCT is done in Section 3.2.3. To make both decomposition
schemes comparable, the GDD, which dictates the mode II direction in the CZ J-
integral formulation, is forced normal to the initial crack front. Although both results
are in good agreement (c.f. Figure 3.24), there are small differences which are
caused by a slight difference in compliance between the two models. When using
cohesive elements to simulate the delamination fracture behavior, some separation
between crack faces occur before complete decohesion. This is not the case of the
VCCT, where no relative displacements between crack faces occur until the condition
for crack propagation (G ≥ Gc) is fulfilled. The difference in compliance between
the two models has an influence on the computed energy release rate. Another
source of discrepancy is the nonlinearity introduced by the cohesive behavior. Using
the CZM approach, the stiffness of the interface is reduced as it gets damaged.
Conversely to VCCT, the existence of a damage process zone implies that the
behavior of the material ahead of the crack front is nonlinear.

Furthermore, the standard formulations for VCCT require to have orthogonality of
the mesh with the delamination front in order to obtain accurate energy release
rate components [154]. Therefore, its application to three-dimensional FE models
requires the option of moving meshes that conform according to the delamination
front, which is not available in commercial finite element codes [86]. Alternative
solutions that enable the use of stationary meshes are presented in [178, 98]. The
basic assumption of these formulations is that the nodes at the delamination front will
propagate along a normal vector to the current front. However, when the delamination
originates from an artificial initial defect, e.g. caused by a Teflon insert, or when the
loading conditions change, there is a transient stage during which the shape of the
crack front changes according to the current propagation conditions. The formulation
for the evaluation of the GDD does not depend on the geometry of the crack front
(which is historical information), but on the current displacement field. Thus, any
variation in the displacements due to a change in the loading scenario is captured by
the GDD criterion at the current time. Therefore, the mode-decomposition scheme
according to the GDD can be applied during transient propagation.
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In Section 3.2.4, the presented mode-decomposed CZ J-integral formulation is
applied to a real three-dimensional structure with a large fracture process zone
(the maximum length of the CZ is approximately 20 mm). Due to the ELS test
configuration, the structure is subjected to large deflections. Moreover, it is partially
reinforced so that the stiffness along the specimen width is not constant. As a
consequence, during propagation, both the delaminated surfaces and the CZ are
curved. Due to a change in the GDD orientation across the CZ, the integration paths
result in curved lines. The same GIc, GIIc and GIIIc have been introduced as inputs
to the CZM (see Table 3.9) in order to make the equivalent one-dimensional fracture
toughness independent on the mode mixity. In this way, under static propagation
conditions, the accurate computation of the total J-value can be easily assessed
by direct comparison with a constant mode-independent fracture toughness. The
total computed J-value is equal to the fracture toughness at all the integration points
within the cohesive zone with a maximum error of 3.7% (c.f. Figure 3.27.a). The
integration step, ∗hk, used in the computation of the J-value is 1.3 times the shortest
element length. By reducing ∗hk, more accurate results may be obtained. However,
for such a large CZ, the computational cost increases significantly with the number
of segments in which the integration paths are discretized.

Moreover, the mode-decomposition of the CZ J-integral accounting for large CZ is
also addressed. The mode II and III components of the CZ J-integral are predomi-
nant, while mode I slightly appears at a small region close to the specimen’s edge
(c.f. Figure 3.27.b). The contribution to the J-value of the tangent quantities to the
mid-surface is decomposed into modes II and III according to the GDD. The bonded
reinforcements cause the loading state to be uneven throughout the specimen’s
width, leading to a curved crack, so that the GDD amounts up to 60◦ with respect
to the X1 at the zones with highest delamination front curvature. Due to the test
configuration, the loading is applied in the global X1 direction. For straight cracks
where the GDD is aligned with the X1-direction, the shear component would be
pure mode II. However, in the studied case with a curved delamination front, the
maximum contribution of the external loading to the mode III CZ J-integral is at
that zone were the GDD differs most from the X1-direction (c.f. Figures 3.27.c and
3.27.d).
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3.3 Extension of the fatigue damage rate
model for 3D applications

The fatigue energy-based damage rate, dDe
dN , is a field variable, computed at integra-

tion point level. Following the model developed for 2D applications [23] summarized
in Section 2.4, dDe

dN is related to the crack growth rate, da
dN , by:

dDe
dN =

∂De (B, λ)

∂a

da
dN (3.40)

The term ∂De(B,λ)
∂a depends on the static cohesive law and the current displacement

jump field. Thus, ∂D
e(B,λ)
∂a is also a field variable. Conversely, the crack growth

rate, da
dN , is evaluated non-locally using a modified Paris’ law expressed in terms

of the maximum cyclic energy release rate, Gmax (c.f. Equation (2.55)). In this
work, the 3D CZ J-integral formulation developed in Section 3.2 is used to compute
the mode-decomposed Gmax. Following the argumentation given in Section 3.2,
the three-dimensional cohesive interface can be understood as the aggregation of
infinitesimal thickness slices, such that the J-value of each slice (and, consequently,
da
dN ) is unique. Each point within the cohesive zone, belongs to a slice; and each of
the slices contains a crack propagating in the GDD at a velocity of da

dN .

The evaluation of each of the terms in Equation (3.40) is detailed in the following.
The term ∂De(B,λ)

∂a is derived as:

∂De (B, λ)

∂a
=

(
∂De
∂B

∂B

∂a
+
∂De
∂λ

∂λ

∂a

)
(3.41)

The derivative of the energy-based damage with respect to the mode mixity, ∂De∂B ,
and the derivative of the energy-based damage with respect to the mixed-mode
displacement jump, ∂De∂λ , depend only on the quasi-static cohesive law. Therefore,
its derivation for 2D applications is still valid in the 3D model. Equations (2.41) and
(2.42) are the resultant expressions for ∂De∂B and ∂De

∂λ after the particular application
of the quasi-static CZM from [167, 168].
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According to the assumption done in Equation (2.53), the rates ∂B
∂a and ∂λ

∂a in Equation
(3.41) can be computed as the slopes of the local mode-mixity and the mixed-mode
displacement jump along the direction of crack propagation, ∂B

∂x1
and ∂λ

∂x1
. To do

so, the local Cartesian coordinates tangential to the cohesive element mid-surface,
Scoh, (c.f. Figure 2.9) can be oriented, using Equation (3.25), in such a way that x1

is the tangential coordinate to the GDD. Then, by application of the chain rule, ∂B∂x1

reads:

∂B

∂x1
=
∂B

∂δj

∂δj
∂x1

(3.42)

where the term ∂B
∂δj

is solved in Equation (3.18), and the term ∂δj
∂x1

derived in Equation
(3.36). Similarly, ∂λ

∂x1
reads:

∂λ

∂x1
=

∂λ

∂δj

∂δj
∂x1

(3.43)

and the term ∂λ
∂δj

is solved in Equation (3.8).

On the other hand, the crack growth rate, da
dN , is computed for a given load ratio, R,

by means of Equation (2.55), where the exponent, p(Φ), and coefficient, A(Φ), are
mode-dependent parameters determined by Equation (2.56). The mode mixity, Φ,
is computed, using the components of the CZ J-integral (c.f. Equation (3.39)), as:

Φ =
JII + JIII

JI + JII + JIII
(3.44)

and the maximum cyclic energy release rate, Gmax, is computed as the sum of the
J-terms:

Gmax = JI + JII + JIII (3.45)
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Finally, for the cycle jump strategy, at the end of a converged substep, the increment
in cycles is determined using a target increment in crack length, ∆at, and the
maximum crack growth rate of the structure,

( da
dN
)
max

:

∆N =
∆at( da

dN
)
max

(3.46)

No interface properties are added at the material card for the extension of the 2D
model for its applicability to 3D structures. Thus, the interface properties needed for
feeding the 3D fatigue damage rate model are summarized in Table 2.3.
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4An efficient methodology for
the experimental
characterization of mode II
delamination growth under
fatigue loading

The fatigue characterization of interface properties is very time consuming and
requires a lot of human and equipment resources, especially in the case of mode
II and mixed-mode tests. Therefore, efficient test methods are needed in order
to reduce the testing time and human intervention. To this end, a new testing
methodology for mode II delamination growth characterization is developed in this
thesis, which is extended for mixed-mode testing in [73].

A methodology to measure, in a single test, a larger region of the crack growth
rate curve than that achieved in a constant cyclic displacement test is presented in
the following. The procedure consists of varying the cyclic applied displacement,
Umin and Umax, while keeping the displacement ratio, R, constant (c.f. Figure
4.1). Moreover, the displacement variation is calculated a priori, so that it can be
implemented in the control software of the testing machine. Thus, the control loop
does not make use of parameters related to the behavior of the specimen, which
could lead to unpredictable responses from the test machine. This method requires
neither human intervention during the test nor processing the data in real time. The
chapter includes a test campaign carried out on carbon fiber reinforced composites
which exemplifies the advantages of the proposed procedure: the crack growth rate
curve can be characterized in, at most, 1/80 of the time required for a constant cyclic
displacement test.
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Fig. 4.1.: Variable cyclic displacement vs. time.

4.1 Methodology

Due to the geometry of the test, the maximum energy release rate during one load
cycle, Gmax, corresponds to the minimum displacement, Umin. The aim of the
proposed methodology is to define the evolution of Umin with the number of cycles,
N , so that the severity of the load sweeps a predefined range, from Gmax,0/Gc to
Gmax,f /Gc, while the crack grows from the initial crack, a0, to the maximum allowed
crack length, af , (when the crack tip approaches a distance 2h from the load
introduction point). Umax is established so that the R-ratio is constant throughout
the fatigue test (R = Umin/Umax, for small deflections). The following paragraphs
describe how the function Umin(N) has been deduced. Note that the sign convention
used in this work is negative for displacements which result in compressive reaction
forces.

The function Umin(N) depends on the chosen dependence between the severity
of the load, Gmax normalized to Gc, and the crack length. A linear decreasing
dependence, from the normalized Gmax,0 at a0 to Gmax,f at af , the end of the test
(Figure 4.2) is chosen; however, other alternative monotonic dependence could be
selected. Therefore, the gradient of the energy release rate, dGmax

da , is constant and
negative. Thus, the load severity vs. the crack length, a, reads:

Gmax
Gc

(a) = mG a+ n, (4.1)
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Fig. 4.2.: Chosen relation between themaximum cyclic energy release rate, Gmax, normalized
to the quasi-static fracture toughness, Gc, and the crack length. Gmax,0 and a0 are
the initital energy release rate and crack length, while Gmax,f and af are the energy
release rate and crack length at the end of the test.

where mG and n are the slope and the y-intercept, respectively:

mG =
Gmax,f − Gmax,0
Gc(af − a0)

, (4.2)

n =
Gmax,0
Gc

−mG a0, (4.3)

Assuming a linear elastic behavior of the specimen, the energy release rate reads
[16]:

G =
P 2

2 b

dC

da
, (4.4)
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thus, the minimum cyclic displacement, Umin, is related to Gmax by :

Umin = −
√

2 b Gmax C2

dC/da
, (4.5)

where b is the width of the specimen and C is the specimen’s compliance (U/P ,
where P is the load). The compliance of the specimen increases as the crack length
grows. The dependence C(a) is experimentally determined by a series of static
tests at different crack lengths (compliance calibration)[66, 67]:

C(a) = mcc a
3 + C0, (4.6)

where mcc and C0 are fitting parameters.

Equations (4.1) to (4.6) can be used to write the dependence of Umin with the
specimen compliance measured in real time:

Umin(C) = −

√√√√√√√
2 b Gc

[
mG

(
C−C0

mcc

)1/3

+ n

]

3 mcc

(
C−C0

mcc

)2/3
, (4.7)

Following this equation, the load severity would sweep the desired range (Figure
4.2). The compliance can be easily measured in real time with current computerized
testing systems, [134]. However, the control of the displacement based on the
measurement of the compliance and Equation (4.7) is problematic because of the
inherent scatter of the experimental measurement, C, and the lack of data at the
initiation of the test. It is thus preferable to base the control of the test on a certainly
well-behaved variable, as the number of cycles, N , is.
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To deduce the Umin(N) function, a relation between the crack length (or, equivalently,
the compliance, Equation (4.6)) and the number of cycles is necessary. Here, it is
assumed that the crack growth rate follows the Paris’ law based expression [125]:

da

dN
= A

(Gmax
Gc

)p
, (4.8)

Although the simplest expression of the Paris like power law has been used to relate
crack growth to the energy release rate, it is worth noting that the methodology
described here can also be used with other fatigue data representations based
on the existing formulation for metals, such as the NASGRO equation [53] or its
adaptation for composite materials [74].

The pre-exponential factor, A, and the exponent, p, in Equation (4.8) are not yet
known (in fact, the ultimate objective of the experimental characterization is to
find them). Therefore, the parameters A and p, should be estimated before the
test. The consequence of making use of erroneous parameters is that the load
severity range explored would not be the one expected (Figure 4.2). In any case, a
reasonable assumption would allow a much larger domain, with respect to the one
achieved by means of a constant cyclic displacement experiment, to be explored.
Parameters A and p can be taken from specimens of similar fibre and reinforcement
or from preliminary experiments performed at constant displacement over the system
studied.

The estimated A and p parameters are used to find the expression that relates the
crack length to the number of cycles, by integrating Equation (4.8):

a(N) =

(
α N + β

)γ − n
mG

, (4.9)

where:

α = A mG(1− p), (4.10)
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β =
(
mG a0 + n

)1−p
, (4.11)

and

γ =
1

1− p . (4.12)

Finally, by substituting equations (4.1), (4.9), and (4.6) and its derivative, into Equa-
tion (4.5), the functions of the minimum cyclic displacement with the number of
cycles reads:

Umin(N) = −

√√√√√√√√

2 b Gc
(
α N + β

)γ
(
mcc

((
α N+β

)γ
−n

mG

)3

+ C0

)2

3 mcc

((
α N+β

)γ
−n

mG

)2 . (4.13)

Hence, the minimum cyclic displacement is a function of the number of cycles,
N , the specimen width, b, the initial conditions, a0 and Gmax,0/Gc, the user-defined
gradient of energy release rate, mG , the static compliance calibration parameters
obtained prior to the fatigue test, mcc and C0, and, finally, the Paris’ law parameters,
A and p. In all events, Umin(N) is calculated previous to the fatigue test, so that the
displacement can be automatically shed in a continuous manner by implementing
Equation (4.13) in the control software of the testing machine.

In this work, it is assumed that the fatigue delamination growth, under pure mode
II loading conditions, depends only on the peak energy release rate, Gmax, and
the load ratio (equivalent to the minimum to maximum cyclic displacement ratio,
R = Umin/Umax, for small deflections). That is, it is assumed that the crack growth
rate is neither history dependent nor dependent on the crack length, which is in
agreement with other experimental evidence obtained from Gmax-constant tests with
carbon/epoxy composites [18, 67, 161].
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4.2 Experimental

The validity of the test method to characterize mode II delamination growth was
evaluated by comparing the crack growth rate curves obtained in variable (described
in Section 4.1) and constant cyclic displacement tests. As the range of crack growth
was very narrow in the latter case, a multiplicity of constant cyclic displacement
tests were performed. The Paris’ law parameters were determined by both methods.
In addition, this exemplification allowed for a detailed comparison to be made of
the effort saved by following the new experimental methodology proposed in this
chapter.

The laminates were 16 unidirectional carbon fiber/epoxy prepreg plies of 0.184 mm
of nominal thickness stacked with the same fiber orientation (0o). Panels were
cured in an autoclave, following the supplier’s recommendations, at AERNNOVA
Engineering facilities. Before cutting the specimens, the panels were ultrasonically
C-scanned. 3-ENF test specimens cut from these laminates were 25 mm wide, 3
mm thick and 200 mm long. A 30 µm thick and 60 mm length Teflon insert was
introduced in the mid plane to create an artificial delamination. This teflon film was
thicker than that usually recommended for static testing [45]; however, pre-cracking
was expected to avoid any possible negative effect resulting from the insert [162,
76]. Precracks were performed under mode I quasi-static loading conditions until
the increment in crack length was between 3 mm and 5 mm. The teflon film was
removed from the crack after the pre-cracking procedure.

All the tests were carried out in a servohydraulic MTS Bionix® testing machine (25
kN of load capacity) under displacement control. The total force carried by the test
specimen was measured with a 5kN MTS load cell. The three-point bending rig
used to perform the tests met the specifications described in the ASTM standard
for static testing [45]. The support rollers were 5 mm in radius, each with a span
length between them of 100 mm. Some tests under constant cyclic displacement
conditions were performed with a span length between supports of 120 mm (longer
than the standard), to enlarge the range for crack extension (see Table 4.1). Tests
were performed at AMADE Research lab, the mechanical testing laboratory of the
University of Girona.
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The fatigue tests were performed under displacement control, by applying a sinu-
soidal waveform at a frequency of 5 Hz and setting the ratio of minimum to maximum
displacement per cycle, R, to −10/(−3). The desired severity at the beginning of the
test was defined by the ratio of the initial maximum cyclic energy release rate, Gmax,0,
to the mean value of critical energy release rate, Gc, measured by quasi-static tests
carried out prior to the fatigue test on identical test specimens. Assuming that the
behavior of the specimen was linear elastic, the selection of the initial minimum
displacement, Umin,0, was related to Gmax,0 using equations (4.5), and (4.6) and its
derivative, and the initial crack length, a0,:

Umin,0 = −
(
mcc(a0)3 + C0

)

a0

√
2 b Gmax,0

3 mcc
(4.14)

A maximum initial severity, Gmax,0/Gc, of 0.55 is established to avoid the horizontal
movement of the sample occurring for displacements below -3.5 mm. Other authors
use mechanical restraints to avoid this [34] although this could affect the results.

The TestStar v3.5C control software for the MTS servohydraulic testing machine
includes a "Calculated Channels" option that allows for internal variables, either
external inputs or calculated through simple arithmetic operations, to be generated. It
was used to compute the dynamic compliance, C∗, by processing the instantaneous
signals of load and displacement in line with the methodology described in [134].
Next, the crack length was derived from the dynamic compliance using Equation
(4.6):

a = 3

√
C∗ − C0

mcc
(4.15)

One set of data (the dynamic compliance, C∗, the minimum cyclic load, Pmin, and
the number of cycles, N ) was recorded every cycle and, as such, the crack length
was calculated at the same monitoring frequency leading to a continuous a(N)

curve. Subsequently, the crack growth rate, da
dN , was obtained from the numerical

derivative of the a(N) curve. The recommended data reduction techniques for
the ASTM standard [20] are the secant and the incremental polynomial methods.
However, when these methodologies are applied to high frequency data acquisition
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curves, errors can occur because the dynamic compliance scatter might be too
large compared to the increment in number of cycles between two successive data.
For this reason, in this work the derivative was performed by linear regression of
wider data sets, grouped so that the total increment of crack extension of each set
was 0.1 mm [158].

Finally, da
dN was referred to the maximum energy release rate of the cycle normalized

to the quasi-static critical value, Gmax/Gc, or load severity. Taking Equation (4.4)
and the derivative of the compliance calibration (4.6), Gmax reads:

Gmax =
3 mcc P

2
min a

2

2 b
, (4.16)

where the crack length, a, is taken at the midpoint of the cycle.

Constant displacement tests were performed using eight different initial severities in
order to cover a wider portion of the da

dN curve and the results were fitted together
using the modified Paris’ law from Equation (4.8).

The energy release rate does not evolve monotonically with the crack extension,
but rather increases and then decreases under constant cyclic displacement, and
with the maximum point (point 2 in Figure 2.14.a always being located at a=0.7L.
Therefore, constant cyclic displacement tests were performed with initial crack length
higher than 0.7L, in order to avoid sweeping the same part of the crack growth rate
curve twice (c.f. Figure 2.14.b). In contrast, in variable cyclic displacement tests the
initial crack length is not a limiting parameter because the dependence between the
load severity and the crack length is monotonic. In this specific case, different crack
lengths were chosen in order to analyze the influence of the initial conditions on the
resultant crack growth rate curve.

Table 4.1 indicates the initial conditions for each propagation test. The specimens
labeled "V" were tested by applying the variable cyclic displacement methodology
presented in this work and the specimens labeled "C" were tested under constant
cyclic displacement conditions.
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Tab. 4.1.: Initial conditions for the propagation tests. In the specimen identification, "V" stands
for variable displacement tests and "C" stands for constant displacement tests.

Specimen ID Initial load Initial Mid-span Initial minimum
severity crack length length displacement

Gmax,0/Gc [ - ] a0 [mm] L [mm] Umin,0 [mm]
01_V 0.50 30.0 50.00 -3.108
02_V 0.50 35.0 50.00 -3.075
03_V 0.50 38.0 50.00 -3.071
04_C 0.55 38.0 50.00 -3.356
05_C 0.40 38.0 50.00 -2.770
06_C 0.30 38.0 50.00 -2.543
07_C 0.25 45.0 60.00 -3.096
08_C 0.20 38.0 50.00 -2.104
09_C 0.18 45.0 60.00 -2.743
10_C 0.14 45.0 60.00 -2.347
11_C 0.12 45.0 60.00 -2.223

For the variable cyclic displacement tests, the "Calculated Channels" from the MTS
TestStar v3.5C software allowed an internal variable to be calculated (in accordance
with Equation (4.13)) in real time. This variable was established as the continuous
displacement setpoint, Umin.

Table 4.2 lists the parameters used for calculating of Umin(N) (Equation (4.13)).
The Paris’ law parameters, A and p, obtained in the da

dN data fitting resulting from
tests 07_C, 09_C, 10_C and 11_C, were used to estimate the curve Umin(N) for
test 01_V. The results from tests 06_C and 08_C were added to the previous data to
obtain A and p for tests 02_V and 03_V.

Constant cyclic displacement tests were performed on specimens with a mode I
pre-crack, whereas the variable cyclic displacement tests were performed on spec-
imens already tested under constant cyclic displacement (thus having a mode II
fatigue pre-crack). The reason for this was to avoid the transient behavior observed
at the onset of delamination for specimens with a mode I pre-crack, as described
further in sections 4.3 and 4.4.
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Tab. 4.2.: Parameters used in the minimum variable displacement calculation, Umin, using
Equation (4.13).

Specimen Specimen Initial Estimated fatigue Compliance calibration Energy release rate
ID width crack life constants parameters - crack length

length (eq. 4.8), (eq. 4.6) relation constants
da
dN

evaluated (eq. 4.1)
in mm/cycle

b a0 A p mcc C0 mG n
[mm] [mm] [N−1mm−2] [mm N−1] [mm−1] ( - )

01_V 25.00 30.0 6.192 10−2 3.674 3.193 10−8 2.608 10−3 -0.030 1.400
02_V 25.00 35.0 5.595 10−2 3.695 3.131 10−8 2.626 10−3 -0.090 3.650
03_V 25.00 38.0 5.595 10−2 3.695 3.188 10−8 2.594 10−3 -0.225 9.050

4.3 Results

A typical crack growth rate curve ( da
dN vs severity) in a specimen pre-cracked under

mode I and loaded under constant displacement amplitude exhibits three distinct
stages (c.f. Figure 4.3). As the severity decreases from the onset of the test, the
curve sweeps from right to left. The first region is characterized by a growing crack
growth rate as the severity decreases. Then, the largest region (i.e. the second
region), consists of a smooth direct dependence between da

dN and severity. Finally,
in the third region the crack tends to arrest with a higher slope than that seen in
the second region. For these reasons discussed in the next section, the curve was
truncated, neglecting the first and third regions. Only the mid-region was considered
in the modified Paris’ law calculation.

As variable displacement tests were performed on specimens already tested un-
der mode II, their crack growth rate curves did not show the first region of Figure
4.3. Figure 4.4 compares the preselected and the experimental dependence be-
tween the severity and the crack length increment, confirming the new experimental
methodology as being suitable to enlarge the range of severities explored in a single
test.

The crack growth rate curve in Figure 4.5 condensates the results obtained from
the eleven tests performed in this study. All the tests were performed for the same
load ratio, R = −10/(−3), either under constant cyclic displacement or variable
cyclic displacement control. The plot also includes the fitting of all the data from
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Fig. 4.3.: Reduced fatigue crack growth rate data with the truncated regions in the modified
Paris’ law fitting from the constant cyclic displacement tests.

the constant cyclic displacement tests in accordance with the modified Paris’ law
(Equation (4.8)).

The parameters of the modified Paris’ law (Equation (4.8)), the exponent, p, and
the coefficient, A, are obtained from the linear fitting of the data plotted on log-log
scales (Table 4.3).

