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A B S T R A C T

In recent years, several convolutional neural network (CNN) methods have been proposed for the automated
white matter lesion segmentation of multiple sclerosis (MS) patient images, due to their superior performance
compared with those of other state-of-the-art methods. However, the accuracies of CNN methods tend to de-
crease significantly when evaluated on different image domains compared with those used for training, which
demonstrates the lack of adaptability of CNNs to unseen imaging data. In this study, we analyzed the effect of
intensity domain adaptation on our recently proposed CNN-based MS lesion segmentation method. Given a
source model trained on two public MS datasets, we investigated the transferability of the CNN model when
applied to other MRI scanners and protocols, evaluating the minimum number of annotated images needed from
the new domain and the minimum number of layers needed to re-train to obtain comparable accuracy. Our
analysis comprised MS patient data from both a clinical center and the public ISBI2015 challenge database,
which permitted us to compare the domain adaptation capability of our model to that of other state-of-the-art
methods. In both datasets, our results showed the effectiveness of the proposed model in adapting previously
acquired knowledge to new image domains, even when a reduced number of training samples was available in
the target dataset. For the ISBI2015 challenge, our one-shot domain adaptation model trained using only a single
case showed a performance similar to that of other CNN methods that were fully trained using the entire
available training set, yielding a comparable human expert rater performance. We believe that our experiments
will encourage the MS community to incorporate its use in different clinical settings with reduced amounts of
annotated data. This approach could be meaningful not only in terms of the accuracy in delineating MS lesions
but also in the related reductions in time and economic costs derived from manual lesion labeling.

1. Introduction

Currently, magnetic resonance imaging (MRI) is extensively used in
the diagnosis and monitoring of multiple sclerosis (MS), due to the
sensitivity of structural MRI to disseminate focal white matter (WM)
lesions in time and space (Rovira et al., 2015). With different mod-
ifications of MRI criteria over time, the presence of new lesions on MRI
scans is considered a prognostic and predictive biomarker for the disease
(Filippi et al., 2016). Although visual lesion inspection is feasible in
practice, this task is time-consuming, prone to manual errors and vari-
able for different expert raters, which has lead to the development of a
wide number of automated strategies in recent years (Lladó et al., 2012).

Although there is a wide range of methods proposed, convolutional
neural network (CNN) strategies are being increasingly introduced. In
contrast to previously supervised learning methods, CNNs do not re-
quire manual feature engineering or prior guidance, which along with
the increase in computing power makes them a very interesting alter-
native for automated lesion segmentation, as seen by their top ranking
performance on all of the international MS lesion challenges (Styner
et al., 2008; Carass et al., 2017; Commowick et al., 2018). The proposed
network architectures and training pipelines include three-dimensional
(3D) encoder networks with shortcut connections (Brosch et al., 2016),
multi-view image architectures (Birenbaum and Greenspan, 2017),
cascaded 3D pipelines (Valverde et al., 2017), multi-dimensional

https://doi.org/10.1016/j.nicl.2018.101638
Received 25 June 2018; Received in revised form 30 November 2018; Accepted 9 December 2018

⁎ Corresponding author.
E-mail address: svalverde@eia.udg.edu (S. Valverde).

NeuroImage: Clinical 21 (2019) 101638

Available online 10 December 2018
2213-1582/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2018.101638
https://doi.org/10.1016/j.nicl.2018.101638
mailto:svalverde@eia.udg.edu
https://doi.org/10.1016/j.nicl.2018.101638
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2018.101638&domain=pdf


recurrent gated units (Andermatt et al., 2017) and fully convolutional
architectures (Roy et al., 2018; Hashemi et al., 2018).

