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Abstract: The mean molecular connectivity indices (MMCI) proposed in previous studies are used in
conjunction with well-known molecular connectivity indices (MCI) to model eleven properties of
organic solvents. The MMCI and MCI descriptors selected by the stepwise multilinear least-squares
(MLS) procedure were used to perform artificial neural network (ANN) computations, with the aim
of detecting the advantages and limits of the ANN approach. The MLS procedure can replicate
the obtained results for as long as is needed, a characteristic not shared by the ANN methodology,
which, on the one hand increases the quality of a description, and on the other hand also results
in overfitting. The present study also reveals how ANN methods prefer MCI relatively to MMCI
descriptors. Four types of ANN computations show that: (i) MMCI descriptors are preferred with
properties with a small number of points, (ii) MLS is preferred over ANN when the number of ANN
weights is similar to the number of regression coefficients and, (iii) in some cases, the MLS modeling
quality is similar to the modeling quality of ANN computations. Both the common training set and
an external randomly chosen validation set were used throughout the paper.

Keywords: physicochemical properties; QSPR; topological descriptors; MLS; artificial neural networks

1. Introduction

Recently [1], the mean molecular connectivity indices (MMCI) were introduced to model eleven
properties of organic solvents. The multilinear least-squares (MLS) used to derive the quantitative
structure-property relationships (QSPR) showed that three out of eleven properties, the refractive
index (RI), the flash points (FP), and the ultraviolet cutoff values (UV), were modeled with the MMCI
while the remaining properties were modeled with the well-known molecular connectivity indices
(MCI). The MMCI indices are also centered on the basic concepts of the delta, valence delta, I- and
S-indices that go back to the origins of the molecular connectivity theory [2–7]. Results from two
other recent studies that used semiempirical sets of descriptors [8,9] showed that the artificial neural
network (ANN) model with a variable number of hidden neurons chosen by the software improves
the quality of a QSPR obtained with the aid of the multilinear least-squares (MLS) methodology, also
known as multilinear regression (MLR). Nevertheless, this improvement is somewhat artificial as the
ANN computations for the eleven properties employed a number of weights, due to the presence of
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more than one hidden neuron, much greater than the number of weights or regression coefficients
in the MLS procedure. This fact can provide poor results when new data are to be predicted. This is
called overfitting, and it can be avoided by guiding the training process after the predictions in a test
set, by more general regularization techniques, or by dropout of the hidden neurons.

A scheme of the work is depicted in Figure 1. Data consisting of eleven physicochemical
properties of solvents were randomly split into train (TR) and evaluation (EV) sets. Molecular
descriptors were calculated, as explained in section Materials and Methods, for every molecule.
MLS computations performed with the train set ended up choosing the best descriptors among the set
of given descriptors. These best descriptors were used to perform the Multilayer Perceptron ANN
(ANN-MLP) computations. To avoid overfitting, during its training process the ANN randomly selects
test sets (TE) within the original TR set. Finally, the models obtained by each method are applied,
for external validation, to the evaluation (EV) set. It should be underlined that the evaluation set is
common to every type of computation.
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The aim of the present work is to pin down the real advantages and the drawbacks of the ANN
methodology, and apply it to the model of the eleven properties of [1] where either MCI or MMCI
are used as the descriptors. Four different types of ANN computations are here performed to detect
the level of achieved improvement, if any, (a) with one hidden neuron, (b) with a pre-fixed number
of hidden neurons, (c) with a variable number of hidden neurons chosen by the software, and (d)
with a minor number of descriptors for the one hidden neuron case. This last case attempted to
render the number of ANN weights equal to the number of MLS weights. It also monitored if ANN
computations preferred either MCIs or MMCIs for modeling purposes. The descriptors for the eleven
properties are those of [1]; however, whenever a property was not satisfactorily modeled by the given
MCI (or MMCI) the second or third best MCI (or MMCI) was chosen. The domain of applicability
of the models presented here includes substances that have been used as solvents without any other
chemical restrictions.

2. Materials and Methods

2.1. The Properties

The raw material of the present study, the eleven properties of the organic solvents, is given in
Table 1. The source for their values is cited in [1].
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Table 1. Eleven properties of organic solvents with their molar mass M (g·mol−1): Tb, boiling point
(K); ε, dielectric constant; d, density (at 20 ◦C ± 5 ◦C relative to water at 4 ◦C, g/cc); RI, refractive
index (20 ◦C); FP, Flashpoint (K); η, viscosity (Cpoise, 20 ◦C; 1 at 25 ◦C, 2 at 15 ◦C); γ, surface tension
(mN/m at 25 ◦C); UV, Cutoff UV values (nm); µ, dipole moments in debye (1D = 10−18 esu cm
= 3.3356 × 10−3 C m); MS, magnetic susceptibility (also, −χ·106, in emu mol−1, 1 emu = 1 cm3,
temperatures cover a range from 15 ◦C to 32 ◦C); and El, Elutropic value (silica).

Solvents M Tb ε d RI FP η γ UV µ MS El

(◦) Acetone 58.1 329 20.7 0.791 1.359 256 0.32 23.46 330 2.88 0.46 0.43
(◦) Acetonitrile 41.05 355 37.5 0.786 1.344 278 0.37 28.66 190 3.92 0.534 0.50

Benzene 78.1 353 2.3 0.84 1.501 262 0.65 28.22 280 0 0.699 0.27
Benzonitrile 103.1 461 25.2 1.010 1.528 344 1.24 1 38.79

1-Butanol 74.1 391 17.1 0.810 1.399 308 2.95 24.93 215
(◦) 2-Butanone 72.1 353 18.5 0.805 1.379 270 0.40 23.97 330 0.39
Butyl Acetate 116.2 398 5.0 0.882 1.394 295 0.73 24.88 254

CS2 76.1 319 2.6 1.266 1.627 240 0.37 31.58 380 0 0.532
CCl4 153.8 350 2.2 1.594 1.460 0.97 26.43 263 0 0.691 0.14

Cl-Benzene 112.6 405 5.6 1.107 1.524 296 0.80 32.99 287
1-Cl-Butane 92.6 351 7.4 0.886 1.4024 267 0.35 23.18 225

CHCl3 119.4 334 4.8 1.492 1.446 0.57 26.67 245 1.01 0.740 0.31
Cyclohexane 84.2 354 2.0 0.779 1.426 255 1.00 24.65 200 0 0.627 0.03

(◦) Cyclopentane 70.1 323 2.0 0.751 1.400 236 0.47 21.88 200 0.629
1,2-diCl-Benzene 147.0 453 9.9 1.306 1.551 338 1.32 295 2.50 0.748
1,2-diCl-Ethane 98.95 356 10.4 1.256 1.444 288 0.79 31.86 225 1.75
diCl-Methane 84.9 313 9.1 1.325 1.424 0.44 27.20 235 1.60 0.733 0.32

N,N-diMe-Acetamide 87.1 438 37.8 0.937 1.438 343 268 3.8
N,N-diMeFormamide 73.1 426 36.7 0.944 1.431 330 0.92 268 3.86

1,4-Dioxane 88.1 374 2.2 1.034 1.422 285 1.54 32.75 215 0.45 0.606
Ether 74.1 308 4.3 0.708 1.353 233 0.24 16.95 215 1.15 0.29

Ethyl acetate 88.1 350 6.0 0.902 1.372 270 0.45 23.39 260 1.8 0.554 0.45
(◦) Ethyl alcohol 46.1 351 24.3 0.785 1.360 281 1.20 21.97 210 1.69 0.575

Heptane 100.2 371 1.9 0.684 1.387 272 19.65 200 0.00
Hexane 86.2 342 1.9 0.659 1.375 250 0.33 17.89 200 0.00