The duration of each variable cyclic displacement test depends on the slope of
the relation between the energy release rate and crack length, mG (Figure 4.4).
Higher slopes tend to minimize the testing time. The total time employed in all tests
(constant displacement and variable displacement) is specified in Table 4.4.
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Tab. 4.3.: Fatigue life constants obtained from both variable displacement and constant
displacement tests.

Specimen ID Energy release Obtained fatigue life constants
rate slope - crack (eq. 4.8), da

dN evaluated in
length relation (eq. 4.1) mm/cycle

mG A p
[mm−1]

01_V -0.030 1.975· 10−1 4.326
02_V -0.090 1.677· 10−1 4.168
03_V -0.225 7.342· 10−2 3.786

Modified Paris’ law (Eq. 4.8) fitting of the
constant displacement tests’ results 7.636·10−2 3.882

Tab. 4.4.: Time employed in obtaining the crack growth rate curve for both variable and
constant minimum displacement methodologies.

Specimen ID Total time Time 10-45% severity
(hours) (hours)

Variable displacement tests
01_V Severity from 50% to 10% 42.0 4.3
02_V Severity from 50% to 10% 18.0 1.9
03_V Severity from 50% to 10% 7.0 0.4

Constant displacement tests

04_C Initial severity 55% 0.2
05_C Initial severity 40% 1.3
06_C Initial severity 30% 2.6
07_C Initial severity 25% 4.0
08_C Initial severity 20% 8.8
09_C Initial severity 18% 15.5
10_C Initial severity 14% 48.1
11_C Initial severity 12% 89.1

Total time employed in
constant displacement testing 169.6
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4.4 Discussion

The proposed experimental methodology for mode II testing in the 3-ENF configura-
tion enables a chosen range of load severities to be swept while the crack grows in
a predefined crack length increment. This is accomplished by varying the applied
cyclic displacement as the number of cycles evolves. The Umin(N) function de-
pends on estimated Paris’ law parameters, A and p, derived from the constant cyclic
displacement tests. In spite of being just a rough estimation, the range of severities
swept is close to the desired one and, in any case, much larger than what could be
obtained from a constant displacement test. The consequence of using erroneous
parameters is illustrated in Figure 4.4 for the specimen 02_V. An error in A and p of
±15% leads to changes in the crack length increment needed to sweep the desired
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Fig. 4.5.: Relation between crack propagation rate and peak energy release rate for R=0.3.
The results from both variable displacement ("V" labelled) and constant displace-
ment ("C" labelled) tests are presented for comparison proposes.

severity range. In any event, the severity range achieved would be much larger than
that attained using a constant displacement test.

The variable cyclic displacement method leads to crack growth rate data practically
indistinguishable from that resulting from the complete set of eight constant dis-
placement tests. In particular, the Paris’ exponent, p, obtained from variable cyclic
displacement tests under steady growth conditions (severities from 10 to 30%),
deviated from the log-linear fitting of the constant cyclic displacement tests results
by +11.4%, +7.4% and -2.5% (specimens 01_V, 02_V and 03_V, respectively). No
experimental data for severities higher than 45% could be obtained because of
specimen horizontal movement. The agreement between the results from both
methods, however, is expected to persist if this issue could be solved practically.

One of the main advantages of the new experimental methodology is the reduction
of the time duration of the fatigue mode II test. The selection of the shedding rate,
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mG , determines the duration of the test. Table 4.4 exemplifies the time saved with
this method. One single test performed with variable displacement to build the crack
growth rate curve for a severity range between 10% and 45% is performed in 1.9
hours (specimen 02_V), while the 8 constant displacement tests needed to sweep
the same severity range require 169.6 hours (80 times more if the times involved in
setting up each of the tests is not considered).

The question arises of how fast the test can be carried out while still leading to the
crack growth curve obtained in a constant displacement test. This question could
be dealt with taking into account the formation of a failure process zone, FPZ, in
front of the crack tip. While the FPZ for mode I delamination in CFRP is assumed to
be so small as to be negligible in the data reduction of static interlaminar fracture
toughness tests, the same does not apply for the FPZ in mode II tests [146]. Under
mode II loading and for a given load severity, the crack growth rate would not reach
its steady level until the FPZ is fully formed. In a variable displacement test, if the
severity varies before the FPZ is fully formed, the crack growth rate would deviate
from the steady crack growth rate for the actual severity being applied. This is more
likely to happen as the shedding rate increases and that deviation would also be
more important the stronger the variation of the FPZ with the load severity is.

Figure 4.5 illustrates the crack growth rate curves obtained from the variable cyclic
displacement tests for the three shedding rates,mG , explored in this study. The tests
performed at low mG lie close to the Paris’ curve of constant cyclic displacement
tests from the very first stages of the crack growth curve (higher severities), whereas
the test performed at high mG (03_V) tends to deviate from these curves in the
region of high (30-45%) and low (< 10%) severities, while in the region in between
the agreement is complete. The deviation of specimen 03_V at the beginning of
the test (high severities) corresponds to the transient stage from the FPZ of the
pre-crack to the steady FPZ. On the contrary, at lower severities, below 10%, the
deviation is attributed to a shedding rate too fast to permit the stabilization of the
FPZ, leading to a faster crack growth than observed in constant cyclic displacement
tests. The confirmation of these hypothesis and the study of the FPZ zone in fatigue
tests as a function of the load severity deserves further investigation.

These facts highlight the impact the pre-cracking stage has on the initial measure-
ments of the crack growth rate curves. In the first stage of the crack growth curve for
constant displacement tests in Figure 4.3 there is a clear evidence of the transient
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region between the FPZ of the pre-crack and the steady FPZ. Indeed, due to the fact
that the constant displacement tests start from a mode I pre-crack (short FPZ), the
crack grows more slowly than the steady rate until the mode II FPZ is fully formed.

In view of the foregoing, the variable cyclic displacement tests were performed on
specimens tested under mode II cyclic loading, where the crack grew until the tip
reached the zone affected by loading arm compression (“Region affected by the
compression induced by the loading arm" in Figure 4.3). In this region, the crack
propagation tends to arrest, misrepresenting an artificial threshold. The FPZ formed
in this situation (low severity), however, is different from the one expected at the
beginning of the variable displacement tests (high severity). For that reason, a
transient region in the variable displacement tests is expected. While this is not
noticeable in specimens with low mG , it does span over several points for specimen
03_V.

The fact that the three crack growth curves obtained under variable cylic displace-
ment amplitude with different mG coincide in the severity range between 30% and
10% indicates that the shedding rate is slow enough to lead to a fully developed
FPZ, even with the highest mG selected (c.f. Figure 4.5). The prospect is that for a
large enough mG , the crack growth curve would deviate from that of the constant
displacement test. Following an equivalent rationale, the crack length increment
can not be decreased arbitrarily if representative results are to be obtained. Figure
4.4 shows that the same Paris’ law curve is obtained for crack increments of 2
mm (specimen 03_V) or 14 mm (specimen 01_V). These constraints should be
specifically considered when testing materials with expected large FPZ, as the case
of adhesive joints is. The larger the expected FPZ, the slower the shedding rate
should be and, likewise, the larger the crack increment to be traveled.

The comparison of the results from constant cyclic displacement tests reveals that
the propagation rate does not depend on the span length (e.g. specimens 07_C and
08_C, with span lengths of 60 and 50 mm respectively, have similar da/dN at 20%
severity). Thus, the same results are obtained with different crack lengths. This is an
indication that, for the material studied, the crack growth rate is history independent
under mode II test conditions when a steady crack growth is achieved (initial transient
curves must be truncated, Figure 4.3). This assertion is corroborated by the overlap
among the crack growth rate curves obtained with the three variable displacement
tests performed with different preselected gradients of energy release rate, mG
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(see Table 4.3), again, once the FPZ is fully developed. Under this condition, the
maximum difference in da

dN , for a given severity, between the data obtained from
variable displacement tests and the fitting of all the data from constant displacement
tests, amounts 0.3 decades. This is comparable to the scatter of the raw data from
a single constant displacement test.

In addition, the methodology derived in this chapter has been extended for MMB
fatigue tests in [73]. The contribution of [73] relies in the compliance calibration to
obtain a continuous crack length curve, a(N). This compliance calibration is carried
out by relating the dynamic compliance recorded in real time during the fatigue test
[134] to the crack length extracted from photos that are taken while the fatigue test
is running. In this way, the measurment of the crack length during the fatigue test is
avoided and a continuous crack growth rate curve is obtained.
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5Material card definition

This chapter presents the experimental determination of all the parameters needed
to feed the three-dimensional computational method developed.

The procedures followed for the characterization of the interlaminar properties are
listed in Table 5.1. All the tests were conducted at AMADE Research lab, the
mechanical testing laboratory of the University of Girona, which is Nadcap [6] (Non-
metallic materials testing laboratory) and ISO 17025 [72] accredited. Since the
quasi-static properties GIc, GIIc, G50%c, G75%c and τIIo, were obtained following
standard procedures, special attention is given to the characterization of the fatigue
properties under mode I ( pI , AI , GIth), mode II(pII , AII , GIIth), 50% mixed-mode
(p50%, A50%) and 75% mixed-mode (p75%, A75%).

Fig. 5.1.: Mode interpolation of the fracture toughness [29].

The interlaminar fracture toughness were measured under 4 different mode mixity
conditions: 0% (GIc), 50%, 75% and 100% (GIIc). Following the standards rec-
ommendations, a batch of five different specimens were tested for each property.
The nominal values are represented in Figure 5.1. The Benzeggagh-Kenane [29]
mode interpolation parameter, η, in Equation 2.27 has been fitted to the results. It is
worth mentioning that the mode II fracture toguhness, GIIc, was obtained from the
maximum force (MAX point in Figure 5.2), as recommended in the ASTM D7905
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Tab. 5.1.: Testing procedures followed to obtain the material card.

Property Procedure
GIc ASTM D5528
GIIc ASTM D7905
G50%c ASTM D6671
G75%c ASTM D6671
τIIo ASTM D2344
pI , AI Multi-fatigue testing rig [135]
pII , AII Rapid testing procedure (Section 4)
p50%, A50% Rapid testing procedure [73]
p75%, A75% Rapid testing procedure [73]
GIth,GIIth Modified ASTM D6115

standard procedure for mode II fracture toughness [45]. However, other criteria that
are described in the ASTM D5528 standard [41] for mode I may be adopted. These
are: the deviation from linearity (NL point in Figure 5.2) and visual observation
of delamination growth (VIS point in Figure 5.2). If these criteria are applied, the
mode II fracture toughness, GIIc, results in significantly lower nominal values (0.472
N/mm for the NL criterion and 0.535 N/mm for VIS criterion). The reason for such a
difference on GIIc depending on the criterion used is attributed to the formation of a
large fracture process zone ahead of the crack tip when mode II loading conditions
are applied. The formation of micro cracks reduces the compliance and thus, the
force vs displacement relation becomes nonlinear, but the force keeps increasing.
The sudden drop in the measured force, immediately after the MAX point, evidences
unstable crack propagation. Thus, propagation values could not be obtained. It is
worth mentioning that, under mode II loading conditions and for certain material
systems, initiation values of the mode II fracture toughness, GIIc, are significantly
lower than propagation values [145]. Nevertheless, the MAX point gives the most
similar result to propagation values and, indeed, it is the only covered by the ASTM
D7905 standard [45].

Moreover, the interfacial shear strength, τIIo, wasmeasured following the ASTMD2344
standard. The nominal value is 98 MPa. Then, the interfacial tensile strength, τIo,
is expressed as a function of τIIo, GIc and GIIc as [168]:

τIo = τIIo

√
GIc
GIIc

(5.1)
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Fig. 5.2.: Load vs displacement curve from a quasi-static mode II ENF test.

Regarding fatigue characterization, parameters of the Paris’ law-based expression
of equations (2.55) and (2.56) were obtained from fatigue crack propagation tests
for different mode mixities: pI , AI (mode I), pII , AII (mode II), p50%, A50% (50%
mixed mode), p75% and A75% (75% mixed mode).

Crack growth rate curves under mode I loading conditions were obtained using
the multi-specimen testing methodology described in [135]. Two batches, of 6
specimens each, were tested under constant cyclic displacement with a load ratio of
R=0.1. A third batch was tested with R=0.5 to investigate the effect of the load ratio
in mode I fatigue properties. The crack growth rate curves of one of the batches
tested with R=0.1 are represented in a single plot in Figure 5.3. Six different initial
severities were applied by using different initial crack lengths. The overlapping of
the curves is clearly observed, independently of the severity applied. The dispersion
of the results is less than 1 decade, similar to what is obtained in other studies such
as in [158].

Tests performed with a load ratio of R=0.1 and R=0.5 are compared in Figure 5.4.
Moreover, the fatigue characterization campaign performed to obtain the material
card was numerically simulated. Thus, 2D simulations of the fatigue DCB tests
under different load ratios are compared to experimental data. Simulations were
carried out by modeling the central slice of the specimen, with only one element in
the width direction, and by applying plain strain conditions. The elastic properties
of the unidirectional laminate, listed in Table 5.2, were provided by AERNNOVA
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Fig. 5.3.: Crack growth rate, da
dN

, versus severity, Gmax/Gc, of a batch of 6 specimens tested
simultaneously using the multi-specimen testing devise presented in [135] with a
load ratio R=0.1 and 6 initial different severities.

Engineering, the company supplying the CFRP composite material. The simulation
input values for the crack growth rate exponent, p, and coefficient, A, were obtained
from the Paris’ law-like fitting of experimental fatigue propagation data.

Tab. 5.2.: Laminate elastic properties of the validator material.

Laminate properties
E11: Longitudinal Young’s modulus 154 GPa
E22 = E33: Transversal Young’s modulus 8.5 GPa
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa
G23: Shear modulus in the transversal plane 3.036 GPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 -
µ23: Poison’s coefficient in the transversal plane 0.4 -

Regarding mode II fatigue loading conditions, the crack growth rate curve in Figure
5.5.a presents the results obtained from eight fatigue ENF tests performed under
constant cyclic displacement with a load ratio of R=0.3. Figure 5.5.b condensates
the eight constant cyclic displacement tests and two tests performed applying the
efficient testing methodology presented in Section 4. In comparison, the 8 constant
displacement tests needed to sweep the same severity range require 169.6 h (80
times more without considering the time involved in setting up each of the tests).
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Fig. 5.4.: Comparison between the experimentally obtained mode I crack growth rate curves
and the results form the 2D simulations using the method presented in [23]. The
input parameters pI and AI are obtained from the Paris’ law-based fitting of the
experimental data.

The effect of load ratio was also analyzed under mode II fatigue loading conditions,
and compared with simulation results. Figure 5.6 shows the results obtained for
R=0.1 and R=0.3 (Note that the sign convention for negative for displacements
which result in compressive reaction forces is no longer used. From now on, the
absolute value of the prescribed cyclic displacements is used to calculate the load
ratio, R).

Similarly to ENF tests, the results from three fatigue MMB tests with a mode mixity of
50%, performed under constant cyclic displacement and with a load ratio of R=0.1,
are plotted in Figure 5.7.a. In Figure 5.7.b., a range spanning from from 80% to
20% of severity was covered with one single variable displacement test. The fatigue
testing time was less for the variable cyclic displacement test by -80% in comparison
with the constant displacement tests. Also, the results obtained from 4 fatigue MMB
tests with a mode mixity of 75%, performed under constant cyclic displacement
with a load ratio of R=0.1, are plotted in Figure 5.7.a and compared with the results
obtained from variable cyclic displacement tests in Figure 5.7.b. Again, the range of
severity covered by a variable cyclic displacement test equaled the range covered
by a series of 4 constant displacement tests. The wider the range of explored
severity is, the more preparation and testing time can be saved using the variable
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Fig. 5.5.: Crack growth rate, da
dN

, versus severity, Gmax/Gc, under mode II loading conditions.
Variable displacement tests are performed using the efficient testing methodology
presented in Section 4 with a load ratio R=0.3.

cyclic displacement methodology in comparison with the traditional constant cyclic
displacement test. For further information on the testing methodology and results,
the reader is referred to [73]. Moreover, the experimental results are compared to
numerical simulations in Figure 5.8.

In summary, the observed effect of the mode mixity, Φ, and the load ratio, R, on
the crack growth rate curve in figures 5.4, 5.6 and 5.8 are in agreement with other
experimental evidences published in the literature [25] and summarized in Section
2.3.2. Moreover, the simulation method is capable to reproduce with great accuracy
the crack growth rate curve in all the analyzed loading conditions.

On the other hand, the mode I and mode II energy release rate threshold values,
GIth and GIIth, have been obtained from fitting onset tests results performed under
constant cyclic displacement. Experimental data has been fitted using Equation
(2.4). The energy release threshold is set as the onset point for 2 million cycles.
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Fig. 5.6.: Comparison between the experimentally obtained mode II crack growth rate curves
and the results form the 2D simulations using the method presented in [23]. The
input parameters pII and AII are obtained from the Paris’ law-based fitting of the
experimental data.

For mode I, the multi-specimen testing rig was used. Thus, the onset point for 12
different severities (two batches, of 6 specimens each, tested with R=0.1) has been
determined and plotted in Figure 5.9. Both criteria, a 1% and a 5% increase of the
specimen’s compliance relative to the initial value, are represented. From this data,
the threshold value, GIth, has been estimated to be at 24% GIc and 28% GIc using
the criteria for 1% and 5% increase of the specimen’s compliance, respectively.
Moreover, in the specimens tested at 20% and 10% Gc, propagation did not occur
after 3 million cycles. Therefore, it is considered that under the extrapolated GIth
value, no propagation occurs.

For mode II, 4 independent constant cyclic displacement tests with R=0.1 were
performed near the energy release rate threshold region. The results are shown in
Figure 5.10. Both criteria, a 1% and a 5% increase of the specimen’s compliance
relative to the initial value, are represented. From the fitting of this data using
Equation (2.4), the onset value for 2 million cycles has been estimated to be at
2% GIIc and 3% GIIc using the criteria for 1% and 5% increase of the specimen’s
compliance, respectively. An experimental checking performed with a specimen
tested at 3% Gc reveals that propagation did not occur even after 3 million cycles.
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Fig. 5.7.: Crack growth rate, da
dN

, versus severity, Gmax/Gc, under mixed mode loading condi-
tions. Variable displacement tests are performed using the efficient testing method-
ology presented in [73] with a load ratio R=0.1.

It is worth mentioning that the absolute values for energy release rate thresholds for
mode I and mode II with R=0.1 are very similar: using the criterion for 5% increase
of the specimen’s compliance, GIth = 28% GIc = 0.085 N/mm and GIIth = 3% GIIc
= 0.083 N/mm. This is in agreement with the experimental works of [119, 19],
which showed that, in the absence of fiber bridging, the fatigue threshold, GIth, is
independent of the mode mixity.
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6Validation of the
three-dimensional fatigue
method

In order to evaluate the predictive capabilities of the simulation method developed in
this Ph.D. thesis, a three-dimensional composite structure, representative of arbitrar-
ily shaped delamination growth in a real structural component, has been designed
and tested. Both quasi-static and fatigue tests were performed. Afterwards, the
experimental results have been compared to the results predicted by the simulation
tool.

6.1 Design of the demonstrator specimen

The design requirements for the demonstrator test are listed in the following:

• The shape of the delamination front must be curved and change during the
test, since the simulation method must be applicable to arbitrarily shaped
delamination fronts.

• The location and shape of the delamination front must be possible to monitor
at selected testing times by means of non-destructive techniques in order to
obtain data for comparison with numerical results from the simulations.

• The area of delamination must be confined between two subsequent layers.
Thus, crack migration must be avoided.

• The geometry of the specimenmust be simple, so it can be easily manufactured
and tested.

The solution for test configuration adopted in this work, which fulfills the mentioned re-
quirements, is a double cantilever beam (DCB) test on a symmetric run-out specimen
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Fig. 6.1.: Sketch of the partially reinforced DCB specimen. The grey-shadowed area repre-
sents the Teflon insert.

with a midplane initial defect. A Teflon insert acts as an initial straight delamination
(see Figure 6.1). Moreover, the middle width of the specimen is stiffened by bonding
carbon fiber reinforced polymer (CFRP) reinforcements on the upper and lower
faces. In this way, the stiffness along the specimen width is not constant. Conse-
quently, during propagation, the crack front shape changes when it approaches the
reinforced region. The dimensions of the DCB specimen are given in Figure 6.2.
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Fig. 6.2.: Dimensions of the partially reinforced DCB specimen (units in mm).

The specimens were made of unidirectional carbon fiber/epoxy prepreg plies of 0.184
mm of nominal thickness stacked with the same fiber orientation (0◦). Panels were
cured in an autoclave, following the supplier’s recommendations, at AERNNOVA
Engineering facilities. Before cutting the specimens, the panels were ultrasonically
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C-scanned. The reinforcements were joined to the DCB plate using ARALDITE
2015 epoxy adhesive cured at room temperature. A picture of the partially reinforced
DCB specimen is shown in Figure 6.3.

P

2dl

1θ2θ

3θ S1

Γ

TFig. 6.3.: Partially reinforced DCB specimen.

6.2 Test methodology and post-processing of
the results

The tests were carried out in a MTS 858 servo-hydraulic Bionix testing machine in a
controlled environment (23 ± 3◦C and 50 ± 5% RH). The maximum load capacity
of the testing machine was 25kN. The tests were performed under displacement
control. The total force carried by the test specimen was measured with a 5 kN
MTS load cell calibrated at 10% of the full range. The test rig is shown in Figure 6.4.
Two different tests were performed: under quasi-static loading and under fatigue
loading.

Following ASTM D5528 [41] standard recommendations, quasi-static tests were
performed with a constant displacement rate of 1 mm/min. Three different spec-
imens were tested stopping every 1 mm of accumulated opening displacement.
In these stops, the specimen was removed from the test rig and mounted on an
X-ray radiography equipment to monitor the delamination front location. In addition,
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Fig. 6.4.: DCB test on partially reinforced specimen.

a fourth specimen was tested in a continuous manner and the delamination front
location was inspected only at the end of the quasi-static test (15 mm of applied
displacement).

On the other hand, fatigue tests were comprised of 4 loading steps (c.f. Figure
6.5): 1) Quasi-static step from the initial unloaded position until 5 mm of applied
displacement. 2) Fatigue step with 5 mm of maximum cyclic displacement. 3)
Quasi-static step until 10 mm of applied displacement. 4) Fatigue step with 10 mm of
maximum cyclic displacement. Fatigue steps were performed at a frequency of 5 Hz
and a load ratio of R=0.1, and were stopped every certain number of elapsed cycles,
as listed in Table 6.1, to perform non-destructive inspection of the delamination
front location. A batch of 3 specimens were tested following the described loading
sequence.

The shape and location of the delamination front was monitored using a Hamamatsu
X-ray unit (c.f. Figure 6.6). X-ray pictures were made using the following settings:
35kV, 120 µA and analogue integration of 5 images with an exposure time of 3 s.
To enhance X-ray contrast, a solution comprised of 520 g of zinc iodide, 86.5 mL of
distilled water, 86.5 mL of alcohol and 26 mL Kodak Photo-Flo 200 was used. The
liquid was introduced inside the delamination using a pipette. A vacuum chamber
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was used to make the contrast solution penetrate to the tip of the delamination. This
operation was repeated in every measurement.

Before starting the test, a reference X-ray picture of the specimen was taken. Then,
the front location was evaluated at the programmed stops by subtracting the refer-
ence X-ray picture to the X-ray picture at the current time of the stop. The difference
in intensity between both pictures was significant only at the delaminated area, which
was filled with the contrast solution. Figure 6.7.a shows the X-ray picture obtained at
the end of Step 1 of a fatigue test, just after the quasi-static opening. In Figure 6.7.b
the picture has been binarized so the opened interface is shown in black and the
closed interface is shown in white. In Figure 6.7.c the normalized absolute difference
between Figure 6.7.a and the reference picture is shown along theX2 coordinate for
constant X1=36 mm. Since, when taking the X-ray picture, the specimen arms were
opened using a wedge, the accumulation of liquid at the delamination tip makes
the difference in intensity change linearly with the height. Note, in Figure 6.6, that
the specimen was standing such that the liquid remains inside the delamination
cavity during the acquisition. In order to assess the crack front location for a given
X1, two linear functions of the intensity along the X2-coordinate are intersect: the
linear fitting of the base line region and the linear fitting of the increase in intensity.
The crack front location is set as the intersection point (marked in red in Figure
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Tab. 6.1.: Programed stops during the fatigue tests.

