ermometria i Calorimetria

1. Un alambie conductor eléctrico de cobre puro se ha puesto entre dos postes lo suficientemente altos para evitar que bs personas puedan suffir un accidente. Si los postes están separados por 100 m y el cable se puso absolutamente horizontal cuando la temperatura es do $20^{\circ} \mathrm{C}$, calcule su longitud cuando la temperatura sea de $35^{\circ} \mathrm{C}$.

$$
x_{\text {cobre }}=17 \cdot 10^{-6} 0^{\circ} \mathrm{C}^{-1}
$$

$$
\begin{aligned}
& T_{0}=20^{\circ} \mathrm{C} \\
& L_{0}=100 \mathrm{~m}
\end{aligned} / \begin{aligned}
& \Delta L=? \\
& T=35^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta L=L_{0} \cdot \alpha \cdot \Delta T \\
& \Delta T=35-20=15^{\circ} \mathrm{C} \\
& \Delta L-L_{0}=100\left(17 \cdot 10^{-6}\right) \cdot 15 \\
& \quad L-100=0.0255 \rightarrow L=0.0255+100 \rightarrow L=10010255 \mathrm{~m}
\end{aligned}
$$

2. Una biga de formigó té una lorgitud de 12 m a una teuperatura de $-5^{\circ} \mathrm{C}$, un día d'hivern. Com canvia la seva longitud a la temperatura típica de l'estin, a $35^{\circ} \mathrm{C}$?

$$
\alpha_{\text {formigs }}=12 \cdot 10^{-6} \mathrm{C}^{-1}
$$

$$
\text { Thiv.o }=-5^{\circ} \mathrm{C} / \text { Test }=35^{\circ} \mathrm{C}
$$

$$
L 2 \mathrm{~m} \quad L=?
$$

$$
\Delta L=L_{0} \cdot \alpha \cdot \Delta T
$$

$$
L-L_{0}=L \cdot \alpha \cdot(35-(-5))
$$

$$
L-\lambda 2=\lambda 2 \cdot\left(12 \cdot 10^{-6}\right) \cdot 40 \rightarrow L=12+0,00576 \rightarrow L-12^{\prime} 00576 \mathrm{~m}
$$

3. Trobeu la forca total que s'hadaplicar als extrems d'una rareta de ferro, de 4 mm de diämetre, i que es troba a $275^{\circ} \mathrm{C}$, per a que no es correspongui quan es refreda fins a $25^{\circ} \mathrm{C}$.

$$
\begin{align*}
& \alpha_{\text {ferro }}=12 \cdot 10^{-6} \mathrm{C}^{-1} \tag{0}\\
& E_{\text {ferro }}=2^{\prime} \lambda \cdot 10^{\prime \prime} \mathrm{Pa} \\
& \phi 4 \mathrm{~mm}=0.004 \mathrm{~m} \\
& T_{0}=275^{\circ} \mathrm{C} \\
& T=25^{\circ} \mathrm{C} \\
& T=E \cdot \varepsilon=\alpha \cdot E \cdot \Delta T \quad F=T \cdot S \\
& \varepsilon=\alpha \cdot \Delta T=\left(12 \cdot 10^{-6}\right) \cdot(25-275) \longrightarrow \varepsilon=-0^{\prime} 003 \\
& T=\left(2^{\prime}+10^{\prime \prime}\right) \cdot(-0,003)=-630 \cdot 10^{6} \\
& s=\pi \cdot r^{2}=\pi\left(0^{\prime} 002\right)^{2}=\lambda^{\prime} 256 \cdot 10^{-5} \mathrm{~m}^{2} \\
& \text { [F] }-630 \cdot 10^{6}\left(11256 \cdot 10^{-5}\right)=1-7912^{\prime} 8 \mathrm{~N} \mid=7912^{\prime} 8 \mathrm{~N}=7^{\prime} 92 \mathrm{kN}
\end{align*}
$$

4. Una biga encastada, de ferro, de 7 m de longitud i $250 \mathrm{~cm}^{2}$ de secció, pateix un increment de temperatura de $15^{\circ} \mathrm{C}$. Trobeu l'esforc ita càrega que exerceixen els extrems de la biga sobre la paret on està encastada.

$$
\begin{aligned}
& I=E \varepsilon=E \alpha \cdot \Delta T / F=F \cdot S \\
& I=\left(2^{\prime} 1 \cdot 10^{\prime \prime}\right)\left(12 \cdot 10^{\circ}\right) \cdot 15=37800000 \mathrm{~Pa}=378 \mathrm{MPa} \\
& F=37800000 \cdot 0,025=945000 \mathrm{~N}=945 \mathrm{kN}
\end{aligned}
$$

5. Un rail d'aor de 15 m de lorgitud té una secció transversal de $75 \mathrm{~cm}^{2}$. La temperatura del rail, sota el sol del migdia, pot assolir el $52^{\circ} \mathrm{C}$. Quin allargament patirà si es va instal.lar a $24^{\circ} \mathrm{C}$?
Sies dixa una distancia de $3^{\prime} 2 \mathrm{~mm}$ entre dos rails, quant valdra l'esforf que s'exergeix entre ells? Si no es deixa espai entre rails, i suposant que es deformen en forma de triangle isoselos, quima sena l'altura del trangle?

$$
\begin{aligned}
& \alpha_{\text {acor }}=12 \cdot 10^{-6} \mathrm{C}^{-1} \\
& L_{0}=15 \mathrm{~m} \\
& E_{a Q r}=2^{\prime} \lambda \cdot 10^{\prime \prime} \mathrm{Pa} \\
& s=75 \mathrm{~cm}^{2}=0,0075 \mathrm{~m}^{2} \\
& T=52^{\circ} \mathrm{C} \quad / T_{0}=24^{\circ} \mathrm{C} \\
& \Delta L=L_{0} \cdot \alpha \cdot \Delta T \\
& L-L_{0}=L_{0} \cdot \alpha \cdot\left(T-T_{0}\right) \\
& L-15=15\left(12 \cdot 10^{-6}\right)(52-24) \\
& L-15=0^{\prime} 00504 \longrightarrow L-15+0^{\prime} 00504 \longrightarrow L=15{ }^{\prime} 00504 m \\
& T=E \cdot \varepsilon=E \cdot \alpha \cdot \Delta T \quad F=F \cdot S \\
& T=2^{\prime} 1 \cdot 10^{\prime \prime} \cdot\left(12 \cdot 10^{-6}\right) \cdot 28=70560000 P \\
& F=70560000 \cdot 0^{\prime} 0075=529200 \mathrm{~Pa}
\end{aligned}
$$

$$
\begin{aligned}
& h=\sqrt{\left(\frac{1500509}{2}\right)^{2}-\frac{15^{2}}{4}}=11 \\
& h=0^{\prime} 1944 \mathrm{~m}=19.5 \mathrm{~cm}=20 \mathrm{~cm}
\end{aligned}
$$

6. Una biga d'aer, de seccio transversal $310 \mathrm{~cm}^{2}$, està soldada honitzontalment a dues armadures verticals d'acer. Si la biga es a instal:lar quan la temperatura era de $30^{\circ} \mathrm{C}$, quin esfor apareixerá en la biga quan la temperatura baixi a-15 C ? Es superarà el punt de rapura de l'acer? Repetiu el problema pel cas d'una biga de formigo:

$$
\begin{aligned}
& \alpha_{\text {acer }}=12 \cdot 10^{-6} \mathrm{C}^{-1} \\
& E_{\text {acer }}=2^{1} 1 \cdot 10^{11} \mathrm{~Pa}
\end{aligned}
$$

Límit de ruptura de l'acer compressio $=5 \cdot 10^{8} \mathrm{Ba}$. it traccio'

$$
\begin{aligned}
& S=310 \mathrm{~cm}^{2}=0^{\prime} 031 \mathrm{~m}^{2} \\
& T_{0}=30^{\circ} \mathrm{C} / T=-15^{\circ} \mathrm{C} \\
& T=E \cdot=E \cdot \alpha T \\
& I=2^{\prime} 1 \cdot 10^{\prime \prime}\left(12 \cdot 10^{-6}\right)(-15+30)=(-113400000 \mathrm{~Pa})=113400000 P_{a}=0^{\prime} 1134 \mathrm{GPa}
\end{aligned}
$$

- Com que $T=113400000<.510^{8}$ Pa, llacer NO SllPERA
el Límit de ruptura

$$
\begin{aligned}
& \text { aformigó }=12 \cdot 10^{-6} \mathrm{C}^{-1} \\
& \text { Eformigo }=50 \cdot 10^{8} \mathrm{~Pa}
\end{aligned}
$$

Límit de ruptura del formigo $\rightarrow \begin{aligned} & \text { compressio }=20 \cdot 10^{6} \mathrm{~Pa} \\ & \text { Traccéo }=2 \cdot 10^{6} \mathrm{pa}\end{aligned}$
(7) $50 \cdot 10^{8}\left(1210^{-6}\right)(-15+30)=1-270000 \mathrm{~Pa}=270000 \mathrm{~Pa}$

$$
\text { Comque: } \left.\begin{array}{rl}
T & =27 \cdot 10^{4}<20 \cdot 10^{6} \mathrm{~Pa} \\
T & =27 \cdot 10^{4}<2 \cdot 10^{6} \mathrm{~Pa}
\end{array}\right\}
$$

el formigó NO SUPERA
el Límit de ruptua mi a compressió, ni a tracció
7. Una peqa que pesa 1000 kp està unida al sostre mitjancant uná barra vertical d'Am de longitud i $5 \mathrm{~cm}^{2}$ de secció, a la temperatua inicial de I'habitació. La peca reposa sobre el terra. Imaginem que la temperatub disminueix a $5^{\circ} \mathrm{C}$. Podrã, la barra, aixecar la pesa? Si la resposta és no, quant hauna de disminuir la temperatura per tal que la barra aixequés la peca? Menyspreen la dibatació de la pecta.

$$
\begin{aligned}
& \alpha_{\text {barra }}=12 \cdot 10^{-60} \mathrm{C}^{-1} \\
& E_{\text {barra }}=2^{\prime} 0 \cdot 10^{\prime} \mathrm{Pa} \\
& P=1000 \mathrm{kp} \\
& 5=5 \mathrm{~cm}^{2}=0^{\prime} 0005 \mathrm{~m}^{2} \\
& L_{0}=1 \mathrm{~m} / \Delta T=5^{\circ} \mathrm{C} .
\end{aligned}
$$

$$
\begin{aligned}
& T=E \cdot \alpha \cdot \Delta T=2^{\prime} 010^{\prime \prime}\left(12 \cdot 10^{-6}\right) \cdot 5=12000000 \mathrm{P} \\
& F=T \cdot S=12000000 \cdot 0,0005=6000 \mathrm{~N} \\
& F=P=1000 \cdot 9^{\prime} 8=9800 \mathrm{~N}
\end{aligned}
$$

Com que $9800 \mathrm{~N}>6000 \mathrm{~N}$, la peca 1 NO siaixeca

$$
\begin{aligned}
& \left.\begin{array}{l}
T=E \cdot \alpha \cdot \Delta T \\
\Gamma=F / S
\end{array}\right\} \frac{F}{S}=E \cdot \alpha \cdot \Delta T \rightarrow \frac{9800}{0.0005}=210 \cdot 10^{11}\left(1210^{-6}\right) \cdot \Delta T \\
& \Delta T=\frac{19600000}{2400000}-\Delta T=82^{\circ} \mathrm{C} \\
& \text { OPCió } 2
\end{aligned}
$$

$$
\begin{aligned}
9800 & =E \alpha \cdot \Delta T \cdot S \\
9800 & =2 \cdot 0 \cdot 10^{\prime \prime}\left(12 \cdot 10^{-6}\right) \cdot \Delta T \cdot 0^{\prime} 0005 \\
9800 & =1200 \Delta T \\
\Delta T & =\frac{9800}{1200} \quad \Delta T=8^{\prime} 2^{\circ} \mathrm{C}
\end{aligned}
$$

8. ¿A qué temperatura se tocan dosbarras, una de aluminio de 2 m de longitud y otra de cobre de lm de longitud si sus extremos están separados por $1.0 \cdot 10^{-3} \mathrm{~m}$ cuando su temperatura es de $22^{\circ} \mathrm{C}$?

(1) $\Delta L=L_{0} \cdot \alpha_{A 1} \cdot \Delta T$
(2) $\Delta L=L_{0} \cdot \alpha_{a l} \cdot \Delta T$
9. Calcular el calor que 100 g de hapor de agua a $150^{\circ} \mathrm{C}$ necesitan eder para transformarse en 100 g de hielo a-30 C a presión de 1 atm .

$$
Q_{1}=m \cdot c \cdot \Delta t=100(0.48)(100-150)=-2400(a)
$$

$$
Q_{2}=-m L=-100 \cdot 539=-53900 \mathrm{cal}
$$

$$
Q_{3}=m \cdot c \cdot \Delta T=100 \cdot 100(0-100)=-10000 \mathrm{cal}
$$

$$
Q_{4}=-m \cdot L=-100 \cdot 79^{\prime} 7=-7970 \mathrm{cal}
$$

$$
Q_{5}=m \cdot c \cdot \Delta t=100 \cdot 050(-30-0)=-1500 \mathrm{cal}
$$

$$
\begin{aligned}
& Q_{+}=Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5}=-2400+(-53500)+(-10000)+(-7970)+(-1500) \\
& Q_{+}=1-757700_{2} 11 \longrightarrow Q_{+}=75770 \mathrm{cal}
\end{aligned}
$$

$$
\begin{aligned}
& L_{0} \cdot \alpha_{A L} \cdot \Delta T+L_{0} \alpha_{m} \cdot \Delta T=0: 00 \lambda \\
& 0^{\prime} 000048 \Delta T+0^{\prime} 0000 A \Delta T=0^{\prime} 001 \\
& 0^{\prime} 000065 \Delta T=0^{\prime} 00 \lambda \longrightarrow \Delta T=15^{\prime} 38^{\circ} \mathrm{C} \\
& \Delta T=T-T_{0} \longrightarrow T=15^{\prime} 38+22 \\
& T-371^{\circ} \mathrm{C}
\end{aligned}
$$

Transferéncia de calor

1. El Sol puede considerarse como un cuerpo negro a teuperatura de 6000k. Determinar la longitud de onda correspondiente a la intensidad de emisión māxima de la radiación sobr.

$$
\cos \text { negre } \longrightarrow T=6000 \mathrm{~K}
$$

Llei de Mieu $\rightarrow \lambda=\frac{2^{\prime} 898 m m k}{T}$

$$
\lambda \frac{2.898 \mathrm{~mm} k}{6000 \mathrm{~K}}=0.000483 \mathrm{~mm}=483 \mathrm{~nm}
$$

2. La longitud de onda correspondiente a la intensidad de emisión māxima de la rdiación sobr es 4800Å. ¿ Cuál es la temperatura de la superfície solar? ¿A qué longitua de onda correspondeńa la emisión de intensidad māxima si la temperatura de la superficie del Sol aumentase hasta $8000^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \lambda=4800 \AA=0^{\prime} 00048 \mathrm{~mm} \\
& \lambda=\frac{2,898 \mathrm{~mm} \mathrm{~K}}{T}
\end{aligned}
$$

T $\frac{2^{\prime} 898 \mathrm{~mm} k}{0.00048 \mathrm{~mm}}=6037^{\prime} 5 \mathrm{k}$
$\lambda=$?

$$
\begin{aligned}
T=8000^{\circ} \mathrm{C}=273+8000 & =8273 \mathrm{~K} \\
\lambda & \frac{21898 \mathrm{~mm} k}{8273 \mathrm{~K}}=0.00035 \mathrm{~mm}=350 \mathrm{~nm}
\end{aligned}
$$

3. Calcullu la raó entre les pèrdues degudes per convecció a través d'una finestra quan a l'extenior bufa un vent de $20 \mathrm{~km} / \mathrm{h}$ i les perdues quan no hi ha vent a l'extenor. Suposen que b temperatura a l'interior és de $10^{\circ} \mathrm{C}$; que a l'exterior, lluny de la finestra, és de $-10^{\circ} \mathrm{C} \cdot \mathrm{A}-10^{\circ} \mathrm{C}$ b teuperatura efectiva quan bufa un vent de $20 \mathrm{~km} / \mathrm{h}$ és de $-20^{\circ} \mathrm{C}$.

$10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Ivent }=q_{i} \cdot \Delta T \\
\text { I censeverit }=q_{i} \cdot \Delta T
\end{array}\right\} \begin{array}{l}
q_{i} \cdot \Delta T=q_{i} \cdot \Delta T \\
(10-(-20)=(10-(-10) \\
\\
\quad 30=20 \rightarrow I=\frac{30}{20}=15
\end{array}
\end{aligned}
$$

4. La paried de una vivenda está construida tal como se indica en la sección de la figura. las conductividades de los matenales empleados son los siguientes: hormigón macizo, $k=1$ ' $\mathrm{kcal} \cdot h^{-1} \cdot m^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$; enfoscado de comento, $k=1.0 \mathrm{Kcal} \cdot \mathrm{h}^{-1} \cdot \mathrm{~m}^{-1} \cdot{ }^{\circ} \mathrm{C}^{1}$. La cámara de aire presenta una resistència térnica de $0^{\prime} 20 \mathrm{~h} \cdot \mathrm{~m}^{2 \circ} \mathrm{C} \mathrm{Kcal}{ }^{-1}$ al intercarbio de cabor. Ademas, la superficie extenior presenta una resistencia al intercambio de cabor por convección y radiación de $0^{\prime} 06 \mathrm{~h} \cdot \mathrm{~m}^{2} \mathrm{CKKal}^{-1}$ y a interna de $0^{\prime}, 5 \mathrm{~h} \cdot \mathrm{~m}^{2}{ }^{\circ} \mathrm{Ckcal}{ }^{-1}$. Para bgrar que la teumperatura interior de a habitación permanezca constamte se estan subministrando $35^{\prime} 9 \mathrm{Kcal} \cdot \mathrm{m}^{-2}$ a la hora. Si a temperatura de exterior es de $5^{\circ} \mathrm{C}$.
a. ¿cuáa es la temperatura del interior?
b. Si a teuperatura de cuerpo numano es da $37^{\circ} \mathrm{C}$, calcular el fuyjo de calor por mutro cuadrado debido a la radiación entre un nombne en a habitación y a superficie de k pared intenior. $q_{r}=3 \cdot 5 \mathrm{kcal} \cdot \mathrm{k}^{-1} \cdot \mathrm{~m}^{-2} \cdot t^{-1}$

a. Ti?

$$
I=\frac{\left(t i-T_{e}\right)}{R_{T}} \rightarrow 35^{\prime 9}=\frac{T_{i}-5}{0^{\prime} 502} \rightarrow 35^{\prime} 9 \cdot 0^{\prime} 502=T_{i}-5
$$

b. \cos heemáa $=37^{\circ} \mathrm{C} / q r=315 \mathrm{kcal} \cdot \mathrm{h}^{-1} \cdot \mathrm{~m}^{-2}{ }^{\circ} \mathrm{C}^{-1}$

$$
\begin{aligned}
& \underline{\Delta I=R \cdot I} \longrightarrow T_{i}-T_{s i}=R_{i} \cdot I \\
& \\
& 23-T_{s i}=0^{\prime} 15 \cdot 35^{\prime} 9 \Longrightarrow T_{3 i}=1761^{\prime} \mathrm{C} \\
& I_{i}=g_{r}\left(T_{i}-T_{s i}\right)= \\
&
\end{aligned}
$$

5. Calculeu la calor conduida por m^{2} i hora.
a. A través d'una panet de totxo de 12 cm de gruix.
b. A través de la mateixa paret, coberla amb una capa de suro de 3 cm .
En els dos casos, la difenència de temperatures entre interior; extenior és de 20°. Menyspreen les resistencies de convecció i radiació.
Totro: $K=00016 \mathrm{cal} \cdot \mathrm{cm}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{c}^{-1}$
Suro: $K=0,0001$ cal $\cdot \mathrm{cm}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{C}^{-1}$

CONDUCTVVITAT	GRUix	RES TEERMICA
$0^{\prime} 0016$	-12	7500
$0 ' 0001$	3	30000
		$R_{F}=37500$

$$
I=\frac{\Delta T}{R_{T}}=\frac{20}{37500}=\frac{0.00053 \mathrm{cal}^{2} \cdot \mathrm{~cm}^{-1} \cdot \mathrm{~s}^{-1} \cdot \frac{10000 \mathrm{~cm}^{2}}{-1 \mathrm{~m}^{2}} \cdot \frac{3600 \mathrm{~s}}{\mathrm{Ah}}}{\mathrm{~h}}
$$

[^0]6. L'ãrea de la superfície exterior d'una casa (sostrei parets) és de $280 \mathrm{~m}^{2}$, dels quals $30 \mathrm{~m}^{2}$ corresponen a ces finestres ($k=0.80 \mathrm{~W} / \mathrm{mk}$) és de $0,5 \mathrm{~cm}$ de gruix i el sostre i les parets estan recoberts d'un material aillant ($k=0^{\prime} 040 \mathrm{~W} / \mathrm{mk}$) de 8 cm de gruix. Quan $l a$ temperatura a l'exterior és de $-10^{\circ} \mathrm{C}$, 1 'interior de les finestres es troba a $3^{\circ} \mathrm{C}$ i l'inteñor de los parets i el sostre a $15^{\circ} \mathrm{C}$.
a. Quin és el flux de calor a través de los parets i sostre?
b. Quin és el flux de calor a través de les finestres?
\[

$$
\begin{aligned}
& \text { ARea }=280 \mathrm{~m}^{2} \\
& \text { FINESTRES } 30 \mathrm{~m}^{2} \text { (FINESTRES) } \\
& \longrightarrow K=0^{\prime} 80 \mathrm{w} / \mathrm{mk} \\
& 0^{\prime} 5 \mathrm{~cm} \text { de gruix }
\end{aligned}
$$
\]

$$
\text { SOSTRE i FINESTRES } \begin{aligned}
& \longleftrightarrow k=0^{\prime} \text { OUOW } / m k \\
& 8 \mathrm{~cm} \text { de gruix }
\end{aligned}
$$

$$
\begin{aligned}
T e=-10^{\circ} \mathrm{C} & \longrightarrow \text { Tifinestres }=3^{\circ} \mathrm{C} \\
& T_{i} \text { pis }=15^{\circ} \mathrm{C}
\end{aligned}
$$

a. $\varnothing=I . S$
0.040
0.08

$$
I=\frac{T_{i}-T_{e}}{R_{+}}=\frac{15-(-10)}{2}=125
$$

$$
\phi=12^{\prime} 5 \cdot(280-30)=3125 \omega \rightarrow \phi=3^{\prime} 13 \mathrm{k} \omega
$$

b.