2-Methoxyethanol 76.1 398 16.0 0.965 1.402 319 1.72 30.84 220
(◦) Methyl alcohol 32.0 338 32.7 0.791 1.329 284 0.60 22.07 205 1.70 0.530 0.73
4-Me-2-Pentanone 100.2 391 13.1 0.800 1.396 286 334
2-Me-1-Propanol 74.1 381 17.7 0.803 1.396 310
2-Me-2-Propanol 74.1 356 10.9 0.786 1.387 277 19.96 1.66 0.534

DMSO 78.1 462 46.7 1.101 1.479 368 2.24 42.92 268 3.96
(◦) Nitromethane 61.0 374 35.9 1.127 1.382 308 0.67 36.53 380 3.46 0.391

1-Octanol 130.2 469 10.3 0.827 1.429 354 10.6 2 27.10
(◦) Pentane 72.15 309 1.8 0.626 1.358 224 0.23 15.49 200 0.00 *

3-Pentanone 86.1 375 17.0 0.853 1.392 279 24.74
(◦) 1-Propanol 60.1 370 20.1 0.804 1.384 288 2.26 23.32 210
(◦) 2-Propanol 60.1 356 18.3 0.785 1.377 295 2.30 20.93 210 0.63

Pyridine 79.1 388 12.3 0.978 1.510 293 0.94 36.56 305 2.2 0.611 0.55
Tetra Cl-Ethylene 165.8 394 2.3 1.623 1.506 0.90 0.802

(◦) Tetra-Hydrofuran 72.1 340 7.6 0.886 1.407 256 0.55 215 1.75 0.35 *
Toluene 92.1 384 2.4 0.867 1.496 277 0.59 27.93 285 0.36 0.618 0.22

1,1,2-triCl,triF-Ethane 187.4 321 2.4 1.575 1.358 0.69 230 0.02
2,2,4-triMe-Pentane 114.2 372 1.9 0.692 1.391 266 0.50 215 0.01

o-Xylene 106.2 417 2.6 0.870 1.505 305 0.81 29.76
p-Xylene 106.2 411 2.3 0.866 1.495 300 0.65 28.01

(◦) Acetic acid 60.05 391 6.15 1.049 1.372 27.10 1.2 0.551
Decalin 138.2 465 2.2 0.879 1.476 0.681

diBr-Methane 173.8 370 7.8 1.542 2.497 39.05 1.43 0.935
1,2-diCl-Ethylen(Z) 96.9 334 9.2 1.284 1.449 1.90 0.679

(◦) 1,2-diCl-Ethylen(E) 96.9 321 2.1 1.255 1.446 0 0.638
1,1-diCl-Ethylen 96.9 305 4.7 1.213 1.425 1.34 0.635
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Table 1. Cont.

Solvents M Tb ε d RI FP η γ UV µ MS El

Dimethoxymethane 76.1 315 2.7 0.866 1.356 0.611
(◦) Dimethylether 46.1 249 5.0
Ethylen Carbonate 88.1 511 89.6 1.321 1.425 4.91

(◦) Formamide 45.0 484 109 1.133 1.448 57.03 3.73 0.551
(◦) Methylchloride 50.5 249 12.6 0.916 1.339 1.87

Morpholine 87.1 402 7.3 1.005 1.457 0.631
Quinoline 129.2 510 9.0 1.098 1.629 42.59 2.2 0.729

(◦) SO2 64.1 263 17.6 1.434 1.6
2,2-tetraCl-Ethane 167.8 419 8.2 1.578 1.487 35.58 1.3 0.856

tetraMe-Urea 116.2 450 23.1 0.969 1.449 3.47 0.634
triCl-Ethylen 131.4 360 3.4 1.476 1.480 0.734

(◦) externally validated compounds; bold values: test compounds used in Artificial Neural Network Multilayer
Perceptron (ANN-MLP) calculations, * for this property these two compounds ∈ {TR} (see Table 4 below) and
{TR + TE} (see Table 5 below), Me = Methyl.

2.2. Descriptors

Table 2 shows the molecular connectivity χ indices, the molecular pseudoconnectivity ψ indices
(pseudo-MCI), and the dual connectivity and pseudoconnectivity indices (Dual MCI, pseudo-MCI)
used throughout this study. Three new indices were used: ∆ = ΣEAnEA, Σ = ΣEA<SEA>, and
TΣ/M = Σ3/M1.7 (M = molar mass); ∆ encodes the number of electronegative atoms (nEA), Σ encodes
the sum of the S-State index for the electronegative atoms, N, O, F, Cl, Br (<SEA> is the average value
for a specific atom). Table 3 shows the definitions of the MMCI (the first M stands for “mean”),
which are based on averages of vertex invariants. The original Stolarsky’s mean has a minus in the
denominator here replaced by a plus to avoid zeroing the denominator due to equal δi and δj, although
it is known that the limit of this function when δi tends to δj is finite. The present mean is a kind of
pseudo-Stolarsky mean.

Table 2. Definition of the Molecular Connectivity Indices (MCI). Replacing δwith δv and I with S the
corresponding valence, χv, I-State, ψI, and E-State, ψE, MCIs are obtained.

MCI Pseudo-MCI Dual MCI + ∆ + Σ Dual Pseudo-MCI + TΣ/M

D = Σiδi
SψI = ΣiI 0χd = (−0.5)nΠi(δi) 0ψId = (−0.5)nΠi(Ii)

0χ = Σ(δi)−0.5 0ψI = Σ(Ii)−0.5 1χd = (−0.5)(n+µ−1)Π(δi + δj) 1ψId = (−0.5)(n+µ−1)Π(Ii + Ij)
1χ = Σ(δiδj)−0.5 1ψI = Σ(IiIj)−0.5 1χs = Π(δi + δj)–0.5 1ψIs = Π(Ii + Ij)−0.5

χt = (Πδi)−0.5 TψI =(ΠIi)−0.5 ∆ = ΣEAnEA, Σ = ΣEA<SEA> TΣ/M = Σ3/M1.7

n is the number of atoms, ij means corresponds to σ bond, µ is the cyclomatic number.

Table 3. Definition of the Mean Molecular Connectivity Indices (MMCI). Replacing δwith δv, I, and
with S the respective valence (Mv), I-State (MI), and E-State (ME) MMCIs are obtained.

AM = Σi δi/n GM = Σij(δiδj)1/2 HM = 2Σij (δi
−1 + δj

−1)−1

RM = Σij[(δi
2 + δj

2)/2]1/2 SM = Σij (δi
2 + δj

2)/(δi + δj)
UM = Σij[δi − δj + (δi

2 − 2δiδj +
5δj

2)0.5]/2
HoM = Σij(δi

p + δj
p)1/p/2 LM = Σij(δi

p + δj
p)/(δi

p−1 + δj
p−1) StM = Σij[(δi

p − δj
p)/(pδi + pδj)]1/(p−1)

A: arithmetic; G: geometric; H: harmonic; R: root mean square; S: symmetric; U: unsymmetric; Ho: Hölder;
L: Lehmer; St: pseudo-Stolarsky.

These two tables summarize the pool of descriptors used throughout this study: n is the number
of atoms in a molecule, i = 1 to n denotes the atoms of a molecule, ij denotes directly σ-bonded
atoms, while p is assigned the value n in Table 3. Replacing δ with the valence delta, δv, in Table 2,
allows the corresponding valence MCI, {Dv, 0χv, 1χv, χv

t, 0χd
v, 1χd

v, 1χs
v}, to be obtained; replacing
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the Intrinsic-I-State with the Electrotopological S-State index the corresponding pseudoconnectivity
electrotopological indices are obtained, {SψE, 0ψE, 1ψE, TψE, 0ψEd, 1ψEd, 1ψEs} [3–9]. This subject is
further elucidated in the Appendixs A and B. Replacing in Table 3 δ, with δv, I and S three other
subsets of MMCI: the valence, {AMv, GMv, HMv, RMv, SMv, UMv, HoMv, LMv, StMv}, the I-State,
{AMI, GMI, HMI, RMI, SMI, UMI, HoMI, LMI, StMI}, and the E-State {AME, GME, HME, RME, SME, UME,
HoME, LME, StME} MMCI, respectively, are obtained. Because some S values can be negative (highly
electropositive atoms) to avoid imaginary S-State MMCI values, a rescaling of the S value is undertaken
as it is explained in [1]. Summing up, we have thirty-one MCI and thirty-six MMCI. Every index was
obtained with a visual basic home-made program that runs on a normal PC that uses both adjacency
and distance matrices [6].

