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Resum

L’anàlisi cŕıtic i numèric de les diferents metodologies de la visió per ordinador

acaba depenent en gran mesura dels datasets sobre els quals aquestes metodologies es

posen a prova. Qualsevol conjunt de dades (d’imatges) és tant bo com la diversitat de

les dades que existeixen en el propi problema. La segmentació dels moviments, moti-

on segmentation en anglès, és un pas de processament previ de la visió per ordinador

cŕıtic en diferents aplicacions i, en canvi, els conjunts de dades públics presenten certes

limitacions. Algunes bases de dades no estan al dia amb les exigències modernes de la

longitud dels v́ıdeos i el nombre de moviments, mentre que d’altres no tenen una bona

avaluació manual, fet necessari per a la posterior comparació d’algorismes. En aquest

treball presentem una col·lecció de datasets multi-facètics de segmentació del movi-

ments que contenen anotacions manuals tant de les trajectòries dels moviments com

de les regions afectades. Aquests conjunts de dades presenten seqüències quotidianes

de diferent temporització, però amb un alt nombre de moviments i de fotogrames per

seqüència, aix́ı com distorsions i oclusions. L’anotació manual es proporciona en totes

les imatges de totes les seqüències. Es proporciona també una avaluació exhaustiva,

i de referència, dels algoritmes de segmentació del moviment amb tecnologia d’última

generació, útil per a establir la dificultat del problema i contribuir també a un nou punt

de partida.

L’anotació manual dels datasets de segmentació del moviment en escenes quotidia-

nes del dia a dia és una tasca dif́ıcil i desafiant. La comunitat cient́ıfica encara manca

d’una eina d’anotació estàndard per a aquest tipus de dades, fet que fa que sigui un

camp d’investigació encara molt obert. En aquesta tesi doctoral proposem una eina

d’anotació de trajectòries complexes, proporcionant una plataforma pública i única per

crear i reforçar les bases de dades de segmentació dels moviments. La intüıtiva interf́ıcie

d’usuari permet refinar un resultat inicial de la segmentació del moviments obtingut

automàticament per tal d’obtenir una avaluació manual dels moviments al llarg de tots

els fotogrames d’una seqüència donada. En v́ıdeos llargs amb múltiples moviments

ŕıgids i no ŕıgids amb oclusions completes i distorsions reals, la nostra eina facilita la

ràpida anotació dels moviments.

La caracteŕıstica del moviment és fonamental en l’anàlisi dels moviments dels ob-

jectes, procés clau per a la detecció dels moviments i posterior segmentació d’aquests.

Aquesta tasca de pre-processament és un pilar clau per a aplicacions tan diverses com

ara el reconeixement, la similitud, l’estimació, etc, tant de moviments com d’objec-

tes. Per tal d’idear un algoritme robust per a l’anàlisi de moviment, és imprescindible

xxi



comptar amb un ampli conjunt de dades per avaluar-ne el rendiment. La principal li-

mitació en l’obtenció d’aquest tipus de conjunts de dades és la creació de la anotacions

del moviment en les imatges, ja que cada objecte en moviment pot abastar diversos

fotogrames, i pot veure’s sotmès a canvis en la grandària, la il·luminació i l’angle de

vista. A més dels canvis òptics, l’objecte pot patir oclusions per objectes, tant estàtics

com en moviment. El repte augmenta encara més de dificultat quan el v́ıdeo que s’està

processant ha estat obtingut per una càmera en moviment. En aquesta tesi, també

abordem aquests tipus de v́ıdeos, proporcionant mètodes per a facilitar-ne l’anotació

manual. A partir d’una anotació manual mı́nima que consisteix en crear una màscara

sobre l’objecte en qüestió, som capaços de propagar la màscara (etiqueta) a tots els

demés fotogrames. Quan un objecte pateix oclusions per part d’un objecte estàtic o en

moviment, les màscares es mantenen pels dos objectes i es defineix una ordenació de

les màscares en funció de la profunditat d’aquests. A més a més, també s’han disse-

nyat un conjunt de mesures innovadores per tal d’avaluar el rendiment dels algoritmes

de segmentació dels moviments. Els resultats mostren que el nostre enfocament en

cascada proporciona resultats satisfactoris en una gran varietat de seqüències de v́ıdeo

contenint escenes quotidianes.
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Resumen

El análisis cŕıtico y numérico de las diferentes metodoloǵıas de la visión por or-

denador termina dependiendo en gran medida de los datasets sobre los que estas

metodoloǵıas se ponen a prueba. Cualquier conjunto de datos (de imágenes) es tan

bueno como la diversidad de los datos que existen en el propio problema. La seg-

mentación de los movimientos, motion segmentation en inglés, es un paso de proce-

samiento previo de la visión por ordenador cŕıtico en diferentes aplicaciones y, en cam-

bio, los conjuntos de datos públicos presentan ciertas limitaciones. Algunas bases de

datos no están al d́ıa con las exigencias modernas de la longitud de trama y el número

de movimientos, mientras que otras no tienen una buena evaluación manual, clave para

la posterior comparación de algoritmos. En este trabajo presentamos una colección

de datasets multifacéticos de segmentación del movimiento que contienen anotaciones

manuales tanto de las trayectorias de los movimientos como de las regiones afectadas.

Estos conjuntos de datos presentan secuencias cotidianas de diferente temporización,

pero con un alto número de movimientos y de imágenes por secuencia, aśı como dis-

torsiones y oclusiones. La anotación manual se proporciona en todos los fotogramas

de todas las secuencias. Se proporciona también una evaluación exhaustiva, y de ref-

erencia, de los algoritmos de segmentación del movimiento con tecnoloǵıa de última

generación, útil para establecer la dificultad del problema y contribuir también a un

nuevo punto de partida.

La anotación manual de los datasets de segmentación del movimiento en escenas

cotidianas del d́ıa a d́ıa es una tarea dif́ıcil y desafiante. La comunidad cient́ıfica to-

dav́ıa carece de una herramienta de anotación estándar para este tipo de datos, lo que

hace que sea un campo de investigación todav́ıa muy abierto. En esta tesis doctoral

proponemos una herramienta de anotación de trayectorias complejas, proporcionando

una plataforma pública y única para crear y reforzar las bases de datos de segmentación

de los movimientos. La intuitiva interfaz de usuario permite refinar un resultado inicial

de la segmentación del movimiento obtenido automáticamente para obtener una eval-

uación manual de los movimientos a lo largo de todos los fotogramas de una secuencia

dada. En videos largos con múltiples movimientos ŕıgidos y no ŕıgidos con oclusiones

completas y distorsiones reales, nuestra herramienta facilita la rápida anotación de los

movimientos.

La caracteŕıstica del movimiento es fundamental en el análisis de los movimientos de

los objetos, proceso clave para la detección de los movimientos y posterior segmentación

de los mismos. Esta tarea de pre-procesamiento es un pilar clave para aplicaciones tan
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diversas como el reconocimiento, la similitud, la estimación, etc, tanto de movimientos

como de objetos. Para idear un algoritmo robusto para el análisis de movimiento, es

imprescindible contar con un amplio conjunto de datos para evaluar su rendimiento.

La principal limitación en la obtención de este tipo de conjuntos de datos es la creación

de la anotación del movimiento en las imágenes, ya que cada objeto en movimiento

puede abarcar varios fotogramas, y puede verse sometido a cambios en el tamaño, la

iluminación y el ángulo de vista. Además de los cambios ópticos, el objeto puede sufrir

oclusiones por objetos, tanto estáticos como en movimiento. El reto aumenta aún más

de dificultad cuando el v́ıdeo que se está procesando ha sido obtenido por una cámara

en movimiento. En esta tesis, también abordamos este tipo de v́ıdeos, proporcionando

métodos para facilitar en éstos la anotación manual. A partir de una anotación manual

mı́nima que consiste en crear una máscara sobre el objeto en cuestión, somos capaces

de propagar la máscara (etiqueta) a todos los demás fotogramas. Cuando un objeto

sufre oclusiones por parte de un objeto estático o en movimiento, las máscaras se

mantienen para los dos objetos y se define una ordenación de las máscaras en función

de la profundidad de los mismos. Además, también se han diseñado un conjunto in-

novador de medidas para evaluar el rendimiento de los algoritmos de segmentación de

los movimientos. Los resultados muestran que nuestro enfoque en cascada proporciona

resultados exitosos en una gran variedad de secuencias de v́ıdeo conteniendo escenas

cotidianas.
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Abstract

An in-depth analysis of computer vision methodologies is greatly dependent on the

benchmarks they are tested upon. Any dataset is as good as the diversity of the true

nature of the problem enclosed in it. Motion segmentation is a preprocessing step

in computer vision whose publicly available datasets have certain limitations. Some

databases are not up-to-date with modern requirements of frame length and number

of motions, and others do not have ample ground-truth in them. In this paper, we

present a collection of diverse multifaceted motion segmentation benchmarks containing

trajectory- and region-based ground-truth. These datasets enclose real-life long and

short sequences, with increased number of motions and frames per sequence, and also

real distortions with missing data. The ground-truth is provided on all the frames of all

the sequences. A comprehensive benchmark evaluation of the state-of-the-art motion

segmentation algorithms is provided to establish the difficulty of the problem and to

also contribute a starting point.

Ground-truth annotation on motion segmentation datasets of arbitrary real-life

videos is a difficult and challenging task. The research community lacks a standard

annotation tool for such datasets, which makes it an open research field. We propose in

this PhD thesis, an annotation tool for trajectories in complex videos, which provides a

publicly available platform to create and reinforce motion segmentation datasets. The

user friendly interface allows to refine an initial automatic segmentation result to pro-

duce ground-truth annotation on all the motions of all the frames of a given sequence.

In long videos with multiple rigid/nonrigid motions containing complete occlusion and

real distortions, our tool facilitates rapid annotation of motion in a semi-automatic

way.

Motion cue is pivotal in moving object analysis, which is the root for motion seg-

mentation and detection. These preprocessing tasks are building blocks for several

applications such as recognition, matching, estimation, etc. To devise a robust algo-

rithm for motion analysis, it is imperative to have a comprehensive dataset to evaluate

an algorithm’s performance. The main limitation in making these kind of datasets is

the creation of ground-truth annotation of motion, as each moving object might span

over multiple frames with changes in size, illumination and angle of view. Besides the

optical changes, the object can undergo occlusion by static or moving occluders. The

challenge increases many-fold when the video being processed is captured by a moving

camera. In this thesis, we also tackle the task of providing ground-truth annotation

on motion regions in videos captured from a moving camera. With minimal man-
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ual annotation of an object mask, we are able to propagate the label mask in all the

frames. Object label correction based on static and moving occluder is also performed

by applying occluder mask tracking for a given depth ordering. A motion annotation

dataset is also proposed to evaluate the algorithm performance. The results show that

our cascaded-naive approach provides successful results in a variety of video sequences.
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’Never confuse motion with action’.

Benjamin Franklin

Chapter 1

Introduction

The advances being done in computer vision are greatly dependent on the charac-

teristics of the data bank of images and videos which algorithms use as benchmark. If

the data encapsulates the true nature of the desired problem, then the proposed solu-

tion can be rigorously tested, results can be repeatable, standardization of evaluation

measures can be achieved, and new algorithms can be adequately compared. However,

if the bank of data does not envelop the correct nature of the task in question, or if

a trivial subset of the problem is captured which is not representative of the actual

problem, then the solutions proposed might be limited in nature, unstable in results,

and thus might hamper further research. Due to these reasons, nowadays, the impor-

tance of datasets is immense as they are shaping the way forward for computer vision

algorithms.

1.1 Motion cue

Motion cue is pivotal in moving object analysis, which is the root for motion seg-

mentation and detection. These preprocessing tasks are building blocks for several

applications such as recognition, matching, estimation, etc. Motion analysis is a pre-

requisite in video analysis with its applications in computer vision ranging from surveil-

lance [1–4], crowd estimation [5–10] to gesture recognition [11,12], video object segmen-

tation [13–18], behavior analysis [19, 20] and anomaly detection [21–23]. An objective

analysis of moving objects can be carried out, when motion is accurately detected and

segmented as a prior. In the state-of-the-art of computer vision, precise and robust

algorithms, which can work in the presence of occluders and distortions, while the ac-

quisition is done from a moving camera, shown in Fig. 1.1 are still elusive. Therefore,
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1. INTRODUCTION

Figure 1.1: An example of a real video of a natural outdoor scene. Left: A bike and three cars are
in motion in the shadowy region in the field of view. A person is walking past in front of the moving
camera. Right: In subsequent frames, the white car comes out of the shadow goes under occlusion
behind the moving person and the static occluder objects.

research to find a solution of these tasks is still an open field.

1.2 Research motivation

In many computer vision tasks the decomposition of the video into moving objects and

background is the first fundamental step. It is an essential building block for robotics,

inspection, metrology, video surveillance, video indexing, traffic monitoring and many

other applications.

1.2.1 Motion segmentation problem

Motion Segmentation (MS) is one such research area, in which temporally continuous

set of frames, called a sequence, are processed to provide a unique label to every motion

present in those frames. It is a preprocessing step for several computer vision problems,

i.e. semantic segmentation, crowd estimation, surveillance [3, 4, 9, 24]. MS can be

performed on precomputed set of sparse trajectories of a sequence, or it can be directly

applied on a desired set of frames to get motion region labels.

Researchers have shown particular interest towards MS in recent years [25–29].

The problem has been addressed in a variety of approaches. The question was initially

introduced as a subspace affinity problem in [30]. This approach was then extended

as a sparse subspace clustering (SSC) problem [31] by proposing the use of sparse

representation of data drawn from multiple low-dimensional linear or affine subspaces.

Similarly, a low-rank representation (LRR)[32,33] to segment data drawn from a union

of multiple linear or affine subspaces was proposed. Unlike the sparse representation

SSC, which computes the individual sparsest representation of each data vector, LRR
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aimed to find the lowest-rank representation of a collection of vectors jointly. Another

method with a new interpretation to extract the rank of trajectory matrix and an

improved affinity measure was also recently proposed [34–36]. The approach in [37]

introduced a temporal subspace clustering method for unsupervised segmentation of

human motion by designing a temporal Laplacian regularization function to model the

sequential information in time. This method had limited applicability in general MS

problems.

The performance of all these algorithms can only be compared with standard-

ized benchmark datasets, which are accepted by the community. The making of such

datasets gives rise to another subproblem in MS.

1.2.2 Datasets for motion segmentation evaluation

In the huge amount of video data that is captured by hand-held devices these days,

moving objects exhibit a variety of characteristics. MS datasets must be representative

of these characteristic attributes of motion to capture the diversity of the problem.

The main limitations of the state-of-the-art of MS datasets, as seen in Fig. 1.2,

are that they are made up of sets of videos, where the use of synthetic sequences, like

passively moving checker boards or other static objects, still prevail [38]. The motions

in these datasets are captured in short sequences, with little or no background change.

The number of motions per sequence are few, and even a video shot capturing 4 or

5 moving objects does not exhibit considerable amount of movement as is present in

daily-life natural scenes. The results of algorithms are put forth on these databases

because of the absence of a challenging, diverse dataset. In some cases, improved

results are presented on less representative databases which does not help the cause.

There are other small datasets, like Extended-Yale benchmark [40], SegTrack [41] and

Cambridge CamShift dataset [42], which motion segmentation community has used to

present their results. They are limited and not widely used because of fewer sequences

or a smaller number of motions. A recently proposed dataset [39] tried to overcome

these limitations, but the ground-truth is provided only on 5% of the frames. Therefore,

the need for a more diverse and challenging motion segmentation database, with which

the borders of research in MS algorithms can be expanded, still persists.

1.2.3 Motion annotation in video sequences

The limitations prevailing in annotated moving objects’ datasets are restricting the de-

velopment of effective motion analysis tools. The diversity and complexity of a real life

3



1. INTRODUCTION

Figure 1.2: First and last frame of video shots from the state-of-the-art in MS datasets. Top:
’1R2TCRT’, total 42 frames in Hopkins [38]. Center: ’cars9’, total 60 frames in Hopkins and FBMS
[39] both. Bottom: ’lion02’ total 416 frames in FBMS.

motion captured in a collection of video sequences, determines how representative the

dataset is of the actual problem. If the annotated datasets encapsulate limited motion

diversity, then the algorithms tested on them will also have limited applicability. On

the other hand, if more complex motions are captured in a sequence for dataset forma-

tion, the dataset will become more representative but the task of correctly generating
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ground-truth motion label for each moving object in all the frames of a video sequence

becomes increasingly cumbersome. Here, the problematic element is the expert-user

annotation time, which increases many-fold as the captured motion becomes excessively

complex.

An illustrative example is presented in Fig. 1.3, which shows the first, middle and

last frames of two moving objects in a video shot, while they enter and leave the field

of view. The white car in the left column remains unoccluded, relative change in size

across all frames is minimal, the illumination remains generally homogeneous and no

perspective distortion effect can be seen. On the other hand, the blue truck, present in

the right column, enters the field of view with a small size due to being considerably

deep in the scene with reference to the camera, experiences complete occlusion during

the course of its motion, and exits the frame with an enlarged size, change in heading

direction, variation in illumination and with perspective distortion. The expert-user

annotation time for generating ground-truth on these two motion samples is radically

different. While the annotation labels on the white car be provided with state-of-the-

art label propagation algorithms, there is no modern, time efficient methodology or

platform, to annotate the blue truck or such motions.

This limitation in label propagation can be looked into as a set of multiple sub-

problems based on the complexity and variation in the object motion. The variants

include a considerable change in size or illumination, partial or complete occlusion,

static or moving occluder, multiple-appearance-and-disappearance in the field of view

(FoV), perspective distortion, etc. Each variant, if tackled separately, with a unique

approach, can yield improved results.

1.3 Objectives

The main aim of the thesis was to overcome the problems present in the state-of-the-art

of MS datasets by proposing a modern MS benchmark dataset. The construction of

datasets involves ground-truth annotation. Keeping this in view, we presented motion

annotation tools, and also presented evaluation methods and sequences to test the tools’

performance. The details of our objectives are;

1. In our work, we present our multifaceted diverse publicly available motion seg-

mentation benchmark dataset of 39 long, and 312 short sequences with ground-

truth available in all the frames of all the sequences. The ground-truth on 19

long, and 162 short sequences is provided as a trajectory label on all the tra-
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1. INTRODUCTION

Figure 1.3: First, middle and last frame of a moving object, while entering and leaving the field of
view in a video shot, in the Top, Middle and Bottom row of the figure. A comparison of the visible
difference in moving objects’ behavior as captured in real videos. Top: The white car in the left figure
and the blue truck in the right figure enter the frame. Blue truck is small because of its depth with
respect to the camera. Middle: The white car moves along without any distortion undergoing a mile
depth change, while the blue truck experiences complete occlusion behind the white van. Botom:
The white car continues the same behavior, while the blue is about to exit the frame with change in
heading direction and perspective distortion. Annotation of objects undergoing such changes in object
size, shape, heading direction and illumination is extremely difficult.
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jectories of all the motions. And the ground-truth on 20 long, and 150 short

sequences is provided as a region label on all the motion regions of all the se-

quences. The average number of motions per sequence is almost 11, and the

average frame length is around 815 frames. With a goal to overcome all the

limitations present in the state of the art, all the sequences contain a fusion of

real noise and distortions. The captured characteristics of noise in the sequences

are missing data, partial/complete/multiple occlusion, stopping motion, multiple

appearance-disappearance of objects, perspective distortion, etc.

2. A further subset of 40 trajectory-based and 34 region-based short sequences with

complete data are also provided to test algorithms that are unable to deal with

missing data. Ochs-Brox (OB)[39] algorithm is used to provide a benchmark on

long sequences as besides OB no other algorithm can be applied on these long

sequences because of their complexity.

