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a b s t r a c t 

Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest 

of the research community for a long time as morphological changes in these structures are related to 

different neurodegenerative disorders. However, manual segmentation of these structures can be tedious 

and prone to variability, highlighting the need for robust automated segmentation methods. In this pa- 

per, we present a novel convolutional neural network based approach for accurate segmentation of the 

sub-cortical brain structures that combines both convolutional and prior spatial features for improving 

the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose 

to train the network using a restricted sample selection to force the network to learn the most difficult 

parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 

challenge and IBSR 18 datasets, comparing it with different traditional and deep learning state-of-the- 

art methods. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to 

the best participant strategy on the challenge, while performing significantly better than state-of-the-art 

techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant 

increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better 

results than other recent deep learning approaches. Moreover, our experiments show that both the addi- 

tion of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of 

the proposed method. In order to encourage the reproducibility and the use of the proposed method, a 

public version of our approach is available to download for the neuroimaging community. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Brain structure segmentation in Magnetic Resonance Images

MRI) is one of the major interests in medical practice due to its

arious applications, including pre-operative evaluation and surgi-

al planning, radiotherapy treatment planning, longitudinal mon-

toring for disease progression or remission ( Kikinis et al., 1996;

hillips et al., 2015; Pitiot et al., 2004 ), etc. The sub-cortical

tructures (i.e. thalamus, caudate, putamen, pallidum, hippocam-

us, amygdala, and accumbens) have attracted the interest of the
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esearch community for a long time, since their morphological

hanges are frequently associated with psychiatric and neurode-

enerative disorders and could be used as biomarkers of some dis-

ases ( Debernard et al., 2015; Mak et al., 2014 ). Therefore, segmen-

ation of sub-cortical brain structures in MRI for quantitative anal-

sis has a major clinical application. However, manual segmenta-

ion of MRI is extremely time consuming and hardly reproducible

ue to inter- and intra- variability among operators, highlighting

he need for automated accurate segmentation methods. 

Recently, González-Villà et al. (2016) , reviewed different ap-

roaches for brain structure segmentation in MRI. One of the com-

only used automatic brain structure segmentation tools in medi-

al practice is FreeSurfer, 2 which uses non-linear registration and

n atlas-based segmentation approach ( Fischl et al., 2002 ). An-

ther classical approach, also popular in the medical community,
2 https://surfer.nmr.mgh.harvard.edu/ . 
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4 https://masi.vuse.vanderbilt.edu/workshop2012 . 
5 
is the method proposed by Patenaude et al. (2011) – FIRST, which

is included into the publicly available software FSL. 3 This method

uses the principles of Active Shape ( Cootes et al., 1995 ) and Ac-

tive Appearance Models ( Cootes et al., 2001 ) that are put within a

Bayesian framework, allowing to use the probabilistic relationship

between shape and intensity to its full extent. 

In recent years, deep learning methods, in particular, Convolu-

tional Neural Networks (CNN), have demonstrated a state-of-the-

art performance in many computer vision tasks such as visual ob-

ject detection, classification and segmentation ( Krizhevsky et al.,

2012; He et al., 2016; Szegedy et al., 2015; Girshick et al., 2014 ).

Unlike handcrafted features, CNN methods learn from observed

data ( LeCun et al., 1998 ) making relevant features to a specific task.

Naturally, CNNs are also becoming a popular technique applied in

medical image analysis. There have been many advances in the

application of deep learning in medical imaging such as expert-

level performance in skin cancer classification ( Esteva et al., 2017 ),

high rate detecting cancer metastases ( Liu et al., 2017 ), Alzheimer’s

disease classification ( Sarraf and Tofighi, 2016 ), and spotting early

signs of autism ( Hazlett et al., 2017 ). 

Some CNN methods have also been proposed for brain struc-

ture segmentation. One of the common ways used in the literature

is patch-based segmentation, where patches of a certain size are

extracted around each voxel and classified using a CNN. Applica-

tion of 2D, 3D, 2.5D patches (patches from the three orthogonal

views of an MRI volume) and their combinations including multi-

scale patches can be found in the literature for brain structure seg-

mentation ( Brébisson and Montana, 2015; Bao and Chung, 2016;

Milletari, 2017; Mehta et al., 2017 ). Combining patches of differ-

ent views and dimensions is done in a multi-path manner, where

CNNs consist of different branches corresponding to each patch

type, i.e. parallel interconnected processing modules analyze each

of the inputs. In contrast to patch-based CNNs, fully convolutional

neural networks (FCNN) produce segmentation for a neighborhood

of an input patch ( Long et al., 2015 ). Shakeri et al. (2016) adapted

the work of Chen et al. (2016) for semantic segmentation of natu-

ral images using FCNN. Moreover, 3D FCNNs, which segment a 3D

neighborhood of an input patch at once, have been investigated

by Dolz et al. (2018) and Wachinger et al. (2018) . Although FCNNs

show improvement in segmentation speed due to parallel segmen-

tation of several voxels, they suffer from a high number of param-

eters in the network in comparison with patch-based CNNs. 

It is common to apply post-processing methods to refine

the final segmentation output. Inference of CNN-priors and sta-

tistical models such as Markov Random Fields and Conditional

Random Fields ( Lafferty et al., 2001 ) were used in the experi-

ments of Brébisson and Montana (2015) , Shakeri et al. (2016) ,

and Wachinger et al. (2018) . A modified Random Walker based

segmentation refinement has been also proposed by Bao and

Chung (2016) . 

Apart from implicit information that is provided by the ex-

tracted patches from MRI volumes, explicit characteristics dis-

tinguishing spatial consistency have been studied. Brébisson and

Montana (2015) included distances to centroids to their networks.

Wachinger et al. (2018) used the Euclidean and spectral coordi-

nates computed from eigenfunctions of a Laplace-Beltrami opera-

tor of a solid 3D brain mask, to provide a distinctive perception of

spatial location for every voxel. These kinds of features provide ad-

ditional spatial information, however, extracting these explicit fea-

tures from an unannotated MRI volume requires some preliminary

operations to be attended (e.g. repetitive training of the network

to compute initial segmentation mask). 