Maximum cyclic Number of cyclesdisplacement (mm)
5 1,500
5 3,000
5 5,000
5 10,000
5 25,000
5 80,000
5 420,000
10 1,500
10 3,000
10 5,000
10 10,000

6.7.c) between the two linear fittings. The data represented in gray in Figure 6.7.c is
disregarded.

The X-ray picture shown in Figure 6.8.a was taken after 310,000 cycles of fatigue
loading. Note, that, in this case, the delamination front was placed under the
reinforcement. X-ray pictures were made by transmission, i.e. the specimen was
located in between the X-ray transmitter and the detector. The detector counts the
accumulated intensity of X-rays that cross the specimen. Thus, the intensity at
the reinforced region was higher due to higher thickness of the specimen (higher
absorption). Therefore, this region looks darker in the X-ray picture (c.f. Figure
6.8.a). Consequently, it is harder to visually inspect the location of the delamination
front when it is located under the reinforcement, even if the picture is binarized (c.f.
Figure 6.8.c). Nevertheless, the intersection of the linear fittings of the basline and
the normalized absolute difference in intensity is a suitable means of localizing the
crack front also under the reinforced region, as shown in Figure 6.8.b.
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6.3 Delamination in a 3D composite structure:
Numerical prediction and comparison with
experimental results

In the following, the results of the tests done with the partially reinforced DCB
specimen introduced in Section 6.1 are presented. Tests were performed under
quasi-static and fatigue loading according to the methodology described in Section
6.2.

Firstly, quasi-static tests were performed in order to analyze the crack front evolution.
Four specimens were tested (c.f. Figure 6.9). Tests on specimens A, B, and C were
stopped every 1 mm of applied displacement in order to perform X-ray inspection
of the delamination front position. On the other hand, the test on Specimen D was
conducted continuously and the X-ray inspection was only done at the end of the
test. This was done to rule out any possible effect of the contrast solution on the
interface. The repeatability in the force-displacement relationship of the 4 tests can
be appreciated in Figure 6.9.

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15

F
(N

)

U3 (mm)

Specimen A

Specimen B

Specimen C

Specimen D

Fig. 6.9.: Comparison of numerical and experimental results for force versus displacement
from quasi-static testing on the demonstrator specimen.
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Moreover, the methodology to extract the delamination front position from X-ray
pictures described in Section 6.2 was applied. Figure 6.10 represents the plane of
delamination, spanned by coordinates X1 and X2 (c.f. Figure 6.1). The thick black
solid straight lines mark the reinforcements borders. The delamination front position
of specimens A, B and C is plotted for 5 different levels of applied displacement. Note
that curved delamination was promoted by the reinforcements. The delamination
front position of Specimen D at the end of the test ( 15 mm of applied displacement) is
plotted for comparison purposes. Themaximum difference between the delamination
front of Specimen D and the front that has the most advanced position among
specimens A, B and C is 4 mm. In view of the results, it cannot be concluded if the
observed difference is due to an effect of the contrast solution on the constitutive
behavior of the interface or due to structural differences between the specimens
caused in the manufacturing process. Nevertheless, X-ray inspection is considered
to be a suitable means of monitoring the delamination front position.
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Fig. 6.10.: Delamination front position from quasi-static testing on the demonstrator specimen.

Combining figures 6.9 and 6.10, the response of the structure is analyzed. The
maximum reaction force point occurred during elastic opening of the specimens
arms, just before crack propagation (U3= 3 mm). From this point, crack propagation
caused a decrease in reaction force as the applied displacement was increased.
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Tab. 6.2.: Input values for the simulation model.

Property Value Units
GIc 0.3052 N/mm
GIIc 2.7656 N/mm
η 2.0514 -
τIo: 32.555 MPa
K: 105 N/mm3

pI 8.3936 -
AI 564.39 mm/cycle
pII 3.6204 -
AII 0.0121 mm/cycle
pm -4.991 -
Am 1.1975E-6 mm/cycle
GIth 0.0854 N/mm
GIIth 0.0829 N/mm
η2 - -
R 0.1 -

When the delamination front approached the reinforced region, the force increased
again (U3= 6 mm) due to the stiffness supplied by the reinforcements. The turning
point, from which the force again decreased, was the instant when the delamination
front overcame the reinforcement edge (U3= 10 mm).

On the other hand, the partially reinforced DCB fatigue test (see the loading sequence
represented in Figure 6.5) has been used to validate the simulation method. The
undeformed cohesive elements were 0.47 mm wide, 0.34 mm long and have zero
thickness. Only one half of the specimen was modeled exploiting X2-symmetry to
reduce the required computational resources. The input parameters for the user-
defined cohesive elements were obtained from the material card (c.f. Chapter 5)
and are listed in Table 6.2. The elastic properties of the laminate are listed in Table
5.2.

The historical evolution of the growth driving direction (GDD) angle with respect toX1

and the mode I J-integral within the cohesive zone are plotted in Figure 6.11. The
mode II and III J-integrals are not plotted since they are negligible for this loading
conditions. In Figure 6.11.a, it can be observed that the computed J-integral during
quasi-static propagation (Step 1) is equal to the mode I fracture toughness, GIc.
Then, during Step 2 (fatigue loading with constant maximum cyclic displacement),

6.3 Delamination in a 3D composite structure: Numerical prediction and comparison... 147



the computed J-integral decreases with crack propagation (c.f. figures 6.11.b and
6.11.c). The same is repeated for steps 3 and 4. In Figure 6.11.d, the J-integral
during quasi-static propagation again equals the mode I fracture toughness, GIc,
whereas, in figures 6.11.e and 6.11.f, the J-integral decreases with crack propagation
under constant maximum cyclic displacement conditions.
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e) Step 4. Fatigue loading U3 max= 10 mm N= 3,000 cycles
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Fig. 6.11.: Historical evolution of the growth driving direction (GDD) and the mode I J-integral
within the cohesive zone. The mode II and III J-integral are negligible for this
loading conditions.
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For comparison purposes with numerical predictions, 3 partially reinforced DCB
specimens were experimentally tested: Specimen 1, 2 and 3 using the loading
sequence represented in Figure 6.5. The force-displacement relationship of the 3
specimens is plotted in Figure 6.12 (using different intensities of red color). The
3 tests present noticeable repeatability. Moreover, the simulation method (blue
curve in Figure 6.12) is shown capable to reproduce with accuracy the mechanical
response observed in the experiments. In Figure 6.13, the specimen’s compliance
is represented as a function of the number of elapsed cycles. The experimental and
the numerical results are in good agreement. Indeed, the difference between both
results is equal to the dispersion among specimens A, B and C.
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Fig. 6.12.: Comparison of numerical and experimental results for force versus displacement
from fatigue testing on the demonstrator specimen.

Finally, the delamination front position was examined using the X-ray technique. In
Figure 6.14 the binarized X-ray pictures of Specimen 1 are plotted in comparison
with the numerical energy-based damage, De, distribution at different instants dur-
ing the test. It is believed that Figure 6.14 is useful for visual comparison of the
experimental and numerical delamination fronts. However, this is not the case when
the delamination front is placed under the reinforcements (c.f. figures 6.14.e and
6.14.f). The added CFRP material acting as reinforcements absorbed X-radiation
so that the attenuation of the intensity captured by the detector at the delaminated
region caused by the contrast solution is unnoticeable. This, difficulties the visual
detection of the delamination front position. However, following the methodology
described in Section 6.2, the delamination front has been accurately extracted from
the X-ray pictures.
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Fig. 6.13.: Comparison of numerical and experimental results for compliance versus number
of cycles from fatigue testing on the demonstrator specimen.

In figure 6.15, the position of the delamination front of the tested specimens 1, 2
and 3 is plotted for every stop done during the test (using different intensities of
red color). The programmed stops are listed in Table 6.1. Due to the presence of
micro cracks, the fracture zone might contain some contrast liquid. Thus, it is hard
to ensure whether the extracted delamination front location from the X-ray pictures
corresponds to the beginning or the end of the fracture process zone. Consequently,
for the comparison with the numerical results, both the 1 and 0-damage isolines
limiting the cohesive zone are plotted.

It can be observed, in figures 6.15.a-6.15.h that the delamination front curved
as it approached the stiffened region. Under fatigue loading, the reinforcement
acted as a crack propagation preventer. Indeed, the front did not overcome the
reinforcement edge during 410,000 cycles in any of the specimens tested. Then,
during the quasi-static increment of displacement in Step 3, the delamination front
overcame the reinforcement edge (c.f. Figure 6.15.i). During the fatigue Step 4,
delamination propagation took place under the reinforcement, changing once more
the delamination front curvature (c.f. figures 6.15.j-6.15.m).

The predictive capabilities of the simulation method have been proven. The most
significant discrepancy is observed in Figure 6.15.i, during Step 3, when the load
was increased to 10 mm of applied displacement in order to overcome the border of
the reinforcement. This discrepancy is attributed to the fact that the transition to the
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stiffened region in the finite element (FE) model was more abrupt than in the tested
specimens. In the FE model, the reinforcements were placed at the exact equal
position at both faces of the specimen. This is not the case of the tested specimens,
where the reinforcements were manually bonded. In addition, some epoxy-based
adhesive might exceed the boundaries of the reinforcements, creating a seam at the
edges that smoothed the abrupt increment in stiffness supplied by the reinforcement.
Nevertheless, beyond this small discrepancy, the evolution of the delamination front
with the number of cycles has been captured with accuracy by the simulation tool.
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Simulation

Test

a) Step 1. Static loading U3= 5 mm b) Step 2. Fatigue loading
U3 max= 5 mm N= 3,000 cycles

c) Step 2. Fatigue loading d) Step 3. Static loading U3= 10 mm
U3 max= 5 mm N= 410,000 cycles
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e) Step 4. Fatigue loading f) Step 4. Fatigue loading
U3 max= 10 mm N= 3,000 cycles U3 max= 10 mm N= 10,000 cycles

Fig. 6.14.: Comparison of numerical and experimental results for delamination front position
from fatigue testing on Specimen 1.
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Fig. 6.15.: Comparison of numerical and experimental results for delamination front position
from fatigue testing on the demonstrator specimens.
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7Conclusions

The work presented in this Ph.D. project constitutes a complete methodology for
the reliable design of composite structures subjected to fatigue-driven delamination.
The main contribution is the development of a cohesive zone model for the prediction
of delamination growing in three-dimensional laminated structures.

Firstly, the necessary tools for the formulation of the three-dimensional fatigue
method have been developed. These include a method for determining the growth
driving direction and a means of evaluating the mode-decomposed energy releases
in arbitrarily shaped delamination fronts.

Then, all the mentioned contributions are assembled together to conduct the analysis
of fatigue-driven delamination in a three-dimensional structure.

Point-wise evaluation of the growth driving direction for arbitrarily shaped
delamination fronts using cohesive elements

The formulation for the determination of the growth driving direction for cohesive
zone models is evaluated point-wise. Therefore, it can be implemented as a part of
a user-defined cohesive element subroutine and evaluated during simulation without
the need of any extra loop, post-processing or global information.

The growth driving direction is defined as the negative gradient of the energy-based
damage variable. However, other quantities can be used for the sake of simplicity. In
this work, three different criteria are proposed. The implementation of the formulation
for the proposed criteria applied to the CZM presented in [167, 168] is derived and
validated by using one-element analysis under different loading conditions.

Furthermore, the usefulness of the method has been demonstrated via the analysis
of delamination propagation in a three-dimensional structure with a complex shaped
crack front. The results using the proposed point-wise formulation for the evaluation
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of the growth driving direction are in agreement with the results from a global
approximation of the normal direction to different damage isolines. Apart from
being a low computational time-consuming task, the proposed formulation has the
advantage that it can be evaluated at any point within the cohesive zone.

Evaluation of the mode-decomposed energy release rates for arbitrarily
shaped delamination fronts using cohesive elements

A novel methodology for the calculation of the mode-decomposed J-integral in
three-dimensional delamination simulation using a cohesive zone model approach
is presented. The methodology incorporates the growth driving direction criterion
to track the integration paths and determine the local directions of mode I, II and
III components. The generality of the formulation makes it applicable to curved
fronts with non-planar delamination interfaces and large fracture process zones.
The application of the described methodology results in curved integration paths.

The calculation of the J-integral is based on dividing the delamination interface into
elemental thickness slices, so that the J-value of each slice is unique. The definition
of the curvature of such slices is done according to the growth driving direction.
Since the growth driving direction is mesh independent, the definition of the slices is
not affected by the mesh size.

By application of the presented formulation, a global measure of the energy release
rate in three-dimensional structures modeled using a cohesive zone model approach
can be obtained. Also, the energy release rate can be decomposed into mode I,
II and III components. The decomposition of the shear component of the energy
release rate into mode II and III, to date, has only been addressed under the
assumption of elastic fracture mechanics. In addition, the new formulation enables
to obtain a global measure of the mode mixity, overcoming the limitation of the current
3D cohesive zone model formulations, where the mode mixity is only obtained at
integration point level in terms of opening displacements.

Besides the immediate applications of the formulation as just described, more
applications will be uncovered in future research. The presented CZ J-integral is a
decisive contribution on using fracture mechanics-based procedures in a cohesive
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zone model framework, which will allow the design of lighter and more reliable
structures. In addition, a direct application of the CZ J-integral formulation is its
implementation in combination with existing fatigue simulation methods formulated
in a CZM approach, which rely on mode-dependent Paris law’ like expressions.
Thus, the developed mode-decomposed CZ J-integral formulation becomes a new
solution for extracting mode-decomposed energy release rates of real complex
three-dimensional structures.

An efficient methodology for the experimental characterization of mode II
delamination growth under fatigue loading

An automated procedure to obtain the log-linear region of a crack growth rate curve
has been developed for an 3-ENF test for mode II fatigue delamination growth.
The applied displacement, U(N), is calculated prior to initiating the fatigue test in
order to achieve a constant negative energy release rate gradient throughout crack
propagation. The continuous displacement shedding is conducted by implementing
the calculated U(N) curve in a computer-controlled testing system. This, in combi-
nation with the automated and continuous estimation of the crack length by means
of the real time monitoring of the specimen’s compliance, avoids the need of human
intervention during the test.

The usefulness of this methodology has been exemplified with an experimental
testing campaign in which the crack growth rate curve obtained is compared with the
modified Paris’ law fitting data from a batch of constant cyclic displacement tests.

The range of severities covered by a single test using the developed methodology
spans from 0.45 to 0.1. Due to the specimen movement, the initial severity could
not be higher than 0.50.

The time saved employing the methodology developed has been demonstrated (the
example performed shows a reduction of 1/80) and how the duration of the test, which
is determined by the shedding rate and the range of severities explored, is limited
by the requirement of forming the complete failure process zone corresponding to
the actual load severity is discussed.
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Moreover, the methodology is also applicable to mixed-mode bending fatigue tests.

Extension and validation of the 3D fatigue damage rate method

The tools developed in the framework of this project have been integrated into a
numerical tool for the simulation of fatigue-driven delamination in three-dimensional
structures.

A demonstrator specimen has been designed so that it provides experimental data
for the validation of the simulation method. The test consists of a DCB specimen
with a middle width reinforcement that causes the crack front to curve.

The demonstrator specimens have been manufactured and the fatigue properties
of the material have been characterized to obtain the parameters that feed the
numerical tool.

Tests on the demonstrator specimen have been done under quasi-static and fatigue
loads. Quasi-static tests revealed that, as expected, the shape of the delamination
front evolves during propagation. The repeatability of the test has been demonstrated
by comparison of the results from three different specimens. The crack front location
during propagation has been assessed using X-radiography. The methodology for
extracting the delamination front shape and location from X-ray pictures has been
defined. Moreover, a forth specimen has been tested continuously to exclude any
effect of the contrast liquid to the interface properties. In view of the results, it is
assumed X-ray to be a non-destructive technique which does not affect the behavior
of specimen.

Fatigue tests have been conducted on three different specimens, presenting, again,
good repeatability. The tests have been simulated using the numerical tool devel-
oped in the project. The results from the numerical simulations present excellent
agreement with the experimental results in terms of evolution of the location and
shape of the delamination front according to the number of cycles.

162 Chapter 7 Conclusions



8Contributions and impact

This chapter highlights the main contributions and the impact that the work done in
this Ph.D. project may have in the scientific and industrial communities.

The general contribution of this work is focused on providing an integral method
for the analysis of fatigue-driven delamination in 3D structures. In this regard, the
following achievements have been pursued:

• The state-of-the-art models have been reviewed identifying unsolved areas,
such as the accurate computation of the energy release rate in 3D models or
the applicability of the existing models to three-dimensional structures.

• The concept of growth driving direction has been defined for CZM as the
analogous to crack propagation direction. An efficient algorithm to identify it
has been developed.

• An accurate means of calculating the mode-decomposed energy release rates
in three-dimensional structures modeled using a cohesive zone approach has
been proposed for the first time.

• A 3D fatiguemodel applicable to any structural component has been formulated
and implemented in a commercial finite element code.

• An efficient testing methodology for the characterization of mode II crack
growth rates curves has been developed. The method has been extended for
mixed-mode loading conditions.

• The interlaminar properties of a material used in the aircraft industry has been
fully characterized under static and fatigue loading.

• A 3D fatigue benchmark under mode I opening has been designed and tested.
Information of delamination front shape and location is provided as a function
of the number of cycles.
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The impact of the methods developed can be evaluated at two scales, industrial
and scientific. At an industrial level, the presented methodology is one of the few
existing numerical tools that can be directly incorporated in the analysis and design
of complex composite structures subjected to fatigue loading. From the scientific
point of view, new concepts are provided which may inspire new developments and
applications beside the objective of this thesis.
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9Perspectives and future Work

The contribution of this Ph.D. project represents a significant step forward for the
analysis of fatigue-driven delamination in layered structures. Nevertheless, during
its preparation, several shortcomings have been revealed which are listed in the
following as suggestions for future work.

• Extend the analysis of fatigue-driven delamination tomulti-directional laminates.
There are experimental evidences that static delamination behavior is affected
by the fibers orientation. However, this analysis has not been yet addressed
under fatigue loading. In this regard, the growth driving direction becomes an
essential tool.

• Formulate a mode II and mode III decomposed cohesive zone model for quasi-
static and fatigue loading. The growth driving direction is needed to disregard
the shear component of the tangential displacement jump into mode II and
mode III directions.

• Develop efficient methods for the characterization of interlaminar properties
under mode III loading conditions.

• Address damage accumulation under random amplitude fatigue loading. Real
applications of the simulation tool demand the capability of modeling represen-
tative loading spectra. This may require the formulation of a low-cycle fatigue
strategy.

• Develop experimental approaches to characterize the fatigue cohesive law.
Due to the lack of characterization methods, the damage rate model is currently
based on the link between the macroscopic description of the fatigue crack
growth and the local point-wise evaluation of the damage in the cohesive zone
model. It is assumed that the quasi-static cohesive traction-displacement
jump relation is maintained during fatigue loading. However, there are no
experimental evidences in this regard.
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• Perform fatigue testing on the partially reinforced ELS specimen to obtain
experimental results for the validation of the simulation methods under mixed-
mode conditions. The characterization of mode III interlaminar properties
(static and fatigue) are indispensable to address this point.
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Point-wise evaluation of the growth driving direction for arbitrarily
shaped delamination fronts using cohesive elements
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Abstract

The identification of the delamination propagation direction in three-dimensional structures with

arbitrarily shaped fronts is needed in many applications. In the cohesive element framework, the

propagation direction may be computed as the normal direction to a numerical damage isoline. The

damage isoline tracking requires to exchange information between neighboring elements, thus post-

processing global data, which is computationally expensive. This work presents a novel approach for

the evaluation of the growth driving direction, only using local element information. The method can

be directly implemented in a user-defined element subroutine and be evaluated at the execution time of

the analysis. The presented formulation and its implementation in the commercial Finite Element code

Abaqus is validated by comparison to the damage isoline shape rendering using global information.

Keywords:

Delamination growth, Cohesive zone model, Finite element analysis

1. Introduction1

Long fiber-reinforced polymers are layered materials produced by stacking plies which contain2

continuous fibers in different orientations. Fibers supply stiffness and strength to the material in the3

laminate plane. Although laminated composite structures are designed so that the highest stresses are4

in the fiber directions, out-of-plane stresses may also occur at many types of geometric discontinuities5

∗Corresponding author. Tel.: +34 972 418 817
Email addresses: laura.carreras@udg.edu (L. Carreras), brianbak@mp.aau.dk (B.L.V. Bak),

albert.turon@udg.edu (A. Turon), jordi.renart@udg.edu (J. Renart), elo@mp.aau.dk (E. Lindgaard)
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such as ply drops, skin-stiffener terminations, intersections, sandwich panels, free edges, holes, cut-6

outs, flanges, bonded and bolted joints or impacted zones. These load cases may damage the interface7

between plies, causing the failure mechanism called delamination. Delamination is considered the most8

detrimental failure mechanism in laminated composite structures because it occurs at relatively low9

load levels but still entails significant reduction of the structure’s load carrying capacity. To address10

this problem without recoursing to impractical safe-life designs, damage-tolerant approaches are used.11

In that event, Finite Element (FE) analysis is an indispensable tool to predict delamination growth in12

complex laminated structures subjected to both static and fatigue loading.13

The virtual crack closure technique (VCCT) is one of the most widely used FE techniques [1].14

However, its application to realistic three-dimensional geometries with arbitrarily shaped crack front15

requires a continuous adaptive meshing technique in order to get a smooth front that fits with the16

instantaneous crack front curvature [2–4]. Alternative methods, that allow the use of stationary meshes,17

consist of tracing a smooth virtual front around the stepped front [5–7]. These techniques require the18

use of algorithms to determine the normal direction to the virtual delamination front using global19

information (or 18-noded elements as in [5]). This direction is used to compute the virtually closed20

area and to define a local coordinate system that enables to calculate the energy release rate components21

according to it.22

An alternative to VCCT, is the cohesive zone model (CZM), firstly developed by Dugdale [8] and23

Barrenblatt [9]. In contrast with the VCCT approach, the application of the CZM is not limited to24

Linear Elastic Fracture Mechanics (LEFM). Indeed, it accounts for a large fracture process zone ahead25

of the crack tip where the material undergoes stiffness degradation until complete decohesion. This26

nonlinear material behavior is lumped into a surface, the cohesive zone, modeled by cohesive elements.27

Under static loading conditions, no crack tip tracking algorithm is required as long as the assumptions28

of identical fracture toughnesses for shear mode openings and independence of fracture toughness29

with propagation direction with respect to fiber orientation are made [10–17]. However, some of the30

existing methods for the simulation of fatigue-driven delamination using the CZM approach do require31

2
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the identification of the propagation direction for its three-dimensional implementation [18–22], even32

making the same assumptions as in the static formulation. To the authors knowledge, the existing33

formulations to estimate the direction of crack propagation using CZM are nonlocal and, thus, require34

additional post-processing. In practice, these algorithms are computationally inefficient for the analysis35

of large structures.36

Another and more recent approach presented by Van der Meer et al. [23] uses the level set method37

to describe the crack front location. Like the VCCT, it is a fracture mechanics approach. Furthermore,38

its variant for large process zone simulation [24] makes use of a stiffness degrading damage variable39

that allows a band of damaged material with predefined width. Conversely to most of the existing40

CZM formulations, the damage variable is not a function of the local properties but it is defined by41

the distance to the crack front, where the crack front is defined as the line that separates the damage42

process zone and the completely damaged interface.43

In this work, a local algorithm to determine the growth driving direction in CZM is presented. It44

can be evaluated at any point within the cohesive zone at the same time the damage state is being45

computed. Therefore, it can be used to enhance the cohesive element formulation under static loading,46

preserving the local nature of the formulation. Moreover, it is an efficient alternative to the existing47

nonlocal propagation direction algorithms used in the methods for fatigue simulation.48

The concept of growth driving direction applied to cohesive elements is presented in 2.1. Three49

different criteria for the growth driving direction identification are defined in Section 2.2. The formu-50

lation according to the first criterion is developed in Section 2.3. The formulation for the other two51

criteria is given in Appendix B. The three growth driving direction criteria are implemented for the52

particular case of the CZM presented in [15, 17], which is summarized in Appendix A. However, it53

is worth to mention that the same criteria could be applied to any other CZM formulation. Sections54

3 and 4 present the results from the application of the formulation to three one-element case studies55

under different loading conditions and a real three-dimensional composite structure, respectively. The56

work closes by discussing the obtained results and with the conclusions.57

3
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2. Determination of the growth driving direction58

In the framework of LEFM, the propagation direction is assumed to be the normal direction to59

the crack front, where the crack front is the line separating the uncracked and cracked parts (see60

Figure 1.a). In contrast to LEFM, the CZM technique accounts for a band of damaged interface of61

variable length, called the fracture process zone, FPZ (light grey band in Figure 1.b). Therefore, the62

propagation direction, understood as the normal to the crack front line, can not be defined in the63

CZM framework. In this work, the concept of “growth driving direction”is introduced for CZM as the64

analogous to the propagation direction. It is assumed to be normal to a given damage isoline and can65

be calculated at any point within the FPZ. This definition follows naturally from the LEFM definition66

and provides the exact same result in the limiting case where the length of the fracture process zone67

goes to zero.68

Figure 1: a) The propagation direction is assumed to be the normal direction to the crack front in the LEFM
framework. b) The growth driving direction is assumed to be the normal direction to a damage isoline in the
CZM framework. The energy-based damage variable, De, is defined in Appendix A.