3. Moreover, on short sequences a benchmark analysis with six well-known state-

of-the-art MS algorithms i.e. SSC[31], ALC[43], LRR[33], LS3C[44], ELSA[34],

OB[39], is also presented for detailed quantitative and qualitative evaluation. The

evaluation metrics encapsulate all the criteria used in the state-of-the-art datasets

for an in-depth analysis. Moreover, a course of action on how to improve results

on this database to produce robust algorithms is also suggested.

4. We propose here an annotation tool for trajectories in complex videos, which

provides a publicly available platform to create and reinforce motion segmenta-

tion datasets. The user friendly interface allows to refine an initial automatic

segmentation result to produce ground-truth annotation on all the motions of

all the frames of a given sequence. In long videos with multiple rigid/nonrigid

motions containing complete occlusion and real distortions, our tool facilitates

rapid annotation of motion in a semi-automatic way.

5. In our work, we also propose a methodology, which efficiently utilizes the expert-

user time to propagate labels on all moving objects in all the frames of a video

sequence captured from a moving camera. With an existing platform [45], which

propagates labels in situations with no occlusion nor distortions, our methodol-

ogy is integrated to propagate labels across occlusions and its related distortions.

The propagation result keeps the object shape intact with scale adjustment. We

do so by using just two user labeled motion masks, the first and last frame of a

sub-problem set. Utilizing the two masks, we perform object mask propagation
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1. INTRODUCTION

across all frames using maximal flow vector count, acquired through Large Dis-

placement Optical Flow (LDOF) [46]. Concurrently, we take a static occluder

shape input on a single frame from the user, to perform occluder mask tracking

using keypoint descriptors (SURF features [47]) across all frames. With non-

rigid point set registration [48,49] of the first frame mask onto the last frame, we

perform object mask scale adjustment to improve the propagated object mask

estimate.

6. To validate the performance of our approach, we carryout a quantitative and qual-

itative analysis of our algorithm on moving objects undergoing partial occlusion,

where occluder is both static and moving, with sequences captured from a moving

camera. In this regard, we put forth a 25 sequence occlusion/occluder dataset

with moving objects going across static or moving occluder(s). On 20 static and

5 moving occluders, our results demonstrate that by splitting the motion annota-

tion problem into sub-problem sets, the expert-user time is utilized with improved

efficiency, maintaining accurate boundaries on the object annotations.

1.4 Thesis outline

This thesis describes the research work that resulted in the creation of a collection

of benchmark motion segmentation datasets. The benchmarking task was performed

with the state-of-the-art MS algorithms. The thesis also dwells on the motion anno-

tation problem. A trajectory annotation tool for sparse motion trajectory labeling

and a motion-region annotation framework are also presented. Prior to designing the

proposals, we exhaustively studied the literature that exists in the field of MS.

Chapter 2 reports the findings of the literature review. A detailed insight of the

state-of-the-art motion segmentation datasets and algorithms was presented. Moreover,

tools and methods of motion annotation and label propagation as available in the

literature were also studied.

Chapter 3 contains a description of the making of the trajectory- and region-

based motion segmentation, long and short, datasets. The development of the bench-

mark based on recent algorithms, their working and the interpretation of results is also

explained.

Chapter 4 presents the tools developed for motion annotation. The trajectory

annotation tool needed to create the trajectory-based datasets is explained in detail

with its supporting modalities. After that, the motion-region annotation framework is

8



described along with its associated algorithms. A detailed quantitative and qualitative

analysis is also given.

Chapter 5 concludes this thesis highlighting the contributions. This chapter also

describes the limitations and suggests short term and long term future work.

9



1. INTRODUCTION

10



Our review of the literature says this appears to

be bigger than in the past.

Bob Dietz

Chapter 2

Literature review

Motion analysis has been of interest for researchers since long. The details en-

capsulated in a video are better judged, if the motion present in it is segmented and

understood. This idea propelled the community to work on several different off shoots

of motion analysis, which includes motion segmentation among others. Motion seg-

mentation problem has it roots in the dataset it is being analyzed on. If the dataset is

realistic, with real object motions and distortions, the segmentation proposal becomes

that much more comprehensive. The basics of a MS dataset creation are embedded

in motion annotation and label propagation. An automatic or semi-automatic motion

annotation platform can facilitate the labeling of complex motions in real sequences of

a dataset. This in turn would result in algorithms having a profound solution of the

MS problem.

In this chapter, we present a detailed review of these three aspects of motion seg-

mentation problem. In Section 2.1, a detailed overview of the state-of-the-art MS

datasets has been presented. Following this overview, in Section 2.2, the recent MS

segmentation methodologies, which have exhibited good results are presented. Sec-

tion 2.3 contains a detailed note on the approaches taken by the community to solve

the motion annotation problem. This section is followed by the concluding remarks in

Section 2.4, including comments on the state-of-the-art of each problem.

2.1 Motion segmentation datasets

In this section, the state-of-the-art in MS datasets is presented. The attributes of each

dataset are explained with an analysis along with the strengths and limitations.

The first segregation in MS datasets is the representation of motion annotation in
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2. LITERATURE REVIEW

Figure 2.1: Top Row: Trajectory-based dataset sequence [38]. The original image is on the left,
whereas the trajectory-based motion image is on the right. Bottom Row: Region-based dataset
sequence [39]. The original image is on the left and the region-based annotation of the moving objects
on the right.

two distinct types: trajectory-based and region-based datasets. An example of both

groups is shown in Fig. 2.1.

� Trajectory-based datasets: In trajectory-based datasets, moving objects are

represented by a limited number of salient points features, already extracted

and tracked throughout the video sequence. These trajectories represent only a

part of the moving object, hence, the motion can be tracked even under partial

occlusion. The trajectories belonging to each motion are grouped together with

a unique label to perform motion annotation.

� Region-based datasets: On the contrary, the region-based datasets do not use

sparse points but perform pixel-wise motion labeling. The result is a more precise

annotated segmentation of moving object contours, but the occlusion problem

becomes harder to solve. The main drawback of region-based datasets is the

heavy computational time required to generate the label for each pixel.

Both trajectory- and region-based datasets have paved the way for valuable con-

tributions in the motion segmentation research. Each presented dataset had its own
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Figure 2.2: Top Left: A frame from a checkers board synthetic sequence. It acts as rigid motion. Top
Right: A frame from an outdoor car real sequence. It contains two rigid motions. Bottom Left: A
frame from a checkers board synthetic arm sequence. It contains articulate motion. Bottom Right:
A frame from a people real sequence. It contains non-rigid motion.

strengths and limitations. A list of a few widely known datasets along with their

features and properties is given in Table 2.1. The details of some of them are:

1. Hopkins155 [38]: Among both types, the most well-known publicly available

dataset designed to address the motion segmentation problem was the trajectory-

based Hopkins155 [38] dataset. It is still considered to be a reference benchmark

for MS. This trajectory-based dataset was widely accepted in the community

because it provided a simplified method for researchers to easily compare their

algorithms. Hopkins155 comprised 155 short sequences having 2 or 3 motions,

as illustrated in Table 2.1. More than 100 video shots were synthetic i.e. having

checkerboard and books passively moved by humans. The remaining sequences

included rigid motions of moving traffic, non-rigid motion of people and articu-

lated motion of cranes, human arm and head. A few examples of synthetic as well

as real images of Hopkins155 are given in Fig. 2.2. All the trajectories in all the

sequences were complete, meaning that the moving objects do not get occluded,

neither do they go out of the field of view. The ground-truth was provided as a

motion or background label for all the trajectories.
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2. LITERATURE REVIEW

The characteristics of Hopkins155 had a significant impact on MS research. All

the algorithms were evaluated on a single dataset with a robust metric [38].

But the inherent limitations in Hopkins restrained the development of MS al-

gorithms further. The dataset contained no missing data, the length of videos

was extremely short and the number of motions captured per sequence were few.

The dataset comprised predominantly synthetic video shots, and the kind of real

noise like occlusion, stopping motion, perspective distortion, multiple appearance-

disappearance of objects etc, that regularly occur in real-life videos was not

present. In ’Hopkins Additional’, which was a name given to the 16 sequences

with missing data added to Hopkins155, an effort was made to overcome these

limitations, but even in these sequences, 12 were synthetic. The number of mo-

tions were few, and the length of the sequences was still short. Misclassification

levels reached on Hopkins nowadays are as low as 0.8% [31], which means that

there is no room left to quantitatively distinguish one algorithm from the other.

Therefore, although Hopkins paved the way to meaningfully analyze MS algo-

rithms, in terms of modern day requirements, the dataset has become obsolete.

2. FBMS59 [39]: To overcome the innate limitations present in Hopkins155, a

region-based motion segmentation dataset BMS26 [50], comprising 26 sequences

was presented. This dataset mostly contained snippets of movies with 1 to 2

people as moving objects captured from predominantly a moving camera. Some

sequences were also borrowed from Hopkins155. Later, 33 more video shots were

added to this dataset to create FBMS59 [39], having 59 sequences in total. Every

20th frame in FBMS59 came with a pixel-accurate ground-truth segmentation of

moving objects. Thus, the ground-truth was available only on approximately 5%

of the complete dataset. Some salient features of the dataset can be seen in Ta-

ble 2.1. The dataset encapsulated rigid motion of cars, non-rigid and articulated

motion of people and animals. Some video shots were captured at varying light

conditions, and most sequences contained partial occlusion. A few sample frames

of the FBMS59 dataset are given in Fig. 2.3.

Although FBMS59 tried to address the constraints in Hopkins, the fact that the

ground-truth was available only on 5% of the whole dataset makes its usage re-

stricted. There was an increase in sequence length but the average number of

motions per sequence was still low. The problem of real noise was also addressed

partially as there were sequences with partial occlusion, but rarely any with com-

plete occlusion. The effect of perspective distortion was vaguely captured, and
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Figure 2.3: Top Left: A frame from the lions sequence. It contains two non-rigid motions. Top
Right: A frame from the horses sequence. It contains three non-rigid motions. Bottom Left: A
frame from the bears sequence. It contains a single non-rigid motions. Bottom Right: A frame from
the marples sequence. It contains two motions, one rigid and one non-rigid.

the aspect of stopping motion and multiple appearance-disappearance of objects

were not tackled.

3. MOViCS [51]: In this dataset 11 short sequences, with non-rigid real motions,

were presented with minimal motion complexity. A region-based annotation was

provided on a few frames, as the time cost of annotating all the frames would

have been enormous. The ground-truth was provided only on approximately 29%

of the complete dataset. Some salient features of the dataset can be seen in

Table 2.1. The dataset encapsulated non-rigid and articulated motion of animals.

Some video shots were captured with slight variation in light conditions, and most

sequences contained partial self-occlusion. Some examples of the images present

in this dataset are given in Fig. 2.4.

The MOViCS dataset contributes to the already existing datasets by adding a

few sequences containing non-rigid motions, but in itself, it cannot be treated

as a comprehensive dataset. The length of the sequences is quite small, with

an average 47 frames per sequence. The average number of motions is only 2.
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Figure 2.4: Top Left: A frame from the chicken-on-turtle sequence of MOViCS dataset. It contains two
non-rigid motions. Top Right: A frame from the elephant giraffe all2 sequence of MOViCS dataset.
It contains two non-rigid motions. Bottom Left: A frame from the cheetah sequence of SegTrack
dataset. It contains two non-rigid motions. Bottom Right: A frame from the monkey sequence of
SegTrack dataset. It contains one non-rigid articulate motion.

Hence, although MOViCS brings forth some non-rigid motion sequences to test

algorithms performance on them, it lacks the capability to rigorously test all the

features desired in a MS methodology.

4. SegTrack [41, 52]: In this dataset, 13 short sequences, with non-rigid real mo-

tions, were presented with limited motion complexity. In this dataset as well, a

region-based annotation was provided but in contrast with FBMS59 and MOViCS,

the grud-truth was provided on all frames. Some salient features of the dataset

can be seen in Table 2.1. The dataset encapsulated non-rigid and articulated mo-

tion of people and animals. One sequence contained the motion of a parachute.

Generally, video shots were captured with slight variation in light conditions, and

most sequences contained partial occlusion. A few sample frames of SegTrack

dataset are shown in Fig. 2.4.

The SegTrack dataset also has limited contribution to be considerd as a compre-

hensive MS dataset. Though, the provided ground-truth on all frames makes its

usage quantitatively significant. The length of the sequences is small, with an
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average 76 frames per sequence. Like MOViCS, the overall average number of

motions per sequence is also only 2. SegTrack lacks sequences with rigid-motions.

It also does not contain motions undergoing complete occlusion, stopping mo-

tion and multiple-appearance-disappearance. Hence, it too lacks the depth in

sequence variations and complexity to rigorously test the comprehensiveness of a

MS algorithm.

5. Other Datasets: There are other datasets, which were created for Video Seg-

mentation or related fields, and were also used for MS research. These datasets

include VSB100 [53, 54], Extended-Yale benchmark [40] and Cambridge

CamShift dataset [42]. All these datasets have limited number of motions

or frames per sequence, which makes their use in MS community quite limited.

The annotation methodology in all datasets changes with reference to the motion

complexity, which determines the processing purpose.

It is apparent that researchers have focused a lot on MS datasets. Many proposals

with variable features and properties were proposed. Baring Hopkins155 and FBMS59,

others provide supplementary contribution to the motion segmentation problem. Hop-

king155 has been exhaustively tested and has lately become obsolete, as it lacks the

capability to further evaluate algorithm’s improvement. Although some limitations of

Hopkins155 were addressed in FBMS59, there is still a requirement for a comprehensive

dataset, which can tackle the prevalent constraints of the two datasets.

2.2 Motion segmentation methodologies

Motion segmentation is a preprocessing step for many computer vision tasks. Owing

to this feature, it has remained of particular interest for researchers. In recent years,

many methodologies have been put forth [25–29]. The problem has been addressed

in a variety of approaches. A category-wise explanation of some of the more reputed

methodologies is as follows,

� Subspace clustering: MS problem was initially approached as a subspace affin-

ity problem in [30]. This approach was then extended as a sparse subspace clus-

tering (SSC) problem [31] by proposing the use of sparse representation of data

drawn from multiple low-dimensional linear or affine subspaces. SSC reached as

low as 0.8% misclassification on Hopkins155. Similarly, a low-rank representation

(LRR) [32,33] to segment data drawn from a union of multiple linear or affine sub-

spaces, was proposed. Unlike the sparse representation (SSC), which computes
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the individual sparsest representation of each data vector, LRR aimed to find the

lowest-rank representation of a collection of vectors jointly. LRR reached as low

as 3% misclassification on Hopkins155. Another method with a new interpreta-

tion to extract the rank of trajectory matrix and an improved affinity measure

was proposed [34–36] known as Enhanced Local Subspace Affinity (ELSA) and

Automatic-Adaptive subspace Affinity (A-ASA). ELSA and A-ASA reached re-

sults as low as 0.96% on Hopkins155. The approach proposed in [37] introduced

a temporal subspace clustering method for unsupervised segmentation of human

motion by designing a temporal Laplacian regularization function to model the

sequential information in time. This method had limited applicability in general

MS problems.

� Handling missing data: The issue of corrupted trajectories and missing data

was addressed in a mathematical framework as Agglomerative Lossy Compression

(ALC) [43]. This algorithm consists of minimizing a cost function by grouping

together trajectories. The cost function is given by the amount of information

required to represent each manifold, summed over all of the manifolds. ALC

reached a minimum misclassification of 3.37% on Hopkins155. This technique

does not guarantee to find the global maximum. Another problem is the need to

tune a parameter, which depends on the noise level of the input sequence and on

the number of clusters of the video. Besides ALC, another approach presented

an algebraic geometric approach as Generalized Principal Component Analysis

(GPCA) [55]. This technique used GPCA to fit a polynomial of degree N, where

N is the number of subspaces (i.e. the number of motions), through the data and

estimate the bases of the subspaces using the derivatives of the polynomial. This

algorithm was also able to deal with missing data.

� Statistical and layer techniques: MS was also approached by statistical tech-

niques as well [56], where a framework for two-view segmentation was presented.

A local sampling based hypothesis for the estimation of fundamental matrices

was generated. Using the hypothesis, a combinatorial model is created and then

optimized. The authors comment that the outcome of the method heavily de-

pends on the initial set of hypotheses. In addition to statistical methods, MS was

also approached through layers techniques [57–59]. Specifically, [57] proposed

an approach to extract motion layers from a pair of images with large dispar-

ity motion. A topological clustering algorithm along with Scale-Invariant Feature

Transform (SIFT features) [60] establishes motion models. Using an affine trans-
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formations model for each cluster, a graph-cut based algorithm was employed

to segment the scene into several motion layers. This technique had a problem

when handling occlusions and was sensitive to change in the illumination of the

scene. Some approaches dealt with moving object segmentation as an energy min-

imization graph problem. In [61], a fully connected spatio-temporal graph was

built over object proposals. Expectation maximization of the energy term that

incorporated confident sparse long-range feature tracks is done, to ensure similar

temporal labeling of objects. This approach is dependent on image resolution.

On the contrary, in [62], the problem was posed as a minimum cost multicut for-

mulation for motion trajectory segmentation. The costs were defined as positive

or negative edge weights.

� Tracking and Segmentation: Recently, two approaches proposed joint track-

ing and segmentation of moving objects in videos. One presented an algorithm

which integrates the multi-part, tracking and segmentation into a unified energy

optimization framework [63].This approach is able to deal with a single object

per frame and per video. The other approach, proposed a multi-target tracker

that exploited low level image information and associated each super-pixel to a

specific target object or background [64]. It needs annotated silhouettes masks

to obtain object specific foreground for segmentation.

� Optical flow: Moreover, optical flow based long term analysis of point trajecto-

ries was also performed for moving object segmentation [50,65], and to turn these

point trajectories into dense motion regions a hierarchical variational approach

was introduced recently [39, 66]. Another optical flow based approach [67] pre-

sented multiple figure-ground segmentations on motion boundaries and ranked

them based on a Moving Objectness Detector, with the final segmentation as the

top ranked spatio-temporal tube. Another proposal used optical flow to infer

long-term occlusion relations from video, and framed it as a convex optimiza-

tion problem to segment image domains [25].The work presented in [68] proposed

to detect disoccluded regions by inferring piecewise smooth deformation fields.

By using motion and appearance cues, it partitioned the disoccluded region and

grouped its components with the object.

The recent inclination of the community is towards optical flow based methods

because the problem is then dealt in totality for all motions and for all distortions,

especially in the case of missing data. The computational time taken for optical flow
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based methods remained a limitation for a long time, but the rise in high speed graphics

processing unit (GPU) processors containing multiple cores has made it possible for

these methods to be considered for usage in real time.

2.3 Motion annotation

2.3.1 Motion annotation approaches

In general, the solutions of video annotation problem try to achieve two distinct objec-

tives, either to reduce the expert-user annotation time in generating the ground-truth

of large scale video data, or to improve annotation quality, or both. These objectives

are achieved by two distinct approaches. One approach is to put forth comprehensive

video annotation platform tool as a standalone package, which can label motions or

objects of interest in video sequences. The other proposition is to devise label propa-

gation methodologies, which can be incorporated in existing tools. The state-of-the-art

in video annotation includes techniques from both practices.