From the reviewed literature, we have observed that most of

the current deep learning approaches for sub-cortical brain struc-
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 
ure segmentation focus on segmenting only the large sub-cortical

tructures (thalamus, caudate, putamen, pallidum). However, other

mportant small structures (i.e. hippocampus, amygdala, accum-

ens), which are used for examining neurological disorders such

s schizophrenia ( Altshuler et al., 1998; Lawrie et al., 2003 ), anxi-

ty disorder ( Milham et al., 2005 ), bipolar disorder ( Altshuler et al.,

998 ), Alzheimer ( Fox et al., 1996 ), etc., are not considered. These

mall structures have smaller volume – hence, lower number of

amples – compared to the other larger structures, which hinders

raining deep learning strategies and makes the segmentation task

ore challenging. In this paper, we present our approach for seg-

enting the sub-cortical structures: a new 2.5D CNN architecture

i.e., the three orthogonal views of a 3D volume – that incor-

orates probabilistic atlases as spatial features. Although proba-

ilistic atlases have been used before in deep learning methods

 Ghafoorian et al., 2017 ), they have never been applied for seg-

enting the sub-cortical brain structures. Within our research, un-

ike most of the existing deep learning approaches, we address

egmenting all the sub-cortical structures, including the smallest

nes. To the best of our knowledge, this is the first deep learn-

ng method incorporating atlas probabilities into a CNN for sub-

ortical brain structure segmentation. Moreover, we propose a par-

icular sample selection technique, which allows the neural net-

ork to learn to segment the most difficult areas of the struc-

ures in the images, and also show its importance in achieving

igher accuracy. We test the proposed strategy in two well-known

atasets: MICCAI 2012 4 ( Landman and Warfield, 2012 ) and IBSR

8 5 ; and compare our results with the classical and recent CNN

trategies for brain structure segmentation. Additionally, we make

ur method publicly available for the community, accessible online

t https://github.com/NIC- VICOROB/sub- cortical _ segmentation . 

. Method 

.1. Input features 

In our method, we employ 2.5D patches to incorporate informa-

ion from three orthogonal views of a 3D volume. In our case, each

atch has a size of 32 × 32 pixels. Although 3D patches may pro-

ide more information of surroundings for the voxel that is being

lassified, they are computationally and memory expensive. Thus,

y using 2.5D patches, we approximate the information that is pro-

ided by a 3D patch in computational time and memory efficient

anner. 

Along with the appearance based features provided by the T1-

 MRI, we employ spatial features extracted from a structural

robabilistic atlas. In our experiments, we used the well-known

arvard–Oxford ( Caviness et al., 1996 ) atlas template in MNI152

pace distributed with the FSL package, 6 which has been built

sing 47 young adult healthy brains. In our method, first, T1-w

mage of the MNI152 template is affine registered to T1-w im-

ge of the considered datasets using a block matching approach

 Ourselin et al., 20 0 0 ). Then, non-linear registration of the atlas

emplate to subject volume is applied using fast free-form defor-

ation method ( Modat et al., 2010 ). The deformation field ob-

ained after the registration is used to move the probabilistic atlas

nto the subject space. Registration processes have been carried out

sing the well known and publicly available tool NiftyReg. 7 After-

ards, vectors of size 15, corresponding to seven anatomical struc-

ures with left and right parts separately and background, were
https://www.nitrc.org/projects/ibsr . 
6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 
7 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg . 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://github.com/NIC-VICOROB/sub-cortical_segmentation
https://masi.vuse.vanderbilt.edu/workshop2012
https://www.nitrc.org/projects/ibsr
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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Fig. 1. The proposed 2.5D CNN architecture has three convolutional branches and a 

branch for spatial prior. 2D patches of size 32 × 32 pixels are extracted from three 

orthogonal views of a 3D volume. Spatial prior branch accepts a vector of size 15 

with atlas probabilities for each of the 14 structures and background. 
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xtracted from probabilistic atlas for every voxel and used as an

nput feature to train the network. 

.2. CNN architecture 

Fig. 1 illustrates our proposed CNN architecture. It consists of

hree branches to process the patches extracted from axial, coronal,

nd sagittal views of a 3D volume, and one branch corresponding

o the spatial priors. The branch for the spatial prior accepts a vec-

or of size 15 with atlas probabilities for each structure and the

ackground. The first three branches have the same organization

f convolutional and max-pooling layers as shown in Fig. 1 (B). All

he feature maps of the convolutional layers are passed through

he Rectified Linear Unit (ReLU) activation function ( Glorot et al.,

011 ). For all the convolutional layers, kernels of size 3 × 3 are set

o make the CNN deep without losing in performance and bursting

he number of parameters as it has been studied in Simonyan and

isserman (2014) . Then, the outputs of the convolutional layers

re flattened and followed by fully connected (FC) layers with 180

nits each. Next, FC layers of each branch including atlas proba-
ig. 2. Negative sample selection from the boundaries of the target structures. (a) T1-w im

d) ground truth labels with boundaries. 
ilities are fully connected to two consecutive FC layers with 540

nd 270 units. The final classification layer has 15 units with the

oftmax activation function. 

The atlas probabilities provide the network with spatial infor-

ation, i.e. likelihood of an input patch belonging to one of the

4 classes or background. This information can be added either as

dditional input sequences (i.e. as additional channels to T1-w im-

ge patches) or later in the fully connected layers. However, when

orking with a high number of classes, the former way of atlas in-

orporation becomes impractical in terms of training/testing time

ue to an increase in number of trainable parameters of the net-

ork as well as a vast increase in memory usage. Accordingly, we

se the latter approach, where we provide a vector of size 15 with

ach element corresponding to the central pixel’s probability of be-

onging to one of the classes, which is fused with the output of the

rst fully connected layer after the convolutional part of the net-

ork. 

.3. CNN training 

For training our network, we extract 2.5D patches from the

raining set and using the provided ground truth labels we opti-

ize the kernel and fully connected layer unit weights based on

he loss function. In the proposed network we employ the cate-

orical cross-entropy loss function, which is minimized using the

dam ( Kingma and Ba, 2014 ) optimization method. This technique

utomatically controls the learning rate and uses moving averages

f the parameters, which allows the step size to be effectively large

nd converges to optimal step size without tuning it manually. 