CONDUCTVITAT	GRUIX	RES TERRIICA
$0^{\prime} 80$	O'005	$0^{\prime} 00625$

$$
I=\frac{3+10}{0^{\prime} 00825}=2080 \quad \phi=2080 \cdot 30=624000
$$

$$
\phi=62^{\prime} 4 \mathrm{kw}
$$

7. Una cabara de muntanya té aquestes característiques:
l. cos seves parets tenen ura superfície de $135 \mathrm{~m}^{2}$, i estan fetas (de fora cap a dins) de: totxo vist de $10 \mathrm{cu}\left(K=0^{\prime} 70 \mathrm{Kcal} \cdot \mathrm{m}^{-1} \cdot h^{-1 \cdot} \cdot \mathrm{C}^{-1}\right.$) aillant tèrmic de $15 \mathrm{~cm}\left(k=0,040 \mathrm{kcal} \cdot \mathrm{m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$, i coberta de fusta do $5 \mathrm{cu}\left(k=0^{\prime} 15 \mathrm{Kcal} \cdot \mathrm{m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$.
8. El sostre té una superfície de $110 \mathrm{~m}^{2}$ i un gruix de 40 cm
$\left(K_{\text {mitiane }}=0^{\prime} 10 \mathrm{kral} \cdot \mathrm{m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$
9. Una porta de Justa de $2 \mathrm{~m}^{2}$ de superfíciei 8 cm de gruix

$$
\left(k=0^{\prime} 12 \mathrm{kcal} \cdot m^{-1} \cdot h^{-1} \cdot{ }^{\circ} c^{-1}\right)
$$

4. Una vidniera de $5 \mathrm{~m}^{2}$, amb un vidre de $8 \mathrm{~mm}\left(\mathrm{k}=0^{\prime} 82 \mathrm{kcal} \cdot \mathrm{m}^{-1} \cdot h^{-1} \cdot \mathrm{C}^{-1}\right)$ Menyspreen les pérdues per convecciói adiació, i toubé les que podria haver-hi pel söl. Trobou la poténcia cabrifica que cal subministrar, por tal de mantenir $21^{\circ} \mathrm{C}$ a dins, mentre que fora estan a $-10^{\circ} \mathrm{C}$.

PARETS $\quad \therefore=135 \mathrm{~m}^{2}$

SOSTRE $D S=110 \mathrm{~m}^{2}$
$\rightarrow 40 \mathrm{~cm}$ de gruix
L $K=0^{\prime} 10 \mathrm{Kcal} \mathrm{m}^{-1} \mathrm{~h}^{-1} \cdot \mathrm{C}^{-1}$
$R_{\text {sostre }}=\frac{0^{\prime} 40}{0^{\prime} 10}=4$

$$
\begin{aligned}
\rightarrow & 8 \mathrm{~cm} \text { de graix } \\
\rightarrow & \mathrm{K}=0^{\prime} 12 \mathrm{Kcal} \cdot \mathrm{~m}^{-1} \cdot h^{-1}{ }^{\circ} \mathrm{C}^{-1} \\
& \text { RPORTA }^{=}=\frac{0^{\prime} 08}{0^{\prime} 12}=0.667
\end{aligned}
$$

$\rightarrow 8 \mathrm{~mm}$ de gruix

$$
\underline{R_{\text {viDRIERA }}}=\frac{0^{\prime} 008}{0^{\prime 82}}=0.0097
$$

$$
\begin{aligned}
& I_{\text {PAREIS }}=\frac{\left(T_{i}-T_{e}\right)}{R_{P}}=\frac{21-(-10)}{4226}=7^{\prime} 335 \mathrm{kcal} \cdot \mathrm{~m}^{-2} \mathrm{~h}^{-1} \\
& I_{\text {SOSTRE }}=\frac{2 \lambda-(-10)}{4}=7^{\prime} 75 \mathrm{kcal} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1} \\
& I_{\text {PDRTA }}=\frac{2 \lambda-(-10)}{0^{\prime} 667}=46^{\prime} 476 \mathrm{kCal} \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1} \\
& I_{\text {vipriera }}=\frac{2 \lambda-(-10)}{0,0097}=3195^{\prime} 896 \mathrm{Kcal} \mathrm{~m}^{-2} \mathrm{~h}^{-1} \\
& \phi_{\text {PAREIS }}=7^{\prime} 335 \cdot 135=990^{\prime} 225 \\
& \phi_{\text {SOTRE }}=7.75 \cdot 110=852.5 \\
& \phi_{\text {PORTA }}=46.476 \cdot 2=92 \cdot 953 \\
& \phi_{\text {vidrílara }}=3195^{\prime} 8765=15979 \text { '38 }
\end{aligned}
$$

8. Trobeu la inércia térmica de la panet de la figura, amb les dades que s'adjunten. Considereu que la temperatura exterior és de $5^{\circ} \mathrm{C}$ i la interior, de $22^{\circ} \mathrm{C}$. Repetia el problema situant l'aillant entre el ciment i el formigó. Considereu que la cabr específica mitjana per tots els materials és de $0^{\prime} 2 \mathrm{Kcal} \cdot \mathrm{kg}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$

$$
\begin{aligned}
& r_{i}=0^{\prime} 13 \mathrm{~m}^{2} \cdot h^{\circ} \mathrm{C} \mathrm{KCal}^{-1} \\
& r e=0.07 \mathrm{~m}^{2} \cdot \mathrm{~h}^{\circ} \mathrm{Ckcal}^{-1} \\
& \text { CIMENT: } p=1800 \mathrm{~kg} \cdot \mathrm{~m}^{-3} ; k=1 \mathrm{kcal} \cdot \mathrm{~m}^{-1} \cdot h^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} \\
& \text { FORMIGO: } p=2400 \mathrm{~kg} \cdot \mathrm{~m}^{-3} ; K=j^{\prime} 2 \mathrm{kcal} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~h}^{-1} \cdot \mathrm{C}^{-1} \\
& \text { AILLANT: } P=350 \mathrm{~kg} \cdot \mathrm{~m}^{-3} ; \mathrm{K}=0045 \mathrm{Kcal} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{0} \mathrm{C}^{-1} \\
& \text { Guix: } p=1500 \mathrm{~kg} \cdot \mathrm{~m}^{-3} ; k=0^{\prime} 4 \mathrm{kcal} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} \\
& c=0^{\prime} 2 \mathrm{kcal} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{C}^{-1} \\
& \Delta T=22-5=17^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\left.I=\frac{\Delta t}{R T}=\frac{17}{11405+013+0,07}=\frac{17}{1^{\prime} 3405}=12^{\prime} 68 \mathrm{Kcal} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1} \mathrm{C}^{-1}\right)
$$

$$
\begin{aligned}
& T_{p_{1}}=T_{i}-\left(r_{i} \cdot I\right)=22-\left(0^{\prime} 13 \cdot 12^{\prime} 68\right)=20^{\prime} 35^{\circ} \mathrm{C} \\
& T_{1}=T_{p_{i}}-\left(r_{1} \cdot I\right)=20^{\prime} 35-\left(0^{\prime} 0375-12^{\prime} 68\right)=19^{\prime} 87^{\circ} \mathrm{C} \\
& T_{2}=T_{1}-\left(r_{2} \cdot I\right)=-197-\left(1 \cdot 122^{\prime} 68\right)=7^{\prime} 19^{\circ} \mathrm{C} \\
& T_{3}=T_{2}-\left(r_{3} \cdot I\right)=7^{\prime} 19-\left(0^{\prime} 083 \cdot 1268\right)=6^{\prime} 14^{\circ} \mathrm{C} \\
& T_{4}=T_{3}-\left(r_{4} \cdot I\right)=6^{\prime} 14-\left(0^{\prime} 02 \cdot 1268\right)=5^{\prime} 8^{\circ} \mathrm{C}
\end{aligned}
$$

Itêmica $=\rho \cdot c \cdot d$ tmitja

$$
\begin{aligned}
& \text { CIMENT }=18000^{\prime} 2 \cdot 0^{\prime} 02 \cdot \frac{5^{\prime} 88+6^{\prime} 14}{2}=\frac{43^{\prime} 27 \mathrm{Kcal} \cdot \mathrm{~m}^{-2}}{2} \\
& \text { FORMIGO }=2400 \cdot 0^{\prime} 2 \cdot 0^{\prime} 1 \cdot \frac{6^{\prime} 14+7^{\prime} 19}{2}=\frac{39^{\prime} 92 \mathrm{kcal} \cdot \mathrm{~m}^{-2}}{\text { AILLANT }=350 \cdot 0^{\prime} 2 \cdot 0^{\prime} 045 \cdot \frac{7^{\prime} 9+19^{\prime} 87}{2}=\frac{4262 \mathrm{kcal} \cdot \mathrm{~m}^{-2}}{}} \\
& \text { GUAX }=1500 \cdot 0^{\prime} 2 \cdot 0^{\prime} 015 \cdot \frac{19^{\prime} 87+20^{\prime} 35}{2}=\frac{90^{\prime} 49 \mathrm{kcal} \cdot \mathrm{~m}^{-2}}{}
\end{aligned}
$$

Irèrcia térmica paret $=496{ }^{\prime} 3 \mathrm{kcal} \cdot \mathrm{m}^{-2}$

Canvi de l'aillant, entre ciment i formigó!

$$
\begin{aligned}
& T_{p i}=T_{i}-\left(r_{i} \cdot I\right)=20^{\prime} 35^{\circ} \mathrm{C} \\
& T_{\Lambda}=T_{p i}-\left(r_{1} \cdot I\right)=20^{\prime} 35-\left(0^{\prime} 0375 \cdot 12^{\prime} 68\right)=19^{\prime} 87^{\circ} \mathrm{C} \\
& T_{2}=T_{1}-\left(r_{2} \cdot I\right)=19 \cdot 87-(0,083 \cdot 1268)=-18^{\prime} .82^{\circ} \mathrm{C} \\
& T_{3}=T_{2}-\left(r_{3} \cdot I\right)=18^{\prime} 82-\left(\lambda \cdot 126^{\prime}\right)=6^{\prime} 14^{\circ} \mathrm{C} \\
& T_{4}=T_{3}-\left(r_{u} \cdot I\right)=6^{\prime 14}-\left(0,02 \cdot 12^{\prime} 68\right)=5^{\prime} 89^{\circ} \mathrm{C} \\
& \text { CIMENT }=1800 \cdot 0^{\prime} 2 \cdot 002 \cdot \frac{5^{\prime} 89+6^{\prime} 14}{2}=\frac{43^{\prime} 31 \mathrm{kcal} \cdot \mathrm{~m}^{-1}}{2} \\
& \text { AILLANT }=350 \cdot 0^{\prime} 20^{\prime} 045 \cdot \frac{6^{\prime} 14+18182}{2}=39^{\prime} 3 \lambda \mathrm{KCal} \cdot \mathrm{~m}^{-2} \\
& \text { FORMIGÓ }=2400 \cdot 0^{\prime} 2 \cdot 0^{\prime} 1 \cdot \frac{18^{\prime} 82+19187}{2} \cdot 928^{\prime} \cdot 56 \mathrm{kcat} \mathrm{~m}^{-2} \\
& G u i x=1500 \cdot 0^{\prime} 2 \cdot 0,015 \cdot \frac{19^{\prime} 87+20^{\prime} 35}{2}=90^{\prime} 49 \cdot \mathrm{Kal} \cdot \mathrm{~m}^{-2} \\
& \text { Inērcia tèrmica paret }=1101^{\prime} 67 \mathrm{Kcal} \mathrm{~m}{ }^{-2}
\end{aligned}
$$

9. Per un determinat tancament de paret es proposen dues solucions, segons les figures.
a. Trobeu el perfil de teuperatures per les dues solucions.
b. Raoneu quina de les solucions és més adequada per un habitatse.

Fell aixó en base a la inērcia têrmica de cada solució.

$$
\begin{aligned}
& \text { Inèrcia }=\sigma \cdot c \cdot t_{\text {mitja }} \\
& \text { A, CIMENT } 2 \mathrm{~cm}: T=36 \mathrm{~kg} \cdot \mathrm{~m}^{-2} ; \mathrm{K}=\lambda \mathrm{Kcal} \cdot \mathrm{~m}^{-1} \cdot h^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} ; \mathrm{c}=0^{0} 2 \mathrm{kcal} \cdot \mathrm{~kg}-1 \cdot{ }^{\circ} \mathrm{C}^{-1} \\
& \text { B, FORMIGÓ } 10 \mathrm{~cm}: T=200 \mathrm{~kg} \cdot \mathrm{~m}^{-2} ; \mathrm{K}=1^{\prime} 2 \mathrm{Kcal} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} ; \mathrm{C}=0^{\prime} 2 \mathrm{Kcal} \cdot \mathrm{~kg}-1 . \mathrm{C}^{-1} \\
& C_{1} \text { AIILCANT Y'Scm: } T=3.5 \mathrm{~S} \cdot \mathrm{~m}^{-2} ; K=0.04 \mathrm{Kcal}^{\prime} \cdot \mathrm{m}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; c=0^{\prime} 2 \mathrm{Kcal} \mathrm{Kg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \\
& \text { D, PLACA Guix Scu: } T=52 \mathrm{~kg}^{-1} ; k=0^{\prime} 4 \mathrm{Kcalm}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; c=0^{\prime} 2 \mathrm{kcal} \cdot \mathrm{~kg}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1} \\
& \text { E Guix 'scu: } T=15 \mathrm{~kg} \mathrm{~m}^{-1} ; k=0^{\prime} 4 \mathrm{kcal} \mathrm{~m}^{-1} h^{-10} \mathrm{C}^{-1}, c=0.2 \mathrm{kcal} \mathrm{lgg}^{-1}{ }^{\circ} \mathrm{C}^{-1}
\end{aligned}
$$

$$
I=\frac{\Delta 1}{R_{t}}=\frac{35-20}{139}=10^{\prime} 79 \mathrm{kcal} \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1} \cdot \mathrm{C}^{-1}
$$

a. Solucio A
T_{1} - Text $=35^{\circ} \mathrm{C} \quad / t_{i}=$ tint $=20^{\circ} \mathrm{C}$
$T_{2}=T_{1}-r_{1} \cdot r_{2} I=35-0.02 \quad 10^{\prime} 78=34175^{\circ} \mathrm{C}$
$T_{3}=3475-0.083 \cdot 10^{\prime} 78=33^{\prime} 88^{\circ} \mathrm{C}$
$T_{u}=33^{\prime} 88-1125 \cdot 10^{\prime} 78=21^{\prime} 75^{\circ} \mathrm{C}$
$T_{5}=21^{\prime} 75-0.125 \cdot 1079=201404^{\circ} \mathrm{C}$

Solució 2

$t_{1}=35^{\circ} \mathrm{C}$
$T_{2}=35-0^{\prime} 02 \cdot 10^{\prime} 79=34^{\prime} 75^{\circ} \mathrm{C}$
$T_{3}=34^{\prime} 78-1^{\prime} 125 \cdot 10^{\prime} 79=22^{\prime} 65^{\circ} \mathrm{C}$
$T_{4}=22.65-0.0831079{21175^{\circ} \mathrm{C}}^{2}$
$T_{5}=21^{\prime} 75-0^{\prime} 125 \cdot 10^{\prime} 79=20^{\prime} 404^{\circ} \mathrm{C}$
b. \square
$\pm t_{2}=36 \cdot 0^{\prime} 2 \cdot 34 \cdot 892=251 \cdot 2224 \mathrm{Kcal} / \mathrm{m}^{2}$
It $^{\prime}=200 \cdot 0^{\prime} 2 \cdot 34^{\prime} 3345=1373138 \mathrm{kcal} / \mathrm{m}^{2}$
$I_{t u}=3 \cdot 50^{\prime 2} \cdot 7^{\prime} 8185=19.47295 \mathrm{kcel} \mathrm{m}^{2}$
Its $=52 \cdot 012 \cdot 21078=219^{\prime} 2112 \mathrm{kcal} / \mathrm{m}^{2}$
$I t_{6}=15 \cdot 0^{\prime} 2 \cdot 20^{\prime} 202=60,606 \mathrm{Kcal} / \mathrm{m}^{2}$

$I_{\text {TOTAL }}=1923^{\prime} \mathrm{Q} \mathrm{KCal} / \mathrm{m}^{2}$

[2]
$I t_{2}=360^{\prime} 2 \cdot 34^{\prime} 892=251^{\prime} 2224 \mathrm{kcal} / \mathrm{m}^{2}$
$I_{t_{3}}=3^{\prime} 5 \cdot 0^{\prime} 2 \cdot 28^{\prime} 7175=20^{\prime} 10225 \mathrm{Kal} / \mathrm{m}^{2}$
Itu•200.0'2•22'2015 $=888^{\prime 0} 06 \mathrm{Kcal} / \mathrm{m}^{2}$
ItS $=520^{\prime} 2 \cdot 21^{\prime} 078=219^{\prime} 2112 \mathrm{kcal} / \mathrm{m} 2$
$I t_{6}=15 \cdot 0^{\prime 2} \cdot 20^{\prime} 202=60^{\prime} 606 \mathrm{kcal} / \mathrm{m}^{2}$
$I_{\text {TOTAL }}=1439^{\prime} 2 \mathrm{kcal} / \mathrm{m}^{2}$
10. Calcular el calor conducido a través de una pared compuesta de un paralelepípedo rectangular de madera (pino) y otro de cemento porthand de igual forma geomētrica. Las caras mayores tienen un àrea de $10 \mathrm{~m}^{2}$ y Los esposores son de 2 cu (la madera) y 10 cm (el cemento). La cara exterior del concreto está a $10^{\circ} \mathrm{C}$ y la cara exterior de la madera està a $20^{\circ} \mathrm{C}$. Aubas temperaturas se mantienen constames. Los materiales son homogéneas.

Cemento portland, $k=31 \cdot 10^{-5} \mathrm{Kcal} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$
Madera pino, $k=2 \cdot 8 \cdot 10^{-5} \mathrm{kcal} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$

MATERIAL	CONDUCTIVITAT	GRUIX	RESISTEAJCIA TERMICA		
CIMENT	3110^{-5}	$0^{\prime} 1$		$322^{\prime} 580$	
FUSTA	$2.8 \cdot 10^{-5}$	0.02	714.285		

$$
I=\frac{\Delta T}{R_{+}}=\frac{20-10}{1036^{\prime} 86}=0.009644
$$

(6) I $A=0,009644 \cdot 10=0^{\prime} 09644 \mathrm{Kcal} / \mathrm{s}=96^{\prime 44} \mathrm{cal} / \mathrm{s}$
11. Una nevera està construida de fusta (kfusta $=0^{\prime} 0007 \mathrm{cal} \cdot 5^{\prime 1} \cdot \mathrm{~cm}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$) de $\lambda^{\prime} 75 \mathrm{~cm}$ d'espessor, folrada inteniorment de suro ($k_{s}=0^{\prime} 0001 \mathrm{cal} \cdot 5^{-} \cdot \mathrm{cm}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$) de 3 cm d'espessor. Sila temperatura en la superficie interior del suro és de $0^{\circ} \mathrm{C}$ i 1 de $l a$ superficie exterior de a fusta $2^{\circ} \mathrm{C}$, quina és b teuperatura de la interfase? Considerar que la resistencia téruica de la superfície a radiacio- conveccio molt petita.