2.3. Multilinear Least-Squares Regression

The stepwise multilinear least-squares (MLS) procedure of Statistica 8 that searches the whole
combinatorial space built by the descriptors was used to find the best set of indices, either MCI or
MMCI, for the training compounds of Table 1. They were then used to evaluate the left-out compounds
(EV, those with (◦) in Table 1, ~30% of all compounds, 25% for El). These best descriptors were also used
for the ANN computations. To model the dipole moments, indices were multiplied by a two-valued
symmetry factor, φ = 0, 1, i.e., φ·[MCI or MMCI] = 0 orφ·[MCI or MMCI] = [MCI or MMCI], where zero
is used for the symmetric molecules with µ = 0. The choice for the number of indices of a relationship
was performed bearing in mind that the ratio of data points to the number of variables should be
higher or equal to five and should provide a correlation coefficient r > 0.84, i.e., r2 > 0.70 [10]. External
validation was performed for all types of model (ANN inclusive) with the set of evaluation points (EV)
by adding them to check the prediction ability of the overall model. Broadly speaking, the models show
robustness when 30–25% cases (the EV set) are advantageously added to complete the model.

2.4. Multi-Layer Perceptron—Artificial Neural Networks

ANN methods [11,12] that can perform regression and data validation carry out both tasks
in a non-parametric way that makes no assumption regarding the relationship between y and x,
where y = f(x). This means that the function Property = f(indices) is not known a priori. In short, a
non-parametric model is a kind of black box that tries to discover the mathematical function that
can approximate the relationship between the indices and the property well enough. It uses highly
flexible transfer functions with adaptable parameters that can model a wide spectrum of functional
relationships. The activation functions for both hidden and output nodes used in Statistica 8 are:
identity (i), logistic sigmoid (l), hyperbolic tangent (t), sine (s), and exponential (e).

ANN results were obtained with the built-in utility of Statistica 8—the multilayer perceptron
neural network (MLP-ANN). This network has three-layered feedforward architecture with
unidirectional full connections between successive layers (Figure 2) and error backpropagation
(or backprop). The three layers are:

input units→ hidden units→ output units

Units are also known as neurons or nodes, in our case input units correspond to our variables, i.e.,

variables (MCI or MMCI)→ hidden units→ P

The only output unit, here, is the targeted property, P. In the present study the number of variables
corresponds to the number of MCI or MMCI descriptors. Each neuron, or node, in a layer connects to
every neuron in the next layer. The connections between neurons are the weights that determine the
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values assigned to the nodes. There exist additional weights assigned to the bias values that act as
node value offsets; therefore, the resulting number of weights is:

(No. input nodes + 2)·(No. hidden nodes) + 1
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Figure 2. An ANN scheme with an input node (in), a bias node (b), a hidden node (hn), and an output
node (on).

The given ANN scheme let us notice that if a weight is added to a hidden node the connections
become seven. With five input nodes and seven hidden nodes [a 5-7-1 network] the weights become
fifty. The weights adjusted by the training process are initially random and are handed over to all
nodes of the following layer. The training process is iterative, and each iteration is called an epoch.
Technically, the number of epochs is not definitive and it cannot be held as an unfailing parameter
(it can exceed the given number). The weights are slightly varied in each epoch to minimize the
sum-of-squares error function: SOS = Σi=1−N (Piclc − Pi)2, where Piclc (clc = calculated) is the ith
predicted value (network outputs) of the property, and Pi is the target value. This function is the sum
of differences between the prediction outputs and the target defined over the entire training set of
points (compounds) N. Statistica 8 allows setting the number of networks to train and retain (Ntr/Nre).
Two sets of values are here imposed: Ntr/Nre = 103/200 and Ntr/Nre = 105/200. In the corresponding
tables only Ntr is shown as Nre is constant. The ANN network of Statistica 8 is optimized with the
BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm to ensure a fast convergence rate [13,14].

Statistica 8, as a rule, sets by default the number of hidden nodes between 3 and 11. Nevertheless,
as already told, we perform four procedures (for the 4th procedure see later on): (i) first a single hidden
node, then (ii) hidden nodes from two to twelve are sequentially tried ‘by hand’ (i.e., the program is
not allowed to change the imposed number of hidden nodes), and, finally, (iii) the program chooses
the number of hidden nodes. To come as close as possible to the MLS results, it was decided (iv),
to compute again the one hidden neuron case where either one or two indices with the lowest sensibility
value have been deleted. In this case, for instance, the number of weights for the 4-1-1 case of Tb is 7,
and it equals the number of correlation coefficients from the MLS calculations with six indices. Data
required no normalization by the user, since the program performs this automatically.

Since the MLS procedure optimizes a number of regression parameters equal to the number of
variables plus one (the bias parameter), a practical comparison between the two methods should only
be performed when ANN uses no hidden neurons. In this case, the number of ANN weights equals
the number of MLS parameters. One should expect that with a growing number of hidden neurons,
the model of a property should constantly improve due to the growing number of weights for each
variable (akin having a variable with many different weights). With ANN it is usually the case that the
model becomes exceedingly good with a growing number of weights, and this frequently results in
overfitting with exceedingly poor prediction for the external values. The choice of training (TR = 80%
of the values in Table 1, excluding the externally validated compounds) and test sets (TE = 20% of the
values, the bold values in this Table) usually prevents overfitting. In fact, the network is repeatedly
trained for a number of cycles so long as the test error is on the decrease, otherwise the training is
halted. This method, known as the ‘early stopping’ procedure [12], avoids the trap that the program
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will always choose the maximum number of hidden nodes. Each property shows an optimal number
of nodes, which rarely corresponds with its maximum number.

3. Results

The results of the five procedures, one MLS and four ANN, are shown in Tables 4–9. Table 4
collects the MLS results for the eleven properties. In this table, in parenthesis the errors of the regression
coefficients are given in vector form (±signs have been omitted, 2nd line of each cell, 2nd column).
The training set for the elutropic value (El) includes pentane and tetrahydrofuran.

Tables 5–8 collect the different ANN-MLP results for the set of variables (descriptors, either MMCI
or MCI) of Table 4. In these tables, the first column gives the δv type (see Appendix A), and the number
of networks to train, Ntr = 103 or 105 (when both numbers gave rise to similar results Ntr = 103 was
preferred), while the number of networks to retain is always 200. The activation functions together
with the neuronal architecture are in the second column of Tables 5–8. In this column, 3rd line,
the number of epochs for which the ANN-MLP calculation runs are shown for each property. In the
third column is the set of variables together with their statistics. In this column, second line, are shown
the sensitivities. These values come from the sensitivity analysis that quantifies the importance of
the input variables of the models. The r2 and s, statistics were obtained with the EXCEL spreadsheet
plotting the observed property, P, vs. the calculated one, Pclc, once for the training and test compounds,
N(aTR + bTE), and the second time for the training + test + evaluated compounds, N(+cEV), where a,
b, and c are the number of points (i.e., compounds). We remind the reader that the MLS procedure
has no test compounds, only training compounds, N(TR). No ANN weights are shown, due to their
exceeding number, and because every time an ANN-MLP runs, different weights and sensitivity values
are obtained.