When training a CNN, it is important to take into account how

he training samples are extracted from an image. Random selec-

ion of certain number of samples from an image is one of the

ommon techniques in the literature. However, when it comes to

he segmentation of the sub-cortical structures, the background

negative) samples turn out to be dispersed in the subject volume.

ence, it would lead to imperfect segmentation results on the bor-

ers of the structures, which are the most delicate areas to process

ue to the low contrast between the structure and the background.

herefore, we propose to extract the negative samples only from

he structure boundaries as shown in Fig. 2. In doing so, we force

he network to learn only from the structure boundaries and dis-

iss other parts of the background. 

The training sample selection is performed as follows: from all

he available training images, we first select the positive samples

rom all the voxels from the 14 sub-cortical structures. Then, the

ame number of negative samples are randomly selected from the

tructure boundaries within five voxel distance, forming a balanced

ataset of sub-cortical and boundary voxels. More details about
age with a rectangle representing the ROI; (b) T1-w ROI; (c) structure boundaries; 
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(a) (b)

Fig. 3. Two different exam ples of segmentation outputs without using ROI before 

post-processing. Columns: a) T1-w image and segmentation result; b) Segmentation 

output on solid background for better visualization of spurious outputs. ROIs are 

delineated in white. 
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8 https://www.python.org/ . 
9 http://lasagne.readthedocs.io . 

10 http://deeplearning.net/software/theano/ . 
11 https://github.com/NIC- VICOROB/sub- cortical _ segmentation . 
12 https://masi.vuse.vanderbilt.edu/workshop2012 . 
13 https://www.nitrc.org/projects/ibsr . 
batch size and number of epochs of the training process for the

selected datasets will be given in Section 3 . 

2.4. CNN testing 

To perform the segmentation of a new image volume, we ex-

tract all the patches from the image and predict class label proba-

bilities using the trained CNN. Then, we assign a label correspond-

ing to the maximum a posteriori probability for the central pixel

of each input patch. Notice that knowing the order of the patch

extraction is important to be able to reconstruct the final seg-

mentation output. We also take advantage of the location of the

sub-cortical structures, which are located in the central part of the

brain. Due to the knowledge provided by the atlases, regions of in-

terest (ROI) are automatically defined for all the subject volumes

to achieve faster training and testing speeds. 

Since the network has been trained with the negative samples

extracted only from the structure boundaries, it produces spuri-

ous outputs in unseen areas of the background when segment-

ing a testing volume. In order to overcome this issue, we apply

a post-processing step, where for each class only the region with

the biggest volume within the ROI is preserved. For such post-

processing, it is important to make sure that the volume and lo-

cation of the misclassified regions are not larger than the volumes

of any of the structures nor adjacent to the structure boundaries.

When segmenting a new image, we send only ROI as an input to

the network. In doing so, we ensure that the misclassified voxels

have small size, as most of the input patches correspond to the

sub-cortical area. Moreover, since the network is well trained to

classify the boundaries of the structures, there will be no misclas-

sified voxels adjacent to the structure boundaries. Fig. 3 illustrates

examples, when all the patches were set as input to the network.

As it can be observed, the background is well defined around the

structure borders, and most of the spurious outputs appear outside

the ROI. 
.5. Implementation and technical details 

The proposed method has been implemented in the Python

anguage, 8 using Lasagne 9 and Theano 10 ( Bergstra et al., 2011 ) li-

raries. All experiments have been run on a GNU/Linux machine

ox running Ubuntu 16.04, with 32 GB RAM memory. CNN train-

ng has been carried out on a single TITAN-X GPU (NVIDIA corp,

nited States) with 12 GB RAM memory. The proposed method is

urrently available for downloading at our research website. 11 

. Results 

This section presents the results obtained by the proposed

ethod on two datasets. The first dataset is the one provided

n the MICCAI Multi-Atlas Labeling challenge 12 ( Landman and

arfield, 2012 ) and the second is a publicly available dataset

rom the Internet Brain Segmentation Repository 13 (IBSR). Details

f these datasets and the corresponding results will be given in

ections 3.2 and 3.3 respectively. 

.1. Evaluation measures 

For evaluating the proposed method, we selected two metrics

hat are commonly used in the literature. These are overlap and

patial distance-based metrics, which show similarity and discrep-

ncy of automatic and manual segmentations. The first measure-

ent is Dice Similarity Coefficient (DSC) ( Dice, 1945 ) defined as

he following for automatic segmentation A and manual segmen-

ation B : 

SC(A, B ) = 

2 | A ∩ B | 
| A | + | B | . (1)

SC measures the overlap of the segmentation with the ground

ruth on a scale between 0 and 1, where the former shows no over-

ap and the latter represents 100% overlap with the ground truth. 

For the spatial distance based metric, Hausdorff Distance (HD)

s used in our experiments. This metric is defined as a function of

he Euclidean distances between the voxels of A and B as: 

D (A, B ) = max (h (A, B ) , h (B, A )) , 
h (A, B ) = max a ∈ A min b∈ B || a − b|| . (2)

n other words, HD is the maximum distance from all the mini-

um distances between boundaries of segmentation and bound-

ries of the ground truth. 

Similarly to Wachinger et al. (2018) , we used Wilcoxon signed-

ank test to test the statistical significance of: 1) the differences in

SC and HD between our and state-of-the-art methods; and 2) the

ffect of using spatial features and the proposed sample selection

echnique. 

.2. MICCAI 2012 dataset 

This dataset consists of 35 T1-w MRI volumes split into 15

ases for training and 20 cases for testing. Manually segmented

round truth for each image is available as well, which contains

34 structures overall. In our experiments, we extracted 14 classes

orresponding to seven sub-cortical structures with left and right

arts separately. All the subject volumes have even voxel spacing

f 1 mm 

3 with a size of 256 × 256 × 256 voxels in axial, sagittal,

nd coronal views respectively. 

https://www.python.org/
http://lasagne.readthedocs.io
http://deeplearning.net/software/theano/
https://github.com/NIC-VICOROB/sub-cortical_segmentation
https://masi.vuse.vanderbilt.edu/workshop2012
https://www.nitrc.org/projects/ibsr
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Table 1 

MICCAI 2012 dataset results. Mean DSC ± standard deviation and HD ± standard deviation values for each structure obtained using FreeSurfer, FIRST, PICSL, and our method. 