MATERIAL	CONDUCTVITAT	GRLIX	RESISTENCIA TERMICA
FUSTA	0.0007	175	2500
SURO	0.000,	3	30000

$$
\left.T=\frac{k_{1} \cdot \rho_{2} \cdot T_{1}+k_{2} \cdot \rho_{1} \cdot T_{2}}{k_{1} \cdot \rho_{2}+k_{2} \cdot \rho_{1}}\right]=\frac{0^{\prime} 0007 \cdot 3 \cdot 12+0.00011^{\prime} 75 \cdot 0}{0,00073+0^{\prime} 00011^{\prime} 75}=\frac{0^{\prime} 0252}{0^{\prime 002275}}
$$

12. En la figura es mostra l'alqat i el perfil de la paret extenior d'una sala. La panet consta d'una finestra de vidre térmic i una panet dóoba. El conjunt de vidre têrmic té uomm de gruix i la part d'obe estã composta per tres capes: una exterior, de ajol porforat, una interriedia de Clana mineral i una interior de rajd buit. Les dades dels coeficients de conductivitat térmica són a la taula. Cos superfícies exteriors presenten una resisténcia al bescanvi de calor per convecció i radiació de $0^{\prime} 06 \mathrm{Kcal}^{-1} \cdot \mathrm{~h} \cdot \mathrm{~m}^{2}{ }^{\circ} \mathrm{C}$; les interiors de $0^{\prime} 15 \mathrm{Kcal}^{-1} \cdot \mathrm{~h} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Si b temporatura a lexterior és de $-2^{\circ} \mathrm{C}$ i a l'interior és de $21^{\circ} \mathrm{C}$ calculeu:
a. La resistencia de paret djobra la resisténcia del vidre.
b. La densitat de flux calońfic estaciorani a través de la paret d'obra i la densitat de flux a través del vidre. Calculeu també el flux de calor total.
c. El perfil de tauperatures en la paret d'obra i en el conjunt de vidre tērmic. Feu una representació giáfica d'ambdós perfils.

VIDRE

$$
R_{\text {TOTAL VIDRE }}=\lambda 10 \lambda \mathrm{~K}_{\text {Cal }} \mathrm{l}^{-1} \mathrm{~h}^{\circ} \mathrm{C} \cdot \mathrm{~m}^{2}
$$

PARET

MATERIAL	CONDUCTIVITAT	GRUIX	RESISTENCIA TERMICA
RASOL BUIT	$0^{\prime} 41$		$0^{\prime} 06$
0^{\prime}	$0^{\prime} 54$		
LLANA MINER	0,035	$0^{\prime} 14$	4
RALOL PERFOR	$0^{\prime} 45$		$0^{\prime} 10$
RESIS EXT.			$0^{\prime} 22$
RESIS INT			$0^{\prime} 06$

$$
R_{\text {TOTAL PARET }}=4^{\prime} 97 \mathrm{~K} \mathrm{cal}^{-1} \cdot h^{\circ} \mathrm{C} \mathrm{~m}^{2}
$$

b. $I=\frac{\Delta T}{R T}$

$$
\text { VIDRE } \rightarrow I=\frac{2 \lambda-(-2)}{\lambda^{\prime} O 1}=22^{\prime} 77 \mathrm{kcal} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1}
$$

$$
\text { PARET } \rightarrow I=\frac{2 \lambda-(-2)}{4197}=4162 \mathrm{kcAl} \mathrm{~m}^{-2} \mathrm{~h}^{-1}
$$

$$
\begin{aligned}
& T_{1}=T_{i}-\frac{r_{1}}{R_{T}}\left(T_{i}-T_{e}\right)=21-\frac{0122}{4 \prime 97}(21-(-2))=19198^{\circ} \mathrm{C} \\
& T_{2}=19^{\prime} 88-\frac{4}{4.97}(21-(-2))=147^{\circ} \mathrm{C}
\end{aligned}
$$

Termodinamica
1.
a. $15^{\prime} 8$ moles de un gas ideal se mantienen a $293^{\circ} \mathrm{C}$ mientras su volumen aumenta desde 148 litros hasta 910 litros. ¿cuánto trabajo es hecho por el gas?

$$
\begin{aligned}
& n=1518 \\
& T=293+273=566 \mathrm{k} \\
& V_{1}=148 P \cdot \frac{1 \mathrm{~m}^{3}}{1000 \rho}=0^{\prime} 148 \mathrm{~m}^{3} \\
& V_{2}=910 \mathrm{l} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{l}}=0.91 \mathrm{~m}^{3}
\end{aligned}
$$

TEMPERATURA CONSTANT = ISOTERMIC

$$
\begin{aligned}
& \left.Q=W=n \cdot R \cdot T \cdot \ln \left(\frac{V_{2}}{V_{1}}\right)\right] \\
& W=1^{\prime} 8 \cdot 8^{\prime} 314 \cdot 566 \cdot m\left(\frac{0^{\prime} 91}{0^{\prime} 148}\right)=1350377^{\prime} 671
\end{aligned}
$$

b. $1 \lambda^{\prime} 2$ moles de gas ideal se mantienen a una temperatura de $142^{\circ} \mathrm{C}$ ocupado un volumen de 137 litros, unego de que se le subministraa un trabajo de -11600J. ¿ Cual será el volumen inicial?

$$
\begin{aligned}
& n=112 \\
& t=142+273=415 k \\
& V=137=0^{\prime} 137 m^{3} \\
& W=-11600 \mathrm{~J} \\
& W=n \cdot R \cdot T \ln \left(\frac{V_{2}}{V_{1}}\right) \longrightarrow \rightarrow-11600=11^{\prime} 2 \cdot 8^{\prime} 314 \cdot 415 \cdot \ln \left(\frac{0^{\prime} 137}{V_{1}}\right) \\
& -11600=38643472 \cdot \ln \left(\frac{0^{\prime} 137}{v_{1}}\right) \rightarrow-01300=\ln \left(\frac{0^{\prime} 137}{v_{i}}\right) \\
& e^{-0,300}=\frac{0^{\prime} 137}{V_{1}}-V_{i}=0^{\prime} 1850 \mathrm{~m}^{3}=185 l
\end{aligned}
$$

c. Calcular el trabajo realizado por un gas ideal si se mentiene constante su presión (16400 Pa) mientras se expande desde 80 litros hasta 272 litros.

$$
\begin{aligned}
\text { PRESSIÓ CONSTANT } & =\text { ISOBARICA } \\
p & =16400 P A \\
V_{0} & =80 e=0.08 \mathrm{~m}^{3} \\
V_{f} & =2721=0.272 \mathrm{~m}^{3} \\
W & =p \cdot \Delta V=16400 \cdot(0,272-0.08) \rightarrow W=3148^{\prime} P \mathrm{Y}
\end{aligned}
$$

d. Suponga que o'izenoles de un gas ideal (están en contacto con un recipiente térmico que mantien fif b temperatura en $T_{0}=9^{\prime} 8^{\circ} \mathrm{C}$, y que el gas tiene un volumen inicial de l'zlitros y efectúa 14 j de trabajo. ¿cuales son la presión y el volumen finales?

$$
\begin{aligned}
& n=0^{\prime} 12 \\
& T_{0}=9^{\prime} 8+273=282^{\prime} 8 \mathrm{~K} \\
& V_{0}=1^{\prime} 3 t=0^{\prime} 0013 \mathrm{~m}^{3} \\
& Q=\omega=14 \mathrm{~J} \\
& \omega=n \cdot R \cdot T \cdot \ln \left(\frac{v_{2}}{v_{1}}\right) \rightarrow 14=0^{\prime} 12 \cdot 8 \cdot 314 \cdot 282^{\prime} 8 \cdot \ln \left(\frac{v_{2}}{0^{\prime} 0013}\right) \\
& 14=282^{\prime} 144 \cdot \ln \left(\frac{V_{2}}{0^{\prime} 0013}\right) \\
& e^{0.049}=\frac{V_{2}}{00013} \rightarrow V_{2}=0.00137 \mathrm{~m}^{3} \\
& V_{2}=1 \cdot 37 l \\
& P \cdot V=n \cdot R \cdot T \rightarrow P=\frac{n \cdot R \cdot T}{V_{2}}=\frac{0^{\prime} 12 \cdot 8^{\prime} 314 \cdot 282 \cdot 8}{0^{\prime} 00137}=20.6000 \mathrm{~Pa}
\end{aligned}
$$

e. In cuerpo absorbe 60 cal mientras su volumen aumenta de $300 \mathrm{~cm}^{3}$ a $800 \mathrm{~cm}^{3}$ a una presslo de Y'0 lbar. ¿Cual es la variación de su energía interna?

$$
\begin{aligned}
& \text { lcal }=4^{\prime} \mid 8 \mathrm{~s} \\
& 60(a)=250^{\prime} 81=Q
\end{aligned}
$$

$$
\text { Abar }=100000 \mathrm{~Pa}
$$

$$
4 \text { Olbar }=401000 \mathrm{~Pa}=p
$$

PRESSIÓ CONSTANT = ISOBĀRICA

$$
\begin{aligned}
& W=p \cdot \Delta V=401000 \cdot\left(0,0008-0^{\prime} 0003\right)=200^{\prime} 5 \\
& \Delta U=Q-W=250^{\prime} 8-200^{\prime} 5=50^{\prime} 31
\end{aligned}
$$

Durant un procés termodināuic un sistema absorbeix 15001 i realitza 9001 de treball cap a l'exterior.
a. Quin signe tenen cada una de les dades donades? $Q>0 ; W<0$
b. Quina és la vanacio d'energia interma?
$Q=1500 \mathrm{~J}$
w. $=9001$
Δu. $1500-900=6001$

S'aporta 15003 al sistema, per tant la variació d'energia interna del sistema taubé ha auomentat 1500 . Si ara el sistema realitza 900 de treball cap a l'extenor, l'energia interna del sistema disminuiráa 9001.
2. Un mol i mig d' heli s'expansiom adiabäticament i quasiestäticament des d'una pressió inicial de 5 atm i una teuperatura inicial de 500 K fins a una pressio final de 1 atm.
a. la temperatura final
b. el volum firal
c. el treball fet pel gas
d. la vaniació de l'energia interma del gas.

3. Un gas s'expandeix des del punt I fins a F, tal com sindica a la figura. La calor cedida al aas és de 100 cal quan va de I a F per la trajectoria diagonal.
a. Quina és la eriació d'energia interma del gas?
b. Quanta calor s'ta de transferir al as per seguir a trajectòna indirecta IAF?

$$
\begin{aligned}
& I \longrightarrow P=4 a t / V=2 e \quad / Q=100 \mathrm{cal} \\
& F \longrightarrow P=1 a t / V=4 l
\end{aligned}
$$

$$
\omega=\int p \cdot d v \rightarrow \omega=\int_{2}^{4} \operatorname{tg} x \cdot v \cdot d v=1 \cdot 5 \int_{2}^{4} \frac{v R}{2}=\frac{-1 \cdot 5}{2}\left[4^{2}-2^{2}\right]
$$

$$
w=\frac{-15}{2}(16-4)=-9 \operatorname{atm} \cdot l
$$

$$
\operatorname{tg} \alpha=\frac{\Delta P}{\Delta V} \longrightarrow \Delta P=\operatorname{tg} \alpha \cdot \Delta V
$$

$$
Q=100 \mathrm{cal} \quad 0.082 \Delta t e=418 \mathrm{~J}
$$

$$
w=- \text { Patm.l } \quad \rho_{a t}=458178 \mathrm{y}
$$

$$
q=\Delta V+\Delta W \longrightarrow \Delta U=q-\Delta W=100+9
$$

$$
\Delta u=100 \cdot 4 \cdot 18+458^{\prime} 78=8767^{\prime} 78
$$

$$
\begin{aligned}
\Delta q=\Delta u+\Delta u \longrightarrow \Delta u & =I \longrightarrow \Delta p=c t e \\
p \cdot \Delta u & =u \cdot 2=8 a t m l \\
\Delta w & \longrightarrow \Delta \longrightarrow F v=c t e \\
\Delta u & =0
\end{aligned}
$$

4. En el cicle de la figura, un mol de gas idal $\left(\gamma=1^{\prime} 4\right)$ es troba a λ atm $i 0^{\circ} \mathrm{C}$. El ajas s' escalfa a volum constant fins una teuparatura de $T_{2}=\lambda 50^{\circ} \mathrm{C}$ i tot seguit s'expansiona adiabaticament i reversiblement fins que la sev pressió torma a ser de latm. Després es couppineix a pressió constant fins l'estat inicial. Calculeu:
a. La temperatura T_{3} a la que arriba despiés de l'expansió adiabätica.
b. La calor absorvida o edida a cado procés.

	1	2	3
$P($ (3tm $)$	1		1
$V(1)$			
$T(k)$	273	423	

a. $P_{1} V_{1}=n \cdot R \cdot T_{1}$

$$
\begin{aligned}
& V_{1}=1.0 .082 \cdot 273 \\
& V_{1}=22^{\prime} 381 /=V_{2}
\end{aligned}
$$

$$
P_{2} \cdot V_{2}=n \cdot R \cdot T_{2}
$$

$$
22^{\prime} 38 P_{2}=1 \cdot 0^{\prime} 082 \cdot 423 \rightarrow 22^{\prime} 38 P_{2}=34^{\prime} 686-\times P_{2}=1^{\prime} 55 \mathrm{~atm}
$$

$$
P_{2} V_{2}{ }^{r}=P_{3} \cdot V_{3}{ }^{r} \rightarrow 1155 \cdot(2238)^{14}=11\left(V_{3}\right)^{14}
$$

$$
120^{\prime} 26=V_{3}^{14} \rightarrow V_{3}=\sqrt[14]{120^{\prime 26}} \rightarrow 1 V_{3}=30^{\prime} 6 P
$$

$$
\begin{aligned}
& P_{3} \cdot V_{3}=n \cdot R \cdot T_{3} \\
& 1 \cdot 306=10^{\prime} 082 \cdot T_{3} \rightarrow 30^{\prime} 6=0^{\prime} 082 T_{3} \rightarrow T_{3}=373^{\prime} \mathrm{AK}
\end{aligned}
$$

b. $1-2$

$$
\begin{aligned}
& Q_{12}=n \cdot c^{\prime} \cdot \Delta T=\lambda \cdot \frac{5}{2} \cdot 8^{\prime} 314 \cdot(423-273)=\frac{3111^{\prime} 7 J}{} \\
& Q_{23}=07
\end{aligned}
$$

$3-1$

$$
Q_{31}=n \cdot c_{p} \cdot \Delta T=1 \cdot \frac{7}{2} \cdot 8^{\prime} 314\left(273-373^{\prime}(3)=-2913^{\prime 63}\right.
$$

5. Un gas ideal $\left(\gamma=\lambda^{\prime} 4\right)$ segueix el cicle de la figura. La teuperatua inicial, T_{1} és de 200 K . Calculeu:
a. Les temperatures de la resta d'estats del cicle.

$$
\begin{aligned}
& \nabla=i^{\prime} 4 \\
& T_{1}=200 \mathrm{~K}
\end{aligned}
$$

1	2	3	4		
$p(a t m)$	1	3	3	1	$\mid P \cdot V=n \cdot R \cdot T$ $V(l)$
100	100	300	300	$n=\frac{P \cdot V}{R \cdot T}=\frac{1 \cdot 100}{0.082 \cdot 200}=16 \cdot 097 \mathrm{mols}$	
$T(K)$	200				

$$
\begin{aligned}
& T_{2}=\frac{P \cdot V}{n \cdot R}=\frac{3 \cdot 100}{0.082 \cdot 6 \cdot 097}=\frac{1600 \mathrm{~K}}{0.082 \cdot 6 \cdot 097}=1800 \mathrm{~K} \\
& I_{3}=\frac{3.300}{0.300}=\frac{1.300}{0.082 \cdot 6097}= \\
& T_{4}=600 \mathrm{~K}
\end{aligned}
$$

6. Una mäquira té com a fluid de treball una certa quantitat d'un ass monatönic. Inicialment, a una pressio de $0^{\prime} 6$ atm, la sera temp. és de $-10^{\circ} \mathrm{C}$ i el goss ocupa un volum de 05 lities. Una transformaxió isoterma el porta a un volum de o’zlitres. Després augmenta la seva pressió tot mantenint el volum constant, i finalment una transformació adiabatica el torna a l'estat inicial.
a. Determineu a pressió, el volumi a temperatua final de les transformacions i representeu el diagama PV.
b. El treball, b añació d'energia interna i la calor absorvida/odida a cada etapa.
a. $P_{0}=0.6 \mathrm{~atm}$

$$
\begin{aligned}
& T_{0}=-10^{\circ} \mathrm{C}=263 \mathrm{~K} \\
& V_{0}=0^{\prime} 5 \mathrm{~V} \quad V_{3}=0^{\prime} 31 \\
& V_{2}=0^{\prime} 3 \mathrm{l}
\end{aligned} T_{2}=263 \mathrm{~K}, ~ l
$$

	A	B	C
$P(a t m)$	06		
$V(l)$	05	0.3	0.3
$T(K)$	263	263	

$$
\begin{aligned}
& P \cdot V=n \cdot R \cdot T \\
& 0^{\prime} 6 \cdot 0^{\prime} 5=n \cdot 0.082 \cdot 263 \\
& 0^{\prime} 3=n \cdot 21.566 \\
& n=0.014 \mathrm{mols}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2} \cdot V_{2}=n \cdot R \cdot T_{2} \quad 0^{\prime} 3 \cdot P_{2}=0^{\prime} 014 \cdot 0^{\prime} 082 \cdot 263 \\
& 0^{\prime} 3 P_{2}=0^{\prime} 302 \longrightarrow P_{2}=12 \mathrm{tm} \\
& P_{1} \cdot V_{1} \gamma^{\gamma}=P_{3} \cdot V_{3}^{r} \longrightarrow \gamma=5 / 3 \\
& 0^{\prime} 6\left(0^{\prime} 5\right)^{5 / 3}=P_{3}\left(0^{\prime} 3\right)^{5 / 3} \\
& 0^{\prime} 1889=0^{\prime} 1344 P_{3} \\
& \longrightarrow P_{3}=1406 \mathrm{~atm}
\end{aligned}
$$

$$
P_{3} \cdot V_{3}=n \cdot R \cdot T_{3} \rightarrow 4^{\prime} 4060^{\prime} 3=0,014 \cdot 0^{\prime} 082 \cdot T_{3}
$$

$$
0^{\prime} 4218=0^{\prime} 001148 T_{3} \rightarrow T_{3}=367^{\prime} 42 \mathrm{~K}
$$

$$
\begin{aligned}
1-2 & \rightarrow \text { ISOTERMA } \\
2-3 & \rightarrow \text { ISOCORICA } \\
3-1 & \rightarrow \text { ADIABATKCA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } W_{x_{1-2}}=n \cdot R \cdot T \cdot \ln \left(\frac{V_{2}}{V_{1}}\right)=0,014 \cdot 0,082 \cdot 263 \cdot \ln \left(\frac{0^{\prime} 3}{0^{\prime} 5}\right)=-0^{\prime} 15 \operatorname{sim} \cdot L \\
& \text { Q1-2 } W_{1-2}=-0^{\prime} 15 \text { atm } L \\
& \Delta U_{1-2}=Q-\omega=-0,15-\left(-0^{\prime} 15\right)=0 \text { atm } L \\
& W_{2-3}=0 \operatorname{atm} L \\
& \left.\left.Q_{2-3}\right)=n \cdot C_{V} \Delta T\right)=0.014\left(\frac{3}{2} \cdot 0.082\right)\left(367^{\prime} 42-263\right)=0.18 \text { atm L } \\
& \text { DUz-3: } Q-\omega=0^{\prime} 18-0=0^{\prime} 18 \text { atm L } \\
& Q_{3-1}=0 \operatorname{atm} \cdot L \\
& W_{3-1}-n \cdot C_{v} \cdot \Delta T=-0014 \frac{3}{2} \cdot 0,082\left(263-367^{\prime} 42\right)=0^{\prime} 18 \mathrm{~atm} L \\
& D D_{3-1}=Q-U=0-018=0^{\prime} 18 \text { atm L }
\end{aligned}
$$