For comparison purposes it was decided to maintain throughout the ANN calculations (see
Tables 5–8) the same number of outliers excluded throughout the MLS procedure, where the exclusion
was done for residuals greater than 3s. Clearly, the ANN outliers differ from the MLS ones. In Table 5,
the ANN results obtained with a single hidden neuron are given. Tables 6 and 7 display the multiple
neuron cases: Table 6 with an externally imposed number of hidden neurons that was cycled from 2 to
12, and Table 7 with the number of hidden neurons chosen by the program (between 3 and 11). For UV,
MS, and El the program sets this number between 3 and 10. For those cases where different sets of
hidden nodes achieve similar modeling, the set with the minimal number of nodes was preferred.
The subset of descriptors used to model the properties showed r intercorrelation lower than 0.93.
We remind the reader that in a previous study [15] it was established that indices can be considered
strongly correlated if r > 0.98.

Table 4. Best set of descriptors for the properties of Table 1 with the multilinear least-squares (MLS)
methodology. 1st column: δv type for the valence-dependent indices. 2nd column: set of descriptors
and their statistical quality.

δv-Type Regression Equations

δv
po(1)

Tb = 237.5 + 139.1 0χ + 24.69 Dv + 527.7 0ψI − 25.91 1ψI − 1500 0ψE + 41.53 TΣ/M (1)

(24, 31, 3.5, 69, 21, 222, 10)
N(TR) = 45, r2 = 0.821, s = 22; N(+16EV) = 61, r2 = 0.792, s = 25

Excluded strong outliers: Formamide & SO2 ∈ {EV}

δv
po(50)

ε = 2.804 − 12.05 χv
t − 5.99·10−5 1χv

d + 132.7 1χv
s + 0.021 1ψId − 421.2 1ψEs +38.12 TΣ/M (2)

(0.9, 4.4, 10−5, 28, 0.005, 124, 2.9)
N(TR) = 43, r2 = 0.858, s = 4.2; N(+16EV) = 59, r2 = 0.896, s = 5.5

Excluded strong outliers: ethylencarbonate & quinoline ε {TR}, and MeOH & MeCl ∈ {EV}.
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Table 4. Cont.

δv-Type Regression Equations

δv
ppo(−0.5)

d = 0.733 + 0.024 Dv + 0.211 0χv + 1.463 1χv
s − 0.022 SψE + 0.148 ∆ (3)

(0.06, 0.002, 0.02, 0.3, 0.002, 0.01)
N(TR) = 45, r2 = 0.939, s = 0.07; N(+15EV) = 60, r2 = 0.914, s = 0.08

Excluded outliers: MeCl & MeOH ∈ {EV}

δv
ppo(1)

RI = 1.573 − 0.156 HM + 0.617 RM + 0.067 RMv − 0.447 SM − 0.086 HoMv − 0.012 SME (4)

(0.03, 0.01, 0.02, 0.01, 0.02, 0.01, 0.02)
N(TR) = 45, r2 = 0.957, s = 0.04; N(+14EV) = 59, r2 = 0.951, s = 0.03

Excluded outliers: MeCl & MeOH ∈ {EV}

δv
po(−0.5)

γ = 8.683 + 0.386 Dv + 397.6 1χv
s + 151.9 TψI − 502.4 1ψIs + 3.347 ∆ (5)

(2.3, 0.05, 57, 36, 90, 0.7)
N(TR) = 29, r2 = 0.835, s = 3.1; N(+10EV) = 39, r2 = 0.792, s = 3.1

Excluded outlier: formamide, nitromethane ∈ {EV}

δv
ppo(0.5)

FP = 387.1 + 26.99 HM − 94.38 HMI + 33.03 GME + 114.5 UMI − 83.10 HoME (6)

(26, 6.2, 12, 5.2, 13, 11)
N(TR) = 29, r2 = 0.829, s = 16; N(+11EV)= 40, r2 = 0.764, s = 17

Excluded outliers: Acetone ∈ {EV}

δv
po(−0.5)

η = − 0.216 + 0.001 1χd + 0.486 1ψI + 2.20·10−5 1ψId − 3.83·10−6 0ψEd + 0.098 Σ (7)

(0.2, 0.0003, 0.1, 7·10−6, 10−7, 0.01)
N(TR) = 28, r2 = 0.969, s = 0.4; N(+10EV) = 38, r2 = 0.939, s = 0.4

Excluded outlier: MeOH ∈ {EV}

δv
po(5) φ = 0, 1

µ = 0.038 + 0.002 1χd − 0.189 Dv + 0.078 0χv
d + 0.077 SψE + 4.039 TΣ/M (8)

(0.2, 0.0002, 0.04, 0.01, 0.01, 0.4)
N(TR) = 24, r2 = 0.919, s = 0.4; N(+9EV) = 33, r2 = 0.768, s = 0.7

Excluded outlier: formamide & MeOH ∈ {EV}

δv
po(50)

UV = 299.1 + 50.54 SMv − 37.34 LMv − 9.048 HoME + 1.310 StME (9)

(13, 4.9, 3.8, 1.1, 0.2)
N(TR) = 25, r2 = 0.893, s = 15; N(+8EV) = 33, r2 = 0.826, s = 21

Excluded outlier: 4-Me-2-pentanone ε {TR}; 2-butanone, MeOH, acetonitrile ε {EV}

δv
po(50)

−χ·106 = 0.617 + 0.044 0χd + 2.208 1χv
s − 2.212 1ψIs + 0.070 ∆ − 0.016 Σ (10)

(0.02, 0.01, 0.4, 0.5, 0.008, 0.003)
N(TR) = 23, r2 = 0.876, s = 0.04; N(+7EV) = 30, r2 = 0.875, s = 0.04

Excluded outlier: nitromethane & MeOH ∈ {EV}

δv
ppo(1) El = 0.018 + 0.181 × 10−3 1χd − 0.675·10−6 1χv

d + 0.003 0ψId + 140.8 TΣ/M (11)

(0.02, 0.00006, 10−7, 0.0004, 14)
N(TR) = 15, r2 = 0.934, s = 0.06; N(+3EV) = 18, r2 = 0.931, s = 0.06
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Table 5. ANN results with descriptors of Table 4 with one hidden neuron. 1st column: the δv-type
and the Ntr value; 2nd col.: ANN-MLP architecture, abbreviations for the activation functions for the
internal layers, the number of epochs, and training and test errors; 3rd col.: input indices, sensitivity
values, and statistical parameters for the training plus test sets, a[N(aTR + bTE)], and plus the evaluation
set, [N(+cEV)].

δv-Type ANN-MLP (Variables)→ Property

δv
po(1)

Ntr = 105

6-1-1
(e, l) *

41
0.005/0.003

(0χ, Dv, 0ψI, 1ψI, 0ψE, TΣ/M)→ Tb (12)

(30.67, 34.22, 41.80, 1.111, 15.76, 2.291)
N(36TR + 9TE) = 45, r2 = 0.850, s = 21; N(+16EV) = 61 r2 = 0.820, s = 23

Excluded outlier: dMe-Ether & SO2 ∈ {EV}

δv
po(50)

Ntr = 103

6-1-1
(e, s)

8
0.004/0.002

(χt
v, 1χv

d, 1χv
s, 1ψId, 1ψEs, TΣ/M)→ ε (13)

(1.209, 1.091, 3.028, 1.108, 1.440, 6.964)
N(34TR + 9TE) = 43, r2 = 0.871, s =3.8; N(+16EV) = 59, r2 = 0.793, s = 5.1

Excl.out.: ethylencarbonate & quinoline ε {TR}, formamide & acetone ∈ {EV}.