2.1. Growth driving direction using cohesive elements69

Consider a laminated structure undergoing a delamination crack restricted to propagate in the70

interface between two adjacent plies. The degradation process of the material ahead of the crack tip71

is modeled in this work using the bilinear CZM formulation developed by Turon et al. in [15, 17].72

As detailed in Appendix A, the process of the degradation of the interface properties is governed by73

an energy-based damage variable, De, defined in Equation (A.16) as the ratio between the specific74

dissipated energy, ωd, and the fracture toughness, Gc. Thus, De is a scalar quantity that measures the75

4
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degree of crack development: when De equals 0, the degradation process is yet to start, while, when76

De equals 1, the crack is completely developed. The total specific work, ωtot, corresponding to a given77

state of damage is the sum of the specific dissipated energy, ωd, and the specific elastic energy, ωe.78

To ensure the proper energy dissipation under mixed-mode conditions, a one-dimensional cohesive79

law relates the equivalent mixed-mode traction, µ, to the equivalent mixed-mode displacement jump,80

λ. Such constitutive law is formed by an initial elastic region, before damage initiation, and a softening81

region. When the area under the one-dimensional traction-displacement jump curve is equal to the82

fracture toughness, Gc, a new crack surface is formed. The Benzeggagh-Kenane criterion [25] is used83

to define the mixed-mode displacement jumps at which the onset of damage, λo, and propagation, λc,84

occur. A sketch of the equivalent one dimensional bilinear law is represented in Figure 2 for a given85

mode-mixity, B.86

Figure 2: Equivalent one-dimensional cohesive law for a given mode-mixity, B. The shadowed area in a)
represents the fracture toughness, Gc, in b), the specific dissipated energy, ωd, and the specific elastic energy,
ωe, and in c), the total specific work, ωtot, for a given state of damage.

Complying with the cohesive element definition, the interfacial tractions and displacement jumps87

are evaluated at the interfacial deformed midsurface, S, and determined by its local orientation. Thus,88

the normal and tangential traction components, acting on a unit deformed interfacial midsurface area,89

are conjugated to the normal and tangential displacement jumps across the material discontinuity. For90

the analysis of delamination propagation in three-dimensional structures, the interfacial midsurface91

is defined by the Cartesian coordinates xi, with i = 1, 2, 3. The local Cartesian coordinate system92

located on the deformed midsurface is defined by two tangential unit vectors, ê1 and ê2, and a normal93

unit vector, ê3. Assuming that the crack propagation is confined to the interface, the vector defining94

5
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the growth driving direction must belong to the plane spanned by the tangential vectors ê1 and ê2 at95

the point pi where the direction is evaluated. Thus, the three-dimensional problem, can be solved in a96

two-dimensional space defined by the local Cartesian coordinates (e1, e2), where el, with l = 1, 2, are97

the coordinates spanned by the unit vectors êl.98

Then, for any given distribution of De (e1, e2), the growth driving direction at any point on the99

midsurface is assumed normal to the damage isolines, following the discussion related to Figure 1, i.e.100

is given by the negative of the gradient vector:101

−∇De (e1, e2) (1)

2.2. Growth driving direction criteria102

The growth driving direction at any point pi, contained in S, is defined in this work as the one that103

provides the largest rate of decrease of De. This is the direction of the negative gradient of De, defined104

in the local Cartesian coordinate system (e1, e2) with origin at pi (see Equation (1)). However, polar105

coordinates are most appropriate when looking for a direction from a pole (See Figure 3). Thus, the106

growth driving direction can be found by identifying the angle ϕ that minimizes the slope of De with107

respect to the radial coordinate, ρ:108

min
ϕ

∂De

∂ρ
(2)

Considering the energy-based damage, De, dependent on both the mode mixity, B, and the mixed-109

mode displacement jump, λ, and by application of the chain rule, the angle ϕ that minimizes Equation110

(2) can be found by solving:111

∂

∂ϕ

∂De (B, λ)

∂ρ
=

∂

∂ϕ

(
∂De

∂B

∂B

∂ρ
+

∂De

∂λ

∂λ

∂ρ

)
= 0 (3)

and by checking its convexity:112

6
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Figure 3: The growth driving direction evaluated at point pi is embedded in the tangential plane spanned by
the local Cartesian coordinates e1 and e2.

∂2

∂ϕ2

∂De (B, λ)

∂ρ
=

∂2

∂ϕ2

(
∂De

∂B

∂B

∂ρ
+

∂De

∂λ

∂λ

∂ρ

)
> 0 (4)

However, equations (3) and (4) are equal to zero in the elastic regime (λ ∈ [0, λo]), since the energy113

based damage variable, De, is also equal to zero (see Equation (A.16). In order to compute the growth114

driving direction before the initiation of the degradation process, another criterion, based on the ratio115

between the total specific work, ωtot and the fracture toughness, Gc, can be formulated such that the116

growth driving direction can be found by solving:117

min
ϕ

∂
(

ωtot

Gc
(B, λ)

)

∂ρ
(5)

Note that, similarly to the energy-based damage, De, the ratio between the total specific work118

and the fracture toughness, ωtot

Gc
, is dependent on both the mode mixity, B, and the mixed-mode119

displacement jump, λ.120

Finally, for the sake of simplicity, a third criterion, which is also active before damage initiation,121

7
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can be formulated only taking into account the mixed-mode displacement jump field, λ:122

min
ϕ

∂λ

∂ρ
(6)

The general expressions to solve for each of the criteria are listed in Table B.5.123

In summary, three different criteria are presented depending on the quantity being analyzed: the124

energy-based damage, De, (Criterion 1), the total specific work over the fracture toughness, ωtot

Gc
(Cri-125

terion 2), and the mixed-mode displacement jump, λ, (Criterion 3). The evolution of these quantities126

along the growth driving direction are sketched in Figure 4 for an interface opened under pure mode127

I conditions. The three criteria are listed in Table 1 and presented in the following.128

Figure 4: Quantities being minimized in each criterion for a pure mode I opened interface.

Criterion 1. The growth driving direction is defined by the negative gradient of the energy-based129

damage variable, De. This is equivalent to computing the negative gradient of the ratio between the130

specific dissipated energy, ωd (see Figure 2.b), and the fracture toughness, Gc. Since Criterion 1 is131

based on the energy-based damage distribution, De, it is only active once the degradation process is132

8
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Criterion ID Function to solve Nomenclature Approach Limitations

1 −∇De De: Energy-based damage Energy-based
Not active
in elastic regime

2 −∇ωtot

Gc

ωtot:total specific work
Energy-based

May depend on the specific
Gc: fracture toughness elastic energy in CZM

3 −∇λ
λ: mixed-mode opening

Geometrical
Independent of

displacement interface properties

Table 1: Summary of the criteria to determine the growth driving direction.

already initiated. Moreover, Criterion 1 is an energy-based approach that depends on the kinematics133

and the constitutive law of the cohesive element. Since the cohesive law is usually mode-dependent,134

an uneven distribution of mode-mixity, B, can affect the gradient vector.135

Criterion 2. The growth driving direction is defined by the negative gradient of the ratio between136

the total specific work, ωtot (see Figure 2.c), and the fracture toughness, Gc. Thus, both the specific137

dissipated energy, ωd and the specific elastic energy, ωe, are included in the computation of Criterion 2.138

Since, as soon as two initially coinciding points separate from each other some elastic energy is stored,139

Criterion 2 is active before any energy dissipation due to fracture takes place. Moreover, this approach140

depends on both the kinematics and the constitutive law of the cohesive element and, therefore, can141

be affected by the variation in mode-mixity, B, with the direction.142

It is worth to mention that, with the constitutive model used in this work, presented in Appendix143

A.2, criteria 1 and 2 lead to the same growth driving direction results. However, since both the144

conservative and non-conservative work are computed in Criterion 2, in contrast to Criterion 1, in145

which only the non-conservative work is quantified, both criteria might provide different results when146

using other CZ formulations that allow the definition of mode-dependent penalty stiffness, K [26].147

Criterion 3. The growth driving direction is defined by the negative gradient of the mixed-mode148

displacement jump, λ. This is a pure geometrical approach, since the only governing parameter is the149

mixed-mode displacement jump. Thus, the solution only depends on the kinematics of the cohesive150

element. Indeed, changes in the cohesive law due to variation in mode-mixity, B, with direction are151

9

197



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

not affecting Criterion 3.152

2.3. Formulation of Criterion 1 for the identification of the growth driving direction153

A complete description of the derivation of Criterion 1 is presented in this section. Moreover,154

the formulation for the evaluation of the growth driving direction using criteria 2 and 3 is given in155

Appendix B.156

It can be seen, from equations (3) and (4), that, in order to find the growth driving direction using157

Criterion 1, the radial slope of the energy-based damage,∂D
e

∂ρ , must be minimized as a function of the158

angle ϕ. Each of the terms in equations (3) and (4) are derived in the following.159

The derivative of the energy-based damage with respect to the mode mixity, ∂De

∂B , and the derivative160

of the energy-based damage with respect to the mixed-mode displacement jump, ∂De

∂λ , are scalar factors161

that depend on the parameters defining the CZM. The expression for ∂De

∂B obtained after the particular162

application to the CZM from [15, 17] is:163

∂De

∂B
=

η (GIIc − GIc)B(η−1)λ

Kλcλo (λo − λc)
= FB (7)

and the expression for ∂De

∂λ reads:164

∂De

∂λ
=

1

λc − λo
= Fλ (8)

Furthermore, the radial slope of the mixed-mode displacement jump, ∂λ
∂ρ , in equations (3) and (4)165

is addressed in the following. Taking into account the dependency of the mixed-mode displacement166

jump, λ (Equation (A.7)), on the normal and tangential displacement jumps, arranged in vector δi,167

and by application of the chain rule, the following expression is obtained:168

∂λ

∂ρ
=

∂λ

∂δj

∂δj
∂ρ

(9)

The first term in the right hand side of Equation (9) reads:169

10
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∂λ

∂δj
=

{
δ1
λ
,
δ2
λ
,
〈δ3〉
λ

}T

= Aj (10)

and the second term in the right hand side of Equation (9) is the derivative of the displacement jumps,170

δj , with respect to the radial coordinate, ρ, which is obtained as follows:171

∂δj
∂ρ

=
∂Θji

∂ρ
MimQm +Θji

∂Mim

∂ρ
Qm (11)

where Θji is the rotation matrix that relates the global to the local Cartesian coordinate system and172

Mim is the transformation matrix that relates the global displacement jump with the nodal global173

displacement, Qm (see Appendix A).174

The derivative of the rotation matrix, Θji, with respect to the radial coordinate, ρ, can be approx-175

imated to zero, by assuming that the curvature of the interface within the element domain is small.176

Moreover, its derivation leads to a complex expression that would increase the difficulty of the formu-177

lation and its further implementation into FE without a substantial improvement in the accuracy of178

the solution. For the sake of simplicity, in the following it is assumed that
∂Θji

∂ρ = 0. Therefore, only179

the second summand in the right hand side of Equation (11) is addressed.180

The derivative of the transformation matrix, Mim, with respect to the local polar coordinate, ρ, is181

obtained by successive application of the chain rule:182

∂Mim

∂ρ
=

∂Mim

∂ηα

∂ηα
∂el

∂el
∂ρ

(12)

The first partial derivative in the right hand side of Equation (12) is the variation of the transfor-183

mation matrix, Mim, with the isoparametric coordinates of the cohesive element formulation, ηα (see184

Appendix A):185

∂Mim

∂ηα
=

[
−∂Nik

∂ηα
,
∂Nik

∂ηα

]
= Eimα (13)

11
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where Nik is the shape function matrix and the subscript k runs from 1 to the number of degrees of186

freedom of each of top and bottom surface of the cohesive element. In case of an eight-noded element,187

k = 1...12.188

The derivative ∂ηα

∂el
is the inverse matrix of the two vectors tangential to the deformed midsurface,189

described in Equation (A.2) and expressed in local tangential coordinates, these being:190

∂el
∂ηα

= Θli
1

2

∂Nik

∂ηα

(
C+

k + C−k +Q+
k +Q−k

)
= ΘliJiα (14)

where Jiα is the Jacobian matrix defined in Equation (A.26). Thus, let matrix Gαl be defined as:191

Gαl = (ΘliJiα)
−1

=




∂η1

∂e1

∂η2

∂e1

∂η1

∂e2

∂η2

∂e2


 (15)

Using the following transformation relation:192



e1

e2


 =



ρ cos(ϕ)

ρ sin(ϕ)


 (16)

the derivative of the local Cartesian coordinates, el, with respect to the radial coordinate, ρ, reads:193

∂el
∂ρ

=



cos(ϕ)

sin(ϕ)


 (17)

Then, the slope of the mixed-mode displacement jump, λ, with respect to the radial coordinate, ρ,194

is obtained using equations (10)-(17) in Equation (9):195

∂λ

∂ρ
= AjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (18)

The same procedure can be applied to find the radial slope of the mode mixity, ∂B
∂ρ , in equations196

(3) and (4). Taking into account the dependency of the mode mixity, B, defined in Equation (A.10),197

12
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on the displacement jumps, δj , the radial slope ∂B
∂ρ is obtained by applying the chain rule as:198

∂B

∂ρ
=

∂B

∂δj

∂δj
∂ρ

(19)

where the derivative of the mode mixity, B, with respect to the displacement jumps, δj , reads:199

∂B

∂δj
=

{
2δ1〈δ3〉2

λ4
,
2δ2〈δ3〉2

λ4
, −2δ2s〈δ3〉

λ4

}T

= Oj (20)

and
∂δj
∂ρ is developed through equations (11)-(17). Hence, the radial slope ∂B

∂ρ is given by:200

∂B

∂ρ
= OjΘjiEimα (Gα1 (cosϕ) +Gα2 (sinϕ))Qm (21)

Finally, let matrix Vα be:201

Vα = FBOjΘjiEimαQm (22)

and matrix Wα be:202

Wα = FλAjΘjiEimαQm (23)

then, the growth driving direction according to Criterion 1 is found using equations (18) and (21)-(23)203

in Equation (3), solving for the angular coordinate, ϕ:204

ϕ = atan

(
− (V1 +W1)G11 + (V2 +W2)G21

(V1 +W1)G12 + (V2 +W2)G22

)
(24)

and fulfilling the condition for convexity (Equation (4)):205

(Vα +Wα) (Gα1 (− cosϕ) +Gα2 (− sinϕ)) > 0 (25)

Once ϕ is identified, the transformation of the global Cartesian coordinates, Xi, into the local206
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Cartesian coordinates that are located on the midsurface and oriented according to the growth driving207

direction is done by means of the following rotation matrix:208

Rri = TrjΘji (26)

where Trj is:209

Trj =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1




(27)

As shown, all the information necessary to evaluate Criterion 1 (and also criteria 2 and 3, as210

demonstrated in Appendix B) are the global nodal coordinates, Cm and displacements Qm. Using the211

cohesive element formulation in [15, 17], this information is available at the element level and, thus,212

the presented growth driving direction algorithms can be implemented into a user-defined element213

subroutine and evaluated at any point in the cohesive zone without any additional post-processing or214

non-local information.215

3. One-element validation examples216

The following one-element studies serve to validate the formulation of the growth driving direction217

criteria presented in Section 2. The proposed method has been implemented in a MATLAB program.218

The eight-noded cohesive element used is illustrated in Figure 5. The kinematics and constitutive law219

associated to the element are detailed in Appendix A. Newton-Cotes integration scheme is used, with220

2x2 integration points located at the midsurface vertexes. The undeformed element is 0.1 mm wide,221

0.1 mm long and has zero thickness. The cohesive properties are listed in Table 2. Three different222

loading cases (A, B and C) have been analyzed. The applied nodal displacement is listed in Table 3 for223

each case. The growth driving direction is calculated at a point p (η1, η2) located on the midsurface,224

with natural coordinates (−0.5,−0.5). The results of the angle ϕ obtained in each case are listed in225
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Interface properties
GIc 0.3 N/mm
GIIc 0.7 N/mm
τIc 50 MPa
τIIc 76.4 MPa
η 2 -
K 1E5 N/mm3

Table 2: Cohesive law properties used in the one-element case studies.

Case ID Loading conditions Nodal displacements ϕ at point p (deg)
(mm) Criterion 1 Criterion 2 Criterion 3

A

u5
3 = 0.005

270.0 270.0 270.0
Pure mode I u6

3 = 0.005
B constant u7

3 = 0.01
u8
3 = 0.01

B

u5
1 = u5

2 = u5
3 = 0.001

225.3 225.3 225.3
Mixed mode I-shear u6

1 = u6
2 = u6

3 = 0.002
B constant u7

1 = u7
2 = u7

3 = 0.003
u8
1 = u8

2 = u8
3 = 0.002

C

u5
1 =

√
2 · 0.008

225.0 225.0 45.0
Mixed mode I-shear u6

1 = u6
3 = 0.008

same λ at nodes u7
3 =

√
2 · 0.008

u8
1 = u8

3 = 0.008

Table 3: Loading conditions and growth driving direction results at point p from the one-element case studies

Table 3 for the three criteria.226

Figure 5: Sketch of the undeformed cohesive element. The nodes are represented as black dots and numbered
from 1 to 8 and the integration points are represented as asterisks and numbered from 1* to 4*.

Case A is a pure mode I-opened element. The distribution of the mixed-mode displacement jump,227

λ, along the element midsurface is projected on the deformed element midsurface in Figure 6, where228

the point p is highlighted in white. Integation points 1 and 2 have the lowest λ value, while points229

3 and 4 are the most opened. As illustrated, the growth driving direction according to Criterion 3230
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is determined by the greatest rate of decrease of λ. The other quantities being analyzed in criteria 1231

and 2, De and ωtot

Gc
respectively, are represented in Figure 7, as well as the mode-mixity, B. Like the232

B-distribution along the element midsurface is constant, the growth driving direction is only defined233

by the direction that minimizes the slope of the mixed-mode displacement jump. Therefore, in Case234

A only, the kinematics of the element governs the growth driving direction, independently of which235

criteria is used.236

0
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0.1

0

0.05

0.1

0
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0.01

X1 (mm)

Midsurface, S

X2 (mm)

X
3
(m

m
)

0 0.05 0.1
0

0.02

0.04
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0.08

0.1

λ (mm)

X1 (mm)

X
2
(m

m
)

0.4

0.5

0.6

0.7

0.8

Growth driving direction

p

1∗

4∗

2∗

3∗

p

1∗

4∗

2∗

3∗

Figure 6: Mixed-mode displacement jump distribution at the element midsurface for Case A loading conditions.
The growth driving direction is analyzed at point p, indicated with a white circle, and the result is listed in
Table 3.

On the other hand, in Case B, the element is opened under constant mixed mode I-shear opening237

conditions (See Figure 8). In this case, λ linearly increases along the midsurface diagonal direction,238

from integration point 1 to integration point 3. However, B is constant and, thus, also the constitutive239

law associated to it. Again, in Case B, the growth driving direction is only defined by the direction240

that minimizes the slope of the mixed-mode displacement jump, λ. Therefore, it is governed by the241

kinematics of the cohesive element and there is agreement between the three criteria.242

Finally, in Case C, all the integration points have the same λ-value, although the mode-mixity, B,243

changes from 0 to 1 along the midsurface diagonal direction (See Figure 9). At integration point 1, only244

shear sliding displacement is applied, while at the opposite corner, at integration point 3, there is only245

mode I opening. At the integration points 2 and 4, there is 50% mixed-mode opening. On the other246
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hand, λ is lower at the center part of the element midsurface than at the corners and its distribution247

is determined by the interpolation functions. Criterion 3 is only affected by the λ-interpolation and248

results in the direction that points to the center of the element. Furthermore, due to the uneven B-249

distribution, the constitutive law is not constant. With the cohesive properties used in these studies,250

the direction of steepest negative slopes of De and ωtot

Gc
coincides with the direction that maximizes251

the rate of increase of B. Note that, when evaluated at point p, this is the direction of largest slope252

of λ. Therefore, Criterion 3 and criteria 1 and 2 point to opposite directions.253

In addition, the slopes ∆De

∆ρ , ∆(ωtot/Gc)
∆ρ and ∆λ

∆ρ have been numerically evaluated using a central254

difference at every 1 degree at point p under Case C loading conditions using a perturbation size for255

the radius of 0.001 mm. Thus, the slope of any quantity f has been calculated as:256

∆f

∆ρ
=

f(0.001, ϕ)− f(−0.001, ϕ)
2 · 0.001

(28)

The resulting slopes are represented in Figure 10. The disagreement between Criterion 3 and257

criteria 1 and 2 can be observed. For Criterion 3, the angle ϕ that minimizes ∆λ
∆ρ is 45 degrees, while258

for criteria 1 and 2, the angle that minimizes ∆De

∆ρ and ∆(ωtot/Gc)
∆ρ , respectively, amounts 225 degrees.259

Note that these results are in agreement with the results obtained by implementing the formulation260

developed in Section 2.261
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Figure 7: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case A loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.
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Figure 8: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case B loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.
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Figure 9: a) Mixed-mode displacement jump, λ, b) mode-mixity, B, c) energy-based damage, De, and d) total
specific work over the fracture toughness, ωtot

Gc
, distributions at the element midsurface for Case C loading

conditions. The point p, where the growth driving direction is analyzed, is indicated with a white circle.
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Figure 10: Slopes in the radial direction, ρ, of the energy-based damage, De, the total specific work over the
fracture toughness, ωtot

Gc
, and the mixed-mode displacement jump, λ, as a function of the angle ϕ evaluated

at point p for Case C loading conditions. The slopes have been calculated using a central difference with a
perturbation for the radius of 0.001 mm. The values ∆De

∆ρ
, ∆(ωtot/Gc)

∆ρ
and ∆λ

∆ρ
have been normalized by their

maximum value.
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4. Three-Dimensional application262

To exemplify the applicability of the presented formulation, a three-dimensional model with a non-263

straight crack front is used. The test configuration is a End-Loaded Split (ELS) test on a symmetric264

run-out specimen with a midplane initial defect. A Teflon insert acts as an initial straight delami-265

nation (see Figure 11). Moreover, the middle width of the specimen is stiffened by bonding CFRP266

reinforcements on the upper and lower faces. During propagation the crack front shape changes when267

it approaches the reinforced region. The formulation presented in Section 2 can be used to evaluate the268

growth driving criteria at any given loading state during the quasi-static simulation. To this end, the269

method in [15, 17] has been enhanced with the growth driving direction calculation and implemented in270

Abaqus [27] as a UEL subroutine. The user-defined cohesive elements that model the middle interface271

are 0.2 mm x 0.5 mm. The laminate and interface properties used in the simulation are listed in Table272

4.273

Figure 11: a) Sketch of the partially reinforced ELS specimen. The grey-shadowed area represents the Teflon
insert. The blue-shadowed area is the area represented in figures 12.b, 13 and 18. b) Simplified model for FE
simulation and dimensions (units in mm).