Structure acronyms are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum 

(Pal.L), right pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens 

(Acc.R) and average value (Avg.). Highest DSC and HD values for each structure are shown in bold. 

Method FreeSurfer Fischl (2012) FIRST Patenaude et al. (2011) PICSL Wang and Yushkevich (2013) Our method 

Structure DSC HD DSC HD DSC HD DSC HD 

Tha.L 0.830 ± 0.018 4.94 ± 1.01 0.889 ± 0.018 4.65 ± 0.90 0.920 ± 0.013 3.22 ± 0.99 0.921 ± 0.018 3.39 ± 1.13 

Tha.R 0.849 ± 0.021 4.76 ± 0.75 0.890 ± 0.017 4.39 ± 0.92 0.924 ± 0.008 3.11 ± 0.79 0.920 ± 0.016 3.31 ± 1.01 

Cau.L 0.808 ± 0.079 9.89 ± 3.09 0.797 ± 0.046 3.56 ± 1.30 0.885 ± 0.074 3.44 ± 1.89 0.894 ± 0.071 3.32 ± 2.00 

Cau.R 0.801 ± 0.042 10.39 ± 3.09 0.837 ± 0.117 4.16 ± 1.37 0.887 ± 0.065 3.60 ± 1.67 0.892 ± 0.057 3.51 ± 1.67 

Put.L 0.771 ± 0.039 6.31 ± 1.09 0.860 ± 0.060 3.79 ± 1.76 0.909 ± 0.042 3.07 ± 1.40 0.916 ± 0.023 2.63 ± 1.09 

Put.R 0.799 ± 0.026 5.85 ± 0.84 0.876 ± 0.080 3.26 ± 1.23 0.908 ± 0.046 2.91 ± 1.41 0.914 ± 0.031 2.75 ± 0.99 

Pal.L 0.693 ± 0.189 3.89 ± 1.07 0.815 ± 0.088 2.89 ± 0.71 0.873 ± 0.032 2.52 ± 0.54 0.843 ± 0.101 2.38 ± 0.76 

Pal.R 0.792 ± 0.085 3.45 ± 0.98 0.799 ± 0.060 3.18 ± 0.93 0.874 ± 0.047 2.49 ± 0.59 0.861 ± 0.049 2.59 ± 0.61 

Hip.L 0.784 ± 0.054 6.35 ± 1.87 0.809 ± 0.022 5.49 ± 1.66 0.871 ± 0.024 4.34 ± 1.66 0.876 ± 0.020 4.48 ± 2.02 

Hip.R 0.794 ± 0.025 6.19 ± 1.59 0.810 ± 0.140 4.80 ± 1.66 0.869 ± 0.022 4.01 ± 1.45 0.879 ± 0.020 3.76 ± 1.23 

Amy.L 0.585 ± 0.064 5.05 ± 0.97 0.721 ± 0.053 3.54 ± 0.72 0.832 ± 0.026 2.44 ± 0.29 0.833 ± 0.032 2.39 ± 0.39 

Amy.R 0.576 ± 0.076 5.43 ± 0.90 0.707 ± 0.054 4.11 ± 0.75 0.812 ± 0.033 2.72 ± 0.50 0.821 ± 0.027 2.72 ± 0.69 

Acc.L 0.630 ± 0.055 4.28 ± 1.11 0.699 ± 0.089 6.81 ± 8.76 0.790 ± 0.050 2.57 ± 0.67 0.799 ± 0.052 2.39 ± 0.64 

Acc.R 0.443 ± 0.065 5.47 ± 1.02 0.678 ± 0.081 3.93 ± 1.75 0.783 ± 0.058 2.65 ± 0.76 0.791 ± 0.067 2.54 ± 0.65 

Avg. 0.725 ± 0.137 5.87 ± 2.48 0.799 ± 0.094 4.18 ± 2.76 0.867 ± 0.061 3.08 ± 1.27 0.869 ± 0.064 3.01 ± 1.30 
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.2.1. Experimental details 

Skull-stripping was applied to extract the brain and cut out

ther parts appearing in the MRI such as eyes, skull, skin, and fat

sing the BET algorithm ( Smith, 2002 ). The spatial intensity vari-

tions on the MRI volumes were corrected using a bias field cor-

ection algorithm – N4ITK ( Tustison et al., 2010 ), which is included

n the publicly available ITK 

14 toolkit. Both preprocessing methods

ere run with default parameters. 

In our experiments, we trained a single model using the avail-

ble training set of 15 images, while we tested the other 20 im-

ges as provided in the original MICCAI 2012 Challenge. From the

raining set, we extracted around 1 . 5 M ( 750 K of sub-cortical voxels

nd 750 K of boundary voxels) sample patches of size 32 × 32 pixels

rom three orthogonal views, where around 1 . 1 M (75%) were used

or training and 400 K samples for validation (25%). The extracted

atches were passed to the network for training in batches of size

28. The network was set to train for 200 epochs, yet, we applied

arly stopping of the training process to prevent over-fitting. The

raining process was automatically terminated when the validation

ccuracy did not increase after 20 epochs. 

.2.2. Comparison with other available methods 

The performance of the proposed approach is compared with

idely used tools in medical practice – FreeSurfer and FIRST. We

lso compared the performance of our method with the one of

ICSL ( Wang and Yushkevich, 2013 ) method, which is a multi-atlas

ased segmentation strategy that uses joint fusion technique with

orrective learning. PICSL was the winner of the MICCAI 2012 Chal-

enge for brain structure segmentation and still shows the best re-

ults on this dataset. We used the default parameters for the meth-

ds of FreeSurfer and FIRST to produce segmentation masks for the

esting volumes. Accordingly, the training and testing split matches

he configuration we used for evaluating the proposed method. We

ave to note that, with this dataset, there were no individually re-

orted numerical results for each of the sub-cortical structure in

ther CNN based approaches. 