δv
ppo(−0.5)

Ntr = 103

5-1-1
(t, t)
33

0.002/0.0006

(Dv, 0χv, 1χv
s, SψE, ∆)→ d (14)

(17.99, 8.653, 2.953, 41.31, 12.37)
N(36TR + 9TE) = 45, r2 = 0.956, s = 0.1; N(+15EV) = 60, r2 = 0.930, s = 0.1

Excluded outliers: MeCl & MeOH ∈ {EV}

δv
ppo(1)

Ntr = 103

6-1-1
(i, i)
20

0.001/0.0001

(0χ, Dv, 0χv, 0ψE, ∆, TΣ/M)→ RI (15)

(78.50, 212.9, 286.4, 356.0, 9.482, 1.603)
N(35TR + 10TE) = 45, r2 = 0.959, s = 0.03; N(+14EV) = 59, r2 = 0.943, s = 0.04

Excluded outliers: formamide & MeOH ∈ {EV}

δv
po(−0.5)

Ntr = 105

5-1-1
(e, t)
27

0.005/0.006

(Dv, 1χv
s, TψI, 1ψIs, ∆)→ γ (16)

(9.086, 34.48, 34.44, 45.45, 2.328)
N(22TR + 7TE) = 29, r2 = 0.841, s = 2.8; N(+10EV) = 39, r2 = 0.705, s = 3.7

Excluded outlier: nitromethane & formamide ∈ {EV}

δv
ppo(0.5)

Ntr = 103

5-1-1
(e, e)

39
0.009/0.009

(HM, HMI, GME, UMI, HoME)→ FP (17)

(445.1, 1.44·106, 2.65·106, 4.22·106, 17·106)
N(22TR + 7TE) = 29, r2 = 0.801, s = 16; N(+11EV) = 40, r2 = 0.769, s = 16

Excluded outliers: 2Me-Butane ∈ {EV}

δv
po(−0.5)

Ntr = 103

5-1-1
(e, l)
17

0.001/0.0004

(1χd, 1ψI, 1ψId, 0ψEd, Σ)→ η (18)

(1.982, 1.509, 1.060, 12.04, 3.824)
N(22TR + 6TE) = 28, r2 = 0.972, s = 0.3; N(+10EV) = 38, r2 = 0.942, s = 0.4

Excluded outlier: MeOH ∈ {EV}

δv
po(5)

[φ = 0, 1]
Ntr = 103

5-1-1
(e, s)
18

0.002/0.003

(1χd, Dv, 0χv
d, SψE, TΣ/M)→ µ (19)

(317.2, 43.27, 17.80, 26.95, 8.546)
N(19TR + 5TE) = 24, r2 = 0.926, s = 0.4; N(+9EV) = 33, r2 = 0.768, s = 0.7

Excluded outliers: formamide & MeOH ∈ {EV}
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Table 5. Cont.

δv-Type ANN-MLP (Variables)→ Property

δv
po(50)

Ntr = 103

4-1-1
(s, i)
16

0.003/0.002

(SMv, LMv, HoME, StME)→ UV (20)

(772.2, 543.5, 28.82, 4.862)
N(20TR + 5TE) = 25, r2 = 0.892, s = 14; N(+8EV) = 33, r2 = 0.794, s = 22

Excl. outl.: 4M2-pentanone ε {TR}; 2-butanone, MeOH, Acetonitrile, ∈ {EV}

δv
po(50)

Ntr = 103

5-1-1
(s, s)
15

0.008/0.001

(0χd, 1χv
s, 1ψIs, ∆, Σ)→−χ·106 (=MS) (21)

(1.420, 6.413, 3.061, 3.569, 1.792)
N(19TR + 4TE) = 23, r2 = 0.809, s = 0.04; N(+7EV) = 30, r2 = 0.810, s = 0.05

Excluded outliers: nitromethane & MeOH ∈ {EV}

δv
ppo(1)

Ntr = 103

4-1-1
(i, i)
20

0.002/0.0003

(AMv, HME, GME, StMI)→ El (22)

(52.93, 3072, 3020, 27.81)
N(12TR + 3TE) = 15, r2 = 0.966, s = 0.04; N(+3EV) = 18, r2 = 0.955, s = 0.04

pentane and THF ε {TR}; excl. Out.: MeOH & 2-propanol ∈ {EV}

* Activation functions: e = exponential, i = identity, l = logistic, t = tanh, s = sin.

Table 6. ANN-MLP results with descriptors of Table 4 with externally imposed number of hidden
neurons. The structure is similar to that in Table 5.

δv-Type ANN-MLP (Variables)→ Property

δv
po(1)

Ntr = 103

6-2-1
(t, t)
73

0.004/0.002

(0χ, Dv, 0ψI, 1ψI, 0ψE, TΣ/M)→ Tb (23)

(18.17, 50.17, 138.5, 6.414, 93.87, 4.392)
N(36TR + 9TE) = 45, r2 = 0.891, s = 17; N(+16EV) = 61 r2 = 0.871, s = 20

Excluded outlier: SO2 & MeOH ∈ {EV}

δv
po(50)

Ntr = 105

6-3-1
(t, e)
55

0.002/0.001

(χt
v, 1χv

d, 1χv
s, 1ψId, 1ψEs, TΣ/M)→ ε (24)

(2.111, 1.902, 8.790, 3.305, 8.234, 16.43)
N(34TR + 9TE) = 43, r2 = 0.942, s =2.5; N(+16EV) = 59, r2 = 0.830, s = 4.5

Excl. Out.: ethylencarbonate & quinoline ∈ {TR},
formamide & nitromethane ∈ {EV}

δv
ppo(−0.5)

Ntr = 103

5-4-1
(t, l)
58

0.0004/0.0001

(Dv, 0χv, 1χv
s, SψE, ∆)→ d (25)

(41.54, 29.37, 9.057, 47.73, 29.59)
N(36TR + 9TE) = 45, r2 = 0.990, s = 0.04; N(+15EV) = 60, r2 = 0.966, s = 0.1

Excluded outliers: formamide & MeCl ∈ {EV}.

δv
ppo(1)

Ntr = 103

6-2-1
(t, s)
20

0.0001/0.0004

(0χ, Dv, 0χv, 0ψE, ∆, TΣ/M)→ RI (26)

(152.0, 450.4, 1447, 596.4, 25.73, 2.743)
N(35TR + 10TE) = 45, r2 = 0.995, s = 0.03; N(+14EV) = 59, r2 = 0.987, s = 0.05

Excluded outliers: formamide & MeOH ∈ {EV}
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Table 6. Cont.

δv-Type ANN-MLP (Variables)→ Property

δv
po(−0.5)

Ntr = 105

5-4-1
(t, e)
36

0.004/0.002

(Dv, 1χv
s, T ψI, 1ψIs, ∆)→ γ (27)

(1285, 21.98, 2093, 62687, 5.853)
N(22TR + 7TE) = 29, r2 = 0.908, s = 2.1; N(+10EV) = 39, r2 = 0.871, s = 2.4

Excluded outlier: nitromethane & formamide ∈ {EV}

δv
po(1)

Ntr = 105

5-5-1
(t, l)
35

0.003/0.009

(D, 1ψIs, 0ψEd, ∆, TΣ/M)→ FP (28)

(8.683, 2.965, 1.212, 5.431, 5.439)
N(22TR + 7TE) = 29, r2 = 0.919, s = 10; N(+11EV) = 40, r2 = 0.860, s = 13

Excluded outliers: nitromethane ∈ {EV}

δv
po(−0.5)

Ntr = 105

5-3-1
(e, l)
35

0.0003/0.0003

(1χd, 1ψI, 1ψId, 0ψEd, Σ)→ η (29)

(4.609, 5.914, 1.286, 15.86, 6.803)
N(22TR + 6TE) = 28, r2 = 0.982, s = 0.3; N(+10EV) = 38, r2 = 0.975, s = 0.3

Excluded outlier: 2-butanone ∈ {EV}

δv
po(5)

[φ = 0, 1]
Ntr = 105

5-2-1
(t, t)
77

0.001/0.001

(1χd, Dv, 0χv
d, SψE, TΣ/M)→ µ (30)

(12.41, 109.7, 76.57, 90.85, 34.04)
N(19TR + 5TE) = 24, r2 = 0.970, s = 0.2; N(+9EV) = 33, r2 = 0.874, s = 0.5

Excluded outliers: HAc, and MeOH ∈ {EV}

δv
po(0.5)

Ntr = 105

4-5-1
(t, e)
142

0.002/0.0006

(Dv, 0χv, 0ψE, ∆)→ UV (31)