2.3.2 Standalone annotation packages

Regarding standalone packages, several video annotation tools have been developed in

recent years. Predominantly computer vision and machine learning methods are used

as support for efficient human annotation. The different tools can be distinguished

based on the functionalities they support. Some of the more used packages are listed

below,

� ViPER: The pioneering work on video annotation was presented in ViPER [69,

70], which was a reconfigurable video performance evaluation resource. It pro-

vided an interface for manual ground-truth generation, an evaluation metric and

a visualization tool as shown in Fig. 2.5. It was a Java based desktop application,

which propagated rectangular or polygon region-of-interest (ROI) through linear

interpolation.

� GTTOOL and GTTOOL-W: Two similar desktop-based GTTOOL [71] and

web-based GTTOOL-W [72] tools were presented, with a goal to improve user

experience with respect to ViPER [69] by providing edit shortcuts, and by in-

tegrating some basic computer vision algorithms to automate. The collabora-

tive web-based implementation featured an easy and intuitive user interface that
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Figure 2.5: Left: The GUI of the ViPER annotation tool, with the video canvas on the left, the
spreadsheet on the top right and the remote is in the middle. Right: The spatial annotations editing
on the video canvas [69,70].

allowed instant sharing/integration of the generated ground-truths. The label

propagation in these tools were performed using tracking approaches.

� LableMe-Video: Relatively recently, a popular online, openly accessible tool

LableMe-Video [73], was presented that allows annotation of object category,

motion and activity information in real-world videos. This tool used homography

to propagate the label across key frames in the video. Using this system, a scalable

video database composed of diverse video samples and paired with human-guided

annotations was built. It lacks uniformity in annotation, as a user with out any

qualification on annotation expertise, can annotate to add to the dataset.

� iVAT: With the same focus, iVAT [74], an interactive Video Annotation Tool,

which supports manual, semi-automatic and automatic annotations was pre-

sented. This tool integrated several computer vision algorithms working in an

interactive and incremental learning framework. This makes the tool flexible and

suitable to be used in different application domains. The main limitation of the

tool is in annotating long term motions with partial and complete occlusions. It

works well for small motions.

� HIL: Another human-in-loop (HIL) methodology [45], to create ground-truth

for videos containing both indoor and outdoor scenes was put forth with the

idea that human beings are experts at segmenting objects and inspecting the

match between two frames. The approach contained an interactive computer

vision system to allow a user to efficiently annotate motion. The GUI with other

utilities is shown in Fig. 2.6.

The standalone packages provide a single platform for moving object or object of

interest annotation. They possess the inherent trait of providing all the annotation
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Figure 2.6: A screen shot of the human-in-loop motion annotation system. The main window, depth
controller, magnifier, flow field viewer and control panel [45].

utilities on a user-friendly Graphical User Interface (GUI). A general limitation of such

platforms is the flexibility to accommodate further algorithms, which can enhance their

annotation range. This limitation makes them a time-bound contribution, as with the

passage of time their utilities become obsolete with respect to the modern requirements

of annotation.

2.3.3 Label propagation techniques

The other approach as mentioned in Section 2.3.1 are label propagation methodologies.

This is a relatively new track to solve the annotation problem [75–79]. Some recent

work has been presented related to label propagation, where a manually given object

label in key frames is propagated forward and/or backward in all the frames the object

exists. This problem was also tackled in several different ways as well.

� Probabilistic: Probabilistic graphical models for propagating labels in video se-

quences were used in [75]. An Expectation Maximization (EM) algorithm prop-

agates the labels in a chunk of video with start and end frames already labeled.

The unlabeled parts of the video are dealt with in a batch setting. In [76], a simi-

lar approach was used to train a multi-class classifier. The pixel labels estimated

by the trained classifier were fed into a Bayesian network for a definitive iteration

of label inference. A hybrid of generative propagation and discriminative classi-

fication in a pseudo time-symmetric video model enables conservative occlusion

handling. Moreover, in [77] the limitations of pure motion and appearance based
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Figure 2.7: Top: Sample frames with our annotation using 20% of the sequence. Bottom: Probabilis-
tic baseline labeling on the same frames. Different colors correspond to different object classes [79].

propagation methods were shown, especially the fact that their performances vary

on different type of videos. To avoid these limitations, a probabilistic framework

was proposed that estimated the reliability of the appearance-based or optical

flow-based label sources and automatically adjusted the weights between them.

� Active Frame Selection: An active frame selection approach was adapted

in [78, 79]. In [78], active frame selection is done by selecting k frames for man-

ual labeling such that automatic pixel-level label propagation can proceed with

minimal expected error. Here the frame selection criterion is joined with the pre-

dicted errors of a flow-based random field propagation model. The method excels

in utilizing human time for video labeling effectively. In contrast, an information-

driven active frame, location and detector selection approach was used in [79].

The method optimizes on a given uncertainty bound, the selection of a detector

at a particular location and also minimizes label uncertainty at each pixel. Its

results in comparison with a probabilistic baseline are shown in Fig. 2.7, as taken

from their original paper [79]. It also tries to optimize for computational cost for

both manual and semi-automatic labeling.

� Graph Methods: More recently, a semi-supervised video annotation approach [80]

was proposed by learning an optimal graph from partially labeled object. The

methodology also exploited multiple features, which could accurately embed the

relationships among the data points. The similarity graph used the geometrical

relationships among the training data points. The model was extended to ad-

dress out-of-sample and noisy label issues. From another perspective, a diffusion

approach for label propagation was used in [81]. The application of anisotropic

diffusion on graphs and the corresponding label propagation algorithm, on the

vector bundles of Riemannian manifolds was presented. This definition of new
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diffusivity operators significantly improved semi-supervised learning performance.

� Inferring Color: For an application of color label propagation, in [82], the

problem of inferring color composition of the intrinsic reflectance of objects was

addressed. The color labels were propagated between regions sharing the same

reflectance, and the direction of propagation was propagated to be from regions

under full illumination and normal view angles to abnormal regions.

The literature on label propagation has had some new developments but there are

still challenges, which are still unsolved. Most of the state-of-the-art techniques revolve

around taking key frames and propagating the labels, but they are rarely able to deal

with distortions in motion.

2.4 Conclusion

The existing datasets, due to their limitations, cannot perform an analysis of algorithms

in the presence of multiple occlusions, stopping motion, perspective distortion, multiple

appearance-disappearance, and real-life noise of camera motion. Moreover, if a new

difficult benchmark is introduced with long sequences, then most of the state-of-the-

art algorithms will not be applicable on it. Hence, there is a vaccum, which can

be filled by creating a comprehensive new benchmark dataset, focusing on both long

and short sequences with real objects, increased number of motions per sequence, and

real distortions. In this way, prevailing state-of-the-art algorithms can be applied and

analyzed on short sequences with real noise, while new algorithms can be designed and

then tested on long sequences. Keeping this in view, a major contribution is made in

filling this vacuum with the work presented in Chapter. 3.

The existing methodologies in label propagation address the problem in a limited

range of applications. Though, they perform well, they lack utility in real life long videos

in outdoor scenes, where multiple occlusions, stopping motion, perspective distortion,

multiple appearance-disappearance and noise of camera motion, are present. A reason

for these limitations is the absence of a video dataset, where these optical phenomenons

could be tested. With the benchmark presented in chapter. 3, it is possible to test

these annotation limitations quantitatively. Results in the state-of-the-art demonstrate

that the use of the semi-automatic, as well as the automatic, modality in annotation

drastically reduces the human effort while preserving the quality of the annotations.

Related to this viewpoint, two domains are addressed in chapter. 4. In the first part, a

comprehensive framework for trajectory-based motion annotation tool is presented. In
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the second part, a motion-region annotation technique is presented, which complements

the HIL annotation tool [45]. Our motion region annotation methodology is generally

applicable on objects undergoing partial occlusion by static occluders, with a limited

application on objects undergoing occlusion by other moving objects. In chapter. 4 a

consolidated evaluation is also performed to establish the usage of the scheme in real

life scenes.
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In God we trust; all others must bring data.

William Edwards Deming

Chapter 3

A collection of challenging

motion segmentation benchmark

datasets

All the MS datasets presented in the literature review of Chapter 2 are not without

limitations. The boundaries of motion segmentation algorithms can only be pushed

if these pointed out limitations are addressed. Both, the trajectory- and region-based

datasets, lack in sequences with long term motion undergoing partial, complete or mul-

tiple occlusion. Occlusions of these types regularly occur in daily life scenes. Datasets

with limited inclusion of this phenomenon do not possess the capability to test the

algorithms in this domain. The same limitation is present for other distortions as well,

which include illumination changes, shadows, stopping motion, multiple-appearance-

disappearance, perspective distortion, drastic depth change and distortion due to cam-

era motion, jitter or others. These limitations along with the idea to provide complete

ground-truth on all the motions on all the frames inculcated the motivation to build a

new benchmark dataset.

Our aim was set to build two trajectory- and region-based benchmark datasets,

each comprising of long and short sequences. In this chapter, first the description of

the acquisition setup to build the dataset is given. After that, the trajectory-based long

and short sequences database is explained, followed by the presentation of the region-

based long and short sequences database. The features and properties of each dataset

are listed in Tables 3.1 and 3.2, respectively. Afterwards, the benchmarking setup and

the methods used to perform this first quantitative evaluation are presented, including

a discussion on both quantitative and qualitative performance of the analyzed state-
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BENCHMARK DATASETS

Table 3.1: A summary of the features of our trajectory-based and region-based benchmark
MS datasets. The details of both long and short sequences are listed. Acronyms are Avg.:
Average, Max.: Maximum, all averages and maximums are per sequence

Proposed Trajectory-based, and Region-based MS Datasets

Datasets Dataset Features
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Trajectory-based Short 162 6942 42.9 442 2.7 6 100%

Region-based Long 20 16300 815.0 235 11.8 23 100%

Region-based Short 150 6262 41.7 440 2.9 6 100%

of-the-art methods. In the end, the conclusion includes a summary of the presented

benchmark with a comment on its usage and current limitations.

3.1 Data acquisition

The first step in building any video dataset is to capture the video shots through a con-

sistent reference setup. To build our database, the acquisition of all the sequences was

performed in high definition (HD) at 1920x1080 pixels per frame at 30fps. The process-

ing of long HD videos is computationally extremely expensive, especially in methods

involving optical flow. Therefore, although all the captured sequences are provided in

original resolution with the database, for processing purpose the frame size is reduced

to 640x480. This reduction in resolution does not effect the performance analysis of any

algorithm. Any methodology, which works well on 640x480 will technically perform the

same on HD videos, except for the computational time. Even the ground-truth on the

low resolution videos can easily be linearly interpolated on HD video, while remaining

inside a minimum error bound.

All the sequences are video shots of real-life natural scenes which we come across
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in our daily lives. The moving objects in the videos are cars, motorbikes, bicycles and

people. In the database, there is a diverse collection of rigid and non-rigid motions.

From a total of 26 video shots, 19 sequences contain trajectory-based ground-truth, and

20 contain region-based ground-truth. Hence, 13 sequences contain both trajectory- and

region-based ground truth. Among all, 22 video shots were captured while standing

or walking, and 4 were captured with the camera inside a moving car. The sequences

captured from inside a moving car introduced a relative motion between the camera

and the outdoor scene. Two sequences, one in each benchmark, were captured as tower

camera view of the scene. The videos are of variable length ranging from 460 frames (15

sec) to 1737 frames (58 sec) at 30fps. The number of captured motions per sequence,

excluding the camera motion, are minimum 4 and maximum 23. The maximum number

of motions per frame reaches up to 6 in some sequences.

All sequences contain real moving objects, while their motion possesses a combi-

nation of distortions including occlusion, variable weather conditions, missing data,

perspective distortion, stopping motion, shadows, illumination changes and multiple

appearance disappearance of objects.

� Occlusion: Moving objects while in motion get partially or completely occluded

by other objects, static and/or moving. These situations create partial, complete

or multiple occlusion of a single moving object.

� Weather: The acquisition of sequences is performed in variable weather condi-

tions, i.e. in sunny weather, in cloudy weather and in the evening, when the sun

is about to set, giving rise to a darkish backdrop.

� Missing data: When trajectories, or areas in motion regions, disappear along

the motion of an object due to occlusion, tracking failure or other distortions, it

results in missing data.

� Perspective distortion: It is captured in the sequences, where the distance of the

objects from the camera changes considerably with respect to the angle of view

of the camera, while keeping the object inside the field of view (FoV) throughout.

� Stopping motion: When a moving object, instead of being in continuous motion

throughout its appearance in the sequence, remains static in some frames of the

sequence, this motion results in stopping motion.

� Shadows: Motion of objects, with the sun on top or behind the object, casts

their shadow between the object and the camera. These shadows are captured in
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several sequences.

� Illumination Changes: The effect of illumination change is captured in multiple

sequences, either due to the slight change in lighting conditions during object

motion or due to the considerable change in depth of the moving object during

the course of its motion.

� Multiple Appearance-Disappearance: These are the instances, when a moving

object while in motion goes out of the FoV, and comes back in again in the

sequence, giving rise to appearing, disappearing and then re-appearing of the

object.

The presence of these real-life distortions make the database diverse and challenging.

Any algorithm tested on this proposed dataset needs to encapsulate multiple distortion

handling capabilities to be able to exhibit good results. Hence, the performance mea-

sures of less than 1%, which became a norm for Hopkins155, are not expected. Instead,

the difficulty would push the boundaries of MS methodologies diversity.

3.2 Trajectory-based datasets

The proposed trajectory-based datasets in their composition are similar to Hopkins155.

It primarily contains 19 long sequences in which sparse point trajectories on all the

motions are tracked and then labeled to form the dataset. These long sequences with

ground-truth are further cut into 162 small sequences, so that they are processable by

the current algorithms.

3.2.1 Trajectory-based long sequences

The dataset is formed, firstly, by the acquisition of 19 long real-life natural scene

sequences. After acquisition, two more steps are performed, i.e. Tracking, and Annota-

tion. Tracking is necessary to form a trajectory-based dataset, as it is used to capture

the motion of the moving objects in the form of sparse trajectories. The camera motion

is also captured by having trajectories on the background. These trajectories are then

annotated to form the ground-truth of the dataset.

Tracking: A tracker should be able to extract robust and consistent trajectories. Its

choice is dependent on the type of motions to be captured and the kind of distortions
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(a) seq07:139 (b) seq09:108 (c) seq10:190

(d) seq13:478 (e) seq14:693 (f) seq15:30

Figure 3.1: Sample frames of 6 sequences in trajectory-based long sequences with ground-truth overlay.
In the sub-figure description code ’seqXX:YYY’, XX is the sequence number and YYY is the frame
number.

these motions contain. The acquired sequences include diverse motion types, compris-

ing small and large rigid and non-rigid objects (e.g. cars, bikes, people individually or

in groups). The distortions include partial/complete/multiple occlusion, illumination

changes, shadows, perspective distortion, stopping motion, and multiple appearance-

disappearance. It is an extremely difficult task to robustly capture these characteristics,

especially with a uniform distribution of trajectories over object regions.

Many recent tracking approaches exhibited relatively promising results. In [83],

an optical flow based tracking algorithm is presented, which enables robust extraction

of densely sampled trajectories. These trajectories are converted into descriptors for

action recognition by limiting the length for each trajectory to 15 frames. If used

for longer frame lengths, the algorithm results in undesirable sparse trajectories on

homogeneous regions of moving objects.

Recently, a promising Large Displacement Optical Flow (LDOF) based tracking

algorithm was proposed [46] with a publicly available GPU-accelerated implementa-

tion [84]. The algorithm tracks robust point trajectories over densely sampled regions

using LDOF. The trajectories on rigid and non-rigid objects are consistent. It stops

sampling in homogeneous regions of background, while retaining densely sampled tra-

jectories on homogeneous regions of moving objects. We used this algorithm for tracking
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in our dataset. The property of this algorithm of providing dense trajectories in mov-

ing object regions was of particular use for our trajectory-based dataset. The robust

tracking of long term trajectories and re-sampling in case of occlusion, made sure that

there were densely populated trajectories on all the moving objects in all frames during

the course of its motion.

The computational cost of LDOF calculation is high but once LDOF is known,

dense point sampling and tracking is fast. Tracking can be carried out for samples of

variable size, depending on the required density of image coverage. When performing

the initial tests tests on our sequences we observed that, if the sample size is kept

high i.e. 16 or more, then there are less number of trajectories per moving object and

small objects are missed. If the sample size is kept small i.e. 4 or less, then the total

number of trajectories and the overall computation cost increases. Hence, we chose

a sample size of 8 in our dataset as a trade-off between overall computational cost

and dense coverage of small objects. We used ’mosegOB’ tracker executable [65] as it

is a publicly shared implementation by the authors themselves. Its output is a post

processed result in which outlying bad trajectories are filtered. The tracker output

results in almost 0.39 million trajectories, capturing all the desired motions in all the

sequences.

Some tracking results with ground-truth overlay can be seen in Fig. 3.1. In all

the images, the motion of the rigid non-degenerate moving objects are captured with

long trajectories having dense coverage. In Figs. 3.1a, 3.1e and 3.1f, trajectory labels

on non-rigid degenerate moving objects can be seen. These trajectories are relatively

sparse as compared to rigid non-degenerate objects, but representative nonetheless.

There is also a subset of noisy trajectories, outliers, that capture motion of more than

one moving object in the sequence. These outliers can potentially force classification

errors in MS algorithms because of the inherent multiple motions in them. Consistent

shadows of moving objects are also tracked with the object.

Annotation. Annotating 0.39 million trajectories is a cumbersome task. This annota-

tion problem is a topic of research called label propagation, in which manually assigned

region labels in a few frames are propagated to the rest of the video. It is a challenging

task, regarding which some recent work was presented in [75] and [76], as mentioned

in Section 2.3 in Chapter 2. In [78], an active frame selection method is proposed to

best utilize human effort by minimizing an error cost for any set of k manually labeled

frames. However, if used on our dataset then multiple steps of pixel label propagation

over multiple frames and then re-propagation of these region labels to trajectory labels
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result in unwanted accumulation of error.

We used a composite solution by first acquiring an approximation of segmentation

labels on all the trajectories, and then performing manual correction to obtain an accu-

rate ground-truth. The first step of approximation on all the trajectories is acquired by

a recent MS algorithm [39,65]. Afterwards, the wrongly estimated labels are manually

corrected by a user with a ground-truth annotation software. The amount of time taken

for manual effort is proportional to the number of wrongly segmented trajectories.

All tracks on a moving object are given a unique label. Two labeling principles are

followed for all the sequences:

� Two separate objects with similar kind of motion are labeled uniquely if at any

point in the sequence the object boundaries are visually separable.

� The noisy subset of trajectories that represent multiple motion in a single tra-

jectory are assigned the label of the moving object they are most representative

of.

The main features of our trajectory-based long sequences database are listed in Ta-

ble 3.1, where it can be seen that 19 long sequences encompass more than 200 motions,

spanning over 15500 frames, while containing all the real-life distortions. This contri-

bution alone is more intricate than any MS dataset presented thus far.

3.2.2 Trajectory-based short sequences

Most MS algorithms were designed, since a long time, to be tested on Hopkins155

dataset. Due to this, most state-of-the-art algorithms only possess the capability to

evaluate short sequences with no missing data. If the algorithms can not be tested

on the long sequences dataset then the creation of a benchmark becomes a problem.

This limitation of MS algorithms led us to the creation of a novel Hopkins155-like short

sequences dataset. The length is shortened by cropping the long sequences into multiple

short ones, making sure that in each of them real distortions are still prevalent.

In each short sequence, the trajectories as well as the ground-truth trajectory label

are taken from its corresponding long sequence frames. All trajectories spanning 6

frames or less, are discarded as not representative enough. In total, we create 162

short sequences, which are generated from the 19 long sequences. The details of all the

short sequences can be seen in Table 3.1, where we show that the 162 short sequences

contain 442 motions, excluding background camera motion, spanning over 6900 frames.