.2.3. Results 

Table 1 shows overall and per structure mean DSC and HD

alues on the MICCAI 2012 dataset. According to the results, our

ethod showed significantly ( p < 0.001) higher DSC of 0.869 than

IRST and FreeSurfer which yielded 0.799 and 0.725 overall mean
14 https://itk.org/ . 

8  

a

SC, respectively. Moreover, as it can be observed, the HD val-

es showed similar behavior as DSC, where the proposed approach

ignificantly outperformed both of these methods ( p < 0.001), in

verage, with a reduction of 1.17 mm and 2.86 mm with re-

pect to FIRST and FreeSurfer. Also, the DSC and HD results of

ur method with respect to FreeSurfer and FIRST were signifi-

antly higher for all the structures individually. Our method did

ot show a significant difference in comparison with PICSL in

erms of DSC ( p > 0.05), having similar mean of 0.867 and 0.869 for

ICSL and our method, respectively. However, there was a signifi-

ant improvement for the left caudate, right putamen, right hip-

ocampus, and left accumbens structures ( p < 0.05). The average

D values of our approach and PICSL also confirmed previous DSC

umbers, but no significant increase per structure was observed.

ig. 4 shows a qualitative comparison of segmentation outputs

rom FreeSurfer, FIRST, PICSL, and our method. As it can be ob-

erved, FreeSurfer provided less accurate segmentation output with

oarse structure boundaries. FIRST produced smooth segmentation

n the borders, however, the overlap between the ground truth

as poor. Our method’s segmentation output was similar to the

ne of PICSL’s and both of the methods had consistent structure

oundaries, which were not far from the ground truth. Fig. 5 c de-

icts an example of low DSC score (0.61) produced by our method

or the right caudate structure. As it can be seen from the T1-w

mage, the intensities above the caudate structure are similar to

he ones of the actual structure region defined by the manual seg-

entation ( Fig. 5 a). This irregularity led to an apparent atlas reg-

stration error, where a region outside the structure was defined

ith high atlas probabilities ( Fig. 5 b). Even though our network

akes both – the intensities and the atlas probabilities – into ac-

ount, these kinds of pathological cases may lead to inaccurate

egmentation results. However, this is also a common issue for

ther methods as seen in Fig. 5 d, where an atlas based method

PICSL) also fails in accurately segmenting this structure. 

Apart from having similar results to the best performing

ethod on this dataset, our strategy gained a good improvement

n training and segmentation times. According to Landman and

arfield (2012) , PICSL took 330 CPU hours for training 138 classi-

ers used for correcting systematic errors. Reported segmentation

ime of PICSL with optimal parameters was more than 50 minutes

er subject volume ( Wang and Yushkevich, 2013 ). In comparison

ith the above, the execution time of our CNN strategy was around

 hours for training and less than 5 min for testing, including the

tlas registration. 

https://itk.org/
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Fig. 4. Qualitative comparison of segmentation outputs obtained by FreeSurfer, 

FIRST, PICSL, and our method on MICCAI 2012 dataset. a) T1-w image; b) Ground 

truth; c) FreeSurfer; d) FIRST; e) PICSL; f) Our method. Visible structures on coronal 

view: thalamus, caudate, pallidum, putamen, hippocampus, and amygdala. 

Fig. 5. Example of a segmentation result with a low DSC value for the right cau- 

date structure. a) manual segmentation; b) probabilistic atlas with overlaid manual 

segmentation shown in black; c) our method; d) PICSL. 

 

 

 

 

 

h  

s  

1  

a  

m

3

 

p  

i  

n  

p  

F  

o  

2  

a  

e

3

 

t  

s  

s  

t  

M  

a  

t  

r  

o  

t  

i  

o  

b  

p

3

 

e  

c  

c  

n  

D  

p  

s  

5  

p  

F  

p  

m  

o  

m  

l  

i  

c  

f

 

m  

e  

a  

t  

o  

u  

D  

0  

y  

p  
3.3. IBSR 18 dataset 

This dataset consists of 18 T1-w subject volumes with

manually segmented ground truth with 32 classes. Similarly

to the MICCAI 2012 dataset, we extracted 14 classes corre-

sponding to seven sub-cortical brain structures with left and

right parts separately. The subject volumes of this dataset
ave dimensionality of 256 × 256 × 128 and different voxel

pacings: 0.84 × 0.84 × 1.5 mm 

3 , 0.94 × 0.94 × 1.5 mm 

3 , and

.00 × 1.00 × 1.5 mm 

3 . Images in this dataset have lower contrast

nd resolution in comparison with the MICCAI 2012 dataset, which

akes the segmentation task even more challenging. 

.3.1. Experimental details 

For the experiments with this dataset, we followed the same

reprocessing steps as done with the MICCAI 2012 dataset, which

ncluded skull-stripping and bias field correction. Since there was

o training and testing split on this dataset, we performed our ex-

eriments using a leave-one-subject-out cross-validation scheme.

or each 17-1 fold, we extracted around 1 . 1 M patches from each

f the three orthogonal views, divided into 825 K (75%) training and

20 K (25%) validation sets. Each model was trained for 200 epochs

pplying also early stopping policy in the training process after 20

pochs. 

.3.2. Comparison with other available methods 

For this dataset, our results will be compared against: 1) to

he commonly used FreeSurfer and FIRST methods including the

tatistical significance test, since the evaluation values for each

ubject volume were computed by us using the corresponding

ools; and 2) to recent CNN approaches of Shakeri et al. (2016) ,

ehta et al. (2017) (BrainSegNet), Bao and Chung (2016) (MS-CNN),

nd Dolz et al. (2018) . The results for the recent methods were

aken from their corresponding papers exactly as they have been

eported. We have to mention that most of the CNN based meth-

ds report results only for a specific group of sub-cortical struc-

ures, but do not show or consider the results for the other, yet

mportant, sub-cortical structures. Note also that the comparison

n HD metric is present only for FreeSurfer, FIRST and our method,

ut not for other considered methods because most of the ap-

roaches do not report HD values. 