(604041, 1166, 22291, 18.45)
N(20TR + 5TE) = 25, r2 = 0.970, s = 7.5; N(+8EV) = 33, r2 = 0.895, s = 13,

Excl. Out.: 4M2-pentanone ε {TR}; nitromethane, MeOH, acetone ∈ {EV}

δv
po(50)

Ntr = 103

5-3-1
(e, s)
18

0.003/0.0008

(0χd, 1χv
s,1ψIs, ∆, Σ)→−χ·106 (=MS) (32)

(3.148, 21.76, 4.090, 8.594, 3.054)
N(19TR + 4TE) = 23, r2 = 0.907, s = 0.03; N(+7EV) = 29, r2 = 0.871, s = 0.04

Excluded outliers: nitromethane, MeOH ∈ {EV}

δv
ppo(1)

Ntr = 103

4-2-1
(t, s)
22

0.001/0.003

(AMv, HME, GME, StMI)→ El (33)

(80.08, 3075, 2819, 34.79)
N(12TR + 3TE) = 15, r2 = 0.973, s = 0.03; N(+3EV) = 18, r2 = 0.975, s = 0.03

pentane and THF ε {TR}; excluded outliers: acetonitrile & 2-propanol ∈ {EV}
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Table 7. ANN-MLP results with the number of hidden neurons chosen by Statistica 8. Descriptors are
those of Table 4. The structure is similar to that in Table 5.

δv-Type ANN-MLP (Variables)→ Property

δv
po(1)

Ntr = 103

6-11-1
(t, t)
39

0.005/0.005

(0χ, Dv, 0ψI, 1ψI, 0ψE, TΣ/M)→ Tb (34)

(17.98, 45.18, 106.2, 2.556, 72.23, 3.579)
N(36TR + 9TE) = 45, r2 = 0.846, s = 21; N(+16EV) = 61 r2 = 0.826, s = 24

Excluded utlier: MeOH & SO2 ∈ {EV}

δv
po(50)

Ntr = 105

6-3-1
(t, e)
66

0.002/0.001

(χt
v, 1χv

d, 1χv
s, 1ψId, 1ψEs, TΣ/M)→ ε (35)

(2.598, 2.510, 10.40, 3.409, 10.99, 15.65)
N(34TR + 9TE) = 43, r2 = 0.942, s =2.5; N(+16EV) = 59, r2 = 0.742, s = 5.7

Excl. Out.: ethylencarbonate & quinoline ε {TR}, formamide & acetone ∈ {EV}

δv
ppo(−0.5)

Ntr = 105

5-8-1
(t, l)
18

0.001/0.001

(Dv, 0χv, 1χv
s, SψE, ∆)→ d (36)

(20.47, 8.414, 4.606, 49.56, 19.77)
N(36TR + 9TE) = 45, r2 = 0.970, s = 0.05; N(+15EV) = 60, r2 = 0.938, s = 0.07

Excluded outliers: MeCl & MeOH ∈ {EV}

δv
ppo(1)

Ntr = 105

6-4-1
(e, i)
66

0.0001/0.0004

(0χ, Dv, 0χv, 0ψE, ∆, TΣ/M)→ RI (37)

(447.3, 947.0, 1178, 1152, 39.05, 14.42)
N(35TR + 10TE) = 45, r2 = 0.990, s = 0.02; N(+14EV) = 59, r2 = 0.984, s = 0.02

Excluded outliers: MeCl & MeOH ∈ {EV}

δv
po(−0.5)

Ntr = 103

5-10-1
(l, s)
42

0.004/0.002

(Dv, 1χv
s, TψI, 1ψIs, ∆)→ γ (38)

(18.16, 81.96, 74.19, 173.8, 2.809)
N(22TR + 7TE) = 29, r2 = 0.890, s = 2.3; N(+10EV) = 39, r2 = 0.851, s = 2.6

Excluded outlier: nitromethane & formamide ∈ {EV}

δv
po(1)

Ntr = 105

5-4-1
(l, l)
81

0.003/0.01

(D, 1ψIs, 0ψEd, ∆, TΣ/M)→ FP (39)

(6.663, 2.542, 1.105, 4.616, 3.220)
N(22TR + 7TE) = 29, r2 = 0.899, s = 11; N(+11EV) = 40, r2 = 0.840, s = 14

Excluded outliers: 2Me-Butane ∈ {EV}

δv
po(−0.5)

Ntr = 103

5-3-1
(e, l)
26

0.0003/0.0003

(1χd, 1ψI, 1ψId, 0ψEd, Σ)→ η (40)

(6.071, 4.640, 1.164, 14.16, 7.089)
N(22TR + 6TE) = 28, r2 = 0.981, s = 0.3; N(+10EV) = 38, r2 = 0.974, s = 0.3

Excluded outlier: 2-butanone ∈ {EV}

δv
po(5)

[φ = 0, 1]
Ntr = 105

5-4-1
(t, t)
49

0.001/0.0005

(1χd, Dv, 0χv
d, SψE, TΣ/M)→ µ (41)

(20.13, 174.3, 115.0, 202.7, 62.97)
N(19TR + 5TE) = 24, r2 = 0.977, s = 0.2; N(+9EV) = 33, r2 = 0.835, s = 0.6

Excluded outliers: HAc, and MeOH ∈ {EV}
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Table 7. Cont.

δv-Type ANN-MLP (Variables)→ Property

δv
po(0.5)

Ntr = 105

4-5-1
(t, e)
108

0.001/0.0003

(Dv, 0χv, 0ψE, ∆)→ UV (42)

(2555, 517.8, 51639, 43.21)
N(20TR + 5TE) = 25, r2 = 0.970, s = 7.3; N(+8EV) = 33, r2 = 0.941, s = 10

Excl. Out.: 4M2-pentanone ε {TR}; nitromethane, 2-butanone, acetone ∈ {EV}

δv
po(50)

Ntr = 105

5-4-1
(t, i)
78

0.0004/0.0001

(0χd, 1χv
s,1ψIs, ∆, Σ)→−χ·106 (=MS) (43)

(48.24, 991.4, 1672, 165.9, 112.6)
N(19TR + 4TE) = 23, r2 = 0.989, s = 0.01; N(+7EV) = 29, r2 = 0.852, s = 0.04

Excluded outliers: nitromethane & MeOH ∈ {EV}

δv
ppo(1)

Ntr = 105

4-5-1
(t, t)
49

0.002/0.001

(AMv, HME, GME, StMI)→ El (44)

(66.31, 355.9, 331.7, 27.55)
N(12TR + 3TE) = 15, r2 = 0.973, s = 0.03; N(+3EV) = 18, r2 = 0.973, s = 0.03

pentane and THF ε {TR} and excluded MeOH & 2-propanol ∈ {EV}

Table 8. ANN-MLP results for the set of descriptors of Table 4 with only one hidden neuron where
either one or two indices were deleted, usually, those with the lowest sensitivity values shown in
Table 5. The structure is similar to that in Table 5. Only the satisfactory results are here shown.