The historical evolution of the 0.5-valued damage isoline is plotted in Figure 12.a. The energy-274
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Laminate properties Interface properties
E11: Longitudinal Young’s modulus 154 GPa GIc 0.3 N/mm
E22 = E33: Transversal Young’s modulus 8.5 GPa GIIc 3 N/mm
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa τIc 10 MPa
G23: Shear modulus in the transversal plane 3.036 GPa τIIc 31.62 MPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 - η 2 -
µ23: Poison’s coefficient in the transversal plane 0.4 - K 1E5 N/mm3

Table 4: Laminate and interface properties used in the simulation study of Section 4. The nomenclature of
the interface properties is defined in Appendix A.

based damage, De, distribution is projected on the deformed midsurface, in Figure 12.c, for a prescribed275

displacement of 32.55 mm. Only the blue-shadowed area in Figure 11 is represented. The crack growth276

direction is evaluated at each integration point within the FPZ using criteria 1, 2 and 3, and represented277

in Figure 13. Note that criteria 1 (Figure 13.a) and 2 (Figure 13.b) are coincident except from at the278

elastic region, where no results from Criterion 1 can be obtained. By comparison of figures 13.b and279

13.c, it can be observed that Criterion 3 only differs from criteria 1 and 2 at a region located at the280

upper left part of the cohesive zone (X1 < 85 mm and X2 > 10 mm). Indeed, the mode-mixity, B, is281

constant and equal to 1 in the entire cohesive zone, except for this region, where it locally decreases to282

0.6 (see Figure 13.d). As demonstrated in Section 3, under constant B conditions, the growth driving283

direction is only governed by the kinematics of the cohesive elements. Therefore, evaluating any of the284

three criteria results in the same growth driving direction solution. On the other hand, only criteria 1285

and 2 are affected by changes in the mode-dependent constitutive law, leading to different results, if286

compared to Criterion 3, at the region where the mode-mixity, B, varies.287

In addition, four damage isolines have been traced. The damage isolines are constructed by con-288

necting integration points with the same damage value. The first damage isoline, represented in Figure289

14.a, is the line connecting the completely damaged integration points adjacent to the damage process290

zone. At each point on the damage isoline, the geometrical normal direction has been approximated291

by the normal to the slope of a second degree polynomial expression fitted to five consecutive points292

represented in white in Figure 14.a): the current point and the two preceding and the two succeeding293

points. Therefore, the approximated normal direction is computed by post-processing global informa-294
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Figure 12: a) Historical evolution of the 0.5-valued damage isoline. b) Reaction force vs prescribed displacement
curve with the current loading state highlighted in red. c) Energy-based damage projected on the deformed
midsurface.

tion and it is heavily affected by the discretization and the choice of the fitting function. The results295

are compared to the local growth driving direction criteria developed in Section 2 in Figure 14.b. The296

same analysis is done with a 0.5-valued damage isoline (Figure 15), a 0.1-valued damage isoline (Figure297

16) and the line connecting the undamaged integration points adjacent to the damage process zone298

(Figure 17). Note that, although for comparison purposes the growth driving direction is evaluated in299

a discrete manner at the same points where the approximated normal direction is computed, it is a300

continuous field that can be evaluated at any point, as shown in Figure 13.301

Finally, three different FE models with element sizes 0.5 x 0.2 mm, 1 x 1.25 mm and 2.5 x 2.5302

mm (see Figure 18) are used to compare the element size effect on both the approximated normal303

direction to the 1-valued damage isoline, evaluated by using global information, and the predicted304

growth driving direction using Criterion 1, evaluated point-wise at the element level. The results are305
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obtained using the information of the points on the 1-valued damage isoline traced in Figure 19 for306

the three meshes. The direction obtained along the damage isoline using both methods is plotted in307

Figure 20.308
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Figure 13: a) Growth driving direction resulting from the evaluation of Criterion 1. b) Growth driving direction
resulting from the evaluation of Criterion 2. c) Growth driving direction resulting from the evaluation of
Criterion 3. b) Mode mixity, B. The black line marks the reinforcements.
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Figure 14: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 1-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 1-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1 and 2 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 15: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 0.5-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 0.5-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1 and 2 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 16: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 0.1-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border.
b) Comparison of the angle ϕ obtained at the 0.1-valued damage front by computing the normal direction
using global information and by locally evaluating the growth driving direction criteria. Criteria 1, 2 and 3 are
represented by the same marker because they lead to identical growth driving direction results.
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Figure 17: a) Energy-based damage, De, distribution along the cohesive zone. The points forming the 0-
valued damage isoline are highlighted in white. The thick black solid line marks the reinforcements border. b)
Comparison of the angle ϕ obtained at the 0-valued damage front by computing the normal direction using
global information and by locally evaluating the growth driving direction criteria. Criteria 1, 2 and 3 are
represented by the same marker because they lead to identical growth driving direction results.
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(a) Element size: 0.5 x 0.2 mmm
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(c) Element size: 2.5 x 2.5 mmm
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Figure 18: Growth driving direction resulting from the evaluation of Criterion 1 using three different element
sizes.
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Figure 19: 1-valued damage fronts using different element sizes: a) 0.2 x 0.5 mm. b) 1 x 1.25 mm. c) 2.5 x 2.5
mm.
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by a) computing the normal direction to the crack front using global information and b) evaluating Criterion
1.
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5. Discussion309

Three different growth driving direction criteria have been proposed as element-level algorithms,310

that can be evaluated at any point within the cohesive zone. Criteria 1 and 2 are energetically-based311

formulations that account for both the kinematics and the constitutive law of the interface element.312

On the other hand, Criterion 3 is a geometrical approach, which only accounts for the kinematics of313

the interface element. Therefore, when the mode-mixity, B, is not constant, criteria 1 and 2 are the314

most appropriate. Moreover, Criterion 2 computes the rate of decrease of both the specific elastic315

energy, ωe, and the dissipated energy, ωd, normalized to the fracture toughness, Gc. On the contrary,316

Criterion 1 only computes the rate of decrease of the dissipated energy, ωd, normalized to the fracture317

toughness, Gc, which is equivalent to computing the rate of decrease of the energy-based damage, De.318

On this basis, Criterion 1 is not active before damage initiation, while Criterion 2 can be computed319

as soon as some separation between two initially coinciding points at the interface occurs. The three320

criteria have been presented for completeness, since they can be developed for other CZM formulations321

following the methodology described in Section 2.3. With the CZM used in this work, criteria 1 and 2322

lead to the same growth driving direction solution at the damaged region. However, different results323

may be obtained if a mode-dependent penalty-stiffness is used, which could render the specific elastic324

energy of Crietion 2 dependent on growth driving direction.325

The implementation of the formulation for the proposed growth driving direction criteria has been326

validated with one-element case studies in Section 3. The distribution of the quantities being ana-327

lyzed have been projected on the element midsurface for visual verification (see figures 7-9 for different328

loading cases). In addition, the slopes of such quantities have been numerically evaluated at different329

orientations around a given evaluation point under Case C loading conditions (Figure 10). The orien-330

tation that results in lowest slopes coincides with the angle of growth driving direction predicted by331

each criteria, respectively.332

Finally, the capabilities of the presented formulation are demonstrated in Section 4 using a three-333

dimensional run-out specimen loaded under ELS test conditions (Figure 11). The crack front propa-334

33

221



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

gates with non-straight shape due to the reinforcements bonded at the middle width of the specimen335

Figure 12. The growth driving direction criteria are evaluated at all the integration points within336

the cohesive zone for a given loading state with large deformations (Figure 13). The results from337

the three criteria differ only at those regions where the mode-mixity, B, is not constant, as already338

demonstrated in Section 3. Moreover, the resulting crack growth driving direction is compared with339

the geometrical normal direction of four different damage isolines computed by post-processing global340

information (figures 14-17). Both results are in good agreement, although the agreement is higher341

between the geometrical normal direction to the damage isolines derived from global information and342

the results from criteria 1 and 2, than from Criterion 3, specially at the non-constant mode-mixity,343

B, region. It is noteworthy that the global description of the damage isoline is highly dependent on344

the methodology used to compute it, mainly the number of points taken into account and its fitting.345

Therefore, in a FE framework, the computation of the approximated normal direction to the damage346

isoline using global information may, in some cases, misrepresent the actual normal direction. Indeed,347

the local computation of the negative gradient of the energy-based damage, De, by means of Criterion348

1 is the exact normal to the damage isolines. The fitting of the points forming the damage isoline,349

that leads to an approximate global description of it, is only used to validate the implementation of350

the formulation presented. To close, the effect of the mesh size on the determination of the normal351

direction to the 1-valued damage isoline is analyzed using both methods (Figure 20): the approximated352

normal direction using global information and the growth driving direction obtained by evaluating Cri-353

terion 1. The results show that the growth driving direction, evaluated locally, shows less sensitivity354

to the element size. Indeed, the growth driving direction is a continuum field which does not explicitly355

depend on the mesh size, but it implicitly does, due to discretization of the displacement field in the356

FEM [28].357
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6. Conclusions358

A novel method has been proposed for the determination of the growth driving direction for cohesive359

zone models. The presented formulation is evaluated point-wise. Therefore, it can be implemented as360

a part of a user-defined cohesive element subroutine and evaluated during simulation without the need361

of any extra loop, post-processing or global information.362

The growth driving direction is defined as the negative gradient of the energy-based damage vari-363

able. However, other quantities can be used for the sake of simplicity. In this work, three different364

criteria are proposed. The implementation of the formulation for the proposed criteria applied to a365

particular CZM [15, 17] is derived and validated by using one-element analysis under different loading366

conditions.367

Finally, the usefulness of the method has been demonstrated via the analysis of delamination368

propagation in a three-dimensional structure with a complex shaped crack front. The results using the369

proposed point-wise formulation for the evaluation of the growth driving direction are in agreement370

with the results from a global approximation of the normal direction to different damage isolines. Apart371

from being a low computational time-consuming task, the proposed formulation has the advantage that372

it can be evaluated at any point within the cohesive zone.373
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Appendix A. The cohesive element formulation451

The cohesive zone model from the original work of Turon et al. [15, 17] and its finite element452

implementation are outlined in the following.453

Appendix A.1. Kinematics454

Let the delamination be understood as a strong discontinuous singular surface, S, that crosses a455

volume of material, Ω, and divides it into two subdomains, Ω+ and Ω−, as shown in Figure A.21.456

There are two surfaces that bound into S: the upper surface, S+, associated with Ω+, and the lower457

surface, S−, associated with Ω−. These two surfaces, which are initially coincident with the reference458

surface, S0, in the undeformed configuration, represent the crack faces. They independently translate,459

rotate and stretch, though their motion is constrained by the constitutive law used to describe the460

interface.461

The reference surface, S0, is defined in a the three-dimensional space, as shown in Figure A.22,462

by the global Cartesian coordinates Xi, where i = 1, 2, 3. Conveniently, the internal deformed middle463

surface, S, can be defined, through the history of deformations, as the average distance between two464

initially coinciding points,465

xi = Xi +
1

2

(
u+
i + u−i

)
(A.1)

where u±i are the displacements of the two material points on S± that are related to the point Xi,466

contained in S0. Hence, defining a local Cartesian coordinate system (ê1, ê2, ê3) on S, the normal and467

tangential components of the displacement jump across the material discontinuity can be expressed468

according to the local orientation of the midsurface.469

Let η1 and η2 be curvilinear coordinates located on S, as represented in Figure A.22 (Note that the470

isoparametric representation of the physical space is reduced to the interfacial element midsurface).471

Then, two vectors tangential to the deformed midsurface are established as:472
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Figure A.21: Interfacial surface, S, traversing a body, Ω, and diving it into Ω+ and Ω− subdomains. The
exploded view shows the upper S+ and lower S− surfaces that bound into S.

e′1 =
∂xi

∂η1
e′2 =

∂xi

∂η2
(A.2)

Figure A.22: Description of the deformed element midsurface, S.

The direction cosines of the local Cartesian coordinate system, are the normal, ê3, and tangential,473

ê1 and ê2, unit vectors to S, and can be derived from the Equation (A.2) as follows:474

ê1 =
e′1
|e′1|

ê3 =
e′1 × e′2
|e′1 × e′2|

ê2 = ê3 × ê1 (A.3)

Finally, the displacement jump in local coordinates can be expressed in terms of the displacement475

field:476
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δj = Θji

(
u+
i − u−i

)
, i, j = 1, 2, 3 (A.4)

where
(
u+
i − u−i

)
is the separation of two initially coinciding points at the interface in the global477

Cartesian coordinate system, and Θji is the transformation tensor that relates the global to the local478

coordinate system,479

Θ = [ê1, ê2, ê3]
T

(A.5)

Appendix A.2. Constitutive model480

The constitutive relation between the displacement jumps, δj , and the tractions between crack481

faces, τj , is defined as482

τj =
(
1−DK

)
Kδj for j = 1, 2

τ3 =
(
1−DK

)
Kδ3 −DKK〈−δ3〉

(A.6)

where DK ∈ [0, 1] is a scalar damage parameter reducing the initial constitutive tangent stiffness, K483

and 〈 〉 are the Macaulay brackets defined as 〈x〉 = (x + |x|). Note that, as interpenetration of crack484

faces is physically prevented by contact, negative normal opening values are avoided.485

The evolution of the stiffness degrading damage variable, DK is governed by an equivalent one-486

dimensional cohesive law and a damage criterion. For the formulation of this equivalent one-dimensional487

cohesive law, and so that different stages of the degrading process can be compared under changing488

mixed-mode loading conditions, a non-negative scalar displacement jump is defined:489

λ =

√
(δI)

2
+ (δs)

2
(A.7)

where δI is the mode I opening, associated to the displacement jump in the normal direction to the490
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midsurface, and δs is the shear sliding resulting of the displacement jumps in the tangential directions491

to the midsurface.492

δI = 〈δ3〉, δs =

√
(δ1)

2
+ (δ2)

2
(A.8)

Note that the two tangential (orthogonal among each other) displacement jumps, δ1 and δ2, are493

reduced to an equivalent shear displacement jump, δs. It is worth to mention that this is due to the494

incapability of the original formulation [15, 17] to distinguish into modes II and III, mainly attributed495

to the hitherto lack of computationally-efficient crack front tracking algorithms, and not supported by496

any physical evidence. In any event, shear opening mode is, conservatively, treated as mode II in the497

present constitutive model.498

The equivalent one-dimensional interface traction is related to the equivalent one-dimensional dis-499

placement jump with500

µ =
(
1−DK

)
Kλ (A.9)

With increasing displacement jump, the traction increases to a peak value, µo, corresponding to501

the interfacial strength, and then decreases until complete decohesion. To ensure the correct energy502

dissipation during the process of fracture, the total area under the traction-displacement jump curve503

is set equal to the fracture toughness, Gc. Both the interfacial strength and the fracture toughness are504

material parameters that depend on the opening mode-mixity, and, together with the penalty stiffness,505

K, define the shape of the constitutive law.506

The local mode-mixity, B, is defined in terms of the displacement jump as:507

B =
δ2s

δ2I + δ2s
(A.10)

and it is equivalent to the amount of total specific work related to shear mode over the entire total508
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specific work (the reader is referred to Figure 2 for an schematic representation of the total specific509

work of the interface).510

The critical energy release rate, Gc, for a given mode-mixity is determined using the expression511

proposed in [25],512

Gc = GIc + (GIIc − GIc)Bη (A.11)

where subscripts I and II denote the pure modes I and II values, respectively, and η is an experi-513

mentally determined mode interaction parameter. Similarly, the interfacial strength, µo, for a given514

mode-mixity is defined as515

µo =

√
(τIo)

2
+ [(τIIo − τIo)]Bη (A.12)

In terms of the displacement jump, the onset, λo, and propagation, λc, of delamination are related516

to the parameters of the cohesive law:517

λo =
µo

K
, λc =

2Gc
µo

(A.13)

The damage criterion is formulated ensuring damage irreversibility, such that the damage variable518

at the current time tc determined as519

DK = min

(
max

(
0,

λt
c (λ

t − λt
o)

λt (λt
c − λt

o)

)
, 1

)
∀ t ∈ [0, tc] (A.14)

Thus, the mixed-mode displacement jump associated to the current damage state is520

λD =
λoλc

λc −DK (λc − λo)
(A.15)

The stiffness degrading damage variable, DK , is strongly nonlinear in terms of λD. This might521

hinder the performance of the numerical method [21]. Conversely, an energy-based damage variable,522
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which exhibits linear dependency with λD, is defined in [17] and [21] as the specific dissipated energy523

due to fracture over the fracture toughness during degradation (λo < λD < λc):524





De = 0 for λD ≤ λo

De =
ωd

Gc
for λo ≤ λD ≤ λc

De = 1 for λD ≥ λc

(A.16)

where ωd is, in terms of the displacement jump is given as:525

ωd = max

{
0,

1

2
Kλoλc

λo − λD
λo − λc

}
(A.17)

Finally, the total specific work associated to the current damage state can also be determined in526

terms of the displacement jump:527

ωtot =
1

2
Kλo

(
λc −

(λc − λD)
2

λc − λo

)
(A.18)

Note that, during crack propagation, the µ-λ relation follows the equivalent one-dimensional cohe-528

sive law, i.e.:529

λD = λ (A.19)

and that before damage initiation, the no energy is dissipated yet and the total specific work corre-530

sponds to the specific elastic energy:531

ωtot =
1

2
Kλ2 (A.20)

Appendix A.3. Finite element implementation532

The three dimensional crack propagation problem is discretized here using the FE method. The533

cohesive interface is implemented into an eight-noded zero-thickness element. This interface element534
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is compatible with three dimensional continuum elements that may form the upper and lower part of535

the body containing the singularity.536

The nodal coordinates of the undeformed interface element are arranged in vector C in such a way537

that:538

C =
{
C−,C+

}
(A.21)

being C−k =
{
X1

1 , X
1
2 , X

1
3 , ..., X

4
1 , X

4
2 , X

4
3

}T
and C+

k =
{
X5

1 , X
5
2 , X

5
3 , ..., X

8
1 , X

8
2 , X

8
3

}T
the global co-539

ordinates of the nodes at the lower and upper interfaces, respectively, where Xn
i is the i-th coordinate540

of the n-th node.541

The nodal displacements, relative to the global coordinates, are arranged in vectorQ similarly to the542

nodal coordinates, i.e. the nodal displacements of the lower interface, Q−k =
{
u1
1, u

1
2, u

1
3, ..., u

4
1, u

4
2, u

4
3

}T
,543

are numbered first, and the nodal displacements of the upper interface, Q+
k =

{
u5
1, u

5
2, u

5
3, ..., u

8
1, u

8
2, u

8
3

}T
,544

are numbered second,545

Q =
{
Q−,Q+

}
(A.22)

The material coordinates and the displacement field are interpolated within the domain of the546

surface element using isoparametric bilinear shape functions,547

L1 =
1

2
(1− η1) (1− η2) ; L2 =

1

2
(1 + η1) (1− η2)

L3 =
1

2
(1 + η1) (1 + η2) ; L4 =

1

2
(1− η1) (1 + η2)

(A.23)

organized in matrix the shape function matrix, Nik, as follows:548
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Nik =




L1 0 0 L2 0 0 L3 0 0 L4 0 0

0 L1 0 0 L2 0 0 L3 0 0 L4 0

0 0 L1 0 0 L2 0 0 L3 0 0 L4




(A.24)

According to Equation (A.1) and making use of equations (A.21)-(A.24), the coordinates of the549

interfacial deformed midsurface are:550

xi =
1

2
Nik

(
C+

k + C−k +Q+
k +Q−k

)
(A.25)

The tangential vectors to the interfacial midsurface at (η1, η2), defined in Equation (A.2), are now551

arranged in the Jacobian matrix,552

J = [e′1, e
′
2] where Jiα =

1

2

∂Nik

∂ηα

(
C+

k + C−k +Q+
k +Q−k

)
(A.26)

where the subscript α = 1, 2.553

Hence, the unit vectors, ê1, ê2, ê3, corresponding to the direction cosines of the local Cartesian554

coordinate system, can be derived from Jiα following equation (A.3).555

Finally, the transformation matrix, Mim, computes the displacement jump in global coordinates of556

two initially coinciding points from the nodal global displacement vector:557

u+
i − u−i = MimQm (A.27)

where subscript m runs form 1 to the number of degrees of freedom of the element (m = 1...24) and558

Mim is defined as:559

Mim = [−Nik Nik] (A.28)

Thus, from Equation (A.4), the displacement jump in local coordinates reads:560
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δj = ΘjiMimQm (A.29)

For the sake of simplicity, only the derivation of the displacement jump field is depicted above,561

as the only field needed for the resolution of the criteria presented in section 2.2. See [15] for the562

derivation of the interface element tangent stiffness matrix, K, and internal force vector, intf required563

in the nonlinear solution procedure.564

Appendix B. Development of the criteria to determine the growth driving direction565

The formulation of the three proposed criteria in section 2.2 to determine the growth driving566

direction is synthesized in Table B.5. The equations to solve for Criterion 1 are found by introducing567

equations (B.2) and (B.3) in equations (B.1) and (B.4) and computing the radial slopes of the mixed-568

mode displacement jump, ∂λ
∂ρ , and mode-mixity, ∂B

∂ρ . On the ohter hand, the equations for Criterion569

2 are found by introducing equations (B.6) and (B.7) in equations (B.5) and (B.8). Also the radial570

slopes of the mixed-mode displacement jump, ∂λ
∂ρ , and mode-mixity, ∂B

∂ρ , are required. Finally, for the571

evaluation of Criterion 3 only the slope of the mixed-mode displacement jump in the radial direction,572

∂λ
∂ρ , is needed (see equations (B.9) and (B.10)).573

Moreover, in this work, the criteria are applied to the CZM presented in [15, 17] to exemplify their574

capabilities. In this particular case, the factors FB and Fλ are reduced to equations (B.11) and (B.12),575

for Criterion 1, and reduced to equations (B.13) and (B.14), for Criterion 2. Equations (B.11) and576

(B.12) are obtained by introducing equations (B.15)-(B.24) into equations (B.2) and (B.3). Equations577

(B.13) and (B.14) are obtained by introducing equations (B.15)-(B.19) and (B.25)-(B.29) into equations578

(B.6) and (B.7). Also, the derivation of the radial slopes of the mixed-mode displacement jump and579

mode-mixity, ∂λ
∂ρ and ∂B

∂ρ , after the particular application to the CZM from [15, 17] is detailed in section580

2.3.581
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Criterion ID Functions to solve FB Fλ

1

∂

∂ϕ

∂De

∂ρ
=

∂

∂ϕ

(
FB

∂B

∂ρ
+ Fλ

∂λ

∂ρ

)
= 0 (B.1)

∂
(

ωd

Gc

)

∂ωd

(
∂ωd

∂λo

∂λo

∂µo
+

∂ωd

∂λc

∂λc

∂µo

)
∂µo

∂B
+

(B.2)
∂
(

ωd

Gc

)

∂ωd

∂ωd

∂λ
(B.3)

∂2

∂ϕ2

∂De

∂ρ
=

∂2

∂ϕ2

(
FB

∂B

∂ρ
+ Fλ

∂λ

∂ρ

)
> 0 (B.4) +



∂
(

ωd

Gc

)

∂ωd

∂ωd

∂λc

∂λc

∂Gc
+

∂
(

ωd

Gc

)

∂Gc


 ∂Gc

∂B

2

∂

∂ϕ

∂
(
ωtot

Gc
)

∂ρ
=

∂

∂ϕ

(
FB

∂B

∂ρ
+ Fλ

∂λ

∂ρ

)
= 0 (B.5)

∂
(

ωtot

Gc

)

∂ωtot

(
∂ωtot

∂λo

∂λo

∂µo
+

∂ωtot

∂λc

∂λc

∂µo

)
∂µo

∂B
+

(B.6)
∂
(

ωtot

Gc

)

∂ωtot

∂ωtot

∂λ
(B.7)

∂2

∂ϕ2

∂
(
ωtot

Gc
)

∂ρ
=

∂2

∂ϕ2

(
FB

∂B

∂ρ
+ Fλ

∂λ

∂ρ

)
> 0 (B.8) +



∂
(

ωtot

Gc

)

∂ωtot

∂ωtot

∂λc

∂λc

∂Gc
+

∂
(

ωtot

Gc

)

∂Gc


 ∂Gc

∂B

3

∂

∂ϕ

∂λ

∂ρ
= 0 (B.9)

— —

∂2

∂ϕ2

∂λ

∂ρ
> 0 (B.10)

Table B.5: Equations to solve for each criteria to determine the growth driving direction, ϕ.