.3.3. Results 

Table 2 shows the mean DSC and HD values for each of the

valuated methods. Our method showed a better performance in

omparison to both FreeSurfer and FIRST methods for all the sub-

ortical structures. The overall DSC mean of our method was sig-

ificantly higher than both of the methods ( p < 0.001), with mean

SC of 0.740, 0.808, and 0.843 for FreeSurfer, FIRST and the pro-

osed strategy, respectively. In terms of HD values, our method

howed overall mean of 4.49, whereas FreeSurfer and FIRST yielded

.21 and 4.50, respectively. The proposed strategy significantly out-

erformed FreeSurfer with ( p < 0.001), however the difference with

IRST was not significant ( p > 0.05). As shown in Table 2 , FreeSurfer

erformed worst for almost all the structures, while FIRST and our

ethod showed similar performance. On both thalamus structures,

ur method showed lowest score in comparison with the other

ethods, however it yielded better HD for the small structures

ike amygdala, accumbens, and hippocampus. In general, HD metric

s very sensitive to outliers, hence, a few misclassified voxels can

ause considerable reduction in performance as seen in the results

or the thalamus structure in our method. 

Compared to other CNNs, our approach outperformed the

ethod proposed by Shakeri et al. (DSC = 0.808) on the eight

valuated structures. Similarly, the performance of the proposed

pproach was also superior on the six structures evaluated in

he work of Mehta et al. (DSC = 0.841). Further, we compare

ur method with MS-CNN, which has reported average DSC val-

es for six structures for left and right parts together (overall

SC = 0.807). Our method’s mean DSC on these structures was

.859, which was higher than the result of MS-CNN (0.807) and

ielded higher DSC scores for all the structures. Finally, when com-

ared with the work of Dolz et al., our method showed a compa-
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Table 2 

Comparison of our method with the state-of-the-art methods as well as previous CNN approaches on IBSR dataset in terms of DSC, HD, and standard deviation. Structure 

acronyms are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate (Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum (Pal.L), right 

pallidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala (Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R). “–”

represents no results were reported on corresponding structure. The average (Avg.) values show mean DSC for the presented structure DSC scores. Highest DSC and HD 

values for each structure are shown in bold. 

Method FreeSurfer FIRST Shakeri BrainSegNet MS-CNN Dolz Our method 

Struct. DSC HD DSC HD DSC DSC DSC DSC DSC HD 

Tha.L 0.815 ± 0.056 5.367 ± 1.168 0.893 ± 0.017 3.819 ± 0.850 0.866 ± 0.023 0.88 ± 0.050 0.889 0.92 0.910 ± 0.014 7.159 ± 0.402 

Tha.R 0.864 ± 0.022 4.471 ± 1.245 0.885 ± 0.012 4.273 ± 1.137 0.874 ± 0.021 0.90 ± 0.029 0.914 ± 0.016 7.256 ± 0.571 

Cau.L 0.796 ± 0.050 6.435 ± 1.939 0.783 ± 0.044 4.128 ± 1.575 0.778 ± 0.053 0.86 ± 0.047 0.849 0.91 0.896 ± 0.018 4.054 ± 1.412 

Cau.R 0.809 ± 0.048 8.201 ± 2.443 0.870 ± 0.027 3.687 ± 0.791 0.783 ± 0.068 0.88 ± 0.048 0.896 ± 0.020 4.153 ± 1.061 

Put.L 0.789 ± 0.038 5.310 ± 0.923 0.869 ± 0.020 4.421 ± 1.185 0.838 ± 0.026 0.91 ± 0.022 0.875 0.90 0.900 ± 0.014 5.216 ± 1.788 

Put.R 0.829 ± 0.031 4.716 ± 1.189 0.880 ± 0.010 4.725 ± 1.814 0.824 ± 0.039 0.91 ± 0.023 0.904 ± 0.012 4.577 ± 0.410 

Pal.L 0.632 ± 0.171 4.652 ± 1.294 0.810 ± 0.033 3.477 ± 0.572 0.763 ± 0.031 0.81 ± 0.089 0.787 0.86 0.825 ± 0.050 3.849 ± 0.574 

Pal.R 0.774 ± 0.032 3.966 ± 0.793 0.809 ± 0.037 3.990 ± 1.075 0.736 ± 0.055 0.83 ± 0.086 0.829 ± 0.046 3.700 ± 0.576 

Hip.L 0.760 ± 0.036 5.787 ± 1.264 0.806 ± 0.023 5.571 ± 1.592 – 0.81 ± 0.065 0.788 – 0.851 ± 0.024 4.177 ± 1.087 

Hip.R 0.767 ± 0.060 5.615 ± 1.600 0.817 ± 0.023 4.349 ± 0.984 – 0.83 ± 0.071 0.851 ± 0.024 4.124 ± 0.824 

Amy.L 0.661 ± 0.069 5.521 ± 1.517 0.742 ± 0.064 4.648 ± 1.950 – 0.76 ± 0.087 0.654 – 0.763 ± 0.052 4.326 ± 0.822 

Amy.R 0.690 ± 0.067 4.720 ± 1.553 0.757 ± 0.062 4.402 ± 1.493 – 0.71 ± 0.087 0.768 ± 0.058 4.292 ± 1.064 

Acc.L 0.604 ± 0.071 3.634 ± 0.783 0.684 ± 0.098 7.770 ± 8.803 – – – – 0.744 ± 0.053 3.026 ± 0.676 

Acc.R 0.574 ± 0.074 4.507 ± 1.077 0.703 ± 0.076 3.733 ± 1.482 – – 0.752 ± 0.047 2.995 ± 0.609 

Avg. 0.740 ± 0.110 5.207 ± 1.761 0.808 ± 0.080 4.499 ± 2.810 0.808 ± 0.063 0.841 ± 0.064 0.807 0.898 0.843 ± 0.071 4.493 ± 1.533 

Table 3 

Effect of spatial features and the proposed sample selection technique. MICCAI 

2012 dataset. Random sampling – method without using the sample selection from 

boundaries (including the spatial priors). No atlas – method without incorporating 

atlas priors (using the sampling technique). Final method – proposed method that 

includes both the spatial features and the sampling technique. Structure acronyms 

are: left thalamus (Tha.L), right thalamus (Tha.R), left caudate (Cau.L), right caudate 

(Cau.R), left putamen (Put.L), right putamen (Put.R), left pallidum (Pal.L), right pal- 

lidum (Pal.R), left hippocampus (Hip.L), right hippocampus (Hip.R), left amygdala 

(Amy.L), right amygdala (Amy.R), left accumbens (Acc.L), right accumbens (Acc.R). 