δv-Type ANN-MLP (Variables)→ Property

δv
po(1)

Ntr = 105

4-1-1
(e, e)

25
0.008/0.008

(0χ, Dv, 0ψI, 0ψE)→ Tb (45)

(816.3, 863.6, 110900, 7016972)
N(36TR + 9TE) = 45, r2 = 0.758, s = 26; N(+16EV) = 61 r2 = 0.714, s = 29

Excluded outlier: dMe-Ether & SO2 ∈ {EV}

δv
po(50)

Ntr = 103

4-1-1
(i, s)

8
0.006/0.01

(χt
v

,
1χv

s, 1ψEs, TΣ/M)→ ε (46)

(1.033, 1.602, 1.092, 3.781)
N(34TR + 9TE) = 43, r2 = 0.761, s =5.2; N(+16EV) = 59, r2 = 0.903, s = 5.2

Excl.out.: ethylencarbonate & quinoline ε {TR}, nitromethane & HAc ∈ {EV}

δv
ppo(−0.5)

Ntr = 103

4-1-1
(l, t)
17

0.004/0.002

(Dv, 0χv, SψE, ∆)→ d (47)

(11.01, 7.934, 28.40, 4.905)
N(36TR + 9TE) = 45, r2 = 0.917, s = 0.1; N(+15EV) = 60, r2 = 0.895, s = 0.1

Excluded outliers: SO2 & Formamide ∈ {EV}

δv
ppo(1)

Ntr = 103

4-1-1
(i, e)
14

0.0008/0.0008

(0χ, Dv, 0χv, 0ψE)→ RI (48)

(1220, 479.3, 31.61, 2.185)
N(35TR + 10TE) = 45, r2 = 0.926, s = 0.05; N(+14EV) = 59, r2 = 0.914, s = 0.05

Excluded outliers: THF & MeCl ∈ {EV}
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Table 8. Cont.

δv-Type ANN-MLP (Variables)→ Property

δv
ppo(0.5)

Ntr = 105

4-1-1
(i, l)
26

0.01/0.02

(HMI, GME, UMI, HoME)→ FP (49)

(10.65, 14.68, 15.90, 12.16)
N(22TR + 7TE) = 29, r2 = 0.719, s = 19; N(+11EV) = 40, r2 = 0.702, s = 18

Excluded outliers: 2Me-Butane ∈ {EV}

δv
po(−0.5)

Ntr = 103

3-1-1
(t, i)
67

0.0007/0.0003

(1χd, 0ψEd, Σ)→ η (50)

(1.603, 15.54, 10.70)
N(22TR + 6TE) = 28, r2 = 0.965, s = 0.4; N(+10EV) = 38, r2 = 0.917, s = 0.5

Excluded outlier: MeOH ∈ {EV}

δv
po(5)

[φ = 0, 1]
Ntr = 105

4-1-1
(t, e)
22

0.009/0.005

(Dv, 0χv
d, SψE, TΣ/M)→ µ (51)

(2.582, 4.178, 6.314, 3.371)
N(19TR + 5TE) = 24, r2 = 0.795, s = 0.6; N(+9EV) = 33, r2 = 0.746, s = 0.7

Excluded outliers: HAc & MeOH ∈ {EV}

Table 9. Statistical, N/r2 (2nd decimal figure)/s, results for the eleven properties from Tables 4–7.
2nd column: MLS, results, 3rd column: ANN with one hidden neuron (ANN 1HN) results, 4th column:
ANN with externally chosen number of hidden neurons (ANN enHN) results, 5th column: ANN with
software chosen number of hidden neurons (ANN snHN) results. First line shows the statistical results
for the training (MLS) and train plus test (ANN) compounds, the second line shows the overall statistical
results inclusive of the evaluated compounds. M stands for MMCIs (otherwise they are MCIs). The last
two columns show also the number of hidden neurons (second line, underlined and bold).

P MLS (Table 4) ANN 1HN (Table 5) ANN enHN (Table 6) ANN snHN (Table 7)

Tb
45/0.82/22
61/ 0.79/25

45/0.85/21
61/0.82/23

45/0.89/17
2/61/0.87/20

45/0.85/21
11/61/0.83/24

ε
43/0.86/4.2
59/0.90/5.5

43/0.87/3.8
59/0.79/5.1

43/0.94/2.5
3/59/0.83/4.5

43/0.94/2.5
5/59/0.83/5.7

d 45/ 0.94/0.07
60/0.91/0.08

45/0.96/0.1
60/ 0.93/0.1

45/0.99/0.04
4/60/0.97/0.1

45/0.97/0.05
8/60/0.94/0.1

RI 45/ 0.96/0.04
59/0.95/0.03

45/0.96/0.03
59/0.94/0.04

45/0.995/0.03
2/59/0.99/0.05

45/0.99/0.02
4/59/0.98/0.02

γ
29/0.84/3.1
39/0.79/3.1

29/0.84/2.8
39/0.71/3.7

29/0.91/2.1
4/39/0.87/2.4

29/0.89/2.3
10/39/0.85/2.6

FP M/29/0.83/16
40/0.76/17

M/29/0.80/16
40/0.77/16

29/0.92/10
5/40/0.86/13

29/0.90/11
4/40/0.84/14

η
28/0.97/0.4
38/0.94/0.4

28/0.97/0.3
38/0.94/0.4

28/0.98/0.3
3/38/0.98/0.3

28/0.98/0.3
3/38/0.97/0.3

µ
24/0.92/0.4
33/0.77/0.7

24/0.93/0.4
33/0.77/0.7

24/0.97/0.2
2/33/0.87/0.5

24/0.98/0.2
4/33/0.84/0.6

UV M/25/0.89/15
33/0.83/21

M/25/0.89/14
33/0.79/22

25/0.97/7.5
5/33/0.90/13

25/0.97/7.3
5/33/0.94/10

−χ·106 23/0.88/0.04
30/0.88/0.04

23/0.81/0.04
30/0.81/0.05

23/0.91/0.03
3/29/0.87/0.04

23/0.99/0.01
4/29/0.85/0.04

El 15/0.93/0.06
18/0.93/0.06

M/15/0.97/0.04
18/0.96/0.04

M/15/0.97/0.03
2/18/0.98/0.03

M/15/0.97/0.03
5/18/0.97/0.03
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4. Plots

Figures 3–5 display the normal and residual plots of those properties that give rise to the best
models and that also show optimal statistics for the evaluated points (given in the captions). All these
plots follow the statistics shown in Table 9, 3rd column 2nd line. The structure and importance of this
type of plots was discussed in [16,17].
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5. Discussion

For the ease of discussion and interpretation the most important and detailed statistical results
collected through Tables 4–7 are summarized in Table 9. Table 8 shows a special case that will be
discussed later on. While Tables 4–7 collect the detailed information about the modeling of the
eleven properties, and especially about the type of indices, valence deltas, and structure of the ANN
computations, Table 9 gives direct information about the different models.

Looking for MMCI indices (letter M), in MLS, they are optimal for three properties: refractive
index RI, flashpoints FP, and cutoff UV.

In ANN computations with one hidden neuron, (ANN 1HN, Table 5), these are instead important
descriptors for cutoff UV, flashpoints FP, and elutropic values El. It seems that properties with less
training points are better modelled by MMCIs. Concerning the statistical results for the training
compounds, ANN 1HN (Table 9, 1st line) improves over MLS for Tb, and El properties, while it lays
behind for −χ·106, otherwise results are rather similar. With the whole set of compounds (Table 9,
second line); i.e., with training (and test with ANN)—plus evaluated compound ANN 1HN calculations
improve again over MLS for Tb, and El, while they stay behind with ε, γ, UV, and −χ·106.

As soon as the number of hidden neurons grows either by external choice, enHN (Table 6), or by
software choice, snHN (Table 7), MMCIs are optimal descriptors only for Elutropic values (silica) El,
which is the property with the lowest number of points.

The multiple hidden neuron case shows that, at the training level ANN enHN (Table 9), things
improve consistently over the two previous cases (MLS and ANN 1HN) for Tb, ε, d, RI, γ, FP, µ,
and UV. For −χ·106, ANN with several hidden neurons improves with respect to ANN 1HN, and for
El there is an improvement only in relation to MLS (Table 4). Results for viscosity, η, are rather similar
throughout the three cases. Mostly, improvement concerns both the r2 and the s statistics. Concerning
the whole set of compounds (TR, TE and EV) statistics improve in relation to the two previous cases
(MLS and ANN 1HN) for Tb, ε, γ, FP, µ, and UV.

The advantage of the ANN over the MLS procedure in general is not striking in the eleven
properties. In fact, with the only exception of the training plus test for the −χ·106 property it does not
achieve any useful improvement.