48

236



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Criterion ID FB Fλ

1
η (GIIc − GIc)B(η−1)λ

Kλcλo (λo − λc)
(B.11) 1

λc − λo

(B.12)

2
2η (GIIc − GIc)B(η−1)λ (λc − λ)

Kλ2
cλo (λo − λc)

(B.13) 2 (λc − λ)

λc (λc − λo)
(B.14)

Table B.6: Expressions for the factors FB and Fλ after application of the CZM formulation presented in [15, 17].
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Dependencies Partial derivatives

λo (µo) ∂λo

∂µo
=

1

K
(B.15)

λc (µo,Gc)
∂λc

∂µo
= −2Gc

µ2
o

(B.16)

∂λc

∂Gc
=

2

µo
(B.17)

µo (B) ∂µo

∂B
=

η
(
τ2IIo − τ2Io

)
Bη−1

2µo
(B.18)

Gc (B) ∂Gc
∂B

= η (GIIc − GIc)Bη−1 (B.19)

ωd (λo, λc, λ)

∂ωd

∂λo
=

1

2
Kλc

λ2
o − 2λcλo + λcλ

(λo − λc)
2 (B.20)

∂ωd

∂λc
=

1

2
Kλ2

o

λo − λ

(λo − λc)
2 (B.21)

∂ωd

∂λ
=

1

2
Kλoλc

1

(λc − λo)
(B.22)

De (ωd,Gc)
∂
(

ωd

Gc

)

∂ωd
=

1

Gc
(B.23)

∂
(

ωd

Gc

)

∂Gc
=
−ωd

G2
c

(B.24)

ωtot (λo, λc, λ)

∂ωtot

∂λo
=

1

2
Kλc (λo − λ)

λ− 2λc + λo

(λo − λc)
2 (B.25)

∂ωtot

∂λc
=

1

2
Kλo

(λo − λ)
2

(λo − λc)
2 (B.26)

∂ωtot

∂λ
= Kλo

λc − λ

λc − λo
(B.27)

ωtot

Gc
(ωtot,Gc)

∂
(

ωtot

Gc

)

∂ωtot
=

1

Gc
(B.28)

∂
(

ωtot

Gc

)

∂Gc
=
−ωtot

G2
c

(B.29)

Table B.7: Dependencies and partial derivatives of the variables in the system using the CZM presented in
[15, 17].
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Evaluation of the mode-decomposed energy release rates for arbitrarily
shaped delamination fronts using cohesive elements

L. Carrerasa,∗, E. Lindgaardb, J. Renarta, B.L.V. Bakb, A. Turona

aAMADE, Polytechnic School, University of Girona, Campus Montilivi s/n, E-17003 Girona, Spain
bDept. of Materials and Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg East, Denmark

Abstract

The computation of the mode-decomposed energy release rates in three-dimensional problems in-

volving delaminations, modeled using a cohesive zone model approach, has not been previously inves-

tigated. The J-integral is a suitable method for calculating it, since its domain-independence can be

employed to shrink the integration domain to the cohesive interface, and reduce it to a line integral. In

this work, a numerical procedure to evaluate the mode-decomposed J-integral in curved delamination

fronts is presented. A growth driving direction criterion, previously developed by the authors, is used

to track the integration path along the cohesive zone and decompose the energy release rate. The

formulation is implemented in a finite element framework and validated by comparison with VCCT

results. The significance and generality of the formulation are demonstrated on crack propagation in

a three-dimensional composite structure.

Keywords:

Delamination growth, Cohesive zone model, Finite element analysis, Energy Release Rate,

Mode-decomposed J-Integral

1. Introduction1

Delamination is a common cause of failure in layered materials and, therefore, the analysis of2

delamination onset and growth is essential for any mechanical application. In this regard, the finite3

∗Corresponding author. Tel.: +34 972 418 817
Email addresses: laura.carreras@udg.edu (L. Carreras), elo@mp.aau.dk (E. Lindgaard), jordi.renart@udg.edu

(J. Renart), brianbak@mp.aau.dk (B.L.V. Bak), albert.turon@udg.edu (A. Turon)

243



element (FE) method has become an indispensable tool in the design of laminated composite structures4

and in the prediction of their service life.5

The most common methods for the prediction of interlaminar failure can be divided in two main6

approaches: Methods purely based on fracture mechanics and methods based on the cohesive zone7

model (CZM) concept [1, 2], the latter combining the framework of fracture mechanics and damage8

mechanics.9

In the fracture mechanics approach, usually a local Griffith’s criterion [3] is used to predict de-10

lamination growth: the energy release rate, G, is compared to the interlaminar fracture toughness,11

Gc. Two of the most common extraction methods for the energy release rate (also called the crack12

extension force) rely either on the virtual crack closure technique (VCCT) [4] or the J-integral [5].13

Then, applying Griffith’s criterion, crack propagation occurs at the points where G ≥ Gc. This local14

energy balance criterion implies negligible fracture process zone. Conversely, CZMs can capture frac-15

ture energy dissipation mechanisms of quasi-brittle materials, such as the formation of micro cracks16

ahead of the crack tip before complete separation of the crack faces. Therefore, the CZM approach is a17

suitable means of predicting crack propagation when a nonnegligible fracture process zone is present.18

The strain singularity at the tip of a sharp crack is removed by accounting for a cohesive zone (CZ),19

where the material undergoes degradation until complete decohesion. The mechanical behavior of the20

interface is modeled by means of a damage variable, which is a measure of the degradation of the21

mechanical properties of the material ahead of the crack tip. When the damage variable reaches its22

maximum value, new crack surface is created. Moreover, CZMs are specially suited for simulating23

interlaminar cracks in laminated structures, as the delamination is confined to propagate between two24

adjacent plies. Thus, when a progressive delamination simulation is solved using a FE analysis, the25

potential failure surfaces are known in advance, and the cohesive elements can be efficiently located.26

Under static loading conditions, existing CZMs [6–12] do not require the computation of the energy27

release rate in order to simulate crack growth. However, some of the recently published methods for28

the simulation of fatigue-driven delamination based on CZM [13–18] link the rate of the local fatigue29
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damage with any variant of the Paris’ law [19]. The Paris’ law-like expressions relate the crack growth30

rate with a power law function of the loading level in terms of a fracture mechanics parameter [13, 20],31

usually the stress intensity factor, K, or the energy release rate, G, where only the latter is relevant32

for a CZM. Therefore, the computation of the energy release rate is required in order to integrate the33

rate of the local fatigue damage. In this regard, the J-integral directly equates to G [21]. Indeed, the34

benchmark study of the simulation methods for fatigue-driven delamination using a CZM approach35

presented in [18] showed a better performance for the methods using the J-integral as means of36

extracting the energy release rate.37

The path-independence of the two-dimensional J-integral makes it very attractive in practice, since38

it avoids the need of accurate computations on the stress field at the crack tip, which is hard to deal39

with in a FE framework. For this reason, much effort has been devoted to extend the applicability40

of the J-integral to three-dimensional domains [22–32]. The published extensions of the J-integral41

for its evaluation in three-dimensional problems, where the crack extension force may change along42

the crack front, is commonly done by means of two approaches. The first is a point-wise evaluation43

of the J-integral on a cross-section of the crack surface, resulting in a combination of a contour44

integral and a surface integral defined over the area enclosed by the contour. See [30] for a detailed45

description. The computation of the surface integral requires accurate calculation of the field quantities46

at the crack tip. For this reason, it is commonly treated with the boundary element method [27, 30].47

The second approach is the equivalent domain integral over a finite volume surrounding the crack48

front [25, 26]. With this method, it is not required to capture the singular field near the crack49

tip and, hence, it is usually applied in a FEM framework. Regardless, the applicability of most of50

these J-integral extensions to three-dimensional domains is restricted to certain assumptions such as51

plane-strain/stress, i.e. at the vicinity of the crack tip, or planar cracks. By employing curvilinear52

coordinates, Eriksson [33] and Fernlund et al. [34] obtained generalized expressions applicable to53

curved cracks with non-planar crack surfaces. In [33], a volume-independent integral expression for54

the evaluation of the crack extension force is derived from the principle of virtual work. In [34],55
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the decrease of the potential energy with crack extension is employed to obtain a general path-area56

independent J-integral expression for non-planar cracks with curved crack fronts. In both cases, the57

fracture process zone is considered negligible and the mode-decomposition is not addressed.58

Delamination propagation may be described through a combination of the three basic fracture59

modes, Mode I, II and III [35], and the fracture resistance of the interface, under both static and60

fatigue loading, highly depends on the mode mixity conditions. Consequently, the delamination models61

available in the literature [13, 20, 36] are based on a mode-decomposed definition of the load, expressed62

in terms of the energy release rate (GI , GII and GIII). In this regard, the decomposition of the J-63

integral into fracture modes, as a tool for extracting energy release rates, becomes necessary.64

In this work, a procedure to numerically evaluate the mode-decomposed J-integral in a three-65

dimensional body undergoing a delamination, modeled using cohesive elements, is presented. The66

formulation is derived from the general expression of the J-integral for 3D curved delaminations with67

non-planar surfaces expressed in terms of curvilinear coordinates [34]. Its application to cohesive68

interfaces is addressed in Section 2, while its implementation in a FE framework is presented in69

Section 3. In Section 4, the formulation is applied to a moment-loaded double-cantilevered-beam70

(DCB) specimen, and the mixed-mode J-components are compared to the mode-decomposed energy71

release rates obtained from VCCT. In section 5, the formulation is used to compute the J-integral72

components of a partially reinforced end-loaded split (ELS) specimen with non-straight crack front.73

The work finishes with the discussion of the obtained results and conclusions.74

2. Formulation of the mode-decomposed energy release rates75

In this section, the formulation of the mode-decomposed energy release rates in three-dimensional76

delaminations, modeled using a cohesive zone model approach, is presented. The point of departure77

is the generalized J-integral for non-planar curved cracks obtained by Fernlund et al. [34].78
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2.1. Assessment of the energy release rate by means of the J-integral formulation in curvilinear coor-79

dinates80

Consider an elastic body (c.f. Figure 1), with a crack, subjected to prescribed tractions, T , and81

displacements, u, along parts of its boundary surface (Note that T and u are physical entities which82

are not yet described in any particular coordinate basis). In a general three dimensional domain, both83

the crack surfaces and the crack front may be curved. Let θi, i = 1, 2, 3, be an orthogonal curvilinear84

coordinate system with origin at a given point P along the crack front. This local coordinate system is85

oriented such that, at point P , θ3 is normal to the crack surface in the undeformed configuration where86

the crack surfaces are coinciding, θ2 is the coordinate along the crack front and θ1 is the direction of87

crack propagation, which is always tangent to the crack surface and perpendicular to θ2 and θ3.88
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Figure 1: a) Three-dimensional body undergoing a delamination with curved front and non-planar crack
surfaces. b) The integration domain is a slice of infinitesimal thickness, dl2.

Let us focus on a thin slice of elemental thickness, dl2, of the cracked body, which contains P (c.f.89

Figure 1). Note that an infinitesimal length segment, dli along a curvilinear axis, θi is given by:90

dli =
√
giidθ

i (1)

where gij is the covariant metric tensor. In the absence of body forces, the change in potential energy,91
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Π, per unit of newly created crack area is [34]:92

−dΠ

dA
= −

∫

V

dW

dA
dV +

∫

S

T i
dui
dA

dS (2)

where dA is the elemental crack area extension, V the volume of the slice, S is the surface surrounding93

V , W is the strain energy density, T i are the contravariant components of the traction vector and ui94

are the covariant components of the displacement vector.95

The infinitesimal thickness of the slice, allows to lump the three-dimensional slice into a surface S1,96

defined by θ2 = 0 (dl2 → 0). Then, by application of Green’s theorem, and under the assumption of97

small deformations, elastic material behavior, symmetry of the stress tensor and equilibrium conditions,98

the decrease in potential energy per unit area extension is expressed, in [34], as a contour integral and99

an area integral on the surface S1:100

J = −dΠ

dA
=

1√
g11

∮

Γ

(
Wn1 − T i

∂ui
∂θ1

)
dΓ − 1√

g11g22

∫

S1

∂

∂θ2

(
σi2

∂ui
∂θ1

)
dS (3)

where Γ is the contour enclosing S1 in the clockwise direction and nj is the outward unit normal vector101

on Γ . Note that in [34], the curvilinear coordinate system is rotated 90◦ around the θ1-coordinate.102

The J-integral is equivalent to the energy release rate, G, for an elastic material response. In a103

three-dimensional body, the energy release rate may vary along the crack front. Therefore, in order to104

assess the delamination extension force in three-dimensional problems, it is customary to compute the105

point-wise value of J as a function of the crack front position, P .106

2.2. Application to cohesive interfaces107

Conversely to LEFM, the CZM relies on the existence of a band of material ahead of the crack tip,108

called the cohesive zone (CZ), where the material behaves nonlinearly [1, 2]. In the CZ, a cohesive109

traction distribution acts on the separating surfaces, thus avoiding stress singularities at the tip of110

sharp cracks. The constitutive law that relates the cohesive tractions, T i(δi), to the displacement111

jumps at the interface, δi, is governed by a scalar damage variable. The damage variable evolves112
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monotonically with time to ensure irreversibility. To guarantee the proper energy dissipation under113

mixed-mode conditions, in [11], the cohesive law is formulated in a one-dimensional space, where the114

equivalent mixed-mode traction, µ, is related to the norm of the displacement jump, λ. A sketch of115

the bilinear cohesive law used in [11] is represented in Figure 2. An energy-based damage variable,116

De, is introduced as the ratio of specific dissipated energy due to fracture, ωd (Figure 2.b), and the117

fracture toughness, Gc (Figure 2.a). Thus, De ranges from 0 to 1, and it can be understood as the118

degree of crack development, taking a value of 0 if the degradation process is yet to start, and a value119

of 1 if the crack is completely developed.120
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Figure 2: Equivalent one-dimensional cohesive law. The shadowed area in a) represents the fracture toughness,
Gc, in b), the specific dissipated energy, ωd and in c), the total specific work, ωtot, for a given state of damage.

The constitutive law is formed by an initial elastic region, before damage initiation, and a softening121

region. The onset and propagation of delamination are limited by the onset mixed-mode displacement122

jump, λo, and the critical mixed-mode displacement jump, λc, such that the applicability of the123

energy-based damage variable, De, is restricted to:124





De = 0 for λD ≤ λo

De =
ωd
Gc

for λo ≤ λD ≤ λc

De = 1 for λD ≥ λc

(4)

where λD is the mixed-mode displacement jump associated to the current damage state.125

When applied to delamination modeling in laminated composite materials, the cohesive behavior126

is lumped into the interface between subsequent plies. In [34], it is demonstrated that the J-integral127
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of Equation (3), generalized in terms of curvilinear coordinates for cracks with curved front and128

non-planar crack surfaces, is path-area-independent. Then, for the measurement of the delamination129

extension force in 3D laminated structures modeled using a CZM approach, the path-area-independence130

of Equation (3) can be employed to shrink the contour Γ to the upper and lower crack surfaces (c.f.131

Figure 3), similarly to what is done with the two-dimensional form of the J-integral [5]. Therefore, the132

term related to the surface in Equation (3) vanishes due to the zero-thickness of the cohesive interface.133

Moreover, the contribution from the strain energy term within the cohesive interface also vanishes and134

Equation (3) is reduced to:135

J = − 1√
g11

∮

Γ

(
T i
∂ui
∂θ1

)
dΓ (5)
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Figure 3: The integration path, Γ , is reduced to the cohesive interface.

Let σij be the contravariant components of the cohesive stress tensor. Then, the contravariant136

traction vector at the crack faces is given by:137

T i = σijnj (6)

being nj is the outward unit normal vector on the contour Γ , i.e. on the crack surfaces. Thus, nj138

vanishes for j 6= 3, and Equation (5) reads:139

J = − 1√
g11

∫

Γ

(
σi3

∂u+i
∂θ1

+ σi3
∂u−i
∂θ1

)
dθ1 (7)
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where u+ and u− are the displacements at the upper (+) and lower (−) crack surfaces, respectively.140

Finally, introducing the displacement jump as the separation of two initially coinciding points on the141

interface, defined as:142

δi =
(
u+i − u−i

)
(8)

the curvilinear CZ J-integral, when applied to cohesive interfaces, can be expressed as:143

J = − 1√
g11

∫

CZ

(
σi3

∂δi
∂θ1

)
dθ1 (9)

Observe, in Figure 3, that the integration path is the entire CZ so that all the cohesive stresses144

contribute to the CZ J-integral.145

2.3. Integration paths146

As demonstrated in Section 2.2, the integration domain of the curvilinear CZ J-integral applied147

to cohesive interfaces is a slice of infinitesimal thickness, dl2, lumped into the delamination interface.148

Thus, the integration domain is reduced to a path contained in the delamination interface which follows149

the direction of crack propagation, θ1. In order to compute the J-distribution in three-dimensional150

structures, the interface can be divided into infinite slices. Obviously, the J-value of each slice is151

unique, and is obtained when the integration path is covered in its entirety, i.e. going through the152

entire cohesive zone, from the completely damaged zone (point 1 in Figure 3, with zero cohesive stress)153

until the end of the zone in elastic regime (point 2 in Figure 3, with zero cohesive stress).154

In LEFM, the propagation direction, θ1, is assumed to be the normal to the crack front at the point155

P , where the crack front is the line separating the damaged and undamaged parts (c.f. Figure 4.a).156

However, the definition of the propagation direction as the normal to the crack front does not apply for157

CZM, due to existence of a cohesive zone of variable length. The authors have recently introduced the158

concept of the growth driving direction (GDD) for CZM [37], as an analog to the crack propagation159

direction in LEFM. The GDD is defined as the gradient vector field of the scalar energy-based damage,160
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De with respect to the coordinates tangent to the cohesive interface mid-surface:161

GDD = −∇De (10)

Thus, the GDD is normal to the energy-based damage, De, isolines (c.f. Figure 4.a) and it converges162

with the normal to the crack front in LEFM (c.f. Figure 4.b) in the limiting case where the length of163

the CZ approaches zero. Therefore, making use of the criterion presented in [37], θ1 can be defined164

according to the GDD. In this way, the integration paths, defined along the θ1-coordinate, never cross165

and the three-dimensional structure can be understood as the aggregation of infinite individual slices166

of infinitesimal thickness which contain a crack propagating in the GDD. It is worth to mention that167

the damage isolines may not be parallel along the CZ, leading to slices with double curvature if, in168

addition, the cohesive interface mid-surface is non-planar.169
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It is noted that, for the computation of the J-value in cohesive interfaces using Equation (9), the170

contribution of the stress, σi3, and displacement jump slope in the GDD direction, ∂δi
∂θ1 , in the elastic171

regime is needed. However, the criterion in Equation (10) for the identification of the GDD, based on172

the negative gradient of the energy-based damage, De, is only meaningful for De ∈]0, 1[ (see Equation173

(4)). Therefore, a new criterion for the identification of GDD in the elastic regime must be used. In174
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this regard, another criterion, which is also active in before the initiation of the degradation process,175

is purposed in [37]:176

GDD = −∇
(
ωtot
Gc

)
(11)

where ωtot
Gc is the ratio between the total specific work (c.f. Figure 2.c) and the fracture toughness.177

Both the conservative and the non-conservative work are computed in this criterion. Thus, since, as178

soon as two initially coinciding points separate from each other some elastic energy is stored, this179

criterion is active before any energy dissipation due to fracture takes place. Moreover, using the CZM180

presented in [11] once the damage is initiated, both criteria lead to the same GDD solution.181

2.4. Mode-decomposition of the CZ J-integral for its application to cohesive interfaces182

A crack can grow under a combination of three loading modes [35]: the opening mode (mode I),183

the sliding mode (mode II) and the tearing mode (mode III). Mode I is defined normal to the cohesive184

interface mid-surface, mode II, tangent to the mid-surface in the propagation direction and mode III,185

tangent to the mid-surface and perpendicular to mode II. As already stated in Section 3.1, the GDD is186

defined as the direction equivalent to crack propagation direction when a CZM approach is used [37].187

Thus, the mode II direction is defined coincident to the GDD, whereas the mode III direction is defined188

perpendicular to it. Indeed, since θi are orthogonal curvilinear coordinates, the local covariant and189

contravariant basis vectors are coincident. The local basis vectors are aligned with the three loading190

modes directions, since θ1 is locally coincident with the GDD (i.e. tangent to the mid-surface), θ3 is191

normal to the mid-surface, and θ2 is normal to θ1 and θ3.192

At an interface modeled using a CZM approach, only three uncoupled components of cohesive193

stresses (σ13, σ23 and σ33) result from the displacements jumps between crack faces (δ1, δ2, δ3).194

Stresses are expressed in the local contravariant basis vectors and displacements jumps in the local195

covariant basis vectors of the curvilinear crack coordinate system, θi. Therefore, necessarily, the196

quantities σ13 and ∂δ1
∂θ1

contribute to mode II, σ23 and ∂δ2
∂θ1

, to mode III, and σ33 and ∂δ3
∂θ1

, to mode197
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I crack loading. Hence, the mode-decomposed CZ J-integrals are defined according to the local θi198

coordinate system such that the terms with i = 3 are attributed to Mode I, the terms with i = 1, to199

Mode II and the terms with i = 2, to Mode III:200

JI = − 1√
g11

∫

CZ

(
σ33 ∂δ3

∂θ1

)
dθ1

JII = − 1√
g11

∫

CZ

(
σ13 ∂δ1

∂θ1

)
dθ1

JIII = − 1√
g11

∫

CZ

(
σ23 ∂δ2

∂θ1

)
dθ1

(12)

For 3D planar cracks, described by a rectangular Cartesian coordinate system, the mode decom-201

posed CZ J-integrals in Equation (12) evaluated at the cohesive interface, are in agreement with that202

in [30, 38].203

3. Discretization with the Finite Element Method204

In the following, the formulation presented in Section 2 is applied into a FE framework. The CZM205

used in this work, and its implementation to FE, was presented by Turon et al. in [10, 11]. Complying206

with the cohesive element definition, the interfacial tractions and displacement jumps are expressed207

in a local Cartesian coordinate system, xi, located on the deformed mid-surface, Scoh, defined as the208

average distance between two initially coinciding points, P− and P+ (c.f. Figure 5). The direction209

cosines of the local Cartesian coordinate system, are the normal, ê3, and tangential, ê1 and ê2, unit210

vectors to Scoh. Furthermore, employing the criterion developed in [37], the local tangential coordinates211

can be oriented in such a way that x1 and x2 are the tangential and normal coordinates to the GDD,212

respectively.213

To numerically integrate Equation (12), trapezoidal integration is employed (although any other214

numerical integration method could be used). Thus, the curved integration pathline is discretized into215

small linear subintervals tangent to the curvilinear coordinate θ1. The quantities in the integrand216
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Figure 5: Description of the undeformed, So, and deformed, S+ and S−, configurations of the delamination
interfaces. The quantities of the CZM are calculated at the deformed misurface, Scoh, in terms of the local
Cartesian coordinates xi. P is a point located at the mid-surface in the deformed configuration, while points
P+ and P− are points belonging to the upper and lower crack surfaces, respectively. P , P+ and P− coincide
at Po in the undeformed configuration.

of Equation (12) must, thereby, be defined according to the local Cartesian coordinate system, xi,217

with locally coincident direction with the covariant and contravariant basis vectors of the orthogonal218

curvilinear coordinate system, θi. The tracking of the integration path, as well as its limits, are219

addressed in Section 3.1.220

The derivative of the displacement jumps, δi, with respect to x1, the local Cartesian coordinate221

aligned with the GDD, is addressed in the following. Xj is the Cartesian reference system, xi is the222

local Cartesian coordinate system and Rij is the transformation tensor which relates the global to the223

local coordinate system. By assuming that the derivative of Rij with respect to x1 can be omitted,224

the derivative ∂δi
∂x1

reads:225

∂δi
∂x1

= Rij
∂Mjm

∂x1
Qm (13)

where Mjm is the transformation matrix that relates the global displacement jump with the nodal226

global displacement, Qm. The size of Qm is the number of degrees of freedom of the element (in the227
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case of 8-noded cohesive elements, m = 1...24). The derivative of the transformation matrix, Mjm,228

with respect to the local coordinate, x1, is obtained by application of the chain rule:229

∂Mjm

∂x1
=
∂Mjm

∂ηα

∂ηα
∂x1

(14)

The first partial derivative in the right hand side of Equation (14) is the variation of the trans-230

formation matrix, Mjm, with the isoparametric coordinates of the cohesive element formulation, ηα231

(α=1,2):232

∂Mjm

∂ηα
=

[
−∂Njk
∂ηα

,
∂Njk
∂ηα

]
(15)

where Njk is the shape function matrix and the subscript k runs from 1 to the number of degrees of233

freedom of respectively the top and bottom surface of the cohesive element. In case of an 8-noded234

element, k = 1...12. In [10, 11], the material coordinates and the displacement fields are interpolated235

within the domain of the interface element using isoparametric bilinear shape functions:236

L1 =
1

2
(1− η1) (1− η2) ; L2 =

1

2
(1 + η1) (1− η2)

L3 =
1

2
(1 + η1) (1 + η2) ; L4 =

1

2
(1− η1) (1 + η2)