7. I'5 mols d'un gas ideal descriven el cicle $a-b-c-d$ de a figura. Les corbos dibuixades són les isotermes de cadascura de es temperatures que sindiquen. Calculeu:
a. Valor de la temperatua T_{3}
b. Treball termodinämic, calor bescanviant amb el medi i canvi d'energia interna per cadascuna de les etapes del cicle.
c. Rendiment del cicle
d. Rendiment mäxim d'un cide que treballi entre les dues temperatures extremes.

a. $P_{c} \cdot V_{c}=n \cdot R \cdot T_{c}$

$$
\begin{aligned}
& 2 V_{C}=15 \cdot 0.082 \cdot 400 \rightarrow 2 V_{C}=49^{\prime} 2 \rightarrow V_{C}=V_{B}=24^{\prime} 6 \mathrm{P} \\
& P_{A} \cdot V_{A}=n \cdot R \cdot T_{A} \\
& 1 V_{A}=15 \cdot 0.082 .400 \rightarrow V_{A}=V_{D}=4912 \mathrm{e}
\end{aligned}
$$

$B_{D} \cdot V_{D}=n \cdot R \cdot T_{D}$

$$
\begin{aligned}
& 2.49^{\prime} 2=15.0 .082 \cdot T D \\
& \begin{array}{l}
98^{\prime} 4
\end{array}=0^{\prime} 123 \mathrm{TD} \\
& \psi \\
& T_{D}=800 \mathrm{~K}
\end{aligned}
$$

b. $A-B$
$p=d e$
$W_{A B} P \Delta V=1\left(24^{\prime} 6-49^{\prime 2}\right)=-246$ atm $L=-2491981=-2^{\prime} 49 \mathrm{k}^{\prime}{ }^{\prime}$
 $\Delta U_{A B}=Q-\infty=-6 \cdot 23-(-2,49)=-314 k^{4}$

$$
\begin{aligned}
& B-C \\
& v=d e
\end{aligned}
$$

$\omega_{B C}=0 k y$

$C-D$
$p=c$ en

$$
\begin{aligned}
& \text { (WD) }-p \Delta V=2\left(489^{\prime} 2-24^{\prime} 6\right)=49^{\prime} 2 \operatorname{stm} .2498 \mathrm{KI} \\
& \text { Q(P) }=n \cdot \angle p \cdot \Delta T=15 \cdot \frac{5}{2} \cdot 0^{\prime} 082(800-400)=123 \text { atmL } 12147 \mathrm{~kJ} \\
& \Delta U_{C D}=1247-419877^{7} 48 \cdot \mathrm{kI}
\end{aligned}
$$

$D-A$
$v=c t e$
$w_{t a}=0 k^{-7}$
QDAF $\cap \cdot \operatorname{cv} \cdot \Delta t=15 \cdot \frac{3}{2} \cdot 0082(400-800)=-73^{\prime} 8=-7148 k^{4}$
$\Delta u_{D A}=-7.48 \mathrm{~kJ}$
c.

$$
\Omega=\frac{\omega}{Q a 15}=\frac{-2^{\prime} 49+4198}{3^{\prime} 74+12^{\prime} 47}=0115 \cdot 100=115 .
$$

d. \qquad

$$
\eta=\frac{T_{c}-T_{f}}{T_{c}}=1-\frac{T_{f}}{T_{c}}=1-\frac{200}{800}=0^{\prime} 75100=75 \%
$$

d.

$$
\eta=\frac{T_{c}-T_{f}}{T_{c}}=\lambda-\frac{T_{f}}{T_{c}}=\lambda-\frac{200}{800}=0^{\prime} 7510075 \%
$$

Humitat : Climatització

1. Una massa $m=1$ 泟 de agua experimenta la transformación $A B C D$ representada en la figura. El calor latente de aporización del agua es $L v=540 \mathrm{cal} / \mathrm{g}$, el cabr específico del agua es $c=\lambda \mathrm{cal} / 9^{\circ} \mathrm{C}$ y el del nopor de agua es ${ }^{\circ} \mathrm{Cv}=0^{\prime} 482 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
a. ¿En que estado se encuentra el agua en cada uno de los puntos de $l a$ transformación?
b. Calcubar el calor intercambiado por el agua en cada una de Las etapas de la transformación asi como en la transformación completa.

$$
\begin{aligned}
& m=1 \prime 5 \mathrm{~kg}=1500 \mathrm{~g} \\
& L v=540 \mathrm{cal} / \mathrm{g} \\
& c_{c}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C} / \mathrm{ce}(\text { vopor aigua })=0.482 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}
\end{aligned}
$$

a. A \qquad \rightarrow rapor
$B \rightarrow$ rapor
$c \rightarrow$ líquid
$D \rightarrow$ Kiquid
b.

$$
\begin{aligned}
& Q_{1}=m \cdot \Delta T=1500(0,482)(100-120)=-14460 \mathrm{cal}=-60250 \mathrm{D} \\
& Q_{2}=-m L=-1500540=-810000 \mathrm{cal}=-3375000 J \\
& Q_{3}=m c \cdot \Delta T=1500(\lambda) \cdot(80-100)=-30000 \mathrm{~cd}=-125000 J \\
& Q_{T}=Q_{1}+Q_{2}+Q_{3}=(-60250)+(-337500)+(-12500) \\
& Q_{+}=1-35602501=-3560250 J
\end{aligned}
$$

2. En una habitación de $36 \mathrm{~m}^{3}$ de volumen, llena de aire seco a $25^{\circ} \mathrm{C}$, se introduce un recipiente abierto que contiene 5 litros de agua. Calcular la cantidad de gua que queda en el recipiente una vez que se ha llegado el equilibrio aire - eppor de agua. Tomar para la presión de apor saturante a $25^{\circ} \mathrm{C}$ el alor de $23^{\prime} 8 \mathrm{mmHg}$.

$$
\begin{aligned}
& \text { Psat } V=\frac{m \cdot g o t}{H v} \cdot R \cdot T \\
& 23 \cdot 8 \cdot 36=\frac{m \cdot g o t}{18} \cdot 0^{\prime} 0624 \cdot 298 \rightarrow m g a t=829^{\prime} 38 \mathrm{~g} \\
& d=\frac{w}{v} \longrightarrow 19 / \mathrm{cu}^{3}=\frac{8309}{V} \rightarrow V=830 \mathrm{~cm}^{3}=0^{\prime} 830 \mathrm{C} \\
& \quad \text { Vfinal } 5 l-0.831=4^{\prime} 17 l
\end{aligned}
$$

3. Una habitación tiene las siguientes condiciones aubientales: teuperatura: $15^{\circ} \mathrm{C}$; numedad rebativa: 60% ¿ Hasta que temperatura habńa que calentar la habitación para que la humedad se reduzca al 20% ? Tomar para los valones de las piesiones saturantes en mmtlg el mismo número que indica la temperatura en ${ }^{\circ} \mathrm{C}$ (es decir,

$$
\begin{aligned}
& \text { si } \left.t=21^{\circ} \mathrm{C}, p s=2 \lambda \mathrm{mmHg}\right) \\
& T_{i}=15^{\circ} \mathrm{C} \\
& P_{s} A_{i}=15 \mathrm{mmHg} \\
& H_{R}=60 \% \longrightarrow H_{R f}=20 \%
\end{aligned}
$$

$$
P_{\text {sat }} \cdot V=P_{\text {sat }} \cdot R \cdot T
$$

$$
\operatorname{isv}=\frac{-1}{0^{\prime} 6} \cdot 0^{\prime} 0624 \cdot(15+273) \rightarrow v=1^{\prime} 9968 m^{3}
$$

$$
\text { Ps2t } \cdot 112968=\frac{1}{0^{\prime 2}} \cdot 0.0624 \cdot T
$$

$$
\frac{T}{\text { Psat }}=6^{\prime} 4 \longrightarrow \frac{x+273}{x}=6^{\prime} 4
$$

$$
x=50^{\prime}, \quad T=50^{\prime} 5^{\circ} \mathrm{C}
$$

4. Una rabitación está separada de extenor mediante una paned con un coeficiente de transmisión calońfica global $K_{G}=0^{\prime} 9 \mathrm{Kcal} \cdot \mathrm{m}^{-2} \cdot \mathrm{~h}^{-} \cdot \mathrm{c}^{-1}$. La teuperatura en el exterior es de 2°. En el interior hay aire humedo de humedad relativa 55% y temperatura $13^{\circ} \mathrm{C}$. Se calienta la habitación hasta que la humedad rebtiva disminuye hasta un 20\%. ¿Cuál debe ser la densidad de flujo caloñfico que debe aportar ba calefacción para que la humedad rebtiva se mantenga constante e igual al 20%. Tomar para las presicnes de apor saturantes, expresadas en mmtly el mismo número que indican las teuperaturas en ${ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { 2x } \begin{array}{l}
\text { Ex }
\end{array}\left|\left\lvert\, \begin{array}{l}
13^{\circ} \mathrm{C} \\
h r=55 \% \\
\mathrm{In}
\end{array}\right.\right. \\
& H r=\frac{P v}{P_{5}}=0^{\prime} 55(55 \%) \longrightarrow P s=13 \mathrm{mmHg}\left(t_{i}=13^{\circ} \mathrm{C}\right) \\
& \\
& P v=0.55 \quad 13=7^{\prime} 15 \mathrm{mmHg}
\end{aligned}
$$

$$
p_{v} \cdot v=n \cdot R \cdot T=\frac{m_{v}}{M_{v}} \cdot R \cdot T \longrightarrow m_{v}=\frac{M_{v} \cdot P_{v} \cdot v}{R \cdot T}
$$

$$
\longrightarrow m_{v}=\frac{18 \mathrm{gmal} \cdot 1 \cdot 1000 \cdot 7^{\prime} 15 \mathrm{~mm}+\mathrm{l}}{0.082 \cdot 760 \cdot(273+13)}=7^{\prime} 22 \mathrm{~g}
$$

$$
p v=\frac{7 \cdot 22 \cdot T}{290}=0.025 \cdot T
$$

$$
\left.H_{r}=\frac{P_{v}}{P_{S}}=\frac{0.025:(273+t)}{t}=0^{\prime} 20(20 \%)-1 t=39^{\circ} \mathrm{C}\right)
$$

$$
P=k_{\sigma} \cdot(\operatorname{tin}-\operatorname{tex})=00 \cdot(39-2)=33^{\prime} 3 k c a l m^{-2} \cdot h^{-1}
$$

5. Una pared separa un local del medio exterior. La superfície exterior està a una teuperatura de $5^{\circ} \mathrm{C}$ y el aire en el intenior de a habitación està a una teupperatura de $20^{\circ} \mathrm{C}$. La humedad relativa del local tiene un alor del 80%. Calcular el coeficiente de transmissión calońfica global de la pared (teniendo en cuenta sólo fenómenos de conducción) para que no haya condensación en la superfície interna de la pared, sabiendo que la calefacción suminista $17^{\prime} 7 \mathrm{kcal} \cdot \mathrm{m}^{-2}$ en una hora para mantener las ondensaciones establecidas.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Humitat } 80 \% \\
T=20^{\circ} \mathrm{C}
\end{array}\right\} t=16^{\prime} 3^{\circ} \mathrm{C} / K G \text { minim } \rightarrow \varphi=K G \Delta T \\
& 177=K_{G} \cdot\left(16^{\prime} 3-5\right) \longrightarrow K_{g}=1 / 57 K \mathrm{cal} / \mathrm{m}^{2} h^{\circ} \mathrm{C}
\end{aligned}
$$

6. Una pared limita el medio exterior con el interior de un edificio. El coeficiente de transmisión global de la pared es $K o=2 K c a l m^{-2} h^{-1}{ }^{\circ} C^{-1}$, la temperatua exterior $7^{\circ} \mathrm{C}$ y el coeficiente de resistencia superficial interior $q_{i}=8 \mathrm{Kcalm}^{-2} \mathrm{~h}^{-1} \mathrm{C}^{-1}$. Debido a la producción de apor de agua en el interior de l vivienda, se alcanza una humedad absoluta $H_{2}=10 \mathrm{~g} / \mathrm{m}^{3}$ utilizando la carta psicrométrica del aired cuál debe ser la teupentua interior de la vivienda para que no se produzca condensación en el muro? ¿En estas condensaciones, que grado higro métrico tiene el aire? ¿Qué ocurre cuando el coefliciente de transmisión global desciende hesta λ Kcal $\mathrm{m}^{-2} h^{-1} \mathrm{C}^{-1}$?

Densidad del aire seco: $i^{\prime} 27 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mathrm{kg}=2 \mathrm{kcal} / \mathrm{m}^{2} h^{\circ} \mathrm{C} \\
& H_{0}=10 \mathrm{~g} / \mathrm{m}^{3} \rightarrow \frac{109}{\mathrm{~m}^{3}} \frac{0^{\prime} 787 \mathrm{~m}^{3}}{1 \mathrm{~kg}^{\prime}}=787 \mathrm{~g} / \mathrm{kg} \text { aire sec } \\
& \text { Trosacb }=10^{\prime} 5^{\circ} \mathrm{C} \\
& T_{s i}=T_{i}-K_{e} \cdot \frac{T_{1}-T_{e}}{h_{i}} \rightarrow 105=T_{i}-2 \cdot \frac{T_{i}-7}{8} \rightarrow T_{1}=1160^{\circ} \mathrm{C} \\
& \left.\begin{array}{l}
H_{0}=0^{\prime} 787 \\
t=11^{\prime} 67^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
H_{R}=85 \%
\end{array} \\
& K G=1 K a l h^{2} h^{\circ} \mathrm{C} \\
& T_{s_{i}}=T_{i}-\mathrm{kg} \cdot \frac{T_{i}-t_{e}}{n_{i}} \rightarrow 1015=t_{i}-\lambda \cdot \frac{T_{i}-7}{8}-0, T_{i}=1{ }^{\circ} \mathrm{C} \\
& \left.\begin{array}{l}
H_{10}=-0^{\prime} 787 \\
t=11^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
H_{R}=89 y
\end{array}
\end{aligned}
$$

7. Sea la pared compuesta de la ligura, cuyos materiales thenen bs siguientes permeabilidades dy y coeficientes de conductividad termica:

B - Hormigón macizo - dv $=20 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmH}^{H} \mathrm{~g}^{-1} ; ~ K=0.63 \mathrm{Kcah}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}$
C- Material aislante- $d v=142^{\prime} 9 \mathrm{gcm} \mathrm{m}^{-2} \mathrm{dia}^{-1} \mathrm{mmHllg}^{-1} ; \mathrm{K}=0^{\prime} 038 \mathrm{Kcal} \mathrm{h}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}$
D - Enlucido de yeso-dv $=19123 \mathrm{~g} \mathrm{cmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmHg}^{-1}, \mathrm{~K}=0.26 \mathrm{Kcalh}^{-1} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
Se supone que la pared separa un medio exterior, con aire a la teuperatara de $00^{\circ} \mathrm{C}$ y humedad rebtiva 70%, de un medio interno con aire a $20^{\circ} \mathrm{Cy}$ humedad relatia del 50%. Hallar el perfil de presiones de apor a taves del cerramiento, y comentar si se puede producir condensaciones. Paa hallar las presioncs de eppor utílizar la carta psicrométrica. Suponer que son rulas las reststéncias térmicas superficiales.

EXT

Exterior \rightarrow temperatura $.0^{\circ} \mathrm{C}, \mathrm{h}_{5}=70 \mathrm{y}$
Interior \rightarrow temperatula: $20^{\circ} \mathrm{C}, \mathrm{hr}=50 \%$

Pressió saturada

$$
\begin{aligned}
& P_{s} \text { ext }=6^{\prime} 11 \cdot 0^{\prime} 75=4158 \mathrm{mmtlg} \\
& P_{s} \text { int }=23^{\prime} 38 \cdot 0^{\prime} 75=17.53 \mathrm{mmtlg}
\end{aligned}
$$

Pressió de apor

$$
\begin{array}{r}
H_{r}=\frac{P_{v}}{P_{s}}-\frac{P_{v} \text { ext }}{P_{v} \text { int }}=17.53 .0 .0^{\prime} 7=\frac{321 \mathrm{mmHg}}{877 \mathrm{mmH}}
\end{array}
$$

Pressions de superficie

$$
\begin{aligned}
& P_{1}=8^{\prime} 76-0^{\prime} 08 \cdot \frac{8^{\prime} 76-3^{\prime} 21}{0^{\prime} 731}=8^{\prime} 16 \mathrm{~mm}+\mathrm{g} \\
& P_{2}=8^{\prime} 16-0^{\prime} 021 \cdot \frac{8^{\prime} 76-3 \prime 21}{0^{\prime} 731}=8^{\prime} 00 \mathrm{mmHg} \\
& P_{3}=8^{\prime} 00-0^{\prime} 5 \cdot \frac{8^{\prime} 76-3^{\prime} 21}{0^{\prime} 731}=\frac{4^{\prime} 20 \mathrm{mmHg}}{} \\
& R T=\frac{0^{\prime} 015}{1^{\prime} 2}+\frac{0^{\prime} 1}{0^{\prime} 63}+\frac{0^{\prime} 03}{0^{\prime} 038}+\frac{0^{\prime} 015}{0^{\prime} 26}=1018 \\
& \varphi=\frac{\Delta T}{R T}=\frac{(T i-t e)}{R T}=\frac{20-0}{1^{\prime} 018}=19^{\prime} 64 \mathrm{kcal} \mathrm{~m}^{-2} \mathrm{~h}^{-1}
\end{aligned}
$$

Temperatures

$$
\begin{aligned}
& t_{1}=t_{i}-r_{A} \varphi=20-000 \cdot 19^{\prime} 64=18^{\prime} 43^{\circ} \mathrm{C} \\
& t_{2}=t_{1}-r_{2} \cdot \rho=1843-0.021 \cdot 19^{\prime} 64=18^{\circ} 02^{\circ} \mathrm{C} \\
& t_{3}=t_{2}-r_{3} \varphi=18^{\prime} 02-0^{\prime} 5 \cdot 1964=8^{\prime} 2^{\circ} \mathrm{C} \\
& t_{\lambda}=18^{\prime} 43^{\circ} \mathrm{C} \longrightarrow 2^{\prime} 16 \text { mbar. } 0^{\prime} 75=15^{\prime} 87 \mathrm{mmh} l \mathrm{~g}>8^{\prime} 16 \text { NO COND }
\end{aligned}
$$

$$
\begin{aligned}
& t_{3}=8^{\prime} 2^{\circ} \mathrm{C} \longrightarrow 10^{\prime} 87 \mathrm{mbar} \cdot 0^{\prime} 75=8^{\prime} 15 \mathrm{mmHg}>4^{\prime} 20
\end{aligned}
$$

8. El corramiento de la figura se encuentra entre dos medios auyas briables ambientales son: exterior, teupentur $5^{\circ} \mathrm{C}$ humedad relatia 20%; intenior, temperatua $23^{\circ} \mathrm{C}$; humedad rebtiva 70% Las conductividades térmicas k y las pormeabilidades dy de los materiales del cerramiento. tienen los alones siguientes:

Hormigón macizo - $K=140 \mathrm{Kalm}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; d_{v}=20 \mathrm{gcm} \mathrm{m}^{-2} \cdot \mathrm{dia}^{-1} \mathrm{mmitg}^{-1}$
Cámal de aire $K=0^{\prime} 25 \mathrm{KCalm}^{-1} h^{-10} \mathrm{C}^{-1} ; d v=20 \mathrm{~g} \mathrm{cmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmtg}^{-1}$
Enfoscado do omento $-k=\lambda k \mathrm{calm}^{-1} h^{-1} \mathrm{C}^{-1}$; dv $=1149 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmH}^{-1}$
Calcular las pressiones de apor en cada superfície del cerramiento, indicando en su caso si se pueden producir condersaciones. de apor de agua.