Normally, for an optimal modeling the number of hidden neurons that are externally chosen
(ANN enHN, Table 9) is smaller than the number of hidden neurons chosen by the software (ANN
snHN, Table 9). In some cases, it is much smaller, like for Tb (an extreme case), d, and γ. Furthermore,
ANN snHN statistics are either worse or similar to the ANN enHN ones. This means that if you intend
to let the software choose the number of hidden neurons then it is better that you stick to the MLS
modeling. Could that depend on the ANN initial weights considered? Probably even if it seems a
general trend; i.e., it shows up with nearly all properties.

The MLS results compare rather well with the ANN 1HN results even if the ANN computations
have a number of weights bigger (by two) than the number of regression coefficients of the
corresponding MLS computations. Thus, we decided to perform ANN calculations by deleting
the two indices with the lowest sensibility values in Table 5. In those cases where deletion of two
indices gives rise to poor modeling, we deleted only one index. In this last case, the number of weights
is no longer equal (actually it is bigger by one) to the number of regression coefficients or weights
of the MLS case. Results are shown in Table 8, and, as the reader can notice, four properties, γ, UV,
−χ·106, and El, do not show up due to poor modeling, while for properties d, FP, and µ, only one
index was deleted. We also notice that the dipole moment, µ, does not obey the lowest sensibility rule
(see Table 5) as following this rule we should have deleted TΣ/M index. Now, deletion of this index
gives rise to a poor modeling for the dipole moment. This confirms that sensibility values change from
run to run, like the weights, and they are not guidance for the absolute importance of an index, but
only for its importance within a given model. The statistics here are usually not as good as in the MLS
case (Table 4), with a clear and amazing exception, the modeling of the whole set of compounds for the
dielectric constant, ε. Looking only at the training plus test modeling, we would simply discarded this
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modeling. Nevertheless, the very good modeling of the evaluated compounds helps to improve the
overall model for this property. Thus, (i) before throwing away some training plus test ANN or MLS
results, re-evaluate and do not forget that (ii) a very good ANN modeling may hiding somewhere.

All this comes back to the random assigning of the initial weights in ANN computations, which
renders it difficult to reproduce values that seem to show up by chance. Tables 5–8 tell also that there
is no fixed preferential value for the parameter Ntr (numbers of networks to train). Usually, different
Ntr values give rise to rather similar statistical parameters.

Generally, the addition of the EV set does not greatly affect the overall quality of the models,
showing their robustness in most cases. The differences in r2 are not greater than 0.5, as a rule. Some
exceptions are the MLS models for FP and µ, and the ANN ones for ε, γ, and µ.

Concerning the most used values for δv, Tables 4–7 show that the δv
ppo configuration is preferred,

especially throughout the nHN cases (Tables 6 and 7). This choice means a strong dependence on the
core electrons for higher row atoms (see Appendix A). Regarding the exponent of the fractional term in
δv (see Appendix A), the most used values are 1, −0.5; i.e., strong hydrogen atom dependence—and 50;
i.e., no hydrogen atom dependence. The strong hydrogen dependence of δv tells us that the hydrogen
atoms should not be neglected.

Plots of Figures 3–6 exemplify the best models obtained from the given properties. These four
properties, Tb, d, RI, and η (Vis) show the best statistics for the set of points evaluated. The residual
plots, nevertheless, remind us that the models achieved could be further improved since the evaluated
points are not placed symmetrically around the zero line, as required in a perfect model. In the
graphs of Figures 4 and 5 a point appears away from the remaining points, which could anchor the
regression line. However, the corresponding residual plots show that this is not the case, since their
residuals are not insignificant. This is due to the large number of values concentrated in the cloud of
the remaining points.
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r2 = 0.98, s = 0.1.

6. Conclusions

The first interesting result of the present ANN-MLP computations is that MCIs are preferred over
MMCIs, especially with properties with a relatively high number of points. In fact, only El, with a
minimum number of points, is usefully described with MMCI when ANN-MLP with more than one
hidden neuron is performed.

The second result suggests that for the properties given it is better to impose from the outside the
number of hidden neurons.

The third result shows that, with some exceptions, ANN-MLP improves on MLS calculations,
even if the improvement is not dramatic.
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One of the great advantages of MLS computation is that its statistical results are reproducible,
no matter how many times the calculations are repeated with the same indices, the same results are
obtained. The ANN-MLP results can seem, instead, as non-reproducible since the weights of the
ANN-MLP calculations start with random values, and the minimization procedure usually ends up
with different values from run to run. Furthermore, as a rule, different ANN-MLP computations end
up in different local minima. However, it must be pointed out that repeating the training process by
setting up the same procedure, by using the same seed, randomization the algorithm and precision,
with the same data sets, the resulting model would be the same.

ANN-MLP results obtained with one hidden neuron either with the full set of descriptors
(Table 5), or with a reduced set of descriptors (Table 8) confirm the validity of the MLS calculations.
The asymmetry of the evaluated points around the zero line of the residual plots, reminds us that
things might be further improved either with other types of ANN-MLP calculations or with new types
of descriptors.

These results indicate that MLS models should be preferred, except when it is necessary to reach
a given quality in the predictions that is only achievable with ANN-MLP models.

The present study also tells us that it is worth considering the hydrogen atoms when performing
the calculations to derive the MCIs or the MMCIs, as in many cases they help to improve the quality of
a model both in the MLS and ANN-MLP computations.
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Appendix A. The Valence Delta

The δv number used in current and previous works is defined as follows [7],

δv =
(q + fn

δ)δ
v(ps)

(p · r + 1)
(A1)

δv(ps) is the valence of a vertex in a chemical pseudograph (or general graph) that allows multiple
bonds and self-connections (or loops). Usually, in chemical graph theory simple graphs (with no
multiple bonds and loops) and pseudographs are hydrogen-depleted. Parameters p is the order of a
complete graph, Kp, used to encode core electrons7, while r is its regularity (r = p − 1). A complete
graph is a graph where every pair of its vertices is adjacent. The first order complete graph, K1,
that encodes the second row atoms, is just a vertex. Higher values for p encode higher row atoms.
Parameter q in Equation (A1) is two-valued: q = 1 or p, where p = 1, 2, 3, 4, 5, 7, . . . .

Generally, two representations (or configurations) for δv are useful: a Kpo, configuration where
q = 1, and p = odd, and a Kppo one where q = p and, again, p = odd.

The fδ fractional perturbation parameter (or hydrogen perturbation) that encodes the depleted
hydrogen atoms is defined in the following way,

fδ = 1 − δv(ps)/δv
m(ps) = nH/δ

v
m(ps) (A2)

δv
m(ps) is the maximal δv(ps) value a heteroatom (a vertex) can have in a hydrogen depleted

chemical pseudograph when all bonded hydrogen atoms are substituted by heteroatoms, and nH

equals the number of hydrogen atoms bonded to a heteroatom. For completely substituted heteroatoms,
fδ = 0 as δv

m(ps) = δv(ps) (i.e., nH = 0). In hydrocarbons δv(ps) = δ, which is the delta number in
simple chemical graphs with no multiple bonds and loops. In this case: δv = (1 + fδn)δ (for p = 1).
For quaternary carbons fδ = 0 and δv = δ. Exponent n in fδ quantifies the importance of the hydrogen
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perturbation; i.e., the higher the n values the lower the importance of the perturbation. Different values
for n give rise to different sets of indices. In this study: n = −0.5, 0.5, 1, 2, 5, 50.

Appendix B. The Intrinsic-I-State and the Electrotopological S-State Indices

The I- and E-State indices (ψE,I:E means electrotopological, and I intrinsic), known in the literature
as I and S indices, respectively, are related to δv in the following way [4],

I = (δv +1)/δ, S = I + Σ∆I, with ∆I = (Ii − Ij)/r2
ij (A3)

rij counts the atoms in the minimum path length separating atoms i and j, which equals the
graph distance, dij + 1; Σ∆I incorporates the information about the influence of the remainder of the
molecular environment, and, as it can be negative, S can also be negative for some atoms.
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