(16)

organized in Njk as follows:237

Njk =




L1 0 0 L2 0 0 L3 0 0 L4 0 0

0 L1 0 0 L2 0 0 L3 0 0 L4 0

0 0 L1 0 0 L2 0 0 L3 0 0 L4




(17)

where the local isoparametric coordinates, η1 and η2, range from -1 to 1 over the element domain.238

The derivatives ∂ηα
∂x1

are the inverse of the derivatives of the local coordinate, x1, with respect to239

the isoparametric coordinates, ηα, defined as:240
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∂x1
∂ηα

= R1j
1

2

∂Njk
∂ηα

(
C+
k + C−k +Q+

k +Q−k
)

(18)

where C−k and C+
k are the global coordinates of the nodes at the lower and upper surfaces, and Q−k and241

Q+
k are the nodal displacements, relative to the global coordinates, of the lower and upper surfaces.242

3.1. Tracking of the integration paths243

Using the formulation described above, the delamination extension force, which may vary for every244

slice, can be evaluated everywhere within the CZ. Moreover, any point within the CZ belongs to a245

single slice, i.e. to a single integration path, which is defined according to the local GDD. Therefore,246

one can randomly select any location of the CZ and, by means of the GDD, identify the tangent to the247

integration pathline at that point in order to move, either forward or backward, along the integration248

path. The delamination extension force corresponding to such slice is obtained when the path is249

tracked in its entirety.250

Consider a point, P k, belonging to the CZ. In order to assess the delamination extension force251

at the slice which the point P k belongs to, the numerical integration of Equation (12) is performed252

along the integration path, defined tangent to the local GDD direction and limited by vanishing stress253

conditions at both ends (c.f. Figure 3). In the general case, the initial point P k is not located at one254

end of the integration path, i.e. point P k is located in the middle of the CZ. In this case, the path255

will be tracked from P k in the GDD and in the opposite direction to GDD: In the positive GDD until256

vanishing elastic stress is reached (point 2 in Figure 3); in the negative GDD until the intersection257

with the 1-valued energy-based damage isoline, where the cohesive stress also equals zero (point 1 in258

Figure 3).259

In order to move along the integration path, the following procedure is applied. Starting from260

P k, the next point along the integration path is established by moving in a straight line a ∗hk-length261

step further in the local GDD, which is tangent to the cohesive interface mid-surface, S̄coh, at P k.262

Then, a new point, ∗P k+1, in the space is found. Nevertheless, ∗P k+1 is not necessarily placed on the263

257



mid-surface, S̄coh. This becomes evident when S̄coh is highly non-planar (c.f. Figure 6). Thus, the real264

next point constituting the integration path, P k+1, is found by performing the projection of ∗P k+1 on265

S̄coh in the normal x3-direction of point P k.266
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3.2. FE-discretized mode-decomposed CZ J-integral267

After discretization of the cohesive interface into FE, the numerical integration of Equation (12),268

performed by means of the trapezoidal rule, reads:269

JI w
∑

k


hk


σ

k
33
∂δk3
∂x1

+ σk+1
33

∂δk+1
3

∂x1

2






JII w
∑

k


hk


σ

k
13
∂δk1
∂x1

+ σk+1
13

∂δk+1
1

∂x1

2






JIII w
∑

k


hk


σ

k
23
∂δk2
∂x1

+ σk+1
23

∂δk+1
2

∂x1

2






(19)

where hk is the integration interval length, approximated to the Euclidean distance between two270

consecutive points along the integration path, P k and P k+1.271
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4. Comparison with mode-decomposed energy release rates extracted by VCCT272

The capabilities of the presented CZ J-integral formulation are assessed by comparison with the273

energy release rate mode-components of a moment-loaded DCB model obtained by VCCT. The uni-274

directional composite specimen is 30 mm long, 6 mm wide and 3 mm thick (Figure 7). The elastic275

properties of the laminate and the fracture properties of the interface are listed in Tables 1 and 2,276

respectively. The specimen arms are modeled in the commercial FE code ABAQUS [39] using C3D8I277

hexahedral elements. The undeformed elements are 0.4 mm wide, 0.2 mm long and 0.5 mm thick.278

The delamination front is completely straight and located at the mid-surface at a distance of 15.1 mm279

from the loading application edges. A combined I, II and III fracture mode is created by application280

of four force couples (Figure 7). M1 and M2 generate uneven opening Y -moments at the upper and281

lower arms, respectively. M3 and M4 generate even tearing Z-moments at both arms. The resultant282

bending moments are listed in Table 3.283

Laminate properties
E11: Longitudinal Young’s modulus 154 GPa
E22 = E33: transversal Young’s modulus 8.5 GPa
G12 = G13: Shear modulus in the longitudinal planes 4.2 GPa
G23: Shear modulus in the transversal plane 3.0 GPa
µ12 = µ13: Poison’s coefficient in the longitudinal planes 0.35 -
µ23: Poison’s coefficient in the transversal plane 0.4 -

Table 1: Elastic properties of the laminate used in the simulation studies of the moment-loaded DCB and the
ELS specimens.

Interface properties
GIc: Mode I fracture toughness 0.3 N/mm
GIIc = GIIIc: Modes II and III fracture toughness 3 N/mm
τIc: Mode I interlaminar strength 10 MPa
τIIc = τIIIc: Modes II and III interlaminar strengths [11] 31.62 MPa
η: Benzeggagh-Kenane’s interpolation parameter [40] 2 -
K: penalty stiffness 105 N/mm3

Table 2: Fracture properties of the interface used in the simulation study of the moment-loaded DCB specimen.

In the FE analysis using the VCCT, the energy release rate is evaluated locally at every node284

forming the delamination front. A local crack coordinate system defines the mode-components, such285
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Figure 7: DCB specimen dimensions with four force couples: M1 and M2 generate uneven opening Y -moments,
while M3 and M4 generate even tearing Z-moments.

Bending moment [Nmm]
M1 270
M2 135
M3 960
M4 960

Table 3: Bending moment resultants from the application of the four force couples to the double-cantilevered-
beam model.

that mode II and mode III are normal and tangential to the delamination front, respectively, and mode286

I is normal to mode II and III directions. For a straight front, like the one in study, the orientation of287

this local coordinate system is constant along the front and aligned with the mesh [41].288

For the evaluation of the J-values, the interface undergoing delamination has been modeled using289

user-defined cohesive elements. To this end, the method presented in [10, 11] has been enhanced290

with the formulation for the numerical evaluation of the mode-decomposed CZ J-integral presented291

in Section 3. For comparison purposes with VCCT, a fixed GDD is defined normal to the straight292

delamination front.293

The mode-decomposed energy release rate distributions along the width of the specimen, from both294

the VCCT and the CZ J-integral extraction methods, are plotted in Figure 8.295
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Figure 8: Comparison of the mode-components of strain energy release rate between VCCT and CZ J-integral
extraction methods.

5. Application to a partially reinforced ELS specimen296

In [37], an end-loaded split (ELS) test on a symmetric run-out specimen with a mid-plane initial297

defect was presented. The particularity of such test is that the delamination shape changes during298

propagation as it approaches the stiffened region made by bonded reinforcements on the upper and299

lower faces (c.f. Figure 9). The reinforcements do not span the entire width of the specimen in300

order to promote a curved delamination. Moreover, the specimen bends due to application of the end301

loading, resulting in a curved delamination front in a non-planar interface. Therefore, the partially302

reinforced ELS specimen is considered to be suitable to exemplify the applicability of the generalized303

CZ J-integral methodology for 3D curved and non-planar delamination fronts.304

The mid-surface is modeled using user-defined cohesive elements which incorporate the formula-305

tion presented in [10, 11], enhanced with the GDD criterion presented in [37] and the CZ J-integral306

formulation described in Section 3. The undeformed cohesive elements are 0.27 mm wide, 0.23 mm307

long and have zero thickness. Only one half of the specimen is modeled exploiting X2-symmetry to308

reduce the required computational resources. The elastic properties of the laminate and the fracture309

properties of the interface are listed in Tables 1 and 4, respectively. Note that, as a simple way310

to check the CZ J-integral implementation, the fracture toughness is set to be mode independent311

(Gc = GIc = GIIc = GIIIc = 2 N/mm), in order to ensure a constant J-value (J = Gc) during static312
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Figure 9: a) Sketch of the partially reinforced ELS specimen [37]. The grey-shadowed area represents the
Teflon insert. The blue-shadowed area is the part of the mid-surface represented in figures 10, 11 and 12. b)
Simplified model for FE simulation and dimensions (units in mm).

Interface properties
GIc = GIIc = GIIIc: Mode-independent fracture toughness 2 N/mm
τIc = τIIc = τIIIc: Mode-independent interlaminar strength 35 MPa
K: penalty stiffness 105 N/mm3

Table 4: Fracture properties of the interface used in the simulation study of the ELS specimen.

crack propagation. Thus, the sum of the three mode-decomposed CZ J-integrals in Equation (19)313

must be constant and equal to 2 N/mm at every slice, regardless of the loading mode. In the following314

figures, only the blue-shadowed area of the mid-surface in Figure 9 is represented.315

The historical evolution of the 0.5-valued energy-based damage isoline is plotted in Figure 10.a.316

The energy-based damage, De, distribution is projected on the deformed mid-surface, in Figure 10.c,317

for a prescribed end displacement of 27.7 mm. The GDD distribution within the CZ is represented318

in Figure 11. As mentioned in Section 3.1, the CZ J-integral can be evaluated at any point within319

the CZ and, therefore, infinite integration paths can be tracked. For illustrative purposes, only a few320

selected integration paths are plotted on top of the GDD distribution. Note that the trajectory of the321
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integration paths is established according to the GDD. Thus, since the ωtot
Gc isolines are not parallel,322

the integration paths are curved lines throughout the CZ.323
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Figure 10: a) Historical evolution of the 0.5-valued energy-based damage isoline extracted at the integration
points. b) Reaction force vs prescribed displacement curve with the current loading state highlighted in red.
c) Energy-damage projected on the deformed mid-surface at the current loading stated marked in (b).

The total J-value is evaluated at each of the 30,000 integration points forming the CZ. The result324

is represented in Figure 12.a. The step length ∗hk used is 0.3 mm. Note that the J-distribution325

is constant and equal to the fracture toughness, which, during static propagation and for any mode326

mixity, amounts 2 N/mm. The decomposition of the CZ J-integral into modes, computed according327

to Equation (19), is also represented in Figure 12.328
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Figure 11: Growth driving direction (GDD) distribution along the cohesive zone and a few selected integration
paths (black solid lines) plotted on top of it.The current loading state is marked in Figure 10.b.
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6. Discussion329

A comparison of the mode-components of the CZ J-integral with the energy release rates extracted330

from VCCT is done in Section 4. To make both decomposition schemes comparable, the GDD, which331

dictates the mode II direction in the CZ J-integral formulation, is forced normal to the initial crack332

front. Although both results are in good agreement (c.f. Figure 8), there are small differences which333

are caused by a slight difference in compliance between the two models. When using cohesive elements334

to simulate the delamination fracture behavior, some separation between crack faces occur before335

complete decohesion. This is not the case of the VCCT, where no relative displacements between336

crack faces occur until the condition for crack propagation (G ≥ Gc) is fulfilled. The difference in337

compliance between the two models has an influence on the computed energy release rate. Another338

source of discrepancy is the nonlinearity introduced by the cohesive behavior. Using the CZM approach,339

the stiffness of the interface is reduced as it gets damaged. Conversely to VCCT, the existence of a340

damage process zone implies that the behavior of the material ahead of the crack front is nonlinear.341

Furthermore, the standard formulations for VCCT require to have orthogonality of the mesh with342

the delamination front in order to obtain accurate energy release rate components [42]. Therefore,343

its application to three-dimensional FE models requires the option of moving meshes that conform344

according to the delamination front, which is not available in commercial finite element codes [43].345

Alternative solutions that enable the use of stationary meshes are presented in [44, 45]. The basic346

assumption of these formulations is that the nodes at the delamination front will propagate along a347

normal vector to the current front. However, when the delamination originates from an artificial initial348

defect, e.g. caused by a Teflon insert, or when the loading conditions change, there is a transient stage349

during which the shape of the crack front changes according to the current propagation conditions.350

The formulation for the evaluation of the GDD does not depend on the geometry of the crack front351

(which is historical information), but on the current displacement field. Further details are given in352

[37]. Thus, any variation in the displacements due to a change in the loading scenario is captured by353

the GDD criterion at the current time. Therefore, the mode-decomposition scheme according to the354
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GDD can be applied during transient propagation.355

In Section 5, the presented mode-decomposed CZ J-integral formulation is applied to a real three-356

dimensional structure with a large fracture process zone (the maximum length of the CZ is approx-357

imately 20 mm). Due to the ELS test configuration, the structure is subjected to large deflections.358

Moreover, it is partially reinforced so that the stiffness along the specimen width is not constant. As359

a consequence, during propagation, both the delaminated surfaces and the CZ are curved. Due to a360

change in the GDD orientation across the CZ, the integration paths result in curved lines. The same361

GIc, GIIc and GIIIc have been introduced as inputs to the CZM (see Table 4) in order to make the362

equivalent one-dimensional fracture toughness independent on the mode mixity. In this way, under363

static propagation conditions, the accurate computation of the total J-value can be easily assessed364

by direct comparison with a constant mode-independent fracture toughness. The total computed J-365

value is equal to the fracture toughness at all the integration points within the cohesive zone with366

a maximum error of 3.7% (c.f. Figure 12.a). The integration step, ∗hk, used in the computation of367

the J-value is 1.3 times the shortest element length. By reducing ∗hk, more accurate results may be368

obtained. However, for such a large CZ, the computational cost increases significantly with the number369

of segments in which the integration paths are discretized.370

Moreover, the mode-decomposition of the CZ J-integral accounting for large CZ is also addressed.371

The mode II and III components of the CZ J-integral are predominant, while mode I slightly appears372

at a small region close to the specimen’s edge (c.f. Figure 12.b). The contribution to the J-value of373

the tangent quantities to the mid-surface is decomposed into modes II and III according to the GDD.374

The bonded reinforcements cause the loading state to be uneven throughout the specimen’s width,375

leading to a curved crack, so that the GDD amounts up to 60◦ with respect to the X1 at the zones376

with highest delamination front curvature. Due to the test configuration, the loading is applied in the377

global X1 direction. For straight cracks where the GDD is aligned with the X1-direction, the shear378

component would be pure mode II. However, in the studied case with a curved delamination front, the379

maximum contribution of the external loading to the mode III CZ J-integral is at that zone were the380
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GDD differs most from the X1-direction (c.f. Figures 12.c and 12.d).381

7. Conclusions382

A novel methodology for the calculation of the mode-decomposed J-integral in three-dimensional383

delamination simulation using a cohesive zone model approach is presented. The methodology incorpo-384

rates the growth driving direction criterion, recently developed by the authors, to track the integration385

paths and determine the local directions of mode I, II and III components. The generality of the386

formulation makes it applicable to curved fronts with non-planar delamination interfaces and large387

fracture process zones. The application of the described methodology results in curved integration388

paths.389

The calculation of the J-integral is based on dividing the delamination interface into elemental390

thickness slices, so that the J-value of each slice is unique. The definition of the curvature of such391

slices is done according to the growth driving direction. Since the growth driving direction is mesh392

independent, the definition of the slices is not affected by the mesh size.393

By application of the presented formulation, a global measure of the energy release rate in three-394

dimensional structures modeled using a cohesive zone model approach can be obtained. To the authors395

knowledge, this has not been previously addressed. Also, the energy release rate can be decomposed396

into mode I, II and III components. The decomposition of the shear component of the energy release397

rate into mode II and III, to date, has only been addressed under the assumption of elastic fracture398

mechanics. In addition, the new formulation enables to obtain a global measure of the mode mixity,399

overcoming the limitation of the current 3D cohesive zone model formulations, where the mode mixity400

is only obtained at integration point level in terms of opening displacements.401

Besides the immediate applications of the formulation as just described, it is of the authors belief402

that more applications will be uncovered in future research. The presented CZ J-integral is a decisive403

contribution on using fracture mechanics-based procedures in a cohesive zone model framework, which404

will allow the design of lighter and more reliable structures. In addition, a direct application of the CZ405
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J-integral formulation is its implementation in combination with existing fatigue simulation methods406

formulated in a CZM approach, which rely on mode-dependent Paris law’ like expressions. Thus,407

the developed mode-decomposed CZ J-integral formulation becomes a new solution for extracting408

mode-decomposed energy release rates of real complex three-dimensional structures.409
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a b s t r a c t

Crack growth rate curves provide information about the delamination resistance of composite materials
under cyclic loading. The existing methodologies for mode II fatigue testing using three-point bending
end-notched flexure (3-ENF) under constant cyclic displacement conditions yield discontinuous delam-
ination growth rate curves, therefore requiring a batch of several specimens to be tested under different
severity conditions in order to fully characterize the crack growth. This work describes a variable cyclic
displacement test procedure that, in combination with the real time monitoring of the specimen’s com-
pliance, allows the crack growth rate to be measured for the desired range of severities with a single spec-
imen, thus avoiding any human intervention during the test.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Emerging delaminations and their growth under repeated or
cyclic loads can reduce the load carrying capacity of composite
structures. In consequence, a reliable design should account for
this damage mechanism. The experimental characterization of
interlaminar fracture properties under fatigue loading assesses
the damage tolerance of the composite materials in service.

The no-growth criterion and the damage tolerance approach are
two alternatives to deal with interlaminar fatigue damage in air-
craft design [1]. The first aims to ensure that no crack propagation
will ever occur over the lifetime of the component. This approach
relies on fatigue onset tests [2] which, for a given load intensity,
determine the number of cycles required to make a crack grow
perceptibly. Conversely, the damage tolerance approach is based
on a structure’s remaining capacity to safely sustain in-service
loads, even with the presence of sub-critical sized delaminations.
That is, crack growth is allowed provided that it does not reach
an unsafe size during service. To this end, crack propagation tests
evaluate the crack growth rate (da/dN) as a function of the severity
of load. The severity of load is usually defined as the ratio of the

maximum energy release rate of the cycle (Gmax) to the quasi-
static fracture toughness Gc [3–7], although other expressions also
exist in the literature.

The onset and propagation of interlaminar cracks are experi-
mentally characterized for the different loading modes of propaga-
tion (I, II or III). Delamination growth under mode I loading is
usually assessed with double cantilever beam (DCB) specimens,
while for mode II the End Notched Flexure (3-ENF) test performed
under displacement control with sinusoidal shaped loading cycles
of constant displacement is the most widely employed (see Fig. 1a)
[3,4,8–11]. Other mode II test set-ups include the calibrated end-
loaded split (C-ELS) [12] and the four-point bending end-notched
flexure (4-ENF). Either the C-ELS [10] and the 4-ENF [13] have been
used for delamination resistance testing under fatigue. However,
while the 4-ENF test is not preferable because of friction effects
[14], only further research will show whether 3-ENF or C-ELS is
better suited for cyclic mode II fatigue delamination characteriza-
tion [10].

The selection of the testing parameters for mode I fatigue exper-
iments is not critical. For a test conducted under displacement con-
trol and constant displacement amplitude, the energy release rate
(the severity of the load) decreases as the crack grows. That is, the
crack growth rate vs. load severity curve sweeps from left to right
until the crack growth rate becomes unnoticeable (the threshold,
the severity for which the crack growth rate tends to zero). Never-
theless, even in mode I, the determination of the threshold value

http://dx.doi.org/10.1016/j.ijfatigue.2016.10.017
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remains elusive due to the need of high sensitivity measurement
devices to capture the actual growth rates [15].

For mode II 3-ENF experiments the contrary applies as the
range of the crack growth rate curve swept in a single test under
constant cyclic displacement is very narrow. This results from
the dependence of the energy release rate on the geometry of the
specimen and the configuration of the test. Indeed, in 3-ENF tests
the region available for crack propagation spans between the sup-
port and the vicinity of the loading roller, where the through-
thickness compression arrests crack propagation. Previous studies
[16] estimate that when the crack tip approaches the loading point
by 2h the experiment is no longer valid; being 2h the laminate
thickness (see Fig. 1b). The energy release rate does not evolve
monotonically with the crack extension but, as the cracks extends,
it increases and then decreases, as shown in Fig. 2a. Thus, only a
small segment of the crack growth curve is covered by a single test.
In fact, the same segment of the curve is tracked twice: first
upward and then downward (Fig. 2b). In addition, detecting the
threshold becomes practically unfeasible. Hence, to construct the
entire crack growth curve requires various constant cyclic dis-
placement tests at different load intensities [3,8–10]. The alterna-
tive to performing multiple tests is to implement a test with a
proper variation of the displacement, which is what this manu-
script focuses on.

Preceding the methodology presented in this work, only Tanaka
and Tanaka [17], Matsubara et al. [18] and Hojo et al. [19,20]

carried out 3-ENF fatigue tests with fiber reinforced polymer spec-
imens by decreasing the applied peak load as the crack propagates.
In [17] the authors conducted fatigue tests under either a constant
or decreasing stress intensity range, DK , to graphite/epoxy com-
posite specimens. The same data on crack growth rate, da/dN, with
crack extension was obtained in the DK-constant tests. Tanaka and
Tanaka determined that fiber bridging had no influence on Mode II
crack propagation and concluded that crack growth is independent
of crack extension history. Matsubara et al. [18] used a decreasing-
load test procedure based on the ASTM standard for metals [21].
This methodology enables the crack growth rate for a broader
range of the load intensity factor to be determined and also to
approach the low-rate region, near the threshold, by decreasing
the applied load. The load shedding can be done manually at
selected crack size intervals or, alternatively, by continuously
reducing the force to adjust the normalized K-gradient, (1/K) dK/
da, to a fixed value. They conducted constant- and decreasing- load
tests with glass fiber reinforced polymer specimens and obtained
identical results, confirming that crack growth rate is independent
of crack extension history. Similarly, Hojo et al. [19,20] carried out
fatigue tests under constant normalized gradient of energy release
rate, ð1=GÞdG/da, by measuring the specimen’s compliance and
decreasing the peak load accordingly.

In practice, incrementally shedding the force with increasing
crack size requires the continuous intervention of a technician.
On the other hand, computer-controlled stress intensity or,

Fig. 2. (a) Maximum energy release rate applied to the 3-ENF test as a function of the crack length. (b) Crack growth rate curve segment analyzed in a single test with
constant cyclic displacement.

Fig. 1. (a) Sinusoidal shaped loading cycles with constant displacement. The sign convention used in this work is negative for displacements which result in compressive
reaction forces. (b) 3-ENF test configuration, where L is the mid-span length, a is the crack length, a0 is the initial crack length and 2h is the specimen’s total thickness of the
specimen.
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equivalently, energy release rate gradient techniques [22,23],
require the crack length to be monitored in real-time, usually by
means of the specimen’s compliance. Indeed, the use of the compli-
ance to control the machine, or any other behavioral-based control
technology, can lead to unexpected load setpoints.

This work presents a methodology to measure, in a single test, a
larger region of the crack growth rate curve than that achieved in a
constant cyclic displacement test. The procedure consists of vary-
ing the cyclic applied displacement, dmin and dmax, while keeping
the displacement ratio, R, constant. Moreover, the displacement
variation is calculated a priori, so that it can be implemented in
the control software of the testing machine. Thus, the control loop
does not make use of parameters related to the behavior of the
specimen, which could lead to unpredictable responses from the
test machine. This method requires neither human intervention
during the test nor processing the data in real time. The manuscript
includes a test campaign carried out on carbon fiber reinforced
composites which exemplifies the advantages of the proposed pro-
cedure: the crack growth rate curve can be characterized in, at
most, 1/80 of the time required for a constant cyclic displacement
test.

2. Methodology

Due to the geometry of the test, the maximum energy release
rate during one load cycle, Gmax, corresponds to the minimum dis-
placement, dmin. The aim of the proposed methodology is to define
the evolution of dmin with the number of cycles, N, so that the
severity of the load sweeps a predefined range, from Gmax;0=Gc to
Gmax;f =Gc , while the crack grows from the initial crack, a0, to the
maximum allowed crack length, af , (when the crack tip approaches
a distance 2h from the load introduction point). dmax is established
so that the R-ratio is constant throughout the fatigue test
(R ¼ dmin=dmax, for small deflections). The following paragraphs
describe how the function dminðNÞ has been deduced.