However, CNN architectures applied in MRI tend to not generalize
well on unseen image domains, which is mostly due to variations in
image acquisition, MRI scanner, contrast, noise level or resolution be-
tween image datasets. As a result, manual expert labeling must be
performed on the new image domain, which is very-time consuming
and not always possible. In this aspect, only a few papers have analyzed
the CNN domain adaptation problem on brain MRI. Recently,
Kamnitsas et al. (2017) proposed an unsupervised domain adaptation
CNN model for the segmentation of traumatic brain injuries, where
adversarial training was applied to adapt two related image domains
with distinct types of image sequences. Similarly, Ghafoorian et al.
(2017) investigated the transferability of the acquired knowledge of a
CNN model that was initially trained for WM hyper-intensity segmen-
tation on legacy low-resolution data when applied to new data from the
same scanner but with higher image resolution, showing the minimum
amount of supervision required in terms of high-resolution training
samples and re-trained network layers. Nevertheless, to the best of our
knowledge, still any study has been focused on the domain adaptation
between completely unrelated MS image domains in terms of the image
acquisition (scanner), resolution and contrast, which can be very in-
teresting in evaluating the usability of these CNN models in different
clinical scenarios.

In this paper, we analyzed the effectiveness of supervised image
domain adaptation between completely unrelated MS databases. To do
so, we first trained a slightly modified version of our already proposed
cascaded architecture (Valverde et al., 2017) entirely using two public
MS databases from the Medical Image Computing and Computer As-
sisted Intervention (MICCAI) society, MICCAI2008 (Styner et al., 2008)
and MICCAI2016 (Commowick et al., 2018), which was considered the
source model. Then, we analyzed the transferring knowledge capability
of this model by evaluating its performance on a set of completely
unseen images from other target image domains, partly re-training a
different number of layers or no layers. We extended our analysis to
investigate the minimum number of unseen images and re-trained
layers needed to obtain a similar performance on the domain adapted
model, even in one-shot domain scenarios in which only a single
training case was available on the target domain. Our evaluation in-
cluded a clinical dataset and public MS data from the International
Symposium on Biomedical Imaging (ISBI) 2015 MS challenge (Carass
et al., 2017), comparing the performance of the domain-adapted CNN
model with those of the same model fully trained on the target domain
and other state-of-the-art methods. To promote the reproducibility and
usability of our research, the proposed domain adaptation methodology
is available as part of our nicMSlesions MS lesion software, which can be
downloaded freely from our research website.1

2. Materials and methods

2.1. CNN architecture

The CNN MS lesion model follows our recently proposed framework
for MS lesion segmentation (Valverde et al., 2017). Within this frame-
work, a cascade of two identical CNNs are optimized, where the first
network is trained to be more sensitive to revealing possible candidate
lesion voxels, while the second network is trained to reduce the number
of false positive outcomes. For a complete description of the details and
motivations for the proposed architecture, please refer to the original
publication.

The architecture by Valverde et al. (2017) was composed of two
stacks of convolution and max-pooling layers with 32 and 64 filters,
respectively. The convolutional layers were followed by a fully

connected (FC) layer of 256 in size and a softmax FC layer, summing
∼200 K parameters. Here, to accommodate more expressive features
that arise from the baseline training, we propose to double the number
of layers on each convolutional stack (see Fig. 1). Additionally, we also
stack two additional FC layers of size 128 and 64, to increase the
number of potentially retrained classification layers used to adapt the
image domains. The resulting CNN architecture consists of ∼470 K
network parameters.

The CNN training and inference procedures are identical to those
proposed by Valverde et al. (2017). Briefly, training is performed fol-
lowing a two-step approach: first, a CNN model is trained using a ba-
lanced set of multi-channel Fluid attenuation inversion recovery
(FLAIR) and T1-weighted (T1-w) 3D 11 × 11 × 11 patches extracted
from all of the available lesion voxels and a random selection of normal
appearing tissue voxels. Then, the error of the first CNN model with the
respect to the available training annotations is computed. Finally, the
second model is trained using again a balanced set of voxels composed
of all of the lesion voxels and a random selection of the misclassified
lesion voxels on the previous model. Afterward, inferencing on the
unseen images is performed by evaluating all of the input voxels using
the first trained CNN, which discards all of the voxels with a low
probability of being lesion. The remaining voxels are re-evaluated using
the second CNN, obtaining a lesion probabilistic lesion mask. Final
binary output masks are computed by linear thresholding of prob-
abilities ≥tbin and a posterior filtering of the resulting binary regions
with a lesion size below lmin.

2.2. Initial training

The proposed CNN