A separate subset of 40 sequences with no missing data is also created to process

algorithms which are unable to handle missing data.
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3.3 Region-based datasets

Over time, MS datasets have evolved from trajectory-based datasets [38] to region-

based datasets [39, 41, 42, 52] as introduced in Chapter 2. In Hopkins155, instead of

providing pixel motion labels on moving object regions in the sequence, motion labels on

precomputed sparse trajectories were given. The purpose of trajectory-based dataset

was to reduce the processing time, while still being able to capture motion. This

approach added an extra tracking step besides acquisition and annotation. Due to

the advancement in computational power, all the recently presented datasets contain

pixel labels on moving object regions in every sequence. In our proposed region-based

dataset, a total of 20 long sequences are presented with unique region label on all the

motion regions of all the sequences. These sequences with ground-truth are further

cut into 150 short sequences. An equivalent set of trajectories on every motion in

both long and short sequences is also provided, so that they are processable for the

state-of-the-art algorithms.

3.3.1 Region-based long sequences

The region-based dataset of long sequences is formed by first acquiring 20 long sequences

that contain real distortions. In these sequences, the intermediate tracking step is

not performed as trajectories are not needed. All the motion regions are directly

labeled pixel-wise in each sequence through region annotation tool explained in the

following section. Moreover, besides motion region labels, all the sequences contain

trajectory-based ground-truth corresponding to each region label so that the state-

of-the-art algorithms that only work on sparse trajectories can also be tested on this

dataset.

Annotation It is an extremely difficult task to pixel-wise annotate all the motion

regions in all the sequences. In recent works, researchers are trying to figure out

methods with which a few manually annotated region labels in a few frames can be

propagated to the rest of the frames, with some finite error bound [75,76].

As mentioned in Section 3.2.1, in [78] an active frame selection method was pro-

posed, where the authors minimize the error cost for any set of k manually labeled

frames. This approach was not useful in our trajectory-based dataset due to multiple

label transitions. Its application was problematic in our region-based dataset because

it is an iterative method, which can become computationally expensive while searching

for the best k frames. Its utility in sequences with less number of frames containing lim-

ited partial occlusion is present. It becomes increasingly unusable in our case because
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(a) seq17:259 (b) seq17:349 (c) seq17:415 (d) seq17:471

Figure 3.2: (Left to Right) Frames 259, 349, 415 and 457 of sequence seq17 in region-based dataset
with ground-truth overlay. a: A blue hooded truck enters the scene, b: The truck gets completely
occluded behind the white van, c: The truck turns around the roundabout, d: The truck comes near the
camera before going out of the FoV, it completely occludes every other moving object and experiences
perspective distortion as compared to when it first entered the scene.

of long sequences, and especially in the presence of real distortions.

As mentioned in Section 2.3, in contrast to [78], in [45] a human-inloop methodology

was proposed to create a ground-truth motion database in both indoor and outdoor

natural scenes. The authors designed an interactive publicly available computer vision

system to allow a user to efficiently annotate motion. The limitation in this tool

was that it was not designed to annotate long sequences with real distortions. The

propagation of region label fails when a moving object becomes occluded, or when the

motion region boundary does not adjust as the object’s boundary expands or retracts

due to perspective distortion. These limitations were difficult to handle as it meant

manual correction in each frame, but certain features of the tool made it possible to

use it while not letting computational time overhead become too large.

In rigid objects, there were a few scenarios which were particularly difficult for

annotation, explained in Fig. 3.2. During complete occlusion, region boundary propa-

gation of the blue truck stops, seen between Fig. 3.2a and Fig. 3.2b, as the tool assumes

that the object has gone out of the FoV. This phenomenon is overcome by using the

replication tool over occluded frames. In the frames around Fig. 3.2c the object takes

a turn, which is difficult to annotate as there is a considerable change in shape. The

region boundary in each frame while turning motion is replicated and shape corrected

for correct annotation. The object’s appearance, changes a lot along its motion from

Fig. 3.2a to Fig. 3.2d due to perspective distortion. During this transition, the region
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propagation is done piece-wise in steps of 5 frames at a time.

In the case of non-rigid and articulate objects i.e. people, the propagation is done

piece-wise like in the case of perspective distortion. The label is propagated over a small

number of frames assuming that the motion remains consistent during those frames.

Then the region boundary is corrected and then re-propagated. This is repeated for each

non-rigid object till it remains in the field of view. The completion of this annotation

process results in 235 annotated motions in 20 long sequences. A log of annotation time

taken for each motion in each sequence is also kept and provided with the database,

so that if the ground-truth of this dataset is used in the domain of label propagation,

then a quantitative analysis is possible.

3.3.2 Region-based short sequences

As mentioned in Section 3.2.2, most of the state-of-the-art algorithms cannot deal with

long sequences as they are designed to be tested on Hopkins155 dataset. They are

designed to only evaluate short sequences with no missing data. This problem is again

solved by creating a region-based short sequences dataset, from the long ones. The

length is shortened by cutting the long sequences into multiple short ones, making sure

that real distortions are still prevalent in each small sequence.

The ground-truth regions of all the short sequences are taken from their correspond-

ing original region-based long sequence ground-truth frames. The sequence cutting

leaves a residue of less representative motions in some short sequences, which are kept

unlabeled. For each short sequence, a trajectory-based ground-truth formed from its

respective region-based dataset is also given. In total, 150 short sequences are created

from 20 long sequences. Each short sequence contains all or a combination of real

distortions. The details of all the short sequences can be seen in Table 3.1, where 150

short sequences contain 440 motions, excluding background camera motion, spanning

over 6200 frames. A further subset of 34 short sequences with no missing data is also

created to process state-of-the-art algorithms, which are unable to handle missing data.

All the dataset resources including sequences in original and reduced resolution,

trajectory- and region-based ground-truths, evaluation source codes, results of the

benchmarks and the related documentation are publicly available at http://dixie.

udg.edu/udgms/.
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3.4 Motion segmentation benchmark

3.4.1 Benchmarking methods

The choice of an evaluation criteria in such diverse database is critical. The criteria

should provide an insight into an algorithm’s performance on both, trajectory- and

region-based datasets. To achieve this task, we follow the proposal similar to the one

presented in [39]. If the classifier produces dense region labels, then the application is

similar to the one proposed in FBMS59 [39]. If trajectory labels are to be adjudged,

then there is an underlying assumption that the order of classified trajectory labels

is the same as the order of trajectories in the given trajectory matrix. Based on this

assumption, all the intermediate and final measures are resolved. As most MS methods

are evaluated using trajectories [31,33–35,38,43,55,56], it is critical to carefully confirm

that the assumption holds for the classified labels.

Considering N ground-truth labels (GT) and M segmentation labels (SL), a la-

bel correspondence matrix, LCNxM is computed. The evaluation measures true pos-

itives (TP), false positives (FP) and false negatives (FN) estimate Sensitivity S =

TP/(TP+FN), and Precision P = TP/(TP+FP) as in [39]. With S and P known, we

compute the F-measure (F score), using Hungarian method as in [39],

F i,j =
2 ∗ Si,j ∗ P i,j

Si,j + P i,j
(3.1)

The F-score is computed for each pair of GTi, i = 1...N and SLj, j = 1...M. The

best assignment of SL with GT is found by maximum F-score, and is stored in the label

correspondence matrix, LC. If N>M, there remain unassigned GT labels, and if N<M,

there are unassigned SLs.

Table 3.3 and 3.4 show all the performance measures of the state-of-the-art bench-

marking algorithms for both datasets. An average region density measure D [39],

which is the average percentage coverage of labels over all ground-truth regions, is

used. This is valid only for region-based benchmarks. There are three measures for

misclassification; Overall misclassification, Motion separation and Misclassified motion

labels, whose ideal percentage value is 0. An F-measure, whose ideal value is 100% and

a threshold based estimation of number of motions.

� Overall Misclassification: The Overall Misclassification (OM) is the total

number of misclassified trajectories in the sequence computed based on the best

correspondences found in LC. It is the standard measure used in Hopkins155

benchmark [38]. OM is misleading in our case because it is highly biased, as a
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large percentage of trajectories belong to the background. So, if the algorithm

undersegments and classifies everything as background, it can have very low OM.

Therefore, two different measures, which ignore all background trajectories, are

also computed.

� Motion Separation: Motion Separation (SM) is the percentage of motion that

was wrongly assigned to the background by an algorithm. This measure specif-

ically gives an insight on the MS algorithm’s ability to separate motion from

background, without getting into the correctness of the assigned motion label.

� Misclassified Motion Labels: Misclassified Motion Labels (ML) is the per-

centage of wrongly assigned motion labels computed based on the best correspon-

dences found in LC. This measure gives an insight on the actual performance of

motion segmentation.

� F-measure: It is the average F-measure, which refers to the harmonic mean

of Sensitivity and Precision. It is the measure proposed in FBMS59 [39] for

performance evaluation. It gives an overall view of segmentation of motion by

the algorithm.

� Extracted regions: The number of extracted motions are reported by the same

criteria, F-measure F ≥ 75%, as in [39], to maintain continuity.

3.4.2 Experimental setup

The challenges present in these motion segmentation datasets, especially in long se-

quences, render most state-of-the-art MS algorithms unusable. Nevertheless, OB algo-

rithm [65] is able to attempt these challenging long sequences. Therefore, a detailed

evaluation of OB algorithm on long sequences of both datasets is presented in Table 3.3.

The choice of algorithms to benchmark our dataset is quite difficult. There are

two main factors effecting the selection of an algorithm; generality in application and

availability of the source code. Several algorithms introduced in Section 2.2 are deficient

in one of these two terms. For instance, the approaches presented in [37, 64, 68] lack

generality of application. The work introduced in [37] is limited to human motion

segmentation, the work presented in [68] is applicable only on self-occluding motion,

while the approach proposed in [64] is for crowded people scene specific MS, with an

additional input requirement of annotated silhouettes masks. Two other approaches [25,

63], whose code is available, have other limitations. The work in [63] has a limitation in
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application as it deals with only one object per frame, while the work presented in [25]

is heavily reliant on optical flow and occlusion detection correctness. Besides, for some

other methodologies [61,62,67], which are generally applicable, authors have not shared

their source code for testing. Hence, the selection of benchmarking algorithms presented

in this work is done based on these constraints.

In order to demonstrate the difficulty of the challenge, a detailed analysis of the

methodologies, which are applicable on small sequences datasets, is also presented.

The best-performing MS algorithms on other datasets, with source code availability

and general applicability, are chosen for evaluation on our database. We evaluate the

small sequence datasets, with and without missing data, on the factorization based

method (ALC) [43], which can deal with missing data. We also present the evaluation

on the enhanced subspace affinity based method [34] (ELSA), and on the current Sparse

Subspace clustering method (SSC), with its low rank (LRR) [32, 33], and latent space

(LS3C) [44] variants. Moreover, the results of OB algorithm on small sequence datasets

is also presented in Table 3.4.

A 64-bit Intel i7 core 3.4 GHz machine with 16GB RAM was used for processing,

except OB which was run in a similar server machine with 128GB RAM. All the scripts

and results related to the benchmark experimentation are publicly available online with

the datasets. The scripts are also designed to be able to incorporate any new algorithm

for standardized comparison of results on our datasets.

3.5 Experimental results

3.5.1 Quantitative results

The results in Table 3.3 clearly show that difficulty of the dataset on long sequences is

considerably increased. The average F-measure, which in the case of FBMS-59 was 70%

on the training set and 65% on the test set [39], is down to 42.8% on our trajectory-

based benchmark and 43.8% on the region-based benchmarks.

The SM and ML measures in both benchmarks indicate that the algorithm performs

a better separation of motion from background than intra-motion classification. OB

fails to recover motion after complete and multiple occlusion. The number of classified

labels SL are well below the number of ground-truth labels, which clearly shows under-

segmentation. This occurs due to the failure of separation of motion from background

and poor segmentation separation of similarly moving separate objects. OB also does

not deal with camera motion effectively, as the yaw motion of the camera results in
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(a) Trajectory-based benchmark
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(b) Region-based benchmark

Figure 3.3: Boxplots of F-measures of all the correctly labeled motions in the each benchmark. Results
are with or without background labels and with or without relative motion. Boxplots 1 and 2
contain all sequences, Boxplots 3 and 5 contain sequences without relative motion, Boxplots 4 and
6 contain sequences with relative motion.

multiple labels on the non-homogeneous regions of the background, as shown in Fig. 3.4.

The sequences with relative motion, when the camera is inside a moving car, present

a greater challenge as the algorithm performs poorly on them. In Fig. 3.3a and Fig. 3.3b,

boxplots 4 and 6, it can be seen that min-max F-measure range of only the detected

motions in sequences with relative motion is quite high. This is because the OB algo-

rithm uses LDOF as its core information, and in the presence of relative motion this

criterion becomes increasingly noisy. The absence of background label increases the

confidence of motion detection, resulting in compact box plots and high F-measures.

Fig. 3.3a and Fig. 3.3b, boxplots 1 and 2, also depict that when the motion is correctly

segmented, it is segmented with a high confidence, which makes OB robust.

The results on small sequences, see Table 3.4, depict similar results as in the case

of long sequences benchmark. Only SSC and LS3C have the number of motion clusters

as a-priori knowledge. In both the short sequences datasets with no missing data, OB

and ELSA perform slightly better than the rest. The misclassification of the algorithms

predominantly ranges up to 25% even in results with no missing data, which shows the

difficulty in the separation of motion patterns in our datasets.

The overall results on short sequences with missing data are also similar to the

ones on long sequences. Only OB and ALC are able to deal with missing data, so

both outperform other algorithms. As OB is able to robustly recover motion labels

of partially occluded moving objects, it has the minimum misclassification, maximum

F-score and the highest number of correctly detected objects in both benchmarks. ALC
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Figure 3.4: (Left to Right) (Row-1 and Row-2): Frames 600, 693, 816, 939 and 1024 of sequence
seq14 of trajectory-based long sequences benchmark. Row-1: Images with trajectory label ground-
truth overlay, Row-2: Images with OB algorithm result overlay. (Row-3 and Row-4): Frames
48, 217, 286, 689 and 744 of sequence seq11 of trajectory-based long sequences benchmark. Row-3:
Images with trajectory label ground-truth overlay, Row-4: Images with OB algorithm result overlay.

also performs well but its processing time is extremely high. Even the best performing

algorithm is able to achieve 65% F-measure, which is an evidence regarding the difficulty

level posed by our dataset.

It is pertinent to observe that the result of all the methodologies on our benchmarks

is consistent with their results on the previous benchmarks. Therefore, considering the

resulting measures on an equal scale, we can safely say that our benchmark of long, as

well as of small, sequences poses an increased and diverse challenge for the community.

3.5.2 Qualitative results

The qualitative results show that our benchmarks contain intricate challenges, which

were not captured in any other dataset yet. Fig. 3.4 illustrates the OB algorithm results

for 5 frames each of seq14 and seq11 in trajectory-based long sequences benchmark.

In seq14 results Fig. 3.4 (Row-2), it can be observed that with minimal or no camera

motion, the background labels remain consistent. The relative changes in size during
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motion, from small to large or vice versa, due to the position of the object with respect

to the camera or even due to perspective distortion, does not effect the segmentation

result. Similar, spatially separable, parallel motions are given separate labels. It was

observed that this behavior of the algorithm depended on the speed of motion. Small

objects with considerable motion but far from the camera are not segmented as tracking

fails on these objects. Non-rigid motion of people is segmented as long as densely

populated trajectories are present. On the other hand, inaccuracies are generated

in the segmentation of sparsely distributed trajectories, which are not representative

enough of their respective non-rigid motion. Motion labels after complete occlusion are

not recovered, as there is no post-occlusion trajectory recovery or matching mechanism

present in any algorithm.

In Fig. 3.4 (Row-4), seq11 results highlight that relative motion is extremely difficult

to segment, especially in an optical flow based method. All objects having small relative

motion are merged with the background. This can be a desired effect in the foreground

detection of large objects. When there is a camera motion transition, from fast to slow

or vice versa, then the whole region, with the moving object present in it, is segmented

as one object. When the relative motion difference is large, then the object is segmented

but along with its spatially attached background region.

Fig. 3.5 illustrates the OB algorithm results for 5 frames each of seq14 and seq11

in the region-based long sequences benchmark. In Fig. 3.5 (Row-2), seq14 results

depict that a panning motion of camera gives rise to multiple labels on background.

Either a stop-start camera motion, or a static object crossing extending across the

frame, generates a new background label, which is undesirable. Each multiple and

complete occlusion of an object results in a new label for this object. Objects are well

segmented in general, but those covering a small spatial region after complete occlusion,

are sometimes merged with the background.

In Fig. 3.5 (Row-4), the results of seq12 with a tower camera view are illustrated.

The sequence is easy as there are few or no occlusions, which makes trajectories or

moving object regions consistent and easy to segment. In this case a small rotation

of the camera results in unnecessary splitting of the background label. Objects with

similar motion, in a line or a curve, even though spatially separable, are not segmented.

Stopping motion is not segmented well if the object movement is not sufficiently large.

Only the last car in the last frame with sufficient movement after stopping motion is

segmented, all the other cars in front of it are merged with the background.

OB performs best in small sequences as expected, because it is able to deal with

missing data. It is also able to recover the label of partially occluded objects. The cost
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Figure 3.5: (Left to Right) (Row-1 and Row-2): Frames 116, 157, 200, 257 and 351 of sequence
seq14 of region-based long sequences benchmark. Row-1: Images with region label ground-truth
overlay, Row-2: Images with OB algorithm result overlay. (Row-3 and Row-4): Frames 107, 394,
572, 670 and 762 of sequence seq12 of region-based long sequences benchmark. Row-3: Images with
region label ground-truth overlay, Row-4: Images with OB algorithm result overlay.

function in OB, inherently looks in to shape, color and texture features, because of this

even in the presence of partial occlusion, the motion label remains consistent. Other

algorithms lack in this capability of handling missing data and real distortions, and are

therefore unable to provide a good segmentation result.

3.6 Conclusion

In a nutshell, the presented datasets can be treated as a consolidation of all the dataset

varieties available in the current state-of-the-art. The ground-truth variations, sequence

length variabilities and complex motions spanning over long frame lengths pose an

enhanced challenge for the MS community. Nonetheless, to exactly determine the

place of the presented datasets among the current state-of-the-art contributions, its

similarities, differences and limitations are listed in Table 3.5.

Based on the given attributes, the presented dataset can be placed as a bench-

mark, which specializes in real complex rigid motions, with outdoor street background,
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undergoing multiple distortions, along with an added variation of non-rigid motion of

people. The moving objects contain variations in depth, illumination, stopping motion,

occlusion, speed, lightning conditions and shadows. Despite the presented features of

the dataset, there are certain limitations in it as well. The overall number of non-

rigid motions are less, more specifically some type of classes are not addressed. The

non-addressed classes include animals motion, birds motion, airborne things (planes,

gliders, parachutes, etc.) and underwater motions. These classes are application spe-

cific, therefore, they can be added at a later stage to consolidate the dataset.

In spite of the absence of some non-rigid classes, the most challenging task in the

making of such datasets is motion annotation. In ur presented datasets, the motion

annotation was done for motion-trajectories as well as motion-regions. A state-of-the-

art of motion annotation was described in Chapter 2, based on which we put forth two

proposals in Chapter 4.
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Labels are for filing. Labels are for clothing. Labels are

not for people.