Extenior \rightarrow teup: $5^{\circ} \mathrm{C} ; h_{r}=20 \%$
Interiar \rightarrow teup: $23^{\circ} \mathrm{C}, \mathrm{hr}=70 \%$

MATERIAL	GRUIX. C PERMEABILITAT	RESISTENCIA TERMICA	
FORMIGÓ	10	20	
CAIRE	5	250	$0 ' 5$
CIMENT	25	1149	0.02

RESISTENOA TOTAL = O'74
'Pressió satuada

$$
\begin{aligned}
& P_{s} \text { ext }=8^{\prime} 72 \cdot 0^{\prime} 75=6^{\prime} 54 \mathrm{mmtg} \\
& P_{\text {s int }}=28^{\prime} 09 \cdot 0^{\prime} 75=2^{\prime} 067 \mathrm{mmitg}
\end{aligned}
$$

Pressió de apor

$$
\begin{aligned}
H_{r}=\frac{P}{P S}-\frac{P_{v} e x t}{} & =02.6 .54=1308 \mathrm{mmHQ} \\
P_{\text {vint }} & =0.7 \cdot 21.067=14^{\prime} 7 \mathrm{mmtb}
\end{aligned}
$$

Pressions de superfície

$$
\begin{aligned}
& P_{1}=14^{\prime} 7-0^{\prime} 22 \cdot \frac{14^{\prime} 7-0^{\prime} 308}{0^{\prime} 74}=10^{\prime} 72 \mathrm{mmHg} \\
& P_{2}=10^{\prime} 5-0^{\prime} 02 \frac{1^{\prime} 7-0^{\prime} 308}{0^{\prime} 74}=10^{\prime 2 m m+8}
\end{aligned}
$$

$$
R T=\frac{0^{\prime} 1}{14}+\frac{0^{\prime} 05}{0^{\prime} 25}+\frac{0^{\prime} 025}{1}=029
$$

$$
\varphi=\frac{\Delta T}{R T}=\frac{\left(T_{i}-T_{e}\right)}{R T}=\frac{23-5}{0^{\prime} 29}=62 \mathrm{kcal} \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1}
$$

Teuper tures.

$$
\begin{aligned}
& t_{1} \doteq t_{i}-r_{1} \varphi=23-0,22 \cdot 612=21^{\prime} 64^{\circ} \mathrm{C} \\
& t_{2}=21^{\prime} 64-0^{\prime} 02 \cdot 66^{\prime} 2=21^{\prime} 51^{\circ} \mathrm{C} .
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=21^{\prime} 64^{\circ} \mathrm{C} \longrightarrow 25^{\prime} 8 \mathrm{mbar} \cdot 0^{\prime} 75=19^{\prime} 35 \mathrm{mmHlg}>10^{\prime} 72 \xrightarrow[N O \text { COND }]{ } \\
& t_{2}=21^{\prime} 51^{\circ} \mathrm{C} \longrightarrow 25^{\prime} 64 \cdot 0^{\prime} 75=19^{\prime} 23 \mathrm{mmHl}>10^{\prime} 2 \longrightarrow \text { NOND }
\end{aligned}
$$

9. El orramiento de la figura correspondiente a la pared de una habitación fría, como la de un frigorifico industrial, y que está situada entre dos medios cuyas ariables aubientales son: exterior, teuperatura $25^{\circ} \mathrm{C}$; humedad relative 50%; interor, temporatura -2%, humedad rektira 30%. Las conductividades térmica k, y las permeabilidades d_{v} de los mateniales son:

$$
\begin{aligned}
& \text { Tabique_ } K=0^{\prime} 75 \mathrm{Kcalm}^{-1} h^{-1} \mathrm{C}^{-1} ; d v=20^{\circ} 8 \mathrm{~g} \mathrm{~cm} \mathrm{~m}^{-2} \mathrm{dia}^{-1} \mathrm{mmHg}^{-1} \\
& \text { Corcho_ } K=0.035 \mathrm{Kealm}^{-1} \mathrm{~h}^{-10} \mathrm{C}^{-1} ; \quad d v=12^{\prime} 5 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmHg}^{-1} \\
& \text { Madera_K=0.15 } \mathrm{Kcalm}^{-1} \mathrm{~h}^{-10} \mathrm{C}^{\prime} ; \quad d v=22.2 \mathrm{gcm} \mathrm{c}^{-2} \mathrm{dia}^{-3} \mathrm{mmHb}^{-1}
\end{aligned}
$$

Calcular el alor de la presiones de apor en cada suparfície indicando en su caso si se pueden producir condensaciones de lapor de agua.

$$
\begin{array}{|c|c|c|}
& & + \\
E_{X T} & M_{\text {INT }}
\end{array}
$$

\rightarrow Misa: Fisa icisa,
Exterior \rightarrow temperatura: $25^{\circ} \mathrm{C} ; h r=50 y$
Interior \longrightarrow temperatur: $-2^{\circ} \mathrm{C} ; h_{r}=30 \%$

MATERIAL	GRUIX	PERMEABILITAT	R'EISTENCIA TERMICA	
Enva	$11^{\prime} 5$	$20^{\prime} 8$		0.553
Suro	7,5	125		016
Fusta	$2 \prime 5$	2212		0.113

$$
\text { RESISTENCAA TOTAL }=1266
$$

Pressió saturada

$$
\begin{aligned}
& P_{\text {sext }}=3168 \cdot 0^{\prime} 75=23^{\prime} 76 \mathrm{mmHg} \\
& P_{\text {sint }}=5^{\prime} 17 \cdot 0^{\prime} 75=3.87 \mathrm{mmHg}
\end{aligned}
$$

Pressió de Apor

$$
\begin{aligned}
& H_{r}= \frac{P}{P_{s}} \longrightarrow \\
& \text { Pvext } \\
& \text { Pvint }^{\prime} 5 \cdot 23176=1188 \mathrm{mmHg} \\
&
\end{aligned}
$$

Pressions de superficie

$$
p_{1}=\lambda^{\prime} 88-0553 \cdot \frac{1^{\prime} 88-1^{\prime} 16}{\lambda^{\prime} 266}=7^{\prime} 2 \mathrm{mmHg}
$$

$$
P_{2}=7^{\prime} 2-0.6 \frac{1^{\prime} 88-116}{1.266}=2119 m m+1
$$

$$
\begin{aligned}
& R_{T}=\frac{0^{\prime} 15}{0^{\prime} 75}+\frac{0^{\prime} 075}{0^{\prime} 035}+\frac{0^{\prime} 025}{0^{\prime} 15}=2^{\prime} 46 \\
& \varphi=\frac{\Delta T}{R T}=\frac{\left(T e-T_{1}\right)}{R_{T}}=\frac{25-(-2)}{2^{\prime} 46}=10^{\prime} 97 \mathrm{keal} \mathrm{~m}^{-2} \mathrm{~h}^{-1}
\end{aligned}
$$

Temperatures

$$
\begin{aligned}
& t_{1}=t_{e}-r_{1} \cdot p=25-0^{\prime} 553 \cdot 10^{\prime 07}=18^{\prime} 93^{\circ} \mathrm{C} \\
& t_{2}=18^{\prime} 93-0^{\prime} 6 \cdot 10^{197}=12^{\prime} 35^{\circ} \mathrm{C} \\
& t_{1}=18^{\prime} 93^{\circ} \mathrm{C} \longrightarrow 21^{\prime} 82 \mathrm{mbar} \cdot 0^{\prime} 75=16^{\prime} 36 \mathrm{mmH} \mathrm{l}_{\mathrm{g}}>7^{\prime} 2-N 0 \text { COND } \\
& t_{2}=1235^{\circ} \mathrm{C} \longrightarrow 14.40 \cdot 0^{\prime 75}=10^{\prime} 8 \mathrm{~mm} t \mathrm{l} .72^{\prime 119}-10 \mathrm{cOND}
\end{aligned}
$$

10. El cerramiento de la figura está situado entre dos medios cuyas vanables ambientales son: exterior; teuperatura $24^{\circ} \mathrm{C}$, humedad relativa 90%; interior, teuperatura 19%, humedad rehtia 40%. Las conductividades térmicas k y las permeabilidades dv de los materiales del cerramientos tienen cos siguientes alones:

Mamposteria de hormigón _ $K=0^{1} 63 \mathrm{Keal} \mathrm{m} \mathrm{m}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; d v=20 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmH} \mathrm{lg}^{-1}$
Aisbante $K=0.038 \mathrm{kcalm}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; d v=1429 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmH}_{\mathrm{m}} \mathrm{g}^{-1}$
Ladrillo $K=0^{\prime} 75 \mathrm{Kcal} \mathrm{m}^{-1} \mathrm{~h}^{-1} \mathrm{C}^{-1} ; d v=20^{\circ} 8 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmHg}^{-1}$
Madera_ $K=0^{\prime} 15 \mathrm{Kcalm}^{-1} h^{-1}{ }^{\circ} \mathrm{C}^{-1} ; d v=22^{\prime} 2 \mathrm{gcmm}^{-2} \mathrm{dia}^{-1} \mathrm{mmHHg}^{-1}$
Calcular los valores de las presiones de apor en cada superficie indicando en su caso si se pueden producir condensaciones de lapor de agua.

Exterior \rightarrow temperatura: $24^{\circ} \mathrm{C}, h_{r}=90 \%$
Inteñor \rightarrow temperatura: $19^{\circ} \mathrm{C}, \mathrm{hr}_{r}=40 \%$

Pressió saturada

$$
\begin{aligned}
& P_{3} \text { ext }=29^{\prime} 84 \cdot 0^{\prime} 75=22^{\prime} 38 \text { mmits. } \\
& P_{\text {s int }}=21^{\prime} 970^{\prime} 75=16^{\prime} 47 \mathrm{mmtlg} .
\end{aligned}
$$

Pressió de laper

$$
\begin{aligned}
& H_{r}=\frac{P y}{P s} \rightarrow \text { PVext }^{\prime} 9 \cdot 22^{\prime 3}=20^{\prime} 142 \text { mmitg } \\
& \text { Pr int } 0,4.16^{\prime 47}=6,59 \mathrm{mmHg} \text {. }
\end{aligned}
$$

Pressions de superficie

$$
\begin{aligned}
& P_{s}=20^{\prime} 142-1 \frac{20^{\prime} 142-659}{\lambda^{\prime} 4}=10^{\prime} 462 \mathrm{mmts} \\
& P_{2}=10^{\prime} 462-0^{\prime} 07 \cdot \frac{20^{\prime} 142-6^{\prime} 59}{14}=9^{\prime \prime 78 m m+6} \\
& P_{3}=9^{\prime} 78-0^{\prime} 24 \frac{20^{\prime} 142-6^{\prime} 59}{1^{\prime} 4}=7^{\prime 5 \mathrm{mmHg}} \\
& R T=\frac{0^{\prime 2}}{0^{\prime} 63}+\frac{0^{\prime} 1}{0.038}+\frac{0^{\prime} 05}{0^{\prime} 75}+\frac{0^{\prime} 02}{0^{\prime} 15}=3^{\prime} 15 \\
& \varphi=\frac{\Delta T}{R T}=\frac{24-19}{3^{\prime} 15}=1^{\prime} 58 \mathrm{kcal} \mathrm{~m} \mathrm{~m}^{-2} \cdot \mathrm{~h}^{-1}
\end{aligned}
$$

Temperatures

$$
\begin{aligned}
& t_{1}=24-1 \cdot 1^{\prime} 58=2242^{\circ} \mathrm{C} \\
& t_{2}=22^{\prime} 42-0,07 \cdot 1^{\prime} 58=22^{\prime 3} 31^{\circ} \mathrm{C} \\
& t_{3}=22^{\prime} 31-0^{\prime} 24 \cdot 158=21^{\prime} 93^{\circ} \mathrm{C} \\
& t_{1}=22^{\prime} 42^{\circ} \mathrm{C} \longrightarrow 27^{\prime} 09.0^{\prime} 75=20^{\prime} 31 \mathrm{mmHg}>10^{\prime} 462-10 \text { COND } \\
& t_{z}=22^{\prime} 31^{\circ} \mathrm{C} \longrightarrow 26^{\prime} 92 \cdot 0^{\prime} 75=20^{\prime} 19 \mathrm{mmHg}>9^{\prime} 78-N 0 \text { COND } \\
& t_{3}=21^{\prime 9} 3^{\circ} \mathrm{C} \longrightarrow 26^{\prime} 28 \cdot 0^{\prime} 75=19^{\prime} 71 \mathrm{mmllg}>7^{\prime} 5 \text { NO COND }
\end{aligned}
$$

Conducció

1. Una barra de coure de 2 m de llarg té una secció transversal circular de l con de adi. Un extrem es manté a $100^{\circ} \mathrm{C}$ i l'atire a $0^{\circ} \mathrm{C}$. La superficie lateral de la barra s'ailla de forma que les pädues de calor a través sen siguin negligibles. Avalueu quan s'assoleix el regim estacionañ (a) ba resistencia térmica de la barra, (b) el fux de calor, (c) el gradient de temperatura i (d) ba temperatura de la barra a 25 cm de l'extrem calent.
a.

$$
\begin{aligned}
& \phi=2 \mathrm{~cm} \\
& r=\lambda \mathrm{cm} \\
& k=401 \mathrm{w} / \mathrm{mk} \\
& R=\frac{\frac{L}{k \cdot A}}{401 \frac{\omega}{D / k} \cdot \underbrace{0.01^{2} \cdot \pi m^{2}}_{A=\pi \cdot R^{2}}}=15.88 \mathrm{~K} / \omega \\
& A=\pi R^{2}
\end{aligned}
$$

b. $\Delta T=R \cdot I$

$$
\rightarrow I=\frac{\Delta T}{R}=\frac{100-0}{15^{\prime} 88}=6^{\prime} 30 \mathrm{~W}
$$

c.

$$
\frac{\Delta T}{\Delta L}=\frac{100-0}{2-0}=\frac{100}{2}=50 \mathrm{~K} / \mathrm{m}
$$

d. $T\left({ }^{\circ} \mathrm{C}\right)=100-50 \frac{\mathrm{k}}{\mathrm{m}} \cdot 0^{\prime} 25 \mathrm{~m}=87^{\prime} 5^{\circ} \mathrm{C}$
2. Tenim dos cubs metà• lics enganxats de 3 cm de costat, un de courei I'altre d'alumini, tal com mostra la figura. Sobent que la conductivitat térmica del coure és de $401 \mathrm{~W} / \mathrm{mk}$ i a de l'alumini de $237 \mathrm{w} / \mathrm{mk}$, calculeu:
a. La resistència térmica de cada cub.
b. La resistència total.
c. E) flux d'energia.
d. La temperatura en la interfície dels dos cubs.

a. $R_{c u}=\frac{L}{K \cdot A}=\frac{0^{\prime} 03 m}{401 w / m k \cdot\left(0103 \cdot 0^{\prime} 03\right)}=0.0831 \mathrm{~K} / \mathrm{m}$

$$
R_{A L}=\frac{0,03}{237 \cdot(0103 \cdot 0.03)}=\frac{0141 \mathrm{k} / \mathrm{w}}{}
$$

b. $R T=0.0831+0^{\prime} 141=0^{\prime} 224 k / 16$
c. $\phi=\frac{\Delta T}{R T}=\frac{100-20}{0^{\prime} 224}=3580$
d.

$$
\begin{aligned}
& \Delta T=R \cdot I=0^{\prime} 081 \cdot 358=29^{\prime} 74^{\circ} \mathrm{C} \\
& T_{i}=T_{1}-\Delta T=100-29^{\prime} 74=70125^{\circ} \mathrm{C}
\end{aligned}
$$

3. Els mateixos cubs del probleuma anterior es disposen en la forma indicada a lo figua. Trobeu:
a. Al cornent teermic transposstat al llarg de cada cub.
b. El corrent termic total.
c. La resistència térmica equivant.

a. $I_{a u}=\frac{\Delta T}{R_{a \mu}}=\frac{100-20}{0^{\prime} 0831}=962 \mathrm{~W}$

$$
I_{\Delta L}=\frac{100-20}{0^{\prime} 141}=568^{\circ} 8=569 \mathrm{w}
$$

b. $I_{\text {TOTAL }}=962+562=-1531 \mathrm{~W}$
c. $\Delta T=R \cdot I \longrightarrow 100-20=R \cdot 1531 \rightarrow R=\frac{100-20}{1531}=0.0522 \mathrm{k} / \mathrm{\omega}$
4. L'àrea de la superfície exterior d'una casa (sostre i panets) és de $280 \mathrm{~m}^{2}$, dels quals $30 \mathrm{~m}^{2}$ corresponen a les finestres. El vidre de les finestres ($k=0^{\prime} 80 \mathrm{~W} / \mathrm{m} k$) és de $0^{\prime} 5 \mathrm{~cm}$ de gruixi iel sostre i les parets estan recoberts d'un material aillant ($k=0^{\prime} 040 \omega / \mathrm{mk}$) de 8 cm de gruix. Quan la tewperatura a l'exterior és de $-10^{\circ} \mathrm{C}$, 1 'interior de les finestres es troba a $3^{\circ} \mathrm{C}$; l'interior de les parets i el sostre a $15^{\circ} \mathrm{C}$.
a. Quin és el flux de cabr a través de les paretsi sostre?
b. Quin és e flux de calor a través de les finestres?
a. $\phi= \pm S$

CONDUCTIVITAT	GRUIX	RESISTENCIA TERMICA
0.04	0.08	

$$
\begin{aligned}
& I=\frac{T_{i}-T e}{R_{T}}=\frac{15-(-10)}{2}=12.5 \\
& \phi=12 \cdot 5 \cdot(280-30)=3125 \omega=313 \mathrm{KW}
\end{aligned}
$$

b.

CONDUCTIVITAT	GRUIX	RESISTENCIA TERMICA
0.80	0005	0.00625

$$
I=\frac{3+10}{0.00625}=2080 \longrightarrow \phi=2080 \cdot 30=62400 \omega=62^{\prime 4 \mathrm{~kW}}
$$

5. La paret d'una casa té 24 cm de gruix i b seva conductivitat. térmica és de $0^{\prime} 6 \mathrm{~W} / \mathrm{mk}$. La temperatura a l'intenor és de $18^{\circ} \mathrm{C}$ i a l'exterior de $4^{\circ} \mathrm{C}$. Quina quantitat de calor es pard per conducció cada hora a tavés d'un metre quadat de panet? Per quina raó a pêrdua dés tan gran? És correcte aquesta estimació do pärdues?

$$
\begin{aligned}
& R=\frac{L}{k \cdot A}=\frac{0^{\prime} 24 \mathrm{~m}}{0^{\prime} 66 / \mathrm{mk} \cdot \lambda_{n^{2}}}=0^{\prime} 4 \mathrm{k} / \mathrm{m} \\
& \Delta T=R \cdot I \rightarrow I=\frac{\Delta T}{R}=\frac{18-4}{0^{\prime} 4}=35 \mathrm{~W}=35 \frac{\mathrm{~J}}{\mathrm{~s}} \cdot \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}} \cdot \frac{3600 \mathrm{~s}}{\mathrm{\lambda}} \\
& \\
& I=\frac{126 \mathrm{ky} / \mathrm{m}^{2} \operatorname{arhog}}{}
\end{aligned}
$$

6. a. Quina és la resistència térmica d'una Iamina de vidre de lm^{2} i 0.5 cm de gruix?

$$
\begin{aligned}
& A=1 \mathrm{~m}^{2} \\
& \text { Gruix }=0^{\prime} 5 \mathrm{~cm}=0^{\prime} 005 \mathrm{~m} \\
& R=\frac{L}{\underset{0^{\prime} 7-00^{\prime} 9}{\text { KvipoE } \cdot A}}=\frac{0,005}{0^{\prime} 8 \cdot 1}=0.00625=6
\end{aligned}
$$

b. Quin flux de calor travessa aquesta làmina si la difenencia de temperatura entre les dues canes del vidre és de 10° C? La conductivitat del vidre és $0^{\prime} 8 \mathrm{w} / \mathrm{mk}$.

$$
\begin{aligned}
& \Delta T=10^{\circ} \mathrm{C} \\
& \phi=\frac{\Delta T}{R_{t}}=\frac{10}{0^{\prime} 00625}=1600 \mathrm{~W}=16 \mathrm{KW}
\end{aligned}
$$

ransport de calor per convecció
7. Quina energia perd una persona nua por segon deget a la convecció si la superfície de la persona és de l' $4 \mathrm{~m}^{2}$; la temperatura de l'aire és de $0^{\circ} \mathrm{C}$? Suposeu que el factor de transmissió de cabr és de $7^{\prime \prime} \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ i la temperatura de la poll és de $30^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \left.\begin{array}{l}
A=\lambda^{\prime} 4 m^{2} \\
\text { Textenior }=0^{\circ} \mathrm{C} \\
\text { Tpersona }=30^{\circ} \mathrm{C}
\end{array}\right\} \Delta T=30^{\circ} \mathrm{C}=30 \mathrm{~K} \\
& I=7^{\prime} 1 \frac{\mathrm{U}}{\mathrm{~m}^{2} \mathrm{k}} \cdot 30 \mathrm{~K} \cdot 1^{\prime} 4 \mathrm{~m}^{2}=298^{\prime} 2 \mathrm{~W}=298^{\prime} 2 \mathrm{~J} / \mathrm{s} \simeq 300 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$

8. El vidre d'una finestra es troba a $10^{\circ} \mathrm{C}$ ila sera àrea és de $13 \mathrm{~m}^{2}$. Si la temperatura de l'aire exterior és $0^{\circ} \mathrm{C}$, quin és el flux do calor degut a la convecció? Suposem que el factor de transmissió de calor és de $4 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$.

$$
\begin{aligned}
& \quad \begin{array}{ll}
& A=10^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} & q=4 \mathrm{~m}^{-2} \mathrm{k}^{-1} \\
\text { INT } & A \mathrm{~m}^{2}
\end{array} \\
& \phi=q \cdot A \cdot \Delta T=4 \cdot 1^{\prime} 3 \cdot(10-0)=52 \mathrm{~W}
\end{aligned}
$$