The values with an asterisk ( ∗) indicate that the final method obtained significantly 

higher results than that of the strategy without atlas priors. Highest DSC values for 

each structure are shown in bold. 

Method Random sampling No atlas Final method 

Tha.L 0.860 ± 0.013 0.911 ± 0.024 0.921 ± 0.017 ∗

Tha.R 0.862 ± 0.014 0.917 ± 0.017 0.920 ± 0.016 

Cau.L 0.831 ± 0.067 0.880 ± 0.103 0.894 ± 0.071 ∗

Cau.R 0.834 ± 0.048 0.864 ± 0.131 0.892 ± 0.057 

Put.L 0.871 ± 0.024 0.900 ± 0.073 0.916 ± 0.023 ∗

Put.R 0.872 ± 0.027 0.913 ± 0.029 0.914 ± 0.031 

Pal.L 0.784 ± 0.040 0.852 ± 0.086 0.843 ± 0.101 

Pal.R 0.775 ± 0.057 0.833 ± 0.099 0.861 ± 0.049 ∗

Hip.L 0.778 ± 0.034 0.871 ± 0.019 0.876 ± 0.020 ∗

Hip.R 0.770 ± 0.026 0.876 ± 0.018 0.879 ± 0.020 ∗

Amy.L 0.709 ± 0.025 0.824 ± 0.037 0.833 ± 0.032 ∗

Amy.R 0.716 ± 0.054 0.819 ± 0.035 0.821 ± 0.027 

Acc.L 0.744 ± 0.060 0.796 ± 0.052 0.799 ± 0.052 

Acc.R 0.689 ± 0.091 0.753 ± 0.106 0.791 ± 0.067 ∗

Avg. 0.792 ± 0.076 0.858 ± 0.083 0.869 ± 0.064 ∗
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Fig. 6. Comparison of segmentation outputs for difficult areas of the (a) pallidum, 

(b) putamen, and (c) accumbens structures in some of the images from MICCAI 

2012 dataset using the proposed method with and without the spatial priors. Re- 

gions of remarkable improvement when employing the atlas priors are indicated 

with arrows. 
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able performance, although this last work showed slightly higher

veraged DSC values for the four biggest structures. 

.4. Effect of the spatial priors 

We ran experiments using the proposed method with and with-

ut spatial priors to determine the effect of using such features to

he segmentation performance on both datasets. For this experi-

ent, we analyzed the results in terms of DSC on the MICCAI 2012

ataset. We did not present the results of this experiment for the

BSR 18 dataset for simplicity, since it produced a similar outcome.

n order to test our network without the spatial features, we mod-

fied the architecture ( Fig. 1 ) by removing the branch of atlas prob-

bilities and keeping only three branches of convolutional layers. 

Table 3 , shows DSC results of our method with random sam-

ling, without using spatial features, and the final method. Inclu-
ion of the spatial features significantly improved the overall DSC

 p < 0.001), as well as the results for almost all the structures. The

egmentation difference can be seen from Fig. 6 , where difficult

reas of the pallidum, putamen, and accumbens structures were

egmented better by the method that comprised the spatial fea-

ures. Hence, the spatial priors helped to overcome difficult areas,

roducing more accurate segmentation for some images that had

ntensity and shape irregularities that could not be observed in

ny of the training images. Although the spatial priors are effec-

ive to overcome these sort of issues, it could be misleading in

ertain cases, where the irregularity is extremely large - as shown

n Fig. 6 b, where a hole is present in the left pallidum structure.

he final method obtained lower score for the left pallidum on this

ubject volume, which downgraded the average DSC for this struc-

ure ( Table 3 ). On the other hand, our method without the spatial

riors segmented this area better than the final approach, however,

he overall difference was not significant (p = 0 . 101) . 
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Fig. 7. Illustration of misclassification occurrence on borders. MICCAI 2012 dataset. 

(a, b) T1-w image and manual segmentation; (c, d) segmentation using random 

sample selection and difference from ground truth; (e, f) segmentation using the 

sample selection from borders and difference from ground truth. 
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3.5. Effect of sample selection 

In this section, we show the effect of sample selection from

structure boundaries using the MICCAI 2012 dataset. For this ex-

periment, random sample selection from all the brain tissues has

been used for training the network. For every epoch, we ex-

tracted the same number of voxels ( 1 . 5 M ), split equally into the

sub-cortical structures ( 750 K ) and background ( 750 K ). Here, back-

ground voxels were randomly selected from whole brain volume,

instead of selecting only from structure boundaries (see Fig. 2 d).

The network was again trained for 200 epochs using the same con-

figuration. Spatial features were also included in training. 

Table 3 shows the results corresponding to this experiment.

Mean DSC obtained with our network without using the sample

selection technique was 0.792 compared to 0.869 of the final ap-

proach. Accordingly, the proposed sample selection technique sig-

nificantly improved the network’s performance in average as well

as for each of the structures ( p < 0.001). Fig. 7 illustrates the seg-

mentation results produced by our final approach and without ap-

plying sampling from borders. As it can be seen from the dif-

ference between ground truth and segmentation masks, the fi-

nal strategy produced better segmentation on the boundaries than

random sample selection method. In fact, the difference of our seg-

mentation and the ground truth mask was not substantial, but only

a few voxels. We also can observe that the intensities on the bor-

der voxels of the structures are mostly confounding. Therefore, as-

signing these voxels to the structure or background is highly de-

pendent on ground truth. 
. Discussion 

In this paper, we have proposed a fully automated 2.5D patch-

ased CNN approach that combines both convolutional and a priori

patial features for accurate segmentation of the sub-cortical brain

tructures. In our approach, a structural sub-cortical atlas has been

egistered into the image space to extract the spatial probability

f each voxel, and, later, fused with the extracted convolutional

eatures in the fully connected layers. The inclusion of the spatial

nformation increases the execution time by adding atlas registra-

ion. However, it allows us to filter out misclassified regions that

ave bigger size than the actual structures in the segmentation

utput, which may appear in unobserved areas (i.e. not included

n the training phase) of the brain as a consequence of applying

estricted sampling. As seen in all the experiments, the addition

f the spatial priors and the restricted sampling strategy have a

ignificant effect on the accuracy of the proposed method, outper-

orming or showing a comparable performance to both classic as

ell as other novel deep learning approaches for segmenting the

ub-cortical structures. 