Martina Novratilova

Chapter 4

Tools for motion annotation in

video sequences

Motion analysis is a pre-requisite in video analysis with its applications in many

domains of computer vision. Objective analysis of moving objects can be carried out

when motion is accurately detected and segmented as a prior. In the state-of-the-art

of computer vision, precise and robust algorithms, which can work in the presence of

occluders and other distortions, while the acquisition of video is done from a moving

camera, are still elusive.

4.1 Motion annotation problem

The limitations prevailing in annotated moving objects’ datasets are restricting the

development of effective motion analysis tools. The diversity and complexity of a real

life motion captured in a collection of video sequences, determines how representative

the dataset is of the actual problem. If the annotated datasets encapsulate limited

motion diversity, then the algorithms tested on them will also have limited applicability.

On the other hand, if more complex motions are captured in a sequence for dataset

formation, the dataset will become more representative. The motion complexity makes

the task of correctly generating ground-truth motion label for each moving object in

all the frames of a video sequence increasingly cumbersome. This task of generating

the ground-truth label for each motion on all the frames of all the video sequences in

a dataset is known as the motion annotation problem.

If seen with respect to the trajectory- and region-based datasets presented in Chap-

ter 3, the motion annotation can be resolved into two categories:
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Figure 4.1: First, middle and last frame of a moving object while entering and leaving the field of
view in a video shot. Top: The bike enters and leaves the frame without occlusion and distortion.
Bottom: The white truck enters and leaves the frame while undergoing partial occlusion, change in
heading direction and illumination, a significant alteration in relative size and experiences perspective
distortion.

� Motion-trajectory annotation: It is the task of generating unique motion

labels on pre-computed trajectories capturing all the motions in a video sequence.

This task was performed to create the trajectory-based long sequences dataset as

explained in Section 3.2.1.

� Motion-region annotation: It is the task of generating unique labels on all

the moving object regions in a video sequence. This task was performed to create

the region-based long sequences dataset as explained in Section 3.3.1.

In the motion annotation problem, the problematic element is the expert-user an-

notation time, which increases many-fold as the captured motion becomes excessively

complex. An illustrative example is presented in Fig.4.1, which shows the first, middle

and last frames of two moving objects in a video shot, while they enter and leave the

field of view. The biker in the top row remains unoccluded, relative change in size

across all frames is minimal, the illumination remains generally homogeneous and no

perspective distortion effect can be seen. On the other hand, the white truck, present

in the bottom row, enters the field of view with a small size due to being considerably

deep in the scene with reference to the camera, experiences partial occlusion during

the course of its motion, and exits the frame with an enlarged size, change in heading

direction, variation in illumination and with perspective distortion. The expert-user

annotation time for generating ground-truth on these two motion samples is radically

different. While the annotation labels on the white car may be generated with state-

of-the-art label propagation algorithms, there is no modern, time efficient methodology
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or platform, to annotate the white truck or such motions. Though, this example elabo-

rates the complexity entailed in the motion-region annotation problem, the same holds

for the motion-trajectory annotation. As more complex motions are captured in a

video sequence, the associated tracked trajectories become more complex and noisy.

Annotating such noisy trajectories in an automatic or a semi-automatic way becomes

difficult.

These impending issues of motion-trajectory and motion-region annotations can

be resolved through task specific annotation tools. The requirement of such tools are

that they should be user friendly and time efficient. Two such proposals, one for each

modality are proposed in the following sections.

4.2 Tools for motion trajectory annotation

The most known trajectory-based publicly available datasets is Hopkins155 [38]. It still

remains the most extensively utilized MS dataset. This is so because of the inherent

sparse trajectories present in it and the availability of a standard evaluation metric,

which made it easy for algorithms to be compared at an equal scale. Since, Hopkins155

further trajectory-based datasets were not proposed because of the inherent difficulty

in annotating complex trajectories.

4.2.1 Trajectory annotation tool

In a trajectory-based dataset, given a video sequence, the moving objects are tracked

through sparse trajectories to build a trajectory matrix W2f×p, where f is the number

of video frames and p is the number of tracked feature points (trajectories). The

sparsity of the tracked feature points on the moving objects varies with respect to the

desired density of coverage. Independent of the density of coverage, a trajectory-based

dataset with long real sequences can only be created in the presence of a trajectory

annotation platform. ’Trajectory annotation tool (TAT) is one such platform, where

complex trajectories can be annotated.

TAT is developed using MATLAB libraries for Graphical User Interface (GUI),

with all the resources publicly available on-line at http://udgms.udg.edu/TAT/. The

scheme of the TAT annotation tool is presented in Fig. 4.2, with each process pipeline

inside. TAT has four major processes, Label initialization, Data update engine, Display

engine and Save workspace.
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Figure 4.2: TAT flow-diagram, input block at the top with label initialization modes, data update and
display engines in the middle with save option at the bottom. User can label through three modalities:
Point-wise, Trajectory-wise and ROI-wise. The display engine can exhibit annotations in three forms:
Label display per label, all labels or per frame.

4.2.1.1 Label initialization

The inputs of the system are loaded in the Label initialization module.The inputs are

the frames of a video shot, which is to be labeled. These frames are fed in a point

tracker algorithm, LDOF [46], which gives a Trajectory matrix, W2f×p, as output. All

the moving objects’ and the background motion are encapsulated this W matrix. In

W , each column represents the number of points in each frame, where as each pair of

rows represent a complete trajectory. An input Label vector Lp×1 is also used, which

changes according to the selected initialization mode. The TAT tool offers two modes

of annotation in the workspace, where each starts with its own initialization. The two

modes are,

� Semi-automatic: In the semi-automatic mode, the OB [39] MS algorithm is

used as label initialization, and then the annotation is refined to form a final

ground-truth. It should be noted that TAT provides the flexibility to use any MS

algorithm for initialization.
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� Manual: In manual mode, the label initialization is done by annotating all

trajectories as background by default.

When using the semi-automatic mode, the output of the OB MS algorithm is used

as a label vector, while in manual mode, all the trajectories are initialized with the

background label, by default.

4.2.1.2 Data update engine

After mode selection and label initialization, the initialized label data is passed to the

Data update engine. It takes the input from the user to rectify the labels’s of the trajec-

tories, which are incorrectly labeled. The user is provided with three point/trajectory

selection methodology options to update the labels. These selection methodologies are,

� Point-wise: This option facilitates point by point selection of trajectory data

points of the active frame on the display window. In this mode, the whole tra-

jectory of the select point can be visualized, if the ’Current Frame’ option in the

’Display Setting’ is selected.

� Trajectory-wise: In this option, upon selection of one point on a trajectory

a complete trajectory gets selected. If an assignment of a new label is made,

then the whole trajectory gets labeled. If multiple points on the active frame

are selected, then each trajectory corresponding to each point gets selected and

labeled.

� Region of interest (ROI)-wise: In this option, a rectangular bounding box

shaped ROI is available to the user to select a perform labeling on a cluster of

trajectories in one go. On the single active frame, all the trajectories of the

selected points inside the user drawn ROI get labeled.

In the Data update engine, these input variables are converted into three indexes:

label, trajectory and frame. Each index is dependent on the annotation update.

1. Label index: The label index uses the label vector Lp×1 to keep track of the

ID tagged with each motion independent of the initialization mode. When a

trajectory on a new moving object is selected and annotated, a new label is

added in the label index. As more trajectories on a motion are annotated, they

form a trajectory cluster of the object across all the frames. If at any point during

annotation, an already existing label ID is given to a new trajectory cluster then
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the two clusters are merged. This provision is specially useful if, mistakenly, two

trajectory clusters with unique IDs are formed of the same moving object then

both can be merged in one go.

2. Trajectory index: The trajectory index is formed by using the trajectory matrix

with the label index. It keeps a log of association of each trajectory with its

annotated label index ID. This is specifically useful in the display engine as all

the trajectories belonging to a unique label index ID are displayed in a unique

color. The trajectory index is essentially used to form the annotation result,

Updated Label vector Lup×1.

3. Frame index: The frame index is formed by the input frames of the video

sequence along with the trajectory index and the label index. This index is the

back bone of the display engine, which facilitates swift annotation in TAT while

providing a visual check on the correctness of each annotated motion at the same

time. A log of each trajectory with reference to its updated label present in

each frame is kept in this index. The index contains multiple trajectory clusters

with associated labels per frame. While scrolling through the frames this index

shows each label ID with reference to the selections made in the display engine

modalities.

In TAT, these indexes provide the structure for data update and display engines

to be efficiently used. The display window of the GUI is shown in Fig. 4.3, where a

frame with trajectory overlay, after complete annotation on a few moving objects, can

be seen.

4.2.1.3 Display engine

The display engine exhibits the frame in the display window, whose respective trajec-

tories are being annotated. A scroll pane below the display window facilitates scrolling

through the frames of the video shot. The frame number of the active frame is displayed

on the top left corner of the GUI window. Right below it, the current annotation label

of the selected trajectory or point is shown.

Below the label number display, there are two user input boxes. In the first box,

the label numbers of the trajectories that the user desires to see on the active frame

can be listed. This results in the display of the point on the trajectories, which lie on

the active frame. The second box takes the label number input from the user to be

assigned to the selected trajectories. If a new label number is given by the user, which
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Figure 4.3: The TAT GUI, with display window in the middle, labeling modes and selections on the
left and selected indexes on the right.

does not exist in the label index already, then this new label is tagged with the selected

trajectories. After each label assignment, all the respective indexes in the data update

engine are refreshed. The display engine facilities three modalities,

� Per label: This display option takes the label number input from the user.

This modality is the same, which was explained in the previous paragraph. The

trajectory points of each label number the user lists are shown as overlay on the

active frame.

� All labels: This option is available in the buttons on the lower left pane. It is ac-

tivated if the ’Labels’ button is pressed. Upon the button press, a display routine

is initialized, which displays all the labels per frame. While scrolling through the

frames, all the trajectories and respective label overlay can be visualized. Here,

the background label is always displayed in blue and the rest of the labels are

assigned distinct colors. In one click, the complete annotation progress can be

seen. Due to color distinction, any wrongly labeled trajectory with respective to

the moving object region boundary can be identified and corrected.

� Per frame: This option facilitates the display of trajectories on a single frame.

In this modality, the complete trajectory of a selected point of a trajectory on

the active frame is shown. The complete trajectory display shows the moving
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object motion profile with reference to the FoV. This option can be activated by

selecting the ’Current Frame’ selection box. The display of a complete trajectory

per frame facilitates the visualization of temporal evolution of selected motion,

which helps in the identification of noisy trajectories. Noisy trajectories are the

wrongly tracked trajectories, which contain motion from two or more moving

objects in a single trajectory. Upon identification of a noisy trajectory, it can be

made a part of the background or it can be given the label of the motion it is

most representative of.

The display engine utilizes the label, trajectory and the frame indexes to exhibit

the desired information on the display window. Each display modality facilitates an

easy and speedy labeling of the trajectories.

4.2.1.4 Save workspace

The save workspace block is the last process in the TAT’s functional pipeline. It saves

the user defined ground-truth annotation in two mat files;

� ’seqXX truth.mat’: Here ’XX’ refers to the sequence number. This file contains

a structure with four fields containing the information about the video sequence,

one field containing the input trajectory matrix and three fields containing infor-

mation about user annotations.

– frames: Number of frames in the video sequence

– width: Number of columns in each frame

– height Number of rows in each frame

– trajectories: Number of point trajectories resulted by applying LDOF

based tracking on the video sequence

– W TrajectoryMatrix: The input Trajectory matrix, W2f×p

– GT GroundTruth: The updated ground-truth label vector Lup×1

– annotationtime: The total time taken by the user to annotate all the

trajectories in the W matrix in seconds.

– motionlabels: The total of number of annotated motions in the sequence

including the background label.

� ’seqXX trajectory stats.mat’: This file contains a matrix ’statMat’ of trajectory-

wise statistics per motion label. The file possesses the number of trajectories,
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the total number of points in the trajectories and the total annotation time,

each statistic per motion label. This file gives a motion-wise breakdown of the

annotation task. It gives a localized idea of how easy or complex each motion

was.

All the files are saved at a predefined path set by the user in the settings file. The

information defined in the settings file is a pre-requisite to the usage of TAT.

4.2.2 Trajectory annotation tool interface

The interface is kept simple with each annotation and display modality directly available

for the user. In this way, the tool shares enhanced control with the user so as to maintain

flexibility.

In Fig. 4.4, the application of the semi-automatic mode of TAT in a traffic sequence,

using OB [39] for label vector initialization, is presented. Depending on the performance

of the OB segmentation, the initialized Lp×1 will have some motions, partially or com-

pletely, correctly labeled. Although, by using the semi-automatic mode, the overall

user annotation time is reduced, the time needed to refine the remaining trajectories

is dependent on OB’s failures. To reduce the refinement time needed to correct OB

failures, the trajectory-wise and ROI wise options are preferable as they select complete

clusters in one go. The choice of a trajectory selection option is dependent upon the

type (rigid or non-rigid), size and shape of the moving object, its distance from the

camera and its position in the field of view. As a thumb rule, the ROI selection option

should be preferred in the homogeneous regions of the moving objects. The use of

the ROI-wise modality might induce an error in non-rigid, small or irregularly shaped

objects, as, neighboring trajectories that belong to either background or other moving

objects, can mistakenly get selected. Therefore, for all such objects, trajectory-wise

option should be used.

In Fig. 4.4, it can be seen that there are multiple moving object present per frame.

Each motion has its own cluster of trajectories spanning over a collection of continuous

frames. With reference to Fig. 4.4b and 4.4e, when the moving objects are about to be

occluded or are about to enter the FoV, the selection of trajectories on the border of

each motion-region becomes critical.

4.2.3 Experimental results

We evaluate the performance of the TAT tool, when creating the ground-truth of the

trajectory-based MS dataset explained in Section 3.2.1. This dataset contains 19 long
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(a) Frame#90 (b) Frame#160

(c) Frame#240 (d) Frame#390

(e) Frame#510 (f) Frame#600

Figure 4.4: Sample frames of a video sequence in the Traffic group after complete annotation. a) The
white vans on either side of the image enter the FoV. b) The size of the white van increases as it comes
near the camera. c) Another set of motions enter the FoV with there respective trajectory clusters.
d) A blue truck re-appears behind the white van after complete occlusion. e) A white car is being
partially occluded by the black car. f) Multiple occlusions about to happen.
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video sequences of natural scenes with multiple motions of different types spanning

over hundreds of frames having partial and complete occlusions. As compared to Hop-

kins155, these new challenges presented in this dataset provide a new benchmark for

the community.

To quantify the performance of the tool, the total user annotation time, UT is

used. This is the cumulative time required to annotate each motion in a sequence.

The time taken to completely label each motion is dependent upon the motion type,

camera motion, moving object size and frame length of each trajectory. All these traits

were extensively tested and the obtained evaluation results are shown in Table 4.11.

In order to effectively analyze TAT, the sequences were grouped into four distinct

motion types; Traffic (MT1), People-Traffic (MT2), Relative Camera Motion-Traffic

(MT3) and People-Traffic-Camera Jitter Motion (MT4). The given names exhibit the

motion types of each group. We used the F-score [39] to quantify the correctly classified

motions by OB initialization. This score takes Sensitivity and Precision into account.

Its scale is in percentage with a maximum of 100%, which would mean that all motion

trajectories in a sequence were correctly segmented. To acquire a deeper insight into

the annotation time, besides UT , two more time measures were used: UTs, average

time per sequence and UTm, average time per motion. All the subscripts in our letter

denote averages, represented as s: per sequence; t: per trajectory; and m: per motion.

Observing Table 4.11, one can see that it took less UTs and UTm to annotate the

MT2 group of sequences. Even though the average frame length of the trajectories

in MT2 were long, this group took less time as it had less motions per sequence, less

trajectories per motion and got more than 50% of motions annotated correctly with

the OB initialization. UTs and UTm were high for the MT4 group as the motions per

sequence were doubled and OB initialization failed on more than 60% motions. Here,

less number of trajectories per motion also indicated that the size of objects in the

MT4 group was small, which made the time efficient ROI option unusable. The groups

MT1 and MT3 took almost the same amount of time on average but the reasons they

did so were quite different. In MT1, with 62% of motions correctly annotated by the

OB initialization, UT should have decreased, but due to more trajectories per motion

and more motions per sequence, the overall annotation time increased. In contrast,

MT3 had less motions per sequence so UT should have decreased, however, due to

small trajectory frame length and bad OB initialization the overall annotation time

increased for these video sequences. The overall average UT was 7.2 minutes in a total

of 19 sequences with over 800 frames and 10 motions, per sequence on average.

This evaluation gives an insight about the usage of the annotation tool. It is ap-

59



4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Table 4.1: TAT evaluation results. Acronyms are MT: Motion Types, S: Number of
sequences, M: Number of Motions, F: Number of Frames, T: Number of Trajectories,
OB: OB F-score, UT: Total user time, All subscripts are averages; s: per sequence, t:
per trajectory, m: per motion.

Trajectory annotation tool evluation results

MT S M Ms Ft Tm OB UT UTs UTm

MT1 5 55 11.0 44.5 179.2 62.3 435 87.0 7.9

MT2 7 63 9.0 100.9 126.6 50.8 290 41.4 4.6

MT3 4 34 8.5 42.6 218.9 13.0 275 68.8 8.1

MT4 3 49 16.3 97.6 82.7 38.3 445 148.3 9.1

parent that the semi-automatic modality speeds up the annotation process. The speed

up factor depends on Lp×1 initialization, a better initialized label vector results in less

annotation time. The ROI option is useful if large non-rigid objects with less occlusion

are present in the sequence, as they have motion regions with higher area and den-

sity coverage. In small, non-rigid or region borders of objects, it is better to use the

trajectory-wise selection option. Though this option is not as fast as ROI in terms of

user annotation time, the precision it brings is essential for accurate labeling of these

difficult motions.

4.2.4 Conclusion

The creation of ground-truth in trajectory-based MS datasets is a challenging task,

especially in the presence of long real-life sequences with multiple motion types and

large frame length. Here TAT was presented, which is a semi-automatic trajectory

annotation tool for complex videos. It enables the community to create the ground-

truth of a motion segmentation dataset on a standardized publicly available platform.

We demonstrated that the modalities kept in our tool are flexible, hence the use of

any tracker output, and an initialization from any state-of-the-art MS algorithm, is

supported. We also provided an evaluation of our tool when it was used to create

the annotations on our trajectory-wise long sequences dataset. The evaluation results

showed that the platform can produce rapid annotations on long videos with minimal

time requirements, which can benefit the MS research community.
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4.3 Tools for motion region annotation

The existing methodologies in label propagation address the problem in a limited range

of applications. Though, they perform well, they lack utility in real life long videos in

outdoor scenes, where multiple occlusions, stopping motion, perspective distortion,

multiple appearance-disappearance and noise of camera motion, are present. A reason

for these limitations is the absence of a video dataset where these optical phenomenons

could be tested. Our proposal in Section 3.3.1 contains these real noises, which makes

their quantitative testing possible.

The limitation in label propagation can be looked into as a set of multiple sub-

problems based on the complexity and variation in the object motion. The variants

include a considerable change in size or illumination, partial or complete occlusion,

static or moving occluder, multiple-appearance-and-disappearance in the field of view

(FoV), perspective distortion, etc. Each variant, if tackled separately, with a unique

approach, can yield improved results. With our work, we aim to tackle these prevalent

shortcomings in the label propagation methodology. The results in the state-of-the-art

demonstrate that the use of the semi-automatic, as well as the automatic, modality in

annotation drastically reduces the expert-user time while preserving the quality of the

annotations. We propose a semi-automatic approach by taking annotated labels on two

key frames (first and last). We utilize LDOF to promulgate labels across occluders,

so that moving object labels are retained even after occlusion. A further refinement

of propagated label mask scale is performed by using a non-rigid point set registration

method. In this way, we not only improve labels on occluded objects but also in objects

undergoing perspective distortion. Furthermore, we provided a consolidated evaluation

to establish the usage of our scheme in real life scenes. Our methodology is generally

applicable on objects undergoing partial occlusion by static occluders, although it may

also be applied on objects undergoing occlusion by other moving objects.