9. Calculeu la rá entre les pérdues degudes per convecció a tavés d'una finestra quan a l'exterior bufa un vent de $20 \mathrm{~km} / \mathrm{h}$ i les pàrdues quan ro hi ha vent a l'exterior. Suposeeu que b tempeatura a l'interior és de $10^{\circ} \mathrm{C}$ i que a l'exterior lluny de la finestra és de- $10^{\circ} \mathrm{C}$. A-10 C la teuperatura efectiva quan bufa un vent de $20 \mathrm{~km} / \mathrm{h}$ és de $-20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { Ivent =qi: } \mathrm{q} T \\
& \text { I sense vent }=q_{i} \cdot \Delta T \quad\left\{\begin{array}{l}
q_{i} \cdot \Delta T=q_{i} \cdot \Delta T \\
(10-(-20))=10-(-10) \\
30=20 \quad \square=\frac{30}{20}=115
\end{array}\right.
\end{aligned}
$$

Radiació
10. Un radiador amb una superfície extenior de is m^{2} està pintat amb pintura d'alumini (emissivitat $=0,55$).
a. Quin és el fux de calor emès degut a la radiació quan la temperatura del radiador és de $50^{\circ} \mathrm{C}$?
b. Quin és el flux de calor absorbit si los panets de ihabitació es troben a 22° ?
c. Quin és el flux net de calor procedent del radiador?

$$
\begin{aligned}
& s=15 \mathrm{~m}^{2} \\
& \varepsilon=055
\end{aligned}
$$

a. $T=50^{\circ} \mathrm{c}+273=323 \mathrm{k}$

$$
\phi=\varepsilon \cdot \nabla \cdot A T^{4}=0^{\prime} 55 \cdot\left(5^{\prime} 6703 \cdot 10^{-8}\right) \cdot 15 \cdot(323)^{4}=509^{\prime} 2 \omega
$$

b. $T=22^{\circ} \mathrm{C}+273=295 k$

$$
\left.\phi=0.55 \cdot\left(5^{\prime} 6703 \cdot 10^{-8}\right) \cdot 115 \cdot(295)^{4}=354^{\prime} 20\right)
$$

c. $\phi=509^{\prime} 2-354^{\prime} 2=-1550$
11. Un radiador eléctric de 1 KKW té unes resistències que s'escalfen fins a $900^{\circ} \mathrm{C}$. Suposant que el 100% de l'energia que es transmet a l'exterior és deu a la radiació, i que les resisténcies es comporten com un os negre radiant (emissivitat $=1$), determineu l'ärea efectiva de la superfície radiant (suposem que lo temperatura de l'habitació és de $20^{\circ} \mathrm{C}$).

$$
\begin{aligned}
& \text { \& } Q=1 \mathrm{~kW}=1000 \mathrm{~W} \\
& \text { tresistencies }=900^{\circ} \mathrm{C} \\
& I=\varepsilon \cdot T A T^{4}=1 \cdot\left(5^{\prime} 67 \cdot 10^{-8}\right) \cdot A \cdot\left((900+273)^{4}-(20+273)^{4}\right)=1000 \mathrm{~W} \\
& \square_{\Delta} A=\frac{10000}{5^{\prime} 67 \cdot 10^{8} \cdot 1173^{4}}=0^{\prime} 009342 \mathrm{~m}^{2}=93^{\prime} 42 \mathrm{~cm}^{2}
\end{aligned}
$$

12. El fibment d'una bampada d'incandescència funciona a 2500 K . El seu diàmetre és de $0^{\prime} 1 \mathrm{~mm}$ i està formada per un metall d'emissivitat igual a 0'35. Quira longitud cal que tingui el filament por a que b lampada arribi a emetre un flux de calor de 40W?

$$
\begin{aligned}
& T_{f i c}=2500 \mathrm{~K} \\
& \varepsilon=0,35 \\
& \phi=0^{\prime} / \mathrm{mm} \\
& I=40 \omega \\
& \phi=\varepsilon \nabla \cdot T^{4}=0^{\prime} 35 \cdot\left(5^{\prime} 67 \cdot 10^{-8} \frac{\mathrm{w}}{\mathrm{~m}^{2} \cdot \mathrm{k}}\right) \cdot 2500 \mathrm{k} / 4=775195^{\prime} 31 \mathrm{w} / \mathrm{m}^{2} \\
& {\left[\begin{array}{l}
A=2 \cdot \pi \cdot R \cdot L \\
I=A \cdot \Phi \longrightarrow A=\frac{40 \cup \phi}{775195^{\prime} 31 \psi^{\prime} / \mathrm{m}^{2}}=0^{\circ} 0000516 \mathrm{~m}^{2}
\end{array}\right.} \\
& \longrightarrow A=2 \cdot \pi \cdot R \cdot L=0,000056 \longrightarrow L=\frac{0^{\prime} 000056}{2 \cdot \pi \cdot 0,00005}=0164 \mathrm{~m}
\end{aligned}
$$

13. A partir de les mesures de la radiació solar rebuda a la terra, pot calcular-se que a la superfície del sol adia energia a un n tme de $6250 \mathrm{~W} / \mathrm{cu}^{2}$. Suposant que el sol adia com un cos negre, determineu la temperatua a la superfície del sol.

$$
\begin{aligned}
& \varepsilon=1 \\
& \phi=6250 \mathrm{w} / \mathrm{cm}^{2} \cdot \frac{10000 \mathrm{~m}^{2}}{1 \mathrm{~cm}^{2}}=62500000 \mathrm{~W} / \mathrm{m}^{2} \\
& \phi=\varepsilon \cdot \sigma-T^{4}=1 \cdot\left(5^{\prime} 67 \cdot 10^{-8}\right) \cdot T^{4} \\
& \quad T=\sqrt[4]{\frac{62500000}{5167 \cdot 10^{-8}}}=5762 \mathrm{k}
\end{aligned}
$$

Principi de la termodinãmica

1. A les cascades del Niàaara, l'aigua cau a 50 m .
a. Si b pêrdua de l'energia potencial incrementa l'energia interra de l'aigua, calculeu l'increment de la teupentua.
b. Fen el mateix per a les cascades de Yosemite, on l'aigua cau a 740 m .
a. $h=50 \mathrm{~m}$

$$
\begin{aligned}
& \Delta U=Q-U \\
& \Delta U=m \cdot c_{p} \cdot \Delta T \\
& W=E_{p_{2}}-E_{p_{1}}=m \cdot g \cdot h_{2}-m g \cdot h_{1}=m g\left(h_{2}-h_{i}\right) \\
& \Delta T=\frac{9^{\prime} 81(50-0)}{4^{\prime} 189 / g \mathrm{k} \cdot \frac{1000 g}{1 \mathrm{~kg}}=0^{\prime} 117 \mathrm{k}} \quad \Delta T=\frac{g\left(h_{2}-h_{1}\right)}{c_{p}}
\end{aligned}
$$

b. $h=740 \mathrm{~m}$

$$
\Delta T=\frac{981(740-0)}{4180}=1174 k
$$

2. Durant una transformació, un sistema absorbeix 1500 J de cabor i realitza 900 J de treball. Quira és la anació d'energia interna dels sistema?

$$
\begin{aligned}
& Q=1500 \mathrm{I} \\
& \omega=900 \mathrm{I} \\
& \quad \Delta U=Q-W=1500-900=600 \mathrm{~J}
\end{aligned}
$$

REBALL FET PEL GAS IDEAL
3. L'estat incial d'un mol de gas ideal és de $p_{1}=3$ atm, $V_{1}=11$ i
$U_{1}=456 \mathrm{~J}$. El seu estat final és de $p_{2}=2 \mathrm{~atm}, V_{2}=31: U_{2}=912 \mathrm{~J}$.
Per cadascun dels quatre processos quasiestatics que es descriven a continuació, i que porten de l'estat final, representar el diasama PVi calculen el treball realitzat pel gas i la calor absorbida.
a. Es deixa expansionar el gas firs un volum de $3 l$ a pressió constant. Seguidament es refreda a volum constant fins una pressió de zatm.
b. El gas es refreda a volum constant fins una pressió de $2 a t m$. Després es deixa expansionar a pressió constant fins un volum de $3 l$.
c. El gas s'expansiona isotèrmicament fins un volum de 3ℓ i una pressió de latm. S'escalfa llavors a volum constant fins una pressió de $2 a t m$.
d. El gas s'expansiona i rep calor de manera que segueix una recta al diagama PV des de l'estat inicial fins al final.
$n=1 \mathrm{~mol}$

$$
\begin{array}{ll}
p_{1}=3 \mathrm{~atm} & p_{2}=2 \mathrm{~atm} \\
v_{1}=11 & v_{2}=31 \\
U_{1}=456 \mathrm{~J} & U_{2}=912 \mathrm{~J} .
\end{array}
$$

i

$$
\Delta u=u_{2}-u_{1}=4^{\prime} 5 \operatorname{atm} \cdot L
$$

$$
\begin{aligned}
& \text { a. } W=p \cdot \Delta V=3(3-1)=6 a t m \cdot L \\
& \Delta u=Q-W \\
& Q=\Delta U+\omega=4^{\prime} 5+6=10^{\prime} 5 a^{\prime} m \cdot L \\
& \text { b. } U=p \cdot \Delta v=2(3-1)=421 \mathrm{~m} L \\
& \Delta u=Q-\omega \\
& Q=\Delta u+\omega=4^{\prime} 5+4=8^{\prime} 5 \text { atm } \cdot L \\
& \text { c. } U=n \cdot R \cdot T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \Perp P V=n \cdot R \cdot+\longrightarrow T=\frac{P V}{n \cdot R}=\frac{3 \cdot 1}{1 \cdot 0.082}=36585 \mathrm{~K} \\
& \longrightarrow \omega=10.082 \cdot 36^{\prime} 585 \cdot \ln \left(\frac{3}{1}\right)=3 \cdot 3 \text { 2tm-L } \\
& \Delta u=Q-\omega \\
& Q=\Delta u+\omega=4 \cdot 5+3 \prime 3=7^{\prime} 8 \text { atm } \cdot L \\
& \text { d. } \omega=2 \cdot 2+\frac{2 \cdot 1}{2}=4+1=5 \text { atm } \cdot L \\
& \Delta u=Q-\omega \\
& Q=\Delta u+\omega=4 \prime 5+5=9.52+2-4
\end{aligned}
$$

4. Un mo do gas idal diatömic s'escalfa quasiestäticament a volum constant des de 300 K fins a 600 k . (a) Determineu l'increment d'energia interna, la cabor absorvida i el treball realitzat. (b) Fen el mateix si el gas s'escalfa a press 10° constant entre 300 K : 600 K .
a. $\omega=01$

$$
\begin{aligned}
& Q=1 \cdot 5 / 2 \cdot 8^{\prime} 314 \cdot(600-300)=6235^{\prime} 5 y=6^{\prime 24 k y} \\
& \Delta U=\theta-\omega=6235^{\prime} 5-0=6235^{\prime} 51=6^{\prime} 24 k^{\prime} 1 \\
& b \cdot \omega=p \Delta U \longrightarrow p \cdot V_{1}=n \cdot R \cdot T_{1}=1 \cdot 8^{\prime} 314: 300=249412 P_{a} \cdot m^{3} \\
& P_{2} \cdot V_{2}=1 \cdot 8314 \cdot 600=4988^{\prime} 4 \mathrm{~Pa}_{\mathrm{a}} \cdot \mathrm{~m}^{2} \\
& w=49884-2494^{\prime} 2=2494^{\prime} 23=22^{\prime 2} \mathrm{~K}^{2} \\
& Q=n \cdot c_{p} \cdot \Delta r=17 / 2 \cdot 8 \cdot 314 \cdot 300=879^{\prime} 71=8 \cdot 73 \mathrm{ky} \\
& \Delta u=Q-\omega=8^{\prime} 73-2^{\prime} 4 Q=6{ }^{\prime} 24 \mathrm{~kJ}
\end{aligned}
$$

Transformacions quasiestatics dun gas ideal
5. Un mol de oas idal monoatömic $(\gamma=5 / 3)$ s'expansiona adiabäticament - quasiestäticament des d'una pressió de 10 atm i teupenatura de $0^{\circ} \mathrm{C}$ fins un estat de: pressio de 2 atm . Determineu:
a. Els volums inicials; finals.
b. La temperatura final.
c. El treball realitzat pel gas.
a. $Q=01$

$$
\begin{aligned}
& p_{0}=10 a t m \\
& p_{2}=2 \mathrm{~atm} \\
& T_{0}=0^{\circ} \mathrm{C}=273 \mathrm{~K} \\
& T_{2}=\text { ? } \\
& V_{0}=\text { ? } \\
& V_{2}=\text { ? } \\
& p_{0} \cdot V_{0}=n \cdot R \cdot T_{0} \rightarrow \frac{n \cdot R \cdot T_{0}}{P_{0}}=\frac{1 \cdot 0.082 \cdot 273}{10}=21241 \\
& \left(\frac{P_{2}}{P_{0}}\right)\left(\frac{V_{2}}{V_{0}}\right)^{5 / 3}=1 \rightarrow\left(\frac{2}{10}\right)\left(\frac{V_{2}}{224}\right)^{5 / 3=1} \rightarrow\left(\frac{V_{2}}{2^{2} 24}\right)^{5 / 3}=5 \\
& \frac{v_{2}}{224}=\sqrt[5]{5} \sqrt{5^{3}}-\sqrt{V_{2}=5^{\prime} 88 l}
\end{aligned}
$$

b. $P_{2} V_{2}=n \cdot R \cdot T_{2} \longrightarrow T_{2}=\frac{P_{2} \cdot V_{2}}{n \cdot R}=\frac{2 \cdot 5188}{10082}=143141 \mathrm{~K}$
c.

$$
\begin{aligned}
& \Delta u=\phi-\omega \rightarrow \Delta u=-\omega \\
& \Delta u=+3 / 2 \cdot 1 \cdot 0^{\prime} 082\left(143^{\prime} 14-273\right)=-15^{\prime} 94 a t \mathrm{~m} \cdot L \\
& \omega=-\left(-15^{\prime} 94\right)=15^{\prime} 94 \text { atm } \cdot L \cdot \frac{101300 \mathrm{~Pa}}{1 \text { stm }} \cdot \frac{1 \mathrm{~m} 3}{1000 \mathrm{l}}=1614^{\prime} 72 J=11^{\prime 614 \mathrm{ky}}
\end{aligned}
$$

6. Un gas ideal a h temperatura de $20^{\circ} \mathrm{C}$ es comprimeix adiabáticaunet i quasiestäticament fins $l a$ meitat del seu volum onginal. Calculeu la seva tewperatur fimal si: $(a) c_{v}=3 / 2 n \cdot R\left(\right.$ monoatönic); $(b) c_{v}=5 / 2 n \cdot R$ (diatōmic).
a. $Q=03$
$T_{0}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$

$$
\begin{array}{r}
\left(\frac{P_{f}}{P_{0}}\right)\left(\frac{V_{f}}{V_{0}}\right)^{5 / 3=1} \underset{\rightarrow\left(\frac{P f}{P_{0}}\right)\left(\frac{V_{6 / 2}}{V_{6}}\right)^{5 / 3}=1 \rightarrow\left(\frac{P_{f}}{P_{0}}\right)\left(\frac{1}{2}\right)^{5 / 3}=1}{P_{f}=\frac{1}{(1 / 2)^{5 / 3} \cdot P_{0} \rightarrow P_{f}=3^{\prime} 1748 \cdot P_{0}}}
\end{array}
$$

$P_{0} \cdot V_{0}=n \cdot R \cdot T_{0}=1 \cdot 0.082 \cdot 293=24 \cdot 026 \mathrm{~atm} \cdot \mathrm{~L}$
$P_{f} V_{f}=3^{\prime} 1748 \cdot P_{0} \cdot \frac{V_{0}}{2}=15874 P_{0} \cdot V_{0}=1^{\prime} 5874 \cdot 24^{\prime} 026=38^{\prime} 1388=-\mathrm{m} \cdot \mathrm{L}$

$$
\leftrightarrow 38^{\prime} 1388=n \cdot R \cdot T_{f} \rightarrow T_{f}=\frac{38^{\prime} 1388}{1 \cdot 0.082}=1465 k
$$

b. $\left.\left(\frac{P f}{P_{0}}\right)\left(\frac{V_{f}}{V_{0}}\right)^{7 / 5}=1 \longrightarrow P f=\frac{1}{(1 / 2)^{7 / 5}} \cdot P_{0} \rightarrow P f=2^{\prime 6} 69 P_{0}\right)$ $P_{f} \cdot V p=2^{\prime} 639 \cdot P_{0} \cdot \frac{V_{0}}{2}=1^{\prime} 3195 \cdot P_{0} V_{0}=13195 \cdot 24: 026=31702307$ atom
7. Un mol i mig d'heli s'expansiona adiabäticament iquasiestäticament des d'una pressió inicial de 5 atm i una temperatura inicial de 500 K fins a un pressió find de latm. Calculeu:
a. la teuperatur final.
b. El volum final.
c. El treball fet pel gas.
d. La anació de l'energia interna del gas.
b.
a. Pf $\cdot V f=n \cdot R \cdot T \longrightarrow 1\left(32^{\prime} 32\right)=A^{\prime} 5 \cdot 0.082 T$

$$
32^{\prime} 32=0^{\prime} 123 T \rightarrow T f=262^{\prime} 76 \simeq 263 \mathrm{~K}
$$

$$
c \cdot w=-n \cdot c v \cdot \Delta t=-15(3 / 2 \cdot 8314)(263-500)=443344 J=4 \cdot 43 k J
$$

$d^{\prime} \Delta u=Q-W=0-\left(-15\left(3 / 2 \cdot 8^{\prime} 314\right)(263-500)\right)=-4433^{\prime} 443$

$$
-4^{\prime} 43 k
$$

$$
\begin{aligned}
& n=1 \text { ' } 5 \\
& T_{0}=500 \mathrm{k} \\
& P_{0}=5 \mathrm{tm} \\
& P_{f}=1 a t m \\
& P V=n R T \\
& 5 V=1.5 \cdot 0^{\prime} 082 \cdot 500 \rightarrow 5 V=61.5 \rightarrow V_{0}=12 \prime 31 \\
& Q=0 J \\
& \left(\frac{P_{f}}{P_{0}}\right)\left(\frac{V_{f}}{V_{0}}\right)^{5 / 3}=1 \rightarrow\left(\frac{1}{5}\right)\left(\frac{V f}{12^{\prime 3}}\right)^{5 / 3}=1 \\
& \left(\frac{v f}{12^{\prime} 3}\right)^{5 / 3}=5 \rightarrow \frac{v_{1}}{12^{\prime} 3}=\sqrt[5]{5^{3}} \rightarrow \frac{V f}{2^{\prime 3}}=2^{\prime} 627 \rightarrow V f=32^{\prime 3} 32
\end{aligned}
$$

8. Cinc mols d'un gas ideal diatōmic, inicialment a latm i a $25^{\circ} \mathrm{C}$, es couprimeixen reversiblement ; isotermicament fins a un volum igual a la décima part del seu volum inicial i després es deixen expandir adiabàticament i reversiblament fins que el oas arriba a le pressió inicial de 1 atm. Calculeu ba calor bescanviant, el treball realitzat i a añació de l'energia interma del gas.

$$
\begin{aligned}
& \underline{P_{1}}=\mathrm{latm} / V_{1}=122 \cdot 18 \mathrm{e} \quad T_{1}=25^{\circ}=298 \mathrm{~K} \\
& V_{1}=\frac{n \cdot R \cdot T_{1}}{P_{1}}=\frac{5 \cdot 0.082 \cdot 298}{\lambda}=122^{\prime} 181 \\
& P_{2}=\frac{P_{1} V_{1}}{V_{2}}=1.10=10 \mathrm{~atm} \\
& P_{2}=10 \mathrm{~atm} / \mathrm{V}_{2}=112 \mathrm{l} / \mathrm{T}_{2}=298 \mathrm{~K} \\
& P_{2} V_{2}^{\gamma}=P_{3} V_{3}{ }^{\sigma} \rightarrow\left(V_{3} / V_{2}\right)^{\gamma}=P_{2} / P_{3} \longrightarrow V_{3} / V_{2}=\left(P_{2} / P_{3}\right)^{1 / 8} \\
& V_{3}=V_{2}\left(P_{2} / P_{3}\right)^{1 / 8}=1112 \cdot 10^{5 / 7}=58^{\prime} 01 \mathrm{l} / P V=n \cdot R T \rightarrow T_{3}=141^{\prime} 5 \mathrm{~K} \\
& P_{3}=12 t m / V=-580 / 2 \quad 1 T_{3}=1415 \mathrm{~K}
\end{aligned}
$$

$$
Q=n \cdot R \cdot T \cdot \ln \left(P_{1} / P_{2}\right)=5 \cdot 0^{\prime} 082 \cdot 298 \cdot \ln \left(1^{\prime} 10\right)=-281^{\prime} 33 \mathrm{~atm} \cdot l=-28^{\prime} 5 \mathrm{ky}
$$

$$
\begin{aligned}
& Q=Q \quad / \Delta U=0 \\
& \Delta Q_{23}=n \cdot R \cdot \Delta T=55 / 2 \cdot R\left(141^{\prime} 5-298\right)=-160 \cdot 41 \operatorname{atm} P=-16 \cdot 25 k y \\
& Q=0 K=\Delta U=Q-\omega=16 \cdot 25 K^{\prime}
\end{aligned}
$$