The function dminðNÞ depends on the chosen dependence
between the severity of the load, Gmax normalized to Gc , and the
crack length. We have chosen a linear decreasing dependence,
from the normalized Gmax;0 at a0 to Gmax;f at af , the end of the test
(Fig. 3); however, other alternative monotonic dependence could
be selected. Therefore, the gradient of the energy release rate,

dGmax/da, is constant and negative. Thus, the load severity vs. the
crack length, a, reads:

Gmax

Gc
ðaÞ ¼ mG aþ n; ð1Þ

where mG and n are the slope and the y-intercept, respectively:

mG ¼ Gmax;f � Gmax;0

Gcðaf � a0Þ ; ð2Þ

n ¼ Gmax;0

Gc
�mG a0; ð3Þ

Assuming a linear elastic behavior of the specimen, the energy
release rate reads [24]:

G ¼ P2

2B
dC
da

; ð4Þ

thus, the minimum cyclic displacement ðdminÞ is related to Gmax by:

dmin ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BGmaxC

2

dC=da

s
; ð5Þ

where B is the width of the specimen and C is the specimen’s com-
pliance (d=P, where P is the load). The compliance of the specimen
increases as the crack length grows. The dependence CðaÞ is exper-
imentally determined by a series of static tests at different crack
lengths (compliance calibration) [19,25]:

CðaÞ ¼ mcca3 þ C0; ð6Þ
where mcc and C0 are fitting parameters.

Eqs. (1)–(6) can be used to write the dependence of ðdminÞ with
the specimen compliance measured in real time:

dminðCÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BGc mG

C�C0
mcc

� �1=3
þ n

� �

3mcc
C�C0
mcc

� �2=3

vuuuuut ; ð7Þ

Following this equation, the load severity would sweep the
desired range (Fig. 3). The compliance can be easily measured in
real time with current computerized testing systems, [11]. How-
ever, the control of the displacement based on the measurement
of the compliance and Eq. (7) is problematic because of the inher-
ent scatter of the experimental measurement, C, and the lack of
data at the initiation of the test. It is thus preferable to base the
control of the test on a certainly well-behaved variable, as the
number of cycles, N, is.

To deduce the dminðNÞ function, a relation between the crack
length (or, equivalently, the compliance, Eq. (6)) and the number
of cycles is necessary. Here, we assume that the crack growth rate
follows the Paris’ law based expression [26]:

da
dN

¼ A
Gmax

Gc

� �p

; ð8Þ

Although the simplest expression of the Paris like power law
has been used to relate crack growth to the energy release rate,
it is worth noting that the methodology described here can also
be used with other fatigue data representations based on the exist-
ing formulation for metals, such as the NASGRO equation [27] or its
adaptation for composite materials [28].

The pre-exponential factor, A, and the exponent, p, in Eq. (8) are
not yet known (in fact, the ultimate objective of the experimental
characterization is to find them). Therefore, the parameters A, and
p, should be estimated before the test. The consequence of making
use of erroneous parameters is that the load severity range
explored would not be the one expected (Fig. 3). In any case, a

Fig. 3. Chosen relation between the maximum cyclic energy release rate, Gmax ,
normalized to the quasi-static fracture toughness, Gc , and the crack length.
Gmax;0 and a0 are the initial energy release rate and crack length, while Gmax;f and
af are the energy release rate and crack length at the end of the test.
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reasonable assumption would allow a much larger domain, with
respect to the one achieved by means of a constant cyclic displace-
ment experiment, to be explored. Parameters A and p can be taken
from specimens of similar fiber and reinforcement or from prelim-
inary experiments performed at constant displacement over the
system studied.

The estimated A and p parameters are used to find the expres-
sion that relates the crack length to the number of cycles, by inte-
grating Eq. (8):

aðNÞ ¼ a N þ bð Þc � n
mG

; ð9Þ

where

a ¼ AmGð1� pÞ; ð10Þ

b ¼ mGa0 þ nð Þ1�p
; ð11Þ

and

c ¼ 1
1� p

: ð12Þ

Finally, by substituting Eqs. (1), (9) and (6) and its derivative,
into Eq. (5), the functions of the minimum cyclic displacement
with the number of cycles reads:

dminðNÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BGc aN þ bð Þc mcc

aNþbð Þc�n
mG

� �3
þ C0

� �2

3 mcc
aNþbð Þc�n

mG

� �2

vuuuuut : ð13Þ

Hence, the minimum cyclic displacement is a function of the
number of cycles (N), the specimen width (B), the initial conditions
ða0;Gmax;0=GcÞ, the user-defined gradient of energy release rate ðmGÞ,
the static compliance calibration parameters obtained prior to the
fatigue test ðmcc;C0Þ and, finally, the Paris’ law parameters (A; p). In
all events, dminðNÞ is calculated previous to the fatigue test, so that
the displacement can be automatically shed in a continuous man-
ner by implementing Eq. (13) in the control software of the testing
machine.

In this work it is assumed that the fatigue delamination growth,
under pure mode II loading conditions, depends only on the peak
energy release rate, Gmax, and the load ratio (equivalent to the min-
imum to maximum cyclic displacement ratio, R ¼ dmin=dmax, for
small deflections). That is, it is assumed that the crack growth rate
is neither history dependent nor dependent on the crack length,
which is in agreement with other experimental evidence obtained
from Gmax-constant tests with carbon/epoxy composites [4,17,19].

3. Experimental

The validity of the test method to characterize mode II delami-
nation growth was evaluated by comparing the crack growth rate
curves obtained in variable (described in the previous section) and
constant cyclic displacement tests. As the range of crack growth
was very narrow in the latter case, a multiplicity of constant cyclic
displacement tests were performed. The Paris’ law parameters
were determined by both methods. In addition, this exemplifica-
tion allowed for a detailed comparison to be made of the effort
saved by following the new experimental methodology proposed
in this paper.

The laminates were 16 unidirectional carbon fiber/epoxy pre-
preg plies of 0.184 mm of nominal thickness stacked with the same
fiber orientation [0�]. Panels were cured in an autoclave, following
the supplier’s recommendations, at AERNNOVA Engineering facili-
ties. Before cutting the specimens, the panels were ultrasonically
C-scanned. 3-ENF test specimens cut from these laminates were

25 mm wide, 3 mm thick and 200 mm long. A 30 lm thick and
60 mm length Teflon insert was introduced in the mid plane to cre-
ate an artificial delamination. This Teflon filmwas thicker than that
usually recommended for static testing [29]; however, precracking
was expected to avoid any possible negative effect resulting from
the insert [30,31]. Precracks were performed under mode I quasi-
static loading conditions until the increment in crack length was
between 3 mm and 5 mm. The Teflon film was removed from the
crack after the precracking procedure.

All the tests were carried out in a servohydraulic MTS Bionix�

testing machine (25 kN of load capacity) under displacement con-
trol. The total force carried by the test specimen was measured
with a 5 kN MTS load cell. The three-point bending rig used to per-
form the tests met the specifications described in the ASTM stan-
dard for static testing [29]. The support rollers were 5 mm in
radius, each with a span length between them of 100 mm. Some
tests under constant cyclic displacement conditions were per-
formed with a span length between supports of 120 mm (longer
than the standard), to enlarge the range for crack extension (see
Table 1). Tests were performed at the mechanical testing labora-
tory of the University of Girona, which is Nadcap [32] (Non-
metallic materials testing laboratory) and ISO17025 [33]
accredited.

The fatigue tests were performed under displacement control,
by applying a sinusoidal waveform at a frequency of 5 Hz and set-
ting the ratio of minimum to maximum displacement per cycle (R)
to �10=ð�3Þ. The desired severity at the beginning of the test was
defined by the ratio of the initial maximum cyclic energy release
rate (Gmax;0) to the mean value of critical energy release rate (Gc)
measured by quasi-static tests carried out prior to the fatigue test
on identical test specimens. Assuming that the behavior of the
specimen was linear elastic, the selection of the initial minimum
displacement (dmin;0) was related to Gmax;0 using Eqs. (5) and (6)
and its derivative, and the initial crack length (a0):

dmin;0 ¼
mccða0Þ3 þ C0

� �
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BGmax;0

3mcc

s
ð14Þ

We established a maximum initial severity, Gmax;0=Gc , of 0.55 to
avoid the horizontal movement of the sample occurring for dis-
placements below �3.5 mm. Other authors use mechanical
restraints to avoid this [10] although this could affect the results.

The TestStar v3.5C control software for the MTS servohydraulic
testing machine includes a ‘‘Calculated Channels” option that
allows for internal variables, either external inputs or calculated
through simple arithmetic operations, to be generated. It was used
to compute the dynamic compliance, C�, by processing the instan-
taneous signals of load and displacement in line with the method-
ology described in [11]. Next, the crack length was derived from
the dynamic compliance using Eq. (6):

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C� � C0

mcc

3

s
ð15Þ

One set of data (the dynamic compliance, C�, the minimum cyc-
lic load, Pmin, and the number of cycles, N) was recorded every cycle
and, as such, the crack length was calculated at the same monitor-
ing frequency leading to a continuous aðNÞ curve. Subsequently,
the crack growth rate (da/dN) was obtained from the numerical
derivative of the aðNÞ curve. The recommended data reduction
techniques for the ASTM standard [21] are the secant and the
incremental polynomial methods. However, when these method-
ologies are applied to high frequency data acquisition curves,
errors can occur because the dynamic compliance scatter might
be too large compared to the increment in number of cycles
between two successive data. For this reason, in this work the
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derivative was performed by linear regression of wider data sets,
grouped so that the total increment of crack extension of each
set was 0.1 mm [34].

Finally, da/dN was referred to the maximum energy release rate
of the cycle normalized to the quasi-static critical value ðGmax=GcÞ,
or load severity. Taking Eq. (4) and the derivative of the compliance
calibration (6), Gmax reads:

Gmax ¼ 3mcc P2
mina

2

2B
; ð16Þ

where the crack length, a, is taken at the midpoint of the cycle.
Constant displacement tests were performed using eight differ-

ent initial severities in order to cover a wider portion of the da/dN
curve and the results were fitted together using the modified Paris’
law from Eq. (8).

As mentioned in Section 1, the energy release rate does not
evolve monotonically with the crack extension, but rather
increases and then decreases under constant cyclic displacement,
and with the maximum point (point 2 in Fig. 2a) always being
located at a = 0.7L. Therefore, constant cyclic displacement tests
were performed with initial crack length higher than 0.7L, in order
to avoid sweeping the same part of the crack growth rate curve
twice (see Fig. 2b). In contrast, in variable cyclic displacement tests
the initial crack length is not a limiting parameter because the
dependence between the load severity and the crack length is
monotonic. In this specific case, the authors chose different crack
lengths in order to analyze the influence of the initial conditions
on the resultant crack growth rate curve.

Table 1 indicates the initial conditions for each propagation test.
The specimens labeled ‘‘V” were tested by applying the variable
cyclic displacement methodology presented in this work and the
specimens labeled ‘‘C” were tested under constant cyclic displace-
ment conditions.

For the variable cyclic displacement tests, the ‘‘Calculated Chan-
nels” from the MTS TestStar v3.5C software allowed an internal
variable to be calculated (in accordance with Eq. (13)) in real time.
This variable was established as the continuous displacement set-
point, dmin.

Table 2 lists the parameters used for calculating of dminðNÞ
(Eq. (13)). The Paris’ law parameters, A and p, obtained in the

da/dN data fitting resulting from tests 07 C, 09 C, 10 C and 11 C,
were used to estimate the curve dminðNÞ for test 01 V. The results
from tests 06 C and 08 C were added to the previous data to obtain
A and p for tests 02 V and 03 V.

Constant cyclic displacement tests were performed on speci-
mens with a mode I precrack, whereas the variable cyclic displace-
ment tests were performed on specimens already tested under
constant cyclic displacement (thus having a mode II fatigue pre-
crack). The reason for this was to avoid the transient behavior
observed at the onset of delamination for specimens with a mode
I precrack, as described further in Sections 4 and 5.

4. Results

A typical crack growth rate curve (da/dN vs severity) in a spec-
imen precracked under mode I and loaded under constant dis-
placement amplitude exhibits three distinct stages (Fig. 4). As the
severity decreases from the onset of the test, the curve sweeps
from right to left. The first region is characterized by a growing
crack growth rate as the severity decreases. Then, the largest
region (i.e. the second region), consists of a smooth direct depen-
dence between da/dN and severity. Finally, in the third region
the crack tends to arrest with a higher slope than that seen in
the second region. For these reasons discussed in the next section,
the curve was truncated, neglecting the first and third regions.
Only the mid-region was considered in the modified Paris’ law
calculation.

As variable displacement tests were performed on specimens
already tested under mode II, their crack growth rate curves did
not show the first region of Fig. 4. Fig. 5 compares the preselected
and the experimental dependence between the severity and the
crack length increment, confirming the new experimental method-
ology as being suitable to enlarge the range of severities explored
in a single test.

The crack growth rate curve in Fig. 6 condensates the results
obtained from the eleven tests performed in this study. All the tests
were performed for the same load ratio, R ¼ �10=ð�3Þ, either
under constant cyclic displacement or variable cyclic displacement
control. The plot also includes the fitting of all the data from the

Table 2
Parameters used in the minimum variable displacement calculation, dmin , using Eq. (13).

Specimen ID Specimen width Initial crack length Estimated fatigue life
constants (Eq. (8)), da/dN
evaluated in mm/cycle

Compliance calibration parameters
(Eq. (6))

Severity versus crack
length constants

(Eq. (1))

B [mm] a0 [mm] A p mcc [N�1 mm�2] C0 [mm N�1] mG [mm�1] n [–]

01_V 25.00 30.0 6:192 � 10�2 3.674 3:193 � 10�8 2:608 � 10�3 �0.030 1.400

02_V 25.00 35.0 5:595 � 10�2 3.695 3:131 � 10�8 2:626 � 10�3 �0.090 3.650

03_V 25.00 38.0 5:595 � 10�2 3.695 3:188 � 10�8 2:594 � 10�3 �0.225 9.050

Table 1
Initial conditions for the propagation tests. In the specimen identification, ‘‘V” stands for variable displacement tests and ‘‘C” stands for constant displacement tests.

Specimen ID Initial load severity Gmax;0=Gc [–] Initial crack length a0 [mm] Mid-span length L [mm] Initial minimum displacement dmin;0 [mm]

01_V 0.50 30.0 50.00 �3.108
02_V 0.50 35.0 50.00 �3.075
03_V 0.50 38.0 50.00 �3.071
04_C 0.55 38.0 50.00 �3.356
05_C 0.40 38.0 50.00 �2.770
06_C 0.30 38.0 50.00 �2.543
07_C 0.25 45.0 60.00 �3.096
08_C 0.20 38.0 50.00 �2.104
09_C 0.18 45.0 60.00 �2.743
10_C 0.14 45.0 60.00 �2.347
11_C 0.12 45.0 60.00 �2.223
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Fig. 4. Reduced fatigue crack growth rate data with the truncated regions in the modified Paris’ law fitting from the constant cyclic displacement tests.

Fig. 5. Comparison between the preselected slope, mG , from the energy release rate versus the crack length curve and the experimental relationship Gmax
Gc � Da obtained from

the variable displacement tests. Dashed lines illustrate the Gmax
Gc � Da relation obtained if the Paris’ law parameters, A and p, used in the calculation of dminðNÞ in test 02 V, were

predicted with an error of �15%.
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constant cyclic displacement tests in accordance with the modified
Paris’ law (Eq. (8)).

The parameters of the modified Paris’ law (Eq. (8)), the expo-
nent, p, and the coefficient, A, are obtained from the linear fitting
of the data plotted on log-log scales (Table 3).

The duration of each variable cyclic displacement test depends
on the slope of the relation between the energy release rate and
crack length,mG (Fig. 5). Higher slopes tend to minimize the testing
time. The total time employed in all tests (constant displacement
and variable displacement) is specified in Table 4.

Fig. 6. Relation between crack propagation rate and peak energy release rate for R = 0.3. The results from both variable displacement (‘‘V” labeled) and constant displacement
(‘‘C” labeled) tests are presented for comparison proposes.

Table 3
Fatigue life constants obtained from both variable displacement and constant displacement tests.

Specimen ID Severity versus crack length slope (Eq. (1)) Obtained fatigue life constants (Eq. (8)), da/dN
evaluated in mm/cycle

mG [mm�1] A p

01_V �0.030 1.975 � 10�1 4.326
02_V �0.090 1.677 � 10�1 4.168
03_V �0.225 7.342 � 10�2 3.786
Modified Paris’ law (Eq. (8)) fitting of the constant displacement tests’ results 7.636 � 10�2 3.882

Table 4
Time employed in obtaining the crack growth rate curve for both variable and constant minimum displacement methodologies.

Specimen ID Total time (h) Time 10–45% severity (h)

Variable displacement tests 01_V Severity from 50% to 10% 42.0 4.3
02_V Severity from 50% to 10% 18.0 1.9
03_V Severity from 50% to 10% 7.0 0.4

Constant displacement tests 04_C Initial severity 55% 0.2
05_C Initial severity 40% 1.3
06_C Initial severity 30% 2.6
07_C Initial severity 25% 4.0
08_C Initial severity 20% 8.8
09_C Initial severity 18% 15.5
10_C Initial severity 14% 48.1
11_C Initial severity 12% 89.1

Total time employed in constant displacement testing 169.6
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5. Discussion

The proposed experimental methodology for mode II testing in
the 3-ENF configuration enables a chosen range of load severities
to be swept while the crack grows in a predefined crack length
increment. This is accomplished by varying the applied cyclic dis-
placement as the number of cycles evolves. The dminðNÞ function
depends on estimated Paris’ law parameters (A and p), derived
from the constant cyclic displacement tests. In spite of being just
a rough estimation, the range of severities swept is close to the
desired one and, in any case, much larger than what could be
obtained from a constant displacement test. The consequence of
using erroneous parameters is illustrated in Fig. 5 for the specimen
02 V. An error in A and p of �15% leads to changes in the crack
length increment needed to sweep the desired severity range. In
any event, the severity range achieved would be much larger than
that attained using a constant displacement test.

The variable cyclic displacement method leads to crack growth
rate data practically indistinguishable from that resulting from the
complete set of eight constant displacement tests. In particular, the
Paris’ exponent, p, obtained from variable cyclic displacement tests
under steady growth conditions (severities from 10 to 30%), devi-
ated from the log-linear fitting of the constant cyclic displacement
tests results by +11.4%, +7.4% and �2.5% (specimens 01_V, 02_V
and 03_V, respectively). No experimental data for severities higher
than 45% could be obtained because of specimen horizontal move-
ment. The agreement between the results from both methods,
however, is expected to persist if this issue could be solved
practically.

One of the main advantages of the new experimental methodol-
ogy is the reduction of the time duration of the fatigue mode II test.
The selection of the shedding rate, mG, determines the duration of
the test. Table 4 exemplifies the time saved with this method. One
single test performed with variable displacement to build the crack
growth rate curve for a severity range between 10% and 45% is per-
formed in 1.9 h (specimen 02 V), while the 8 constant displace-
ment tests needed to sweep the same severity range require
169.6 h (80 times more if the times involved in setting up each
of the tests is not considered).

The question arises of how fast the test can be carried out while
still leading to the crack growth curve obtained in a constant dis-
placement test. This question could be dealt with taking into
account the formation of a failure process zone, FPZ, in front of
the crack tip. While the FPZ for mode I delamination in CFRP is
assumed to be so small as to be negligible in the data reduction
of static interlaminar fracture toughness tests, the same does not
apply for the FPZ in mode II tests [35]. Under mode II loading
and for a given load severity, the crack growth rate would not
reach its steady level until the FPZ is fully formed. In a variable dis-
placement test, if the severity varies before the FPZ is fully formed,
the crack growth rate would deviate from the steady crack growth
rate for the actual severity being applied. This is more likely to hap-
pen as the shedding rate increases and that deviation would also
be more important the stronger the variation of the FPZ with the
load severity is.

Fig. 6 illustrates the crack growth rate curves obtained from the
variable cyclic displacement tests for the three shedding rates, mG,
explored in this study. The tests performed at low mG lie close to
the Paris’ curve of constant cyclic displacement tests from the very
first stages of the crack growth curve (higher severities), whereas
the test performed at high mG (03_V) tends to deviate from these
curves in the region of high (30–45%) and low (<10%) severities,
while in the region in between the agreement is complete. The
deviation of specimen 03_V at the beginning of the test (high
severities) corresponds to the transient stage from the FPZ of the

precrack to the steady FPZ. On the contrary, at lower severities,
below 10%, the deviation is attributed to a shedding rate too fast
to permit the stabilization of the FPZ, leading to a faster crack
growth than observed in constant cyclic displacement tests. The
confirmation of these hypothesis and the study of the FPZ zone
in fatigue tests as a function of the load severity deserves further
investigation.

These facts highlight the impact the pre-cracking stage has on
the initial measurements of the crack growth rate curves. In the
first stage of the crack growth curve for constant displacement
tests in Fig. 4 there is a clear evidence of the transient region
between the FPZ of the precrack and the steady FPZ. Indeed, due
to the fact that the constant displacement tests start from a mode
I precrack (short FPZ), the crack grows more slowly than the steady
rate until the mode II FPZ is fully formed.

In view of the foregoing, the variable cyclic displacement tests
were performed on specimens tested under mode II cyclic loading,
where the crack grew until the tip reached the zone affected by
loading arm compression (‘‘Region affected by the compression
induced by the loading arm” in Fig. 4). In this region, the crack
propagation tends to arrest, misrepresenting an artificial threshold.
The FPZ formed in this situation (low severity), however, is differ-
ent from the one expected at the beginning of the variable dis-
placement tests (high severity). For that reason, a transient
region in the variable displacement tests is expected. While this
is not noticeable in specimens with low mG, it does span over sev-
eral points for specimen 03 V.

The fact that the three crack growth curves obtained under vari-
able cyclic displacement amplitude with different mG coincide in
the severity range between 30% and 10% indicates that the shed-
ding rate is slow enough to lead to a fully developed FPZ, even with
the highest mG selected (Fig. 6). The prospect is that for a large
enough mG, the crack growth curve would deviate from that of
the constant displacement test. Following an equivalent rationale,
the crack length increment can not be decreased arbitrarily if rep-
resentative results are to be obtained. Fig. 5 shows that the same
Paris’ law curve is obtained for crack increments of 2 mm (speci-
men 03_V) or 14 mm (specimen 01_V). These constraints should
be specifically considered when testing materials with expected
large FPZ, as the case of adhesive joints is. The larger the expected
FPZ, the slower the shedding rate should be and, likewise, the lar-
ger the crack increment to be traveled.

The comparison of the results from constant cyclic displacement
tests reveals that the propagation rate does not depend on the span
length (e.g. specimens 07_C and 08_C, with span lengths of 60 and
50 mm respectively, have similar da/dN at 20% severity). Thus, the
same results are obtained with different crack lengths. This is an
indication that, for the material studied, the crack growth rate is
history independent under mode II test conditions when a steady
crack growth is achieved (initial transient curves must be trun-
cated, Fig. 4). This assertion is corroborated by the overlap among
the crack growth rate curves obtained with the three variable dis-
placement tests performed with different preselected gradients of
energy release rate, mG (see Table 3), again, once the FPZ is fully
developed. Under this condition, the maximum difference in da/
dN, for a given severity, between the data obtained from variable
displacement tests and the fitting of all the data from constant dis-
placement tests, amounts 0.3 decades. This is comparable to the
scatter of the raw data from a single constant displacement test.

6. Conclusions

An automated procedure to obtain the log-linear region of a
crack growth rate curve has been developed for an 3-ENF test for
mode II fatigue delamination growth. The displacement applied,
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dðNÞ, is calculated prior to initiating the fatigue test in order to
achieve a constant negative energy release rate gradient through-
out crack propagation. The continuous displacement shedding is
conducted by implementing the calculated dðNÞ curve in a
computer-controlled testing system. This, in combination with
the automated and continuous estimation of the crack length by
means of the real time monitoring of the specimen’s compliance,
avoids the need of human intervention during the test.

The usefulness of this methodology has been exemplified with
an experimental testing campaign in which the crack growth rate
curve obtained is compared with the modified Paris’ law fitting
data from a batch of constant cyclic displacement tests.

The range of severities covered by a single test using the devel-
oped methodology spans from 0.45 to 0.1. Due to the specimen
movement, the initial severity could not be higher than 0.50.

The time saved employing the methodology developed has
been demonstrated (the example performed shows a reduction of
1/80) and how the duration of the test, which is determined by
the shedding rate and the range of severities explored, is limited
by the requirement of forming the complete failure process zone
corresponding to the actual load severity is discussed.
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