4.3.1 Region annotation proposal

Motion-Region annotation means tagging all the motion-regions with a unique label

per motion in a sequence of frames. More formally, given a sequence of N frames

f = {f1, f2, ..., fN}, the objective is to segment all the moving objects M with labels

m = {m1,m2, ...,mM}.
As the goal of annotation is to generate the ground-truth for a given video, it

is imperative to take the accuracy of the annotation into consideration. One way of

maintaining accuracy is to generate annotation of one motion mx at a time, with respect
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to their depth ordering in the scene. The object near the camera first (the one with

least depth) and the object furthest from the camera last (the one with most depth).

The depth order can be kept track of by the expert user. Hence, the objective is to find

the annotation labels mx where x = {1, 2, ...,M}, sorted by depth ordering, 1 being

least deep and M being the deepest.

The tool presented in [45] facilitates the annotation of moving objects in a sequence

of frames. An expert user defines the object outline contour in a key frame. The region

inside the object contour is given a label and then the labeled contour is propagated

both ways, forward and backward. In the presence of occlusion, perspective distortion

and change in object’s depth, the propagation fails. If the propagation fails due to

illumination variance, background homogeneity with moving object, etc., the labeled

region contour can be corrected in frames with bad annotations. The manual correction

by the user is then linearly interpolated across all frames the label was propagated on.

In the absence of real noise, the platform utilities time efficiently and exhibits good

results. On the contrary, it fails in real sequences, especially outdoors, where occlusion,

change in depth and perspective distortions are somewhat dominant.

From another perspective, consider the sequence of frames shown in Fig. 4.5 as an

example. The moving object enters and exits the FoV in frame f1 and f113, respectively.

The motion annotation of this object, m1, in these 113 frames can be divided into a set

of three sub-problems. One from f1 till f75, m
1
1, when the object is fully visible without

occlusion. Second from f76 till f100, m
1
2, when the object is occluded by multiple static

occluders. And finally, m1
3, when the object is again fully visible from f101 till f113,

until it goes out of the FoV. Then, the overall motion-region annotation of the object,

mx is given by,

mx =
Sx⋃
i=1

mx
i (4.1)

In the given example, x, is the object label by depth ordering, and Sx, is the number

of sub-problems xth motion-region annotation task was divided into. So, with x being

1 and Sx being 3, the labeled motion-region output of the framework for one object in

the given example is given as,

m1 =

3⋃
i=1

m1
i (4.2)

The annotation task of each motion x, to be labeled in the sequence of frames, leads
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Figure 4.5: Six frames of a moving object, black car, entering and leaving the field of view in a video
shot. Top: The black car enters the field of view in f1 (Left) and moves till f75 (Right), without
occlusion ’m1

1’. Middle: Here, the car undergoes partial occlusion by multiple static occluders from
f76 till f100, ’m1

2’. Two frames in this subproblem, where the object was undergoing occlusion are
shown, f82 (Left) and f90 (Right). In f82, the object has started undergoing occlusion behind the two
static occluders. In f90, the object has almost gone across the occluders. Bottom: The car moves
from f101 (Left) without occlusion till f113 (Right) when it completely goes out of the FoV,’m1

3’.
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to its corresponding sub-problem set Sx.

A modular approach to solve this annotation problem can yield better results in

terms of pixel accuracy and time efficiency. This approach of creating sub-problem

tasks facilitates the expert-user to objectively divide the annotation problem based on

the behavior each moving object exhibits, and also, inherently reduces user annotation

time. This sub-categorization based on label propagation complexity can further reduce

the manual annotation time, if the label propagation in the problematic subsets, (the

ones which require most user corrections due to real distortions), can be automatized.

As mentioned earlier, while [45] works well in unoccluded, low depth change and

no perspective distortion motions, it fails otherwise. As a smart hybrid approach,

the framework in [45] was used for the subproblems where these distortions were not

present. To annotate the subproblems with distortions, we propose a semi-automatic

annotation methodology to better utilize the expert-user time. In this section, our

annotation algorithm is presented.

Given a set of K frames f = {f1, f2, ..., fK}, with K ⊆ N , in which a single xth

moving object appears and then disappears from the FoV. The objective is to find the

motion annotation label mx. It is also given that the annotation task can be further

divided into Sx sub problems, where each subproblem can have either of the two types;

� Type-1 (motion under normal conditions): Here, the object moves without

occlusion or perspective distortion. The annotation under such moving conditions

are computed through the work presented in [45].

� Type-2 (motion under distorted conditions): Here, the object undergoes

occlusion and/or perspective distortion. The annotation under these conditions

are resolved through our motion annotation algorithm.

A pictorial depiction of the same is given in Fig. 4.6. On the top, the figure shows a

sequence of N frames, with two moving objects, so the objective is to estimate moving

object labels mx = {m1,m2}. Considering that object 1 is near the camera, it spans

over K frames and the annotation task is divided into three subproblems S1 = 3,

then m1 = {m1
1,m

1
2,m

1
3}. Here, m1

1 and m1
3 are the subproblems of type-1, where

the object does not undergo any occlusion or perspective distortion. This annotation

problem is estimated by the framework in [45]. On the other hand, m1
3 is the annotation

subproblem of type-2, where the object experiences these distortions. If the movement

under distortion spans over L frames, then the objective of the proposed algorithm is

to find m1
3, given the expert-annotated object boundaries in the first and the last frame

of the set L. A detailed account of the framework is given below.
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Figure 4.6: Annotation flow of the motion-region annotation algorithm. The motion annotation sub-
problem of type-2 spanning over L frames is processed using the proposed algorithm.

In our work, any mx
i is the output moving object label set computed for all the

frames, in sub-problem i of type-2, while annotating moving object x. For ease of

notation, any such mx
i in the remaining text is denoted as m. In our framework, a

three pronged motion-region label propagation approach was taken to attain maximal

accuracy with minimal expert-user intervention. The steps include Occluder mask

tracking (mocc), Object mask propagation (mini) and Object mask scale adjustment

(m). A block diagram of the algorithm is shown in Fig. 4.7.
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Figure 4.7: Block diagram of the motion-region annotation algorithm of one moving object spanning
over K frames. The motion annotation subproblem of type-2 to estimate m spanning over L frames is
processed using the proposed algorithm.

4.3.1.1 Occluder mask tracking (mocc)

In a sub-problem with distortion, given a set of L frames and the occluder shape marker

points, Pocc
f1

in the frame f1 as inputs, the objective of occluder mask tracking was to

perform shape tracking of the occluder mask in all the remaining L− 1 frames. Here,

the set of frames L in the sub-problem is a subset of the total number of frames N ,

hence, L ⊆ K. The shape marker points of the occluder(s), Pocc
f1

, in the f1 frame of

the set L were marked by the user through an interactive graphical user interface .

By taking the shape marker points, Pocc
f1

, of the rigid occluder in the first frame as

input, shape tracking of these markers was performed in the rest of the L− 1 frames.

With respect to this shape marker, the occluder mask in the first frame, mocc
f1

, is given

as

mocc
f1 = region(countour(Pocc

f1 )) (4.3)

while the complete occluder mask set is given as,

mocc = {mocc
f1 ,m

occ
f2 , ...,m

occ
fL−1

,mocc
fL
} (4.4)

A user is required to define a set of markers (points) around the occluder such that

they encapsulate the shape of the occluder. Subsequently, robust SURF features [47]
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inside the occluder mask, of this nth frame, were estimated as, Fn = SURF (mocc
fn

).

After feature extraction, a point tracker was initialized on the user defined occluder

shape markers to estimate their probable position, in the following, (n + 1)th, frame.

Given as,

Pocc
fn−fn+1

= PointTrackerEst(Pocc
fn ) (4.5)

The point tracker estimate in the (n + 1)th frame was expanded on all sides by an

expansion factor λ. The objective was to make sure that even in the case of wrongful

tracking by the point tracker, the occluder must be inside the expanded mask. Surf

features were again extracted in the λ-expanded mask.

Fn+1 = SURF (region(countour(λPocc
fn−fn+1

))) (4.6)

The features Fn and Fn+1 were matched to yield feature pairs, which were then used

to compute a similarity transform.

Ts = SimilarityTransform(FeatureMatching(Fn, Fn+1)) (4.7)

This similarity transform, Ts, multiplied with the input shape markers, Poccfn
results

in the shape markers in the next frame.

Pocc
fn+1

= Ts ∗Pocc
fn (4.8)

Using eq. 4.3 for all n, the occluder mask for all the L−1 frames of a type-2 sub-problem

set with distortions, mocc, can be estimated.

4.3.1.2 Object mask propagation (mini)

Given the object mask in the first frame mini
f1

and the last frame mini
fL

of a subproblem

set, the object mask propagation objective was to determine mini, where

mini = {mini
f1 ,m

ini
f1 , ...,m

ini
fL−1

,mini
fL
} (4.9)

The user defined input masks are formed independent of occluder to save user time

and effort. The output label set, which results when the first frame object mask is

propagated forward till the last frame is mini. This estimate can be utilized to perform

non-linear object scale adjustment in the subsequent step.
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Figure 4.8: Left: LDOF vectors overlay on the first frame of a moving object. The direction of flow
vectors on the moving object is different from that of the background. More visible in the zoomed
image on the ’Right’. Right: A zoomed image of the red bounding box from the ’Left’ image. Optical
flow vectors maintain consistent direction inside the car, but around the object motion boundary and
on the background, the vector directions are different.

As a first step for label propagation the forward optical flow, by using the state-of-

the-art LDOF [46], was calculated. LDOF supports the estimation of dense optical flow

field by integrating rich descriptors into the variational optical flow setting. In [46],

the optical flow w := (u, v)T , is calculated with a comprehensive energy minimization

term. These computed flow vectors give an estimate as to where each pixel moved in

the following frame.

The given input, mini
f1

, contained the labeled pixels pertaining to the moving object

region in the first frame. As for every frame n the occluder mask mini
fn

is known, then,

for all n, mini
fn

can be updated as,

mini
fn = mini

fn − (mini
fn ∩m

occ
fn ) (4.10)

For f1, it becomes mini
f1

= mini
f1
−(mini

f1
∩mocc

f1
). Following this occluder mask subtraction

update in the object mask, a set of forward flow vectors of all the pixels in mini
f1

were

segregated. In effect, this set contained the pixel-movement estimated by LDOF for

all the pixels in the object region. It can be seen from Fig. 4.8 that though the vector

directions are robustly detected inside the homogeneous region of the moving object,

the estimates around the object boundary are adrift. Hence, as an initial estimate,

instead of taking the flow vector per pixel, a 10-bin histogram of vector orientations was

computed. All the vectors in the bin with the maximum vector count were separated.

The average, direction and magnitude, of this vector set was taken to be the direction

and magnitude of the object motion vector, ŵn. In other words, with respect to forward
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flow, ŵn is the direction and amount of motion the object mask underwent to reach its

new position in the following frame. Formally, if

ŵn = wn(max
w

(hist(wn)) (4.11)

where ŵn is the direction vector, then any nth frame in the set of frames L, gives an

estimate of the mask position in the following frame by,

mini
fn+1

= mini
fn + ŵn (4.12)

By progressively estimating all the frames in the forward direction, mini was computed.

4.3.1.3 Object mask scaling (m)

Given the object mask in the first frame mf1 and the last frame mfL of a subproblem

set, with mini already computed, the object mask scale adjustment objective was to

determine the final m, where

m = (mf1 ,mf2 , ...,mfL−1
,mfL) (4.13)

Here, it should be noted that mf1 = mini
f1

and mfL = mini
fL

. Hence, the task is to

determine m in the remaining L− 2 frames, from mf2 till mfL−1
.

A moving object, while in motion inside the FoV, might exhibit a considerable

change in depth, perspective and in size. The contour encapsulating a moving object

in the first frame might increase or decrease drastically in size and shape in the last

frame. An important detail for object mask scale adjustment was to estimate the

correspondence of each point on the object contour in the first frame with each point

on the object contour in the last frame. As one-to-one correspondence was not possible,

there were two options. One was to add or decrease points along the contour from the

first frame until the last. This method can result in inaccuracies at each step resulting

in error accumulation. Second one was to find a registration between object contours.

For this purpose, the point set registration method presented in [48, 49], defined by a

function g, was used here. A coherent point drift (CPD) of all the points on the contour

in the first frame with reference to the contour in the last frame, was estimated. A ’non-

rigid’ point drift estimation option was selected, as in some cases perspective changes

result in self-occlusion by the object. In this case, the rigidity constraint fails to register

69



4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

the two contours correctly. Hence,

mCPD
fL

= g(contour(mf1), contour(mfL)) (4.14)

As we get mf1 and mCPD
fL

in the same estimated reference, the difference between the

two contours was computed to estimate the linear shape adaptation, defined as:

κ = (mCPD
fL

−mf1)/L (4.15)

Using κ, the scale of all the L− 2 frames in the subproblem set can be adjusted, for all

n by,

mfn = κ(L− n+ 1) ∗mini
fn (4.16)

This adjustment yields the final output m, which gives a shape estimate for the

moving object, subtracting the occluder mask, on all the L frames in the sub-problem

set. An overall flow of the algorithm is given in Algorithm 1.

This final output m is essentially the annotation mask of the object estimated for

the subproblem with distortion (type 2), where [45] failed. Hence, our proposal along

with the existing methodology in [45] gives forth a framework, where any object can

be annotated semi-automatically with minimum user intervention. Moreover, the given

proposal is able to provide an estimated ground-truth annotation in all the frames in

the presence of occlusion, change in scale and perspective distortion.

All the algorithm resources including the sub-problem sequences, evaluation source

codes, results and the related documentation are publicly available at http://dixie.

udg.edu/anntool/.

4.3.2 Experimental metrics

Firstly, this section presents the evaluation methods and experimental setup used to as-

sess the motion-region annotation result. Afterwards, the performance of our proposal

is exhaustively evaluated, showing both quantitative and qualitative results.

4.3.2.1 Evaluation method

The choice of evaluation criteria is such that a critical insight into the performance of

the algorithm can be extracted. There are two factors at play in the motion region-

annotation performance assessment: spatial and temporal. So, the goal of the criteria is
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Algorithm 1: Motion-Region Annotation Across Occluders

1: Inputs: Object: frames→ {f1, ..., fL},mf1 ,mfL

2: Occluder: P occ
f1

3: Outputs: m = {mf1 ,mf2 , ...,mfL}
4:

5: function mocc = Occluder mask tracking(f1, ..., fL, P
occ
f1

)

6: where mocc = {mocc
f1
,mocc

f2
, ...,mocc

fL−1
,mocc

fL
}

7: mx−d
f1occ

= region(countour(Poccf1
))

8: for n = 1 : L− 1

9: P occ
fn−fn+1

= PointTrackerEst(Pocc
fn )

10: Fn+1 = SURF (region(countour(λPocc
fn−fn+1

)))

11: Ts = SimilarityTransform(FeatureMatching(Fn, Fn+1))

12: P occ
fn+1

= Ts ∗Pocc
fn

13: mocc = region(countour(Pocc
fn ))

14: end function

15:

16: function mini = Object mask propagation(f1, ..., fL,mf1 ,mfL ,m
occ)

17: where mini = {mini
f1
,mini

f1
, ...,mini

fL−1
,mini

fL
}

18: mini
f1
← mf1 ; mini

fL
← mfL ;

19: for n = 2 : L− 1

20: mini
fn

= mini
fn
− (mini

fn
∩mocc

fn
)

21: wn = LDOF (fn, fn+1)

22: ŵn = wn(maxw(hist(wn))

23: mini
fn+1

= mini
fn

+ ŵn

24: end function

25:

26: function m = Object mask scale adjustment(f1, ..., fL,m
ini)

27: where m = (mf1 ,mf2 , ...,mfL−1
,mfL)

28: mf1 ← mini
f1

; mfL ← mini
fL

;

29: mCPD
fL

= g(contour(mf1), contour(mfL))

30: κ = (mCPD
fL

−mf1)/L

31: for n = 2 : L− 1

32: mfn = κ(L− n+ 1) ∗mini
fn

33: end function

34:
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to determine how accurately was the annotation propagated in terms of spatial precision

as well as temporal evolution.

Spatially, the annotated region in each frame is compared with its respective ground-

truth to compute the segmented region overlap performance. This, when accumulated

overtime for all frames, gives an average measure of performance. This spatial perfor-

mance commonly adjudged by F-score and Dice, which are actually equivalents of each

other. Given the evaluation measures true positives (TP), false positives (FP) and false

negatives (FN),

Sensitivity, S =
TP

(TP + FN)
(4.17)

and

Precision, P =
TP

(TP + FP )
(4.18)

are estimated. With S and P known, we compute the F-score F, using the Hungarian

method as in [39],

F =
2 ∗ S ∗ P
S + P

(4.19)

Developing that expression is equivalent to:

D =
2 ∗ TP

2 ∗ TP + FP + FN
(4.20)

F(D) per frame and their average over the set of frames gives a good estimate on

how well the resultant annotated region aligns with the reference. The variation in

alignment over time and its reasons are however not addressed by these metrics. The

values range from 0 to 1. With 0 being worst annotation and 1 meaning that the

motion-region coincides perfectly with the ground-truth.

The temporal insight on the evolution of motion-region annotation per frame is

grasped profoundly by three more measures, Annotated-Reference region overlap ratio,

Occluder-Object size ratio and the change in Hausdorff distance between the reference

and annotated regions per frame over time.

The Annotated-Reference region overlap ratio, ra−r
n is given by
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ra−r
n =

mfn

mGTn

(∀n = 1, 2, ...L) (4.21)

where mfn and mGTn are the annotated and reference motion-regions per frame, re-

spectively. This ratio gives an insight on how well the annotated region captures the

true ground-truth in terms of its size, its evolution in time exhibits the capability of

the algorithm to cope with the ground-truth even if the annotation is corrupted in the

middle frames. Its value varies between 0 and 1, with 0 indicating no overlap and 1

indicating complete overlap of the two masks.

The Occluder-Object size ratio, rc−b
n is given by

rc−b
n =

pixels(mocc
fn

) ∩ pixels(mfn)

pixels(mfn)
(∀n = 1, 2, ...L) (4.22)

where mocc
fn

is the occluder region in each frame. This is the ratio of the overlapped

area of the occluder and annotated regions, with the total annotated motion region.

This measure gives an idea on how much of the motion region is occluded by the

occluder. The algorithm’s performance in these regions, over time, tells us how robust

the algorithm is to the size of the occluder. Here the rc−b
n value varies between 0 and

1, with 0 indicating no occlusion and 1 indicating that the object is complete occluded

by the occluder. It should be noted that if rc−b
n becomes 1, the algorithm will fail, as

it requires some part of the moving object to be visible at all times.

The Hausdorff distance Hdist between the reference and annotated regions is

given as,

Hdist
n = HausDist(mfn ,mGTn) (∀n = 1, 2, ...L) (4.23)

where HausDist indicates the hausdorff distance implementation function. Intuitively,

Hdist finds the point p from the set mfn that is farthest from any point in mGTn and

measures the distance from p to its nearest neighbor in mGTn . This measure gives an

insight as to how far off the worst annotated motion-region point is with respect to the

ground-truth. If evaluated over time, it gives an idea of the temporal robustness as well

as the reliability of the algorithm. Here, a good annotation means that the Hdist value

is close to zero, given in pixels. A greater Hdist value would indicate the magnitude of
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misalignment of the annotated mask with the reference.

4.3.2.2 Experimental setup

The performance of the motion-region annotation algorithm was tested on a newly

formed sub-problem dataset. This was done by taking a total of 25 snippets from the

region-based long sequences benchmark explained in Section 3.3.1. These 25 video se-

quences are sub-problems of annotation, when the moving object underwent occlusion.

Among the 25 sets of frames, 20 contain static occluders, and the remaining 5 contain

moving occluders. A few examples of this motion-region annotation dataset are shown

in Fig. 4.9.

The 20 sequences with static occluders encompass 15 with one occluder and 5 with

two occluders, as listed in Table. 4.2. The depth of each moving object being annotated

is also indexed in three categories, low, medium and high. A moving object at low depth

means that the object and occluder are near the camera, so they appear big in size and

may have distinct features contained in them. A high depth means that the object size

is small in the field of view. In this case, the occluder might be big or small, depending

upon its own depth.

In addition to the 20 sequences with static occluders, 5 more sequences were taken

with moving occluder. In this case, the occluder mask is already given, as these moving

occluders are motion-regions of the same sequence, which have already been annotated.

The moving object depth in these sequences is also listed. All these sets of frames

contain a single moving occluder.

To establish the efficacy of our work, we evaluate the performance of our algorithm

in comparison with other state-of-the-art contributions. The choice of methods to

utilize is limited due to a number of factors, namely, availability of code, applicability

on the proposed scenario (ability to propagate the label across occluders and be able

to recover the shape of the moving object) and computational time. Of the listed

factors, applicability of the algorithms in our scenario is a limiting factor as most

algorithms fail, when motion label is propagated across an occluder. There are tracking

algorithms, which are able to perform this task but they provide bounding boxes on the

moving object instead of moving object boundary. Hence, we present a comparative

analysis with two recent methods, a probabilistic method [17] and a learning-based

method [18]. Both are moving object segmentation methods, which give the moving

object motion boundary as the output. These methods do not start with known initial

object boundary as in our method, so to make it fair to them, we consider there results
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Figure 4.9: The moving objects being annotated in the given examples are captured by a green contour
around them. The static occluders are shown in blue, while the moving occluders are shown in red,
bounding regions around them, respectively. Top Row: Two examples of moving objects going across
single static occluder. The black car in the left image has high depth, whereas the white car in the right
image has low depth, near the camera, Middle Row: Two examples of moving objects going across
two static occluders. The left image is high depth and the right image is medium depth, Bottom row:
Two examples of moving objects going across moving occluders. The left image has very high depth
and the right image has medium depth. The moving occluder in the left image is the black moving
car, which occludes our desired moving object almost completely. In the right image the moving car is
occluded by moving people.
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Table 4.2: A summary of the features of the motion-region annotation dataset. Acronyms
are Avg.: Average. In object depth, Lw: Low, Md: Medium, Hg: High.

Motion-Region annotation dataset features

Datasets Dataset Features

Total sequences Total frames Avg. frames Object Depth

Static Occluder (One) 15 340 22.7 Lw/Md/Hg

Static Occluders (Two) 5 166 33.2 Md/Hg

Moving Occluders 5 177 35.4 Md/Hg

correct on any motion they were able to correctly segment around the ground-truth.

This consideration gives an advantage to the algorithms in terms of motion estimation

on or around the moving object, but in effect makes them not applicable for moving

object occluder sequences. Furthermore, as these methods do not estimate occluder

boundary separately, hence the Occluder-Object size ratio, rc−b
n is not calculated for

them.

A 64-bit Intel i7 core 3.4 GHz machine with 16GB RAM was used for processing,

except LDOF calculation, which was run in a similar server machine with 128GB RAM.

All the scripts and results related to the experiments done are publicly available online

with the motion-region dataset. Also, the scripts are designed as such to be able to

incorporate any new algorithm for standardized comparison of results.

4.3.3 Experimental results

The experimental results are both quantitatively and qualitatively analyzed. The de-

tails of each are elaborated in the following sections.

4.3.3.1 Quantitative results

The results of the motion-region annotation algorithm on the presented dataset are

given in Table 4.3, 4.4 and 4.5. The accumulative average F-score on static occluders

as well as moving occluders reaches up to 95%.

Upon static object occlusion, a maximum F-score of 98% is achieved for seq-03, and

the lowest is 73% for seq-17, where, on average, 21% motion-region area was occluded

by 2 occluders, as given by the corresponding rc−b. For moving occluders, a maximum

F-score of 97% is achieved for seq-24, even in the presence of 58% occlusion. The lowest

F-score in moving occluders is 94%, which is achieved even when, on average, 68% of the

motion region was occluded. Observing the results in Table 4.4, it is observed that the
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Figure 4.10: Top: The temporal evolution of performance measures of five sequences, seq-02, seq-
03, seq-07, seq-14 and seq-25. Bottom: The temporal evolution of performance measures of three
sequences, seq-07, seq-25 and seq-17. Left: A visualization of the change in Hdist over time in each
frame (in pixels). Right: The change in occluder-object ratio rc−b over time in each frame (ratio).

overall performance of the two Probabilistic [17] and Learning-based [18] algorithms is

not suitable to be used as ground-truth. In general, these algorithms do an acceptable

motion segregation when the motion is small and the moving object depth in the scene

is relatively small. The algorithms fail when the object is too large or too small.

The occluder-object overlap ratio, rc−b, indicates the percentage amount of anno-

tated motion-region being occluded. A higher value of this ratio signifies that the most

part of the moving object is covered. It can be seen from the results that even with high

rc−b, the algorithm is able to propagate the label correctly in the following frames. In

sequences seq-07, seq-19, seq-22, seq-24, seq-25, where the occlusion percentage reaches

up to 44%, 38%, 38%, 58% and 88% respectively, the algorithm performs as high as

97% and never goes below 86%.

The annotation-reference overlap ratio ra−r and Hausdorff distance Hdist should

be understood in conjunction. ra−r gives a measure of how much of the propagated

annotation conforms correctly with the ground-truth, while Hdist measures how far

the worst propagated label is from the ground-truth annotation. Here, with static
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Table 4.3: A summary of the results of the label propagation algorithm on the motion-annotation
dataset featuring static occluders. Acronyms are Seq.: Sequences, S.: Sensitivity, P: Precision, F:
F-score, D: Dice score.

Results on Motion-Region Annotation Dataset having Static Occluders

Seq. attributes Spatial importance Temporal importance

Name Frames S P F(D) ra−r
n rc−b

n Hdist

One static occluder

seq01 24 0.94 0.96 0.95 0.90 0.01 0.29

seq02 15 0.87 0.97 0.92 0.84 0.09 0.26

seq03 29 0.98 0.98 0.98 0.96 0.05 0.03

seq04 21 0.99 0.95 0.97 0.94 0.06 0.12

seq05 15 0.99 0.97 0.98 0.95 0.03 0.07

seq06 20 0.97 0.95 0.96 0.92 0.04 0.10

seq07 15 0.96 0.95 0.95 0.91 0.44 0.14

seq08 14 0.98 0.94 0.96 0.92 0.12 0.12

seq09 15 0.99 0.91 0.95 0.91 0.07 0.26

seq10 73 0.93 0.93 0.93 0.87 0.07 0.14

seq11 20 0.96 0.95 0.95 0.91 0.21 0.10

seq12 19 0.93 0.96 0.95 0.90 0.17 0.15

seq13 18 0.95 0.96 0.96 0.91 0.11 0.11

seq14 21 0.92 0.88 0.90 0.82 0.26 0.52

seq15 21 0.98 0.89 0.94 0.88 0.09 0.45

Two static occluders

seq16 25 0.93 0.96 0.94 0.89 0.11 0.19

seq17 20 0.72 0.73 0.73 0.57 0.21 3.64

seq18 62 0.98 0.91 0.94 0.89 0.03 0.40

seq19 38 0.91 0.81 0.86 0.75 0.38 0.48

seq20 21 0.97 0.95 0.96 0.93 0.08 0.10

Overall cumulative results with static occluders

Average 25.3 0.96 0.93 0.95 0.90 0.08 0.38

Max 73 0.99 0.98 0.98 0.96 0.44 3.64

Min 14 0.72 0.73 0.73 0.57 0.01 0.03
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Table 4.4: A summary of the comparative results of metrics on the motion-annotation dataset fea-
turing static occluders. Acronyms are Seq.: Sequences, F: F-score, D: Dice score, ra−r

n : Annotated-
Reference region overlap ratio and Hdist: Hausdorff distance.

Results on Motion-Region Annotation Dataset having Static Occluders

Probabilistic [17] Learning [18] Ours

Name F(D) ra−r
n Hdist F(D) ra−r

n Hdist F(D) ra−r
n Hdist

One static occluder

seq01 0.78 0.64 1.35 0.79 0.65 1.29 0.94 0.89 0.19

seq02 0.74 0.59 2.96 0.74 0.59 2.17 0.73 0.57 3.64

seq03 0.88 0.79 1.17 0.82 0.69 2.10 0.95 0.90 0.29

seq04 0.82 0.69 1.21 0.78 0.64 1.23 0.92 0.84 0.26

seq05 0.87 0.77 1.56 0.81 0.68 2.31 0.98 0.96 0.03

seq06 0.45 0.29 23.33 0.85 0.73 1.46 0.97 0.94 0.12

seq07 0.00 0.00 — 0.84 0.72 3.00 0.98 0.95 0.07

seq08 0.41 0.26 13.84 0.83 0.72 1.54 0.96 0.92 0.10

seq09 0.70 0.54 4.84 0.81 0.69 1.81 0.94 0.89 0.40

seq10 0.63 0.45 3.80 0.75 0.60 2.43 0.95 0.91 0.14

seq11 0.51 0.34 4.94 0.53 0.36 7.32 0.86 0.75 0.48

seq12 0.79 0.65 3.86 0.73 0.58 3.31 0.96 0.92 0.12

seq13 0.74 0.58 6.56 0.78 0.64 3.73 0.95 0.91 0.26

seq14 0.05 0.02 24.37 0.38 0.23 13.53 0.93 0.87 0.14

seq15 0.48 0.32 7.05 0.44 0.28 10.86 0.95 0.91 0.10

Two static occluders

seq16 0.68 0.52 4.33 0.80 0.67 1.79 0.95 0.90 0.15

seq17 0.85 0.74 0.84 0.77 0.62 2.03 0.96 0.91 0.11

seq18 0.80 0.67 1.88 0.77 0.62 2.67 0.96 0.93 0.10

seq19 0.61 0.44 5.84 0.64 0.47 3.78 0.90 0.82 0.52

seq20 0.75 0.60 5.60 0.71 0.56 7.36 0.94 0.88 0.45

Overall cumulative results with static occluders

Average 0.63 0.50 6.28 0.73 0.59 3.79 0.93 0.88 0.38

Max 0.88 0.79 24.37 0.85 0.73 13.53 0.98 0.96 3.64

Min 0.00 0.00 0.84 0.38 0.23 1.23 0.73 0.57 0.03
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

Table 4.5: A summary of the results of the label propagation algorithm on the motion-annotation
dataset featuring moving occluders. Acronyms are Seq.: Sequences, S.: Sensitivity, P: Precision,
F: F-score, D: Dice score.

Results on Motion-Region annotation dataset having moving occluders

Seq. attributes Spatial importance Temporal importance

Name Frames S P F(D) ra−r
n rc−b

n Hdist

seq21 42 1.00 0.92 0.96 0.92 0.12 0.14

seq22 25 0.94 0.98 0.96 0.93 0.38 0.08

seq23 58 0.94 0.94 0.94 0.89 0.29 0.33

seq24 36 0.95 0.99 0.97 0.94 0.58 0.08

seq25 16 0.94 0.95 0.94 0.89 0.68 0.14

Overall cumulative results with moving occluder

Average 33.2 0.95 0.94 0.95 0.90 0.30 0.16

Max 58 1.00 0.99 0.97 0.94 0.68 0.33

Min 16 0.94 0.92 0.94 0.89 0.12 0.08

occluders, it can be seen that maximum ra−r of 96% is achieved in seq-03 with Hdist

as low as 0.03 pixels on average. The lowest overlap of 57% is experienced in seq-17

with Hdist as high as 3.64 pixels on average. It is interesting to note that these results

are consistent with the performance exhibited by F-score.

One thing which cannot be appreciated through these average performance measures

is the capability of the algorithm to recover, in case of failure in the intermediate frames.

A temporal evaluation per frame gives a better insight on this behavior. This temporal

evaluation is shown in Fig. 4.10, where the evolution of Hdist and rc−b of some selected

sequences per frame can be visualized.

In Fig. 4.10, top row, the temporal progress of Hdist and rc−b in sub-problem sets

of frames from five video sequences are shown. It can be seen that in seq-02 and seq-03

as the percentage occlusion of the object, rc−b, remains below 20%, then the farthest

point of the annotated labeled contour from the reference label contour, Hdist, never

increases more than 0.3 pixel. As rc−b increases to almost 32% in seq-14, the maximum

propagation error in terms of distance stays within 1.5 pixel distance. It can also be

appreciated that in seq-07 where even with a 70% peak rc−b, the Hdist never goes

beyond 0.25 pixels. This trend is also observed in the moving occluder sequence seq-25,

where even in the presence of 88% peak rc−b, the annotation error in term of Hdist
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remains with in 0.5 pixels for all frames. In general, the algorithm performs well in

all the sequences even in the presence of high percentage of occlusion of the moving

object. While in Fig. 4.10, bottom row, the temporal progress of the same measures in

three video sequences are shown. It can be seen that only, seq-17 behaves differently.

Here, in the presence of 60% occlusion, which is less than that of seq-07 and seq-25,

the maximum Hdist goes up to 11 pixels.

Another perspective of evaluation is to observe the performance of the algorithm

on relatively long set of sequences. Taking one from each type, we see that in seq-10,

seq-18 and seq-23 with 73, 62 and 58 frames, respectively, the algorithm had an average

F-score of 95% and an average Hdist of 0.32 pixels. These sequences exhibit a variety

of characteristics, where the moving object is, at a high depth in seq-10, at a medium

depth in seq-18 going across two occluders and at a medium depth in seq-23 going

across moving non-rigid occluders. The average performance shows that the algorithm

is not affected by the length of frames as much as the type of motion in them.

4.3.3.2 Qualitative results

The qualitative results give a visual and intuitive evaluation of the algorithm. In

Fig. 4.11 and 4.12, the results of motion label propagation are shown, with one occluder,

two occluders and moving occluder.

In Fig. 4.11, three different frames, first, middle and last, of two sequences with

a single static occluder are shown. In the top row from seq-05, a large truck is seen

going across a direction post. The truck has a low depth in the field of view, meaning

it is close to the camera. The average occlusion percentage is 3%, but the issue to note

is that the whole body of the moving object undergoes occlusion at least once during

the complete motion. The occluder mask was created with a few clicks around the

direction post and it was tracked as mentioned in Section. 4.3.1.1 the occluder mask

is robustly tracked. This robust result facilitates the shape propagation of the motion

mask across all frames. As the shape and perspective change of the moving object is

minimal, the results achieved are as good as 98%.

In the bottom row of the figure, three frames of the sequence seq-08 are shown.

The white car undergoes an occlusion by a tree stem. The car moves across multiple

frames coming towards the camera, which changes its depth. This can be verified from

the first and the last frame, as the size variation of the car is visually apparent. The

thin tree stem occluder is marked in the first frame by defining a few points around it.

Here, it can be seen that the area around the trunk is also marked. As the tree trunk is
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4. TOOLS FOR MOTION ANNOTATION IN VIDEO SEQUENCES

quite thin, the soil area around the trunk reinforces the SURF feature extraction and

matching, resulting in a better tracked occluder. The linear change adaptation factor

κ, as explained in Section. 4.3.1.3, gives a good estimate of the change in depth of the

car in each progressive frame. So even in the case of depth change, the achieved F-score

is 96%.

In the top row of Fig. 4.12, three frames from seq-19, where the moving object is

occluded by two occluders, are shown. It can be seen that the white car gets occluded

by a lamp post and a thin tree trunk. Over the course of the motion, the size of the

moving object changes considerably as it moves towards the camera. The occluder

masks are marked in the first frame of the sequence, and it can be seen that the masks

are well tracked even until the end. The object starts moving from a high depth and

comes towards the camera to medium depth. With such a big change in depth, and

even with 38% occlusion on average, a F-score of 86% is achieved. Here it can be

appreciated that the algorithm possesses the capability to map a small contour in the

starting frames to an expanded large contour in the ending frames with consistency in

shape, and vice versa.

In the bottom row of Fig. 4.12, three frames from seq-25, where the moving object

is occluded by a single moving occluder, are shown. An extreme case is present in this

sequence, as the moving object is at a higher depth and has a small size, as compared

to the moving occluder, which is at a low depth, hence quite large in size. On average

the occlusion ration reaches up to 88%. Even in the presence of such occlusion, due to

reliable LDOF calculation, as mentioned in Section 4.3.1.2, our algorithm performs well,

achieving 94% F-score. Here, the moving occluder is assumed to have been previously

annotated, therefore, the occluder mask marking and tracking is not performed.

In Fig. 4.12, we also show three frames from seq-17, where the moving object is

occluded by two occluders. It can be seen that the black car goes across two lamp

posts. The occluder masks are marked in the first frame and tracked until the last. In

the last frame, the tracker losses the shape of a marker but it does not effect the result as

there is no overlap between the wrongly tracked occluder mask and the moving object

mask. Besides the occluder mask, the motion label propagation as shown by a green

contour around the black car failing to propagate the label correctly. The propagated

labels move ahead of the ground-truth, this means that the maximal velocity count

consensus is making the mask move in the right direction but not with the correct

magnitude. Upon further investigation on the obtained results, we observed that there

are two competing hypothesis on the magnitude of the motion vector. Here, the wrong

hypothesis edges past the correct one with a small difference. This occurs due to
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(a) seq05:4 (b) seq05:9 (c) seq05:14

(d) seq08:2 (e) seq08:8 (f) seq08:13

Figure 4.11: Motion annotation result on three frames of two sequences containing single static occluder.
The motion and the occluder masks are shown in green and blue contours, respectively. In the sub-figure
description code ’seqXX:YY’, XX is the sequence number and YY is the frame number. Top Row:
The subfigures a, b and c, show the frames 4, 9 and 14, respectively, from the sequence seq-05. The
moving truck is occluded by the static direction post (F-score: 98%). Bottom Row: The subfigures d,
e and f, show the frame 2, 8 and 13, respectively, from the sequence seq-08. The white car is occluded
by the static thin tree trunk (F-score: 96%).

the background around the car because the LDOF calculated at the edges of the car

gets tampered due to the color similarity between the car and the background. This

limitation could be overcome by introducing a factor catering for background similarity

in the maximal vector consensus.

4.3.4 Conclusion

In our region annotation proposal, a framework to address the problem of motion

annotation in the presence occlusion, depth change and perspective distortion was pre-

sented. Our approach in integration with with an existing methodology [45] formulates

a framework to overcome the prevailing limitations in motion-region annotation. It

was shown that with minimum manual intervention and with best utilization of the

expert-user time, the generation of ground-truth label for moving objects can be done

even in the presence of real distortions. A three pronged approach was taken, where

first the occluder mask was tracked in subsequent windows with SURF feature match-

ing and similarity transformation. Then, the object mask propagation was done by
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(a) seq19:2 (b) seq19:18 (c) seq19:37

(d) seq25:2 (e) seq25:8 (f) seq25:15

(g) seq17:3 (h) seq17:10 (i) seq17:19

Figure 4.12: Motion annotation result on three frames of three sequences is shown. The motion mask
is shown in green contours. The static occluder masks are shown in blue, while the moving occluder
mask is shown in red, contours. In the sub-figure description code ’seqXX:YY’, XX is the sequence
number and YY is the frame number. Top Row: The subfigures a, b and c, show the frames 2, 18 and
37, respectively, from the sequence seq-19. The moving white car is occluded by two static occluders, a
lamp post and a tree trunk (F-score: 86%). Middle Row: The subfigures d, e and f, show the frames
2, 8 and 15, respectively, from the sequence seq-25. The gray car is occluded by the moving black car
(F-score: 94%). Bottom Row: The subfigures g, h and i, show the frames 3, 10 and 19, respectively,
from the sequence seq-17. The black car is occluded by the two static lamp posts (F-score: 73%).

computing maximal consensus motion vectors from the state-of-the-art LDOF estima-

tion. And finally the scale adjustment of the propagated object mask was performed by

first to last frame point-set registration, coupled with linear adaptation factor κ. For

evaluation purposes, we also proposed a motion annotation dataset with 25 sequences,

containing single and multiple static and moving occluders. We presented a detailed

quantitative and qualitative analysis of the methodology to show that it can be reliably

used for label propagation in sequences with occlusion and other real noises, reaching
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an average F-Score as high as 95%. We have also shared the source codes, results and

the related documentation publicly for the community to use it and to perform further

improvements in this methodology.

4.4 Limitations and open issues

Two motion annotation methodologies were discusses in this chapter. One proposal

was a trajectory-based motion annotation platform, where any video sequence, with

an apriori tracked trajectory matrix, can be semi-automatically annotated. The sec-

ond proposed methodology was a motion-region annotation framework, where moving

object labels were propagated across occlusions. The propagation was based on oc-

cluder mask tracking, object mask propagation and object mask scaling. Though, the

methodologies proposed a solution to address the motion annotation problem in their

respective domains, there are still limitations and certain open issues that need to be

dealt with.

The noisy trajectories in the trajectory-based dataset annotation tool are not com-

prehensively managed. These are the trajectories, where the tracking failed, and ended

up with a trajectory encapsulating two or more motions in it. There can be two types

of such trajectories,

� A set of wrongly tracked trajectories, which are partly tracked over moving ob-

jects, while part of it tracks the background.

� A set of wrongly tracked trajectories, which captures the motion of multiple

moving objects in it, but not the background.

In the current settings, as presented in Section 4.2.1, these trajectories are assigned a

label which they are more representative of, as estimated by the expert-user. The result

of a MS algorithm on these set of trajectories can be misleading. An MS algorithm

classify a trajectory to be the motion, which it was less representative of. In that case,

it will be considered a classification error, whereas the algorithm correctly identified one

of the two possibilities of motion label assignment. This problem further complicated

when considered that two possibilities of noisy trajectories. Some possible solutions

might be to either get rid of these trajectories altogether, or break them down into

parts or devise a framework where multiple labels can be assigned to a trajectory. All

these solutions require the identification of such trajectories. There recognition among

the complete cluster of trajectories would take a lot of expert-user time.
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In the proposed region annotation proposal, the motion-regions of moving objects

were propagated across static and moving occluders. The application of the proposal is

only valid for partially occluded objects. Its applicability on completely occluded ob-

jects is a limitations. In the present framework, addressing this limitation is difficult.

If the subproblem containing complete occlusion is subdivided into part with partial

occlusion, then the algorithm can deal with them. In a post processing step, the two

subdivided part can be joined to represent one moving object label. The post process-

ing can be utilize the global information related to color, texture, shape and object

trajectory in the FoV. These features in a clustering framework can yield improved

results.

The pixel accuracy of the propagated object masks and the tracked occluder masks

is another limitation. An algorithm which can locally improve the accuracy around

occluder-occlusion regions was presented in [85]. The coarse to fine region-based sobolev

descent [85] was used in shape tracking. In their proposal, its application was exhibited

in the presence of human motion, with a condition that the amount of motion per

frame is limited to a change in a few pixels. This methodology can be applied to

our per frame propagation output as the difference in original object location and our

propagated output will hold as our results show that the difference in the mask and

the ground-truth never exceeds a few pixels.
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Chapter 5

Conclusions

Motion segmentation is an active research field which at present faces impediment in its

progress. The forthcoming algorithms still adopt the same set of assumptions (known

and limited number of motions, complete trajectories, no perspective distortions, etc.)

and their performance is mostly assessed on less representative datasets. With the aim

to overcome these limitations, we provide a collection of diverse challenging datasets

comprising long and short sequences of real-life natural scenes. The ground-truth an-

notation is given in the form of trajectory- and region-based labels on all the motions

of all the frames. Such annotation facilitates the evaluation of motion segmentation

methods on a single common platform. Moreover, an increased number of motions

and frames per sequence, together with the presence of real distortions, provide a new

challenge for the community.

To set an initial benchmark, we evaluate the performance of six state-of-the-art algo-

rithms on all the new sequences of the proposed database. Our evaluation metrics and

obtained results reveal that the problems of real-life distortion processing, separation

of similar motions and label recovery after occlusion still remain a serious challenge.

Therefore, we believe that our new database will provide an opportunity for a deeper

understanding of the motion segmentation problem, and will push the boundaries of

research.

The most critical step in the creation of dataset is the generation of ground-truths.

In the case of motion represented by trajectories, these set of trajectories are grouped

in clusters with unique labels to distinguish one motion from another. The MS litera-

ture review showed that there are many proposals to address the motion segmentation

problem, but none have proposed a standardized way of generating the ground-truth

on motion trajectories. In our work, we proposed a semi-automatic motion trajectory
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annotation tool, TAT. The tool was comprehensively tested to provide the trajectory

labeling in our trajectory-based mong sequences dataset. We also evaluated the perfor-

mance of out tool, in several test cases to quantify the behavior of the tool performance.

In the case of motion-region labeling, generally, a semi-automatic approach is taken

for the ground-truth annotations, where the user defined object masks in a few frames

are propagated with accuracy in the remaining frames. The state-of-the-art contains

several techniques to address the region-annotation problem, but their performance in

the presence of partial and complete occlusion, perspective distortion, stopping mo-

tion, illumination changes, depth change and shadows are inadequate. In our work, we

presented a framework to address the problem of motion annotation in the presence of

occlusion, depth change and perspective distortion. Our proposal works in integratation

with an existing methodology [45] to formulate a framework to overcome the prevailing

limitations in the state-of-the-art. Our focus was that with minimum expert-user inter-

vention, the generation of ground-truth label for moving objects should be done even

in the presence of real distortions. A three pronged approach was taken where first the

occluder mask was tracked in subsequent windows, with SURF feature matching and

similarity transformation. Then, the object mask propagation was done by computing

maximal consensus motion vectors from the state-of-the-art LDOF estimation. And

finally the scale adjustment of the propagated object mask was performed by first to

last frame point-set registration couple with linear adaptation factor κ. For evaluation,

we also presented a motion annotation dataset with 25 sequences, containing single

and multiple static and moving occluders. We presented a detailed quantitative and

qualitative analysis of the methodology to show that it can be reliably used for label

propagation in sequences with occlusion and other real noises. We have also shared

the source codes, results and the related documentation publicly for the community to

use it and to perform further improvements. All ur shared data is publicly available at

http://dixie.udg.edu/udgms/.

5.1 Summary of the thesis

We started our research by developing an understanding of Motion cue in videos, more

specifically its usage in the motion segmentation problem. The introduction chapter

briefly discussed the problems being faced by the motion segmentation community. In

particular, the need of modern datasets with long video sequences was discussed, which

became the cornerstone of the main motivation of this work. The factors effecting the

current state-of-the-art and the need of new proposals were described.
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In continuation, the need to benchmark the datasets with respect to modern algo-

rithms was explained. This became a precursor to move towards motion annotation.

The reasoning which led to developing motion annotation tools and the modalities were

also argued. We highlighted the fact that modern datasets can only be made represen-

tative, if automatic annotation or label propagation research is given due attention for

devising new methods.

Chapter 2 extended this study by an in-depth review of the literature addressing

a range of motion segmentation related topics. We took a detailed look in to the MS

datasets used by the community in their research. We classified the different types

of datasets based on their utility and application. Then, we sifted through the litera-

ture to see what modern effective MS algorithms are being used these days. Relevant

algorithms were distinguished based on their usage in different distortions. We also

segregated the techniques, which were applicable on long sequences from the ones,

which can address only short sequences. Besides this review, we also looked into the

motion annotation problem. A detailed study in understanding the state-of-the-art in

motion-trajectory and motion-region annotation was discussed. Based on the conclu-

sions drawn from these reviews, we directed our work towards the development of a

collection of motion segmentation benchmark datasets along with motion annotation

techniques to create such datasets.

In Chapter 3, we described the making of a collection of motion segmentation

datasets. We targeted all the prevailing state-of-the-art modalities of MS datasets,

therefore, we proposed trajectory- and region-based, long and short sequences, datasets.

The reason behind the making of long and short datasets was discussed in detail. This

chapter explains each step of acquisition, tracking and annotation. Further along, the

benchmarking of the presented datasets with recent MS algorithms was also presented

in detail. The results of the benchmark clearly established the difficulty of the compiled

problem. This difficulty level of the datasets provides an opportunity to MS community

to present better algorithm so as to address the motion segmentation problem better.

In Chapter 4, the description of motion annotation tools was inscribed. Initially, a

comprehensive motion-trajectory labeling tool was presented. The processing pipeline

of the tool was discussed in detail, with an elaboration of each block separately. Its

application in the making of our trajectory-based long sequences dataset was also given,

with an analysis of its performance on different video types. Following the trajectory

annotation tool, a comprehensive region annotation framework was also presented. The

framework formulation based on the integration with an existing methodology [45], and

the associated algorithms to deal with distorted subproblems were explained in detail.
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The results of applying the framework on our proposed motion annotation dataset

were discussed in detail. Furthermore, the usage in the presence of static and moving

occluders was also analyzed, showing satisfactory results on the tests performed.

5.2 Contributions

The following are the major contributions of this thesis:

� A collection of motion segmentation benchmark datasets, with an emphasis on

the two modalities prevalent in the state-of-the-art.

– Trajectory-based long and short sequences datasets: A total of 19 long se-

quences with 200 motions and 162 short sequences with 442 motion.

– Region-based long and short sequences datasets: A total of 20 long sequences

with 235 motions and 150 short sequences with 440 motion.

Two more datasets of each modality were also presented containing no missing

data. This approach was taken so that the state-of-the-art MS algorithms could

be tested.

� The creation of benchmark based on the recent MS algorithms. The OB algo-

rithm applied was used to test the long sequences datasets. Furthermore, the

OB algorithm [39] along with LS3C [44], SSC [31, 86], ALC [43, 87], ELSA [34]

and LRR [33] were used to benchmark the short sequences. This is the most re-

cent benchmark with sequences encapsulating such difficulty. It creates room

for the MS community to propose algorithms, which can solve the problem

more comprehensively. The quantitative and qualitative comparison of pro-

posed algorithms can be compared with this standardized benchmark. All the

resources including the datasets, source codes and evaluation scripts are available

at http://dixie.udg.edu/udgms/.

� A motion-trajectory annotation tool proposal to annotate any trajectory-based

sequence. The publicly available tool provided a standardized platform for the an-

notation of trajectory clusters in video sequences. With two initialization modes,

the dataset retains flexibility of application. The tool can be used to reinforce

trajectory-based MS datasets with more sequences containing complex motions.
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� The motion-region annotation framework to provide labels on motion-regions

undergoing distortions. The kind of noise our framework can deal with are oc-

clusions, depth change and perspective distortion. Our proposal performs semi-

automatic label propagation across partial occlusions. The scheme in integration

with an existing methodology [45] results in a structure, where moving object

region labels can be provided in video sequences with good accuracy.

5.3 Limitations

Any framework has its limitations, and our MS benchmark datasets proposal and the

semi-automatic motion annotation tools for are no exception. The nature of acquisition

of the benchmark video sequences and the annotation tools contain some inherent

limitations.

5.3.1 Benchmark limitations

Our benchmark is comprehensively designed to cater for the constraints present in the

state-of-the-art datasets. A few limitations of this proposal are;

� Non-rigid motion. The number of non-rigid motions captured in our collection

of benchmarks is limited. More specifically, in the non-rigid motion class, only

walking motion of people has been acquired. Other motion classes such as animal

motion, bird motion or water (liquid) motion, are not present in the datasets and

should be included in the future.

� Noisy trajectories. The noisy trajectories in our trajectory-based long sequences

dataset are labeled based on the motion they are more representative of. A MS

algorithm result might be considered wrong if it classifies the trajectory to be the

motion it was less representative of, though it is not completely wrong. A dual

label may be a better solution.

5.3.2 Annotation tool limitations

We presented annotation tools to provide ground-truth labels on trajectory- and region-

based motion segmentation datasets. A few limitations of our tools are;

� Occlusion limit. The motion-region annotation proposal heavily relies on the

optical flow vectors inside the object region. A situation might occur where
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the occluder overlap with the moving object region covers such an amount of

the object that the optical flow vectors’ orientation are not dominant in the

histogram anymore. This will lead to the deduction of a wrong orientation from

the histogram.

� Features in occluder tracking. The use of SURF feature descriptors in occluder

mask tracking is dependent upon the the number of SURF features acquired in

the occluder mask region. A minimum of three matched features are necessary

to formulate a transformation matrix. Increased number of matches would give a

better result. If the total number of SURF features and the number of matched

features decreases, then the results are effected. This can happen up to a limit

where the algorithm might fail, in case less than three matches are found. Even

though we did not encounter this issue, but in our experiments it is a point that

should be considered.

� Relative change in object size. The overall change of moving object size in each

subsequent frame might become a limiting factor. The histogram of optical flow

vectors present inside the moving object region gives out the direction of object

motion as explained in Section 4.3.1.2. If the object is coming towards the camera,

then its size in the FoV is increasing. In this case, in each subsequent frame, the

propagated object mask falls inside the actual object region. On the other hand, if

the object is going away from the camera, then the object size in each subsequent

frame decreases. In this case, the propagated object mask will overlap with the

actual object region as well as the background. If the ratio of the background

is more than the object, the propagated results might be wrong. This change in

size is a limiting factor in object mask propagation.

5.4 Further work

The main directions of further work can be viewed in short-term and long-term per-

spectives.

The short-term goals include:

� The capability of an algorithm to handle missing data is imperative. All the data

captured these days contains missing data in terms of moving objects. Each form

of occlusion presents its own set of challenges and give rise to missing data as

well. Even if the algorithms are not able to effectively deal with it, they should
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at least have an inherent structure to process it better. This can be achieved in

optical flow based methods where LDOF can be useful. In subspace clustering

based methods, the noise margin in intra-cluster affinity should be looked into.

Due to increased density of objects in videos, occlusion is a frequently occurring

phenomenon that should also be tackled.

� A long term analysis of trajectories may result in a better segmentation of stop-

ping and multiple appearance-disappearance motion. A forward and backward

extrapolation based matching of inter-object clusters can help improve the results.

� A few recent proposals of MS algorithms might give better results on our bench-

marks. Some promising state-of-the-art algorithms with this potential are de-

scribed here. In [67], the multiple segment proposal generation on motion bound-

aries and ranking with a moving objectness notion, establishes affinities for multi-

ple figure-ground segmentation hypothesis. This notion complemented with color,

appearance and motion cue used in [39] can yield improved results. Similarly, the

minimum cost multicut formulation in [62], optimizes not only for cluster assign-

ments but also for the number of clusters while allowing varying cluster sizes.

This technique can complement the results presented in [34]. The capability to

combine, potentially imperfect proposals in [61], to improve overall segmentation

accuracy and to maintain robustness towards outliers can improve results in the

presence of occlusions.

� The background label splitting happens a lot even in small camera motions. A

post processing step of spatio-temporal analysis can use affinity measures between

labels to merge background labels. Once the background is correctly deciphered

from motion, the intra-motion classification can be better performed.

� A natural progression of our region annotation framework is to develop enhanced

methods for occluder mask shape tracking. The current method is suitable for

rigid shapes with affine transformations. An occluder undergoing non-linear

change, like perspective or radial distortion, would be badly tracked by this

methodology, as the overall result is sensitive to its shape tracking. A recently

proposed shape tracking algorithm [85] might yield better results, as it takes a

coarse to fine region-based sobolev descent approach.

� A non-linear scaling adaptation factor can further improve the annotation result

on a fine scale. One way of doing it is to perform forward and backward propaga-

tion of the object mask, and then to devise a cost function, which penalizes the
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non-homogeneous region overlap of the mask with the image. Assuming that the

homogeneous region is part of the object and non-homogeneous is background,

a piece-wise fine scale adjustment of the object mask contour can be done. The

objective function in such an approach would be non-linear and computationally

extensive, but the results would be better.

Among the long-term work directions we can highlight the following:

� The presented motion segmentation datasets are usable for semi-automatic an-

notation [74] [88] [89] and semantic segmentation [24] [90] [91]. Our database

contains ground-truth on all the frames of all the sequences. The benefit of this

complete ground-truth is that this work can also be treated as a dataset for auto-

matic annotation and label propagation algorithms. This research area can take

advantage of the diversity in our dataset to test trajectory as well as region label

propagation. Even in the case of semantic segmentation, the semantics related to

moving objects are already labeled. More semantic labels on static background

objects can be easily added through the annotation tools to increase the diversity

of our dataset with respect to semantic segmentation problem.

� An enhancement in the object mask propagation approach is needed to deal with

non-rigid motion masks. Currently, the motion mask is restricted to being rigid,

which is good enough to cater for a lot of real motions but not all. To deal with

non-rigid motion masks, the recently proposed scheme of minimal basis subspace

based rigid and non-rigid segmentation approach [92] coupled with occlusion-

disocclusion segregation [85] can be used in a motion model specific framework

to yield acceptable results. A drawback of using image segmentation approaches

for moving objects is that based on the number of frames in a video sequence the

computational cost multiplies. In comparison, our approach yields quick results

depending upon how fast LDOF is being calculated.

� One of the trending frameworks in computer vision are deep learning based

methodologies. While discussing the future trends in MS, deep learning frame-

work can not be ignored. Though, the state-of-the-art analysis of deep learning

does not include an MS algorithm, there are considerable research proposals pre-

sented in related fields. For instance, recent deep learning based methods include

human pose estimation [93], human activity recognition [94], gesture detection

and localization [95], image segmentation [96], image classification [97], visual
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tracking [98], video classification [90], etc. A natural progression of these ap-

proaches is towards motion segmentation and classification, and semantic video

segmentation, which has also an increasing interest within the community. A

main limitation in developing deep learning based methods for MS is the require-

ment of huge training set to train the deep convolutional neural network (CNN)

layers in the deep learning framework. The state-of-the-art MS datasets were not

able to meet this training-testing data requirement, but with our dataset pro-

posal, a preliminary division of training and testing sets of motions can be done

i.e. in region based long sequences: 120 motions in training set and 115 motions

in testing set. With this division a deep CNN framework can be designed, trained

and tested to propose an initial benchmark on motion segmentation. A proposal

like this can pave the way for future advancements in MS based on deep learning.

On the same lines for motion annotation, a recent object detection and segmen-

tation approach based on convolutional networks [99] exhibits excellent results.

This approach applied integrated with deep networks based object recognition

methodologies [100, 101] can yield improved results. These too would work at

an exceptionally high computational cost, with a disadvantage of training and

testing cycle as necessary for these approaches.
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