9. Un gas idbal amb un volum inicial V_{1} i una pressió P_{1} sexpansiona adiabäticoment : quasiestäticament fins un volum V_{2} i una pressió P_{2}. Calculeu el treball realitzat pel gas i comproveu que el resultat és el seguient: $W_{a d i a b}=\frac{P \cdot V_{1}-P_{2} V_{2}}{\gamma-1}$ Demostreu que el pendent de la corba adiabàtica que passa por un punt en un diagrama PV és γ veaades el pendent de la corba isoterma que passa pel mateix punt.

$$
\begin{aligned}
& Q=P \rho \cdot P v \\
& d q=d u+p+d v\} \\
& d u=c v \cdot d t \\
& \text { Adiabätic } \rightarrow \Delta q=0 \\
& d u=-\rho \cdot d r \\
& W_{\text {adiab }}=\int \rho \cdot d v=-\int c v d t=-C v \Delta T=-C v\left(T_{2}-T\right)=C v\left(T_{1}-T_{2}\right) \\
& \text { si fem } P V=n R T \rightarrow t=\frac{P V}{n R} \\
& \text { Wadiab }=C V\left(\frac{P_{V}}{n R}-\frac{P_{2} V_{2}}{n R}\right)=\frac{C V}{n R}\left(P_{1} V_{1}-P_{2} V_{2}\right) \\
& \text { Wadiab }=\frac{C V}{C P-C V}\left(P_{1} V_{1}-P_{2} V_{i}\right) \text {; Dividim } C N \text { fen } \frac{C P}{C V}=\gamma \\
& \text { Wadiab=} \frac{C V / C v}{\frac{C P}{C V}-\frac{C v}{C V}}\left(P_{1} V_{1}-P_{2} V_{2}\right)=\frac{1}{\gamma-1}\left(P_{1} V_{1}-P_{2} V_{2}\right)=\frac{P_{1} V_{1}-P_{2} V_{2}}{\gamma-1}
\end{aligned}
$$

Isoterme $P V=(K)=P_{1}$, equació $p=k / v$

$$
P V^{\gamma}-(K)=P_{1} V_{1}
$$

Rendent $d P / d v$

$$
\frac{d P}{d v}=\frac{-k}{v^{2}}
$$

$\frac{-P_{1} V_{1}}{V_{1}^{2}} \rightarrow$ pendent isotérma

$$
-\gamma \cdot \frac{p_{1}}{V_{1}} \rightarrow \text { pendont adiabätica }
$$

Maquines termiques i frigoríflques
10. Dos mols d'un gas ideal monoatömic tenen una pressio inicial $p_{1}=2$ atm i un volum inicial $v_{1}=2 l$. Sotmotem el gas al segïent cicle quasiestàtic: s'expandeix isotermicament fins que té un volum $v_{z}=$ पl. Després s'escalfa a volum constant fins que té una pressió p3 = 2 atm. A continuació es refreda a pressió constant fins que torma a l'estat inicial.
a Representeu aquest cicle en un diagama PV.
b. Calculen les temperatures $T_{1}, T_{2} ; T_{3}$
c. Calculeu ba calor subministrada al oas i el treball realitzat pel gos en cada part del cicle.
a. $n=2$
$P_{1}=2 \mathrm{~atm}$
$P_{2}=$?
$P_{3}=2 a t m$
$V_{1}=2 l$
$V_{2}=4 l$
$V_{3}=4 l$

b. $P V=n \cdot R \cdot T_{A}$ \qquad $2 \cdot 2=2 \cdot 0.082 \cdot T$

$$
4=0164 T_{A} \rightarrow T_{A}=24^{\prime 4} K=T_{B}
$$

$$
P V=n R \cdot T_{c} \longrightarrow 2 \cdot 4=2 \cdot 0.082 T \longrightarrow T_{c}=488 \mathrm{~K}
$$

c. $A-B$

$$
\begin{aligned}
& Q=n \cdot R T \ln \left(V_{2} / V_{1}\right)=2 \cdot 0081 \cdot 24^{\prime} 4 \ln (4 / 2)=2^{\prime} 97 \operatorname{atm} L=281 J \\
& Q=(W) / D U=01
\end{aligned}
$$

$B C$

$$
\begin{aligned}
& Q=03 \\
& \Delta=n \cdot C v \cdot \Delta T=2 \cdot 3 / 2 \cdot 0^{\prime} 082\left(48^{\prime} 8-24^{\prime} 4\right)=6 \mathrm{~atm} L=608 J \\
& \Delta U=608 J
\end{aligned}
$$

TCA

$$
\text { M] } p \cdot \Delta V=2(2-4)=-427 m \cdot L=-405^{123}
$$

Q) \cap Lp $\Delta T=2.5 / 2 \cdot 0^{\prime} 082\left(24^{\prime} 4-48^{\prime} 8\right)=-10^{\prime} 004=-1013^{\prime} 4 \mathrm{~J}$

$$
\Delta u=-101314-\left(-405^{\prime 2}\right)=-608^{\prime 2}
$$

11. Una mäquina frigońfica consumeix 150 s de treball per extreure 5003 de calor del compartiment fred.
a. Quina és la sela eficacia?
b. Quin calor transmet a l'extenior?

a. $\eta=\frac{\text { Qced }}{|\omega|}=\frac{500}{150}=3133$
$Q=500 \mathrm{~J}$
12. Una máquina de carnot treballa entre dos focus térmics a que es troben a 300 k ; 200 k .
a. Quin és el see rendiment?
b. Si absorveix 100 s del fous calent a cada cicle, quin treball realitza?
c. Quina quantitat de cabr cedeix a cada cicle?
d. Quin és el coeficient d'eficacia de la māquina quan treballa com a refrigerador entre els mateixos focus?
a. $R=1-\frac{200}{300}=\frac{1}{3}$
b. $Q a b s=1001$

$$
\eta=\frac{u}{Q 2 b y} \longrightarrow \frac{1}{3}=\frac{w}{100} \rightarrow w=100 \cdot 1 / 3=3313 J
$$

c. $W_{\text {total }}=$ Qabs-1Quedl $\rightarrow 33^{\prime} 3=100-1$ Qeed

$$
\left|Q_{Q d}\right|=100-33^{\prime} 3=66^{\prime} 7 J
$$

d. $\eta=\frac{T f}{T c-T 1}=\frac{200}{300-200}=2$
13. Quir es el coeficient d'eficàcia d'una märuina frigoŕfica de carnot que troballa amb dos focus térmics que es trobon a -15 i $20^{\circ} \mathrm{C}$?

$$
\begin{aligned}
-15^{\circ} \mathrm{C} & =258 \mathrm{~K} \\
20^{\circ} \mathrm{C} & =293 \mathrm{~K}
\end{aligned} \quad \eta=\frac{T f}{t_{c}-T f}=\frac{258}{293-258}=74
$$

14. A cada cicle una mâquina extreu 150 j de un focus a $100^{\circ} \mathrm{C}$ i dóna 12SJ a un focus a $20^{\circ} \mathrm{C}$.
a. Quin és el rendiment d'aquesta mäquina?
b. Quina és la rebció entre el seu rendiment i el rendiment mäxim que podria tenir?

$$
\begin{aligned}
& Q=150 \mathrm{~J} \\
& T=100^{\circ} \mathrm{C}=373 \mathrm{~K}
\end{aligned} / 1257 \quad T=20^{\circ} \mathrm{C}=293 \mathrm{~K}
$$

a. $n=\frac{\omega}{Q a b s}$

$$
\begin{aligned}
& Q_{c}=\omega+\mid Q f 1 \rightarrow \omega=150-125=25 \\
& R=\frac{25}{150}=Q^{1167}
\end{aligned}
$$

b.

$$
\begin{aligned}
R_{c}=1-\frac{293}{373} & =0.2145 \\
R=\frac{R}{2 c} & =\frac{0167}{0^{\prime} 2145}=100=77^{\prime} 9 \times 78 \%
\end{aligned}
$$

15. La relació entre el rendiment d'un motor i el seu rendiment māxim és del 85%. A cada cicle extreu 200 ky de calor d'un fours calent a 500 K i dóna calor a un focus fred a 200 k .
a. Quin es el rendiment d'equest mootor?
b. Quant treball realitza a cada cicle?
c. Quina quantitat de cabr s'elimina a cada cicle?

Extren $Q=200 \mathrm{ky} \rightarrow T=500 \mathrm{k}$
Dona $\longrightarrow T=200 \mathrm{~K}$
a. $\eta=\frac{R}{\eta_{c}}=0.85 \rightarrow \eta_{c}=1-\frac{T f}{T_{c}}=1-\frac{200}{500}=0^{\prime} 6$

$$
\longrightarrow 0.85=\frac{R}{06} \rightarrow R=0.85 \cdot 0^{\prime} 6=0.01
$$

b. $\eta=0^{\prime} 51$

$$
\eta=\frac{Q e d}{|W|} \longrightarrow|W|=\eta \cdot Q e d=0.51 \cdot 200=102 k y
$$

c. $Q_{c}=W+Q_{f} \rightarrow Q f^{\prime}=Q_{c}-W=200-102=98 k y$
16. La caldera d'un reactor nuclear escalfa aigua a $285^{\circ} \mathrm{C}$ i l'aigua de refrigeració es troba a $40^{\circ} \mathrm{C}$. El rendiment real de la central és del 34%
a. Quin és el límit teöric pel rendiment de la cental?
b. Quina és la raó entre la potència perduda i la que és perdña si el rendiment fos mäxim?

$$
\begin{aligned}
& T=285^{\circ} \mathrm{C}=558 \mathrm{~K} \\
& T=40^{\circ} \mathrm{C}=313 \mathrm{~K} \\
& \text { a. } R=1-\frac{313}{558} \cdot 100=34 \%=034 \\
& \text { b. } W_{p}=n p Q \% \\
& W_{t}=n+p_{H} \\
& \frac{1-n p}{1-n t}=\frac{1-0,34}{1-044}=\frac{w_{p}}{Q p e r d u d a}=Q / K(1-n p) \\
& \hline 148(1-n t)
\end{aligned}
$$

17. Una mäquina té una substancia formada per 1 mol d'un aas ideal monoatömic. El cicle comenfa aub una pressló i volum inicials de $p_{1}=1$ atm $i v_{1}=24^{\prime} 6 \mathrm{l}$. El gas s^{\prime} escalfa a volum constant fins $p_{2}=2 \mathrm{~atm}$ i des prés s'expandeix a pressló constant fins arribar a tenir $v_{3}=49^{\prime} 2 l$. En equestes dues elapes la calor absorvida seguidament el gas es refreda a volum constant fins que a sela pressio toma a ser 1 atm. Firralment es couprimeix a pressió constant fins arribar de nou a l'estat inicial. En aquostes dus altimes etapes a calor es cedeix. Totes les etapes són reversibles; quasiestàtiques.
a. Dibuixeu un diagama PV del cicle.
b. Calculeu el treball, la calor i la vniació de l'energia interna per cada etapa del cicle.
c. Trobeu el rendiment del cicle.

$$
\begin{array}{lll}
n=1 & \\
p_{1}=12 t m & p_{2}=22 t m & p_{3}=22 \mathrm{~atm} \\
v_{1}=24^{\prime} 6 l & v_{2}=24^{\prime} 6 l & v_{3}=49^{\prime} 2 l
\end{array}
$$

a. p(atm)

$$
\begin{aligned}
& P V=n \cdot R \cdot T_{A} \rightarrow T_{A}=\frac{124 \cdot 6}{1 \cdot 0.082}=300 \mathrm{~K} \\
& T_{B}=\frac{2 \cdot 246}{1 \cdot 0.082}=600 \mathrm{~K} \\
& T_{C}=\frac{2 \cdot 4912}{1 \cdot 0.082}=1200 \mathrm{~K} \\
& T_{D}=\frac{1 \cdot 49 \cdot 2}{1 \cdot 0^{\prime} 082}=600 \mathrm{~K}
\end{aligned}
$$

b. $\overline{A B}$

$$
\begin{aligned}
& w=\text { Datm } \\
& \text { Qun } \cdot v \cdot \Delta T=13 / 2 \cdot 0082(600-300)=36^{\prime 9} \text { atm } \cdot 1 \\
& \Delta u=Q-w=361^{\prime 9} \text { atm } L
\end{aligned}
$$

$B C$
W. $p \cdot \Delta V=2\left(49 \cdot 2-24^{\prime} 6\right)=49: 2$ atm.
$Q=n \cdot c_{p} \cdot \Delta T=1 \cdot 5 / 2 \cdot 0,082(1200-600) 1123$ atm $\cdot L$
$\Delta U=123-49,2=73 \prime 8 \mathrm{~atm} L$
CD

$$
\omega=0 a t m \cdot
$$

Q \cap cu $\Delta T=1 \cdot 082 \cdot 3 / 2(600-1200)=-73^{\prime} 8 \mathrm{~atm} \cdot L$

$$
\Delta u=-73^{\prime} 8 \mathrm{~atm} \cdot L
$$

DA
(1) $P \Delta V=1\left(24^{\prime} 6-49,2\right)=-24^{\prime 6}$ atm.L

Q $\cap c p \Delta t=10.082 \cdot 5 / 2(300-600)=-6115 a+m \cdot L$

$$
\begin{aligned}
& \Delta U=-61^{\prime} S-\left(-24^{\prime} 6\right)=-36^{\prime} 9 \text { atm.L } \\
& c . R=\frac{W}{94}=\frac{4912-24^{\prime} 6}{123+36^{\prime} 9}=\frac{24^{\prime} 6}{159^{\prime} 9}=0.153=15{ }^{\prime} 4 \%
\end{aligned}
$$

18. Una máquina que utilitza 1 mol d'un gas ideal de $c_{v}=21 J / K$ inicialment a $V_{1}=24^{\prime} 6 \mathrm{P}$; $L_{1}=400 \mathrm{~K}$ treballa en un cicle constant en 4 etapes: (1) expansio isotérnica a 400 K fins un volum final el doble de l'inicial; (2) refredament fins a 300 K a volum constant; (3) compressió isotérmica fins al volum inicial; i(4) escalfament a volum constant fins ha temperatura inicial de yo0k.
a. Dibuixeu el cicle en un diagrama PV
b. Troben el treball fet pel gas, el calor absorbida i la variació d'energia interna a cada etapa del cicle:
c. Determincu el seu rendiment.
$n=\lambda$.

$$
c v=2 / J / k
$$

$$
\begin{array}{ll}
v_{1}=24^{\prime} 6 \mathrm{l} & v_{2}=2.24^{\prime} 6=492 \mathrm{l} \\
T_{1}=400 \mathrm{~K} & T_{2}=400 \mathrm{~K} \\
v_{4}=24^{\prime} 6 \mathrm{l} & \\
T_{4}=300 \mathrm{~K} &
\end{array}
$$

$$
v_{3}=4912 l
$$

$$
T_{3}=300 \mathrm{k}
$$

b. $A B$

$$
\begin{aligned}
& \text { UF }=n \cdot R \cdot T h\left(V_{2} / w_{1}\right)=1 \cdot 0.082 \cdot 400 \cdot \ln (4912 / 246)=221732 \operatorname{ma} L=23053 \\
& Q=2305 J
\end{aligned}
$$

60

$$
\begin{aligned}
& U=01 \\
& \Delta U=-2100 \mathrm{~J}
\end{aligned}
$$

ED

$$
\begin{aligned}
& W=n \cdot R \cdot \ln \left(V^{2} / V_{1}\right)=1 \cdot 0^{\prime} 082 \cdot 300 \cdot \ln \left(24^{\prime} 6 / 49^{\prime} 2\right)=-17^{\prime} 05 a \operatorname{an} \cdot L=-1727^{\prime} 31 \\
& Q= \Delta U=0^{\prime}
\end{aligned}
$$

DA

$$
\left.\omega=07 / Q=n \cdot c_{v} \cdot \Delta T=1 \cdot 2\right)(400-300)=21001
$$

$$
A(x=21002
$$

$c . R=\frac{\omega}{7 H}=\frac{2305+0-1727^{\prime} 31+0}{2305+2100}=\frac{577^{\prime} 69}{4405}=0^{\prime} 131=13^{\prime 1} \%$

$$
\begin{aligned}
& P V=n \cdot R \cdot T \rightarrow 24^{\prime} 6 P=10082 \cdot 400 \rightarrow P_{1}=1133 \text { atm } \\
& 49^{\prime 2} 2 P=1.082 .400 \rightarrow P_{2}=0^{\prime} 67 \text { atm } \\
& 49^{\prime} 2 P=10,082300 \quad P_{3}=0.5 a t m 1 \\
& 246 P=10082 \cdot 300 \longrightarrow P_{4}=\text { latm } \\
& \text { 24.6 }
\end{aligned}
$$

19. En el cicle de la figua, un mol de gas ideal $(\gamma=14)$ es troba inicialment a 1 atm; $0^{\circ} \mathrm{C}$. El gas s'escalfa a volum constant fins un teuperatua de $T_{z}=150^{\circ} \mathrm{C}$ i tot seguit s'expansiona adiabaticament i revesiblament fins que a sea pressió torra a ser de latm. Després es coupprimeix a pressió constant fins l'estat inicial.
a. La teuperatura T_{3} a la que arriba després de l'expansió adiabãtica.
b. La calor absorvida o cedida a cada procés
c. El rendiment del cicle
d. El rendiment d'un cicle Carnot que operés entre les mateixes teuperatures extremes del cicle.

$$
\begin{aligned}
& \text { a. } P_{1} V_{1}=n \cdot R \cdot T_{1} \longrightarrow V_{1}=1 \cdot 0^{\prime} 082 \cdot 273=22^{\prime} 381=V_{2} \\
& P_{2} V_{2}=n \cdot R \cdot T_{2} \rightarrow 22 \cdot 38 P_{2}=1 \cdot 0^{\prime} 082 \cdot 423 \rightarrow P_{2}=1.55 \mathrm{~atm} \\
& P_{2} \cdot V_{2}^{\gamma}=P_{3} \cdot V_{3}^{\gamma} \longrightarrow \lambda^{\prime} 55\left(22^{\prime} 38\right)^{14}=\lambda\left(V_{3}\right)^{14} \\
& 120^{\prime} 26=V_{3}{ }^{\prime 14} \rightarrow V_{3}==^{\prime 4} \sqrt{120^{\prime} 26}=30^{\prime} 6 P \\
& P_{3} \cdot V_{3}=n \cdot R \cdot T_{3} \rightarrow i^{\prime} \cdot 30^{\prime} 6=1 \cdot 0.082 T_{3} \rightarrow T_{3}=373^{\prime} 17 K
\end{aligned}
$$

b. 12

$$
Q=n \cdot c_{v} \Delta T=1 \cdot 5 / 2 \cdot 8^{\prime} 314 \cdot(423-273)=31177 y
$$

23

$$
Q=01
$$

(3-1

$$
\begin{aligned}
& Q=n \cdot C_{p} \cdot \Delta T=1 \cdot 7 / 2 \cdot 8314(273-3731 B)=-291367 \\
& \text { c. } R=\frac{q_{H}-\pi}{q_{H}}=-\frac{p_{C}}{q_{H}}=-\frac{29136}{3177^{\prime} 7} \cdot 100=615 \\
& \text { d. } R=i-\frac{t c}{T_{4}}=1-\frac{273}{423}=0.35 \rightarrow 35^{15}
\end{aligned}
$$

20. Un mol d'un gas ideal monoatümic amb un volum inicial de $v_{1}=25 \ell$ segueix el cicle indicat a la figua. Tots el processos són quasiestãtics.
a. A la teuperatura a cada estat del cicle.
b. La calor absorvida o cedida a cada etapa.
c. El rendiment del cicle.
a.

$$
\begin{aligned}
& P V=n R T \Longrightarrow T=\frac{P V}{n R} \\
& T_{1}=\frac{100 \cdot 25}{8 \cdot 314}=300^{\prime} 7=301 \mathrm{~K} \\
& T_{2}=\frac{200 \cdot 25}{81314}=6014 \mathrm{~K} F 601 \mathrm{k} \\
& T_{3}=\frac{10050}{8314}=6014 \mathrm{~K} F^{601 \mathrm{~K}}
\end{aligned}
$$

b. 12

$$
Q=n \cdot c v \cdot \Delta t=1 \cdot 3 / 2 \cdot 81314(601-301)=3741^{\prime} 31=3174 k y
$$

23 .

$$
Q=W=n \cdot R \cdot T \cdot \ln \left(V_{2} / V_{1}\right)=x \cdot 8314 \cdot 601 \cdot \ln (50 / 25)=3463 \cdot 45 y=3146 \mathrm{Ky}
$$

(31)

$$
\begin{aligned}
& Q=n \cdot Q_{0} \cdot \Delta T=1 \cdot \$ / 2 \cdot 8^{\prime} 314 \cdot(301-601)=-623515 y=-6 \cdot 24 \mathrm{ky} \\
& \text { c. } R=1-\frac{Q_{C}}{Q 4}=1-\frac{5^{\prime} 24}{3^{\prime 24+3^{\prime} 46}}=1-\frac{6^{\prime 24}}{2^{\prime 2}}=0.134
\end{aligned}
$$

21. Un mol de gas idaal, increment a $100^{\circ} \mathrm{C}$, deseriu el següent cicle reversible: expansió isométrica fins a un volum doble de l'inicial, expensió adiabätica fins a un volum triple de l'inicial, coupressió isoterma i, compressió adiabätica fins a lestat inicial. la calor molar del gas a volum constant és igual a 5/2 R. Calculeu la calor i el treball intercanviant Calculeu taubé la variació de l'energia interma.

23

$$
\begin{aligned}
T_{2} V_{2}^{14-1} & =T_{3} V_{3}^{\prime 14-1} \longrightarrow T_{2}\left(2 V_{1}\right)^{014}=T_{3}\left(3 V_{1}\right)^{0^{14}} \rightarrow \frac{T_{2}}{T_{3}}=\left(\frac{3 V_{1}}{2 y_{1}}\right)^{0^{44}} \\
& \frac{373}{T_{3}}=\left(\frac{3}{2}\right)^{0^{\prime 4}}=1^{\prime} 18 \longrightarrow T_{3}=\frac{373}{118} \longrightarrow T_{3}=316^{\prime} / \mathrm{K}
\end{aligned}
$$

14

$$
\begin{array}{r}
\frac{T_{1}}{T_{4}}=\left(\frac{V_{4}}{V_{1}}\right)^{04} \rightarrow \frac{373}{316^{\prime} 1}=\left(\frac{V_{4}}{V_{1}}\right)^{0.4} \rightarrow \frac{v_{4}}{v_{1}}=\left(\frac{373}{3161)^{1 / 14}}=1152\right. \\
\frac{1}{v_{4}=v_{1}-152}
\end{array}
$$

$$
\begin{aligned}
& R=8^{\prime} 31 \mathrm{k} / \mathrm{Kcal}=0^{\prime} 082 \mathrm{~atm} \cdot l / \mathrm{Kcal} \\
& \Delta q=\Delta u+\Delta w \rightarrow \Delta u=n \cdot c u \cdot \Delta T \\
& \Delta w_{12}=n R \cdot \ln \left(\frac{v_{2}}{v_{1}}\right)=1 \cdot 0 \cdot 082 \cdot 373 \ln (2)=21^{\prime} 2 \\
& \quad 2^{\prime} 15 \mathrm{~kJ} \longrightarrow \Delta q=\Delta w
\end{aligned}
$$

$$
\begin{aligned}
& \Delta u 23=n \cdot C v \cdot \Delta T=1 \cdot 5 / 2 \cdot R(31611-373)=-1^{\prime} 16 \mathrm{~kJ}=\Delta u \rightarrow \Delta w=\Delta u \\
& \Delta w_{34}=n \cdot R \cdot T \cdot \ln \left(\frac{V 4}{\sqrt{3}}\right)=1 \cdot 831 \cdot 3161 \cdot \ln \left(\frac{1152}{3}\right)=1^{\prime} 75 \mathrm{~kJ}
\end{aligned}
$$

$$
\Delta u=n \cdot C v \cdot \Delta t=\lambda \frac{5}{2} \cdot R\left(375-316^{\prime} 1\right)=116 \mathrm{~kJ} .
$$

1	1	2	3	4
Δa	2115	0	-175	0
Δu	0	-116	0	116
Δw	$2 \prime 15$	116	-1775	-116

22. En un cilindre de motor tèrmic tenim un litre d'un gas diatōmic a una pressió, p. de 5 atm i temperatura, T_{1} de 300 K . S'expandeix adiabäticament fins a una pressió, p_{2}, de 1 atm. Després, es comprimeix a pressió constant fins que el seu volum és el mateix que a l'ininal.
a. Determinen la pressió, el volue i a temperatura al final de cos tres transformacions irepresenteu el diagama PV.
b. Calculeu el treball i el calor bescanviant en cada transformaio.
c. Calculeu el rendiment del cicle i d'un cicle de Carnot que treballi en el mateix interial de tempeatures.
a.

$$
\begin{array}{ll}
p_{1}=5 \mathrm{~atm} & p_{2}=1 \mathrm{~atm} \\
T_{1}=300 \mathrm{k} & p_{3}=12 \mathrm{tm} \\
v_{1}=11 & v_{3}=11
\end{array}
$$

$$
P_{1} v_{1}^{\gamma}=P_{2} v_{2} \gamma \rightarrow \frac{P_{1}}{P_{2}}=\left(\frac{v_{2}}{v_{1}}\right)^{\gamma} \rightarrow 5=\left(v_{2} /\right)^{7 / 5} \rightarrow 5^{\gamma / 15}=v_{2}
$$

$$
T_{1} V_{1}^{5-1}=T_{2} \cdot V_{2}^{\gamma-1} \rightarrow 3001=T_{2} \cdot 3^{\prime} 15^{2 / 5} \longrightarrow I_{2}=18915 \mathrm{~K}
$$

$$
\frac{P_{2} \cdot V_{2}}{T_{2}}=\frac{P_{3} \cdot V_{3}}{T_{3}} \rightarrow \frac{315}{18915}=\frac{1}{T_{3}} \rightarrow T_{3}=6015 \mathrm{~K}
$$

$$
n=\frac{P N}{R T}=\frac{5 \cdot 1}{8 \cdot 31 \cdot 300}=\underline{10002}
$$

b. 12

$$
Q=0 \sin \cdot 1 \text {, }=-n \cdot c v \cdot \Delta T=-0002 \cdot 5 / 28^{\prime} 13 \cdot(18915-300)=4.5 \operatorname{atm}
$$

23

$$
\begin{aligned}
& \text { WI }=p \Delta U=f\left(1-3^{\prime} 15\right)=-2 y^{\prime} 15 a m^{L} L \\
& Q=n \cdot c p \Delta T=0,002 \cdot 7 / 2 \cdot 8^{\prime} 13\left(60^{\prime} 15-189^{\prime} 5\right)=-736 a k m L
\end{aligned}
$$

131

$$
\text { Qu=0atm } D Q=n^{\prime} \cdot \cdot \cdot \Delta T=0^{\prime} 002 \cdot 5 / 2 \cdot 8^{\prime} 13\left(300-60^{\prime} 15\right)=19175 \text { atm }
$$

$$
\text { c. } \begin{aligned}
& R=1-\frac{6015}{300}=0^{\prime} 799=79.9 \% \simeq 80 \% \\
& R=\frac{W}{q_{H}}=\frac{415-2^{\prime 15}}{9^{\prime 75}}=0.241=24^{\prime 1}
\end{aligned}
$$

23. Un gas idal $(t=1 \prime 4)$ segeeix el cide de la figua. La temperatura inicial, t_{1}, és de 200 K . Calculeu:
a. Les teuperatunes de la resta d'estats del cicle
b. El rendiment del cicle.

$$
\begin{aligned}
& \gamma=14 \cdot / T_{1}=200 \mathrm{~K} \\
& P V=n \cdot R \cdot T \rightarrow n=\frac{P V}{R T}=\frac{1 \cdot 100}{0.082 \cdot 200}=6.097 \mathrm{mols}
\end{aligned}
$$

a.

$$
\begin{aligned}
& T_{2}=\frac{P V}{n \cdot R}=\frac{3.100}{0.082 \cdot 6097}=I_{2} \\
& T_{3}=\frac{3.300}{0.082 .6097}=1800 \mathrm{~K} \\
& T_{4}=\frac{1300}{00826097}=600 \mathrm{~K}
\end{aligned}
$$

c. 12 ucte
$\omega=0 / Q=6097 \cdot 3 / 28^{\prime} / 3(600-200)=2971^{\prime} 166$
23
$w=3(1800-600)=3600 / Q=61097 \cdot 5 / 2 \cdot 8^{\prime} 13(1800-600)=148705183$
34
$W=0 / Q=6.097 \cdot 3 / 28^{\prime} 13(600-1800)=-892231498$
41
$W=1(200-600)=-400 / Q=6^{\prime} 097 \cdot 5 / 2 \cdot 8^{\prime} 13(200-600)=-4956861$
$R=\frac{3600-400}{20779.22078}=10154$
24. una méquira faque un mol d'un oas ideal monoatömic seguelxi el cicle de a figura, amb $p_{1}=5 \cdot 10^{6} \mathrm{~Pa}, p_{3}=f \cdot 10^{6} \mathrm{~Pa} ; t_{1}=550 \mathrm{~K}$. Trobeu:
a. Es volums als estats $1,2 i 3, i$ a temperatura a l'estat 3 .
b. El'treball, la anació d'energia interna; la calor absorvida/cedida
a cada etapa.
c. Quin és el rendiment del cicle.
$n=1 \quad p_{1}=510^{6} \quad p_{3}=110^{6}$

$$
T_{1}=550 \mathrm{~K}
$$

a.
a.

$$
\begin{aligned}
& \dot{D}_{1} V_{1}=R \cdot T_{1}-V_{1}=\frac{n \cdot R_{1} \cdot T_{1}}{P_{1}}=\frac{19149}{P_{3}}=\left(\frac{V_{3}}{V_{1}}\right)^{r} \longrightarrow \frac{5 \cdot 10^{6}}{1 \cdot 10^{0}}=\left(\frac{V_{3}}{0^{\prime} 914}\right)^{5 / 3}=V^{3 / 5} \cdot 0^{\prime} 914=V^{14 /=V_{2}} \\
& \frac{P_{1}}{}
\end{aligned}
$$

b. $P_{3} \cdot V_{3}=n \cdot R T_{3} \rightarrow T_{3}=\frac{10^{6} \cdot 240 \cdot 10^{3}}{8 / 314}=288 \cdot 7 \mathrm{~K}$
$P_{1} N_{1}=P_{2} N_{2} \longrightarrow P_{2}=\frac{5.10601914}{214}=1910^{6} P_{2}$
122
$Q=Q=n+\ln \left(\frac{v_{2}}{v_{1}}\right)=1.8314 \cdot 550\left(\frac{214}{0^{\prime 9114}}\right)=41414 k J$

23
$w=0 k y$

$$
\begin{aligned}
& Q=n \cdot c v \cdot \Delta T=\lambda 3 / 2 \cdot 8^{\prime} 314\left(288^{\prime} 7-550\right)=-3 \cdot 26 \mathrm{KJ} \\
& \Delta U=-3 \cdot 26 \mathrm{KJ}
\end{aligned}
$$

31

$$
Q=0 K S
$$

WI-nCv:DT $=-1 \cdot 3 / 2 \cdot 8 \cdot 314\left(550-288^{\prime} 7\right)=-3 / 26 k 3$
$A C=3126 k^{-3}$
c. $\eta=\frac{u}{q 4}=\frac{41414.3126}{4.414}=2614 \%$
25. Un mol d'un gas ideal monoatömic segueix el cicle de la figura, El procés 3-1 és isomẽtric.
a. Trobeu el volum al punt 3 .
b. Calculeu el treball, a vanació interm; a calor absorvida a cada etapa.
c. Determineu el rendiment del cicle.

$$
\frac{P_{1}}{P_{3}}=\left(\frac{V_{3}}{V_{1}}\right)^{\gamma} \rightarrow \frac{4}{1}=\left(\frac{V_{3}}{1}\right)^{5 / 3} \rightarrow \frac{V_{3}=4 \mathrm{~m}^{3}}{} \begin{aligned}
& T_{1}=48.78 \mathrm{~K} \\
& T_{2}=195.122 \mathrm{~K} \\
& T_{3}=48.78 \mathrm{~K}
\end{aligned}
$$

b. $12 \quad p=c t e$.

$$
\begin{aligned}
& \text { Q: }=c_{p} \Delta T=1 \cdot 5 / 2 \cdot 0082\left(195^{\prime} 122-48^{\prime} 78\right)=30 k y \\
& Q=p \Delta V=4(4-1)=12 K B / \Delta U=18 K 7
\end{aligned}
$$

(23 $v=c t e$.

$$
\begin{aligned}
& W=0 k 7 / Q=n C V \cdot \Delta T=1.3 / 20.082\left(48^{\prime} 78-195122\right)=-8 k J \\
& D U=-18 k J
\end{aligned}
$$

31

$$
Q=\omega=R \cdot \ln \left(\frac{V_{1}}{V_{3}}\right)=1 \cdot 0082 \cdot 48^{\prime} 78 \ln (1 / 4)=-5154 \mathrm{ky}
$$

c. $R=\frac{W}{Q}=\frac{12-5154}{30}=0.215=215 \%$
26. Dos mols d'un gas ideal diatömic s'utilitzen en una mäquina tèrmica que segueix el seguent cicle: partint d'an estat inicial a pressio's i volum 10e pateix una evolució isobãnca fins a duplicar el volum inicial; a continuació, un isoterma el porta a un volum de 30l, aleshones, seguint una isocörica es desminevix la pressió fins una quart estat, aquest estat és bl que una adiabàtica pot torrar el cas al sen estat inicial.
a. Determineu la pressió, el volum; a temperatua al final de les transformacions i representeu el diagama PV.
b. Calculeu el rendiment del cicle i d'un cicle de Carnot que treballi en el mateix internal de teuperatures.

$$
\begin{array}{llll}
n=2 & p_{0}=5 a t m & p_{1}=52 t \mathrm{~m} & p_{3}=?
\end{array} \quad p_{u}-1 / 4
$$

a. $P V=n \cdot T \rightarrow 5 \cdot 10=2.0 .082 T \rightarrow T 0=30487 \mathrm{~K}$
$5 \cdot 20=2 \cdot 0.082 T_{2} \longrightarrow T_{2}=60975 K=13$
$P_{3} .30=2.0 .082 .609^{\prime} 75 \longrightarrow P_{3}=3.3327 \mathrm{~m}$
$\left(\frac{P_{1}}{F_{4}}\right)=\left(\frac{V_{4}}{V_{1}}\right)^{7 / 5} \rightarrow \frac{5}{P_{4}}=\left(\frac{30}{10}\right)^{7 / 5}$
$\square 5 / P_{u}=4^{\prime} 655536722 \rightarrow P_{4}=f^{\prime} 074 a+m$
$P_{4} V_{4}=n \cdot R \cdot T_{4} \rightarrow 1074 \cdot 30=20082 T 4 \longrightarrow T_{4}=196 \mathrm{~K}$
[12] $Q=$ ncv: $\Delta T=2 \cdot 5 / 2 \cdot 0,083 \cdot\left(609^{\prime} 75-304^{\prime} 87\right)=126 \cdot 52 \operatorname{stm} L / W=5(20-10)=50$ atm L 23. $\left.Q=w=n \cdot R T \ln \left(V_{3} / 22\right)=2 \cdot 0.082609175\right) \cdot \ln (30 / 20)=40 \cdot 55 \operatorname{atm} \cdot L$ (34) $W=0$ atm.L $Q=n \cdot C_{V} \cdot \Delta T=2 \cdot 512 \cdot 0.082(196-609175)=-164.64 \mathrm{~atm} \cdot L$ (41) $Q=02+m / \omega=-n C V \Delta T=-2.5 / 20.082(304187-196)=-44^{\prime} 64 a t m \cdot L$ c. $R=\frac{50+40^{\prime} 55-4464}{126^{\prime} 52+40^{\prime} 55}=0^{\prime} 214=21^{\prime} 4 / 2=1-\frac{196}{60975}=0^{\prime} 678=67^{\prime} 82$
27. cont mols d'un gas ideal diatömic segueixen el següent cide: partint d'un estat inicial a pressió, p_{11} 3atm: tempentura, T_{1}, sook s'expandeix isotèrmicament fias assolir una pressió, p_{2}, latm; despres es coceprimeix a pressió constant fins un tercer estat, des del qual es pot fer una coupressió adiabãtica que torra el gas al sen estat inicial.
a. Determineu la prossió, el volum i a temperatua al final de les transformacions i represonten el diagrama PV.
b. Calculeu el rendiment de cicle: d'un cicle carnot que treballi en el mateix interval de temperatures

$n=100$	p_{0}	$=3 \mathrm{~atm}$	$p_{2}=\lambda \mathrm{atm}$
T_{0}	$=500 \mathrm{~K}$	$T_{2}=500 \mathrm{~K}$	$p_{3}=1 \mathrm{~atm}$
	$T_{3}=?$		

a. $3 \cdot V=100 \cdot 0.082 .500 \rightarrow V_{0}=1367 \lambda$
$\lambda \cdot V=100 \cdot 0.082 .500 \quad V_{2}=41000$
$\frac{3}{J}=\left(\frac{V_{3}}{1367}\right)^{8: 2 / 5} \rightarrow 3=\left(\frac{V_{3}}{1367}\right)^{7 / 5} \rightarrow V_{3}=29981$ $P V=n R \cdot T \longrightarrow 12998=100 \cdot 0082 \pi \longrightarrow T T_{3}=13656 \mathrm{~K}$
b. $\eta=1-\frac{365}{500}=0^{\prime} 27=27 \%$

12

$$
\begin{aligned}
& Q=\omega=100 \cdot 0.082 \cdot 500 \ln (4100 / 1367)=4503^{\prime} 31 \\
& \text { (23) } \omega=1(2998-4100)=-1102 \\
& Q=100^{7 / 2} 0^{\prime} 082\left(365^{\prime} 6-500\right)=-3857^{\prime} 28 \\
& \text { (31) } \omega=0 / Q=1005 / 2 \cdot 0^{\prime} 082(500-36516)=2755^{\prime} 2 \\
& R=\frac{4503.31-1102}{2345731}=0.1421142 \%
\end{aligned}
$$

28. Una mäquina té com a fuid de treball una certa quantitat d'un oas monoatómic. Inicialment, a pressió de 0^{\prime} bstm, la sen teuperatur és de $-10^{\circ} \mathrm{C}$ i el gas ocupa un volum de 0^{\prime} se. Una transformació isoterma el porta a un volum de $0^{\prime} 3 l$. Després augmenta la sela pressio' tot mantenint el volum constant, i finalment una transformació adiabätica el torma a liestat inicial.
a. Determineu la pressió, el volum i b tempeatura al final de es transformacions i representeu el diagaua PV.
b. El treball, la nñació d'enerfia interna i la cabr edida a cada etapa
c. Calculeu el rendiment del cicle i d'un cicle carnot que treballi en el mateix intenal de tempenatures.

$$
\begin{array}{lll}
p_{0}=0^{\prime} 6 \text { Stm } & p_{2}=? & P_{3}=2 \\
T_{0}=-10^{\circ} \mathrm{C}=263 \mathrm{~K} & T_{2}=263 \mathrm{~K} & T_{3}=? \\
V_{0}=0^{\prime} \mathrm{Se} & V_{2}=03 \mathrm{l} & V_{3}=0.3 \mathrm{l}
\end{array}
$$

b. p (alm)

112
$Q=W \cap R \cdot \ln \left(V_{2} / V_{1}\right)=0,014 \cdot 0,083 \cdot 263 \cdot \ln \left(0^{\prime} / 015\right) \sqrt{-0^{\prime} / 56 \operatorname{atm} \cdot L}$
$40=\cos \tan$
23
$\omega=0 \operatorname{atm} L D=n \cdot v \cdot \Delta T=0^{\prime} 014{ }^{3} / 2 \cdot 0,083 \cdot(368-263)=0 \cdot 183 \mathrm{~atm}$
$\Delta u=0: 183$ atm C
31
$Q=0 \operatorname{tmL} \mathrm{U}=-\mathrm{n} \cdot \mathrm{Cv} \Delta T=-0.0143 / 2 \cdot 083(263-368)=0183$ atmL
$\Delta u=-0183$ atm.
c. $R=\frac{0^{\prime} 83-0^{\prime} 156}{0.183}=0^{\prime} 147=15 \%$

$$
\eta=1-\frac{263}{368}=0.285=2815 \%
$$

[^0]: $I=19200 \mathrm{cal} \cdot \mathrm{m}^{-2} \cdot h^{-1}$