Compared to other state-of-the-art techniques such as

reeSurfer and FIRST, the spatial agreement of the proposed

ethod with the manual segmentation is clearly higher in all

valuated datasets. As seen in other radiological tasks, this rein-

orces the effectiveness of CNN techniques when manual expert

nnotations are available. On the MICCAI 2012 dataset, our method

hows an excellent performance, slightly over-performing the

est challenge participant strategy – PICSL. Although not directly

valuated, our method clearly reduces the training and inference

ime. However, it has to be noted that most of the execution time

f PICSL is due to highly computational registration processes

hich were carried out on CPU, while our method relies on GPU

rocessors to speed-up training. Other CNN methods have also

een evaluated on the MICCAI 2012 database ( Wachinger et al.,

018; Mehta et al., 2017 ). However, these works do not report

xact evaluation values for sub-cortical structures, hence, no direct

omparison can be established. 

In contrast, different CNN methods that have been evaluated

sing the IBSR 18 dataset have reported exact numerical val-

es. When compared to other CNN approaches, our method also

howed a significant increase in the performance with respect to

ost of them, and a comparable behavior with the method pro-

osed by Dolz et al. However, as seen in Section 3.3 , previous stud-

es do not always deal with all sub-cortical structures, restricting a

ore detailed comparison with respect to our proposal. Addition-

lly, the training methodology also differed among the strategies.

n this aspect, although all our experiments were carried out using

he leave-one-out approach, we also repeated our IBSR 18 exper-

ments using a six-fold (15 training and three testing) validation

trategy to perform a fair comparison with some of the consid-

red methods. The complete results of the six-fold validation strat-

gy were not depicted in the paper for simplicity, but, our network

chieved similar results with only 0.005 of difference in DSC with

espect to the leave-one-out strategy, showing the robustness of

he proposed approach to changes in the number of training im-

ges. 

According to the experimental results, employing the spatial

eatures to the CNN significantly improved the performance of

he network. The atlas priors showed to be useful in guiding the

etwork when segmenting the difficult areas. As we have seen

n Section 3.4 , CNN that leveraged the spatial priors coped with

hese intensity based difficulties. Accordingly, by providing the at-

as probabilities, we make sure that the anatomical shape and

tructure are taken into account before assigning a label to a

oxel. Since the sub-cortical structures follow the similar anatom-

cal structure in all patients, the inclusion of the spatial features
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akes the segmentation approach more robust to irregularities in

ntensity based features obtained from T1-w images by providing

dditional location-based information. Despite being prone to the

nherent errors in image registration and not showing as much DSC

mprovements as in border-selective sampling ( Table 3 ), the addi-

ion of these a priori spatial class probabilities, or other explicit

used problem-specific information, may have other direct bene-

ts such as reduction of the effect of low contrast, poor resolution,

resence of noise, and artifacts close to the structure boundaries.

ome examples of improvements in this regard were illustrated in

ig. 6 . 

Our results also showed the importance of sampling and class

alancing in the training process. By feeding the network with only

he most difficult negative samples, we ensured that useful sam-

les were used in the training process. When compared to the

est of CNN approaches, our method without restricted sampling

ielded a similar performance to other methods such as the one

f Shakeri et al. (2016) and MS-CNN ( Bao and Chung, 2016 ) even

f trained on the same conditions, which highlights the effective-

ess of the used sampling strategy. As a counterpart, these kind of

pproaches tend to generate false positive regions outside the sub-

ortical space, due to the lack of contextual spatial information of

he whole brain. Within our proposal, we took advantage of the al-

eady computed spatial priors to reduce the segmentation to only

 region of interest containing the sub-cortical structures, which

educed remarkably the inference time. Remaining false positive

oxels were then post-processed by maintaining only the biggest

egion for each class. 

Our study comprises some limitations. Although our analysis

hows that incorporating a-priori atlas information is effective on

egmentation of the sub-cortical structures, there is room for fur-

her analysis of this approach in other brain segmentation tasks.

urthermore, the addition of atlas probabilities requires nonlinear

egistration, which may be tedious and prone to errors if applied

n extreme cases such as advanced pathological subjects with a

igh degree of atrophy. Additionally, the extrapolation of our sam-

le selection technique to other more general brain segmentation

asks should also be studied. As part of supervised training strate-

ies, the accuracy of CNN methods tend to decrease significantly

n other image domains (i.e. different MRI scanner, image proto-

ol, etc.) than the ones used for training. Nevertheless, there is

till a little evidence of the capability of CNN methods in radiolog-

cal tasks with small or none datasets, which highlights the need

f further studying this issue to increase the accuracy of such ap-

roaches. With no more evidence in this field, FIRST may be more

ppropriate in these scenarios when few or no training data is

vailable. Another constraint involves the applicability of the pro-

osed method on datasets of images with neurological diseases

omprising, for instance, white matter lesions, which affect brain

tructure segmentation ( González-Villà et al., 2017 ). 

. Conclusion 

In this paper, we have presented a novel CNN based deep

earning approach for accurate and robust segmentation of the

ub-cortical brain structures that combines both convolutional and

rior spatial features for improving the segmentation accuracy. In

rder to increase the accuracy of the classifier, we have proposed

o train the network using a restricted sample selection to force

he network to learn the most difficult parts of the structures.

s seen from all the experiments carried out on the public MIC-

AI 2012 and IBSR 18 datasets, the addition of the spatial priors

nd the restricted sampling strategy have a significant impact on

he effectiveness of the proposed method, outperforming or show-

ng a comparable performance to state-of-the-art methods such as

reeSurfer, FIRST and different recently proposed CNN approaches.
n order to encourage the reproducibility and the use of the pro-

osed method, a public version is available to download for the

euroimaging community at our research website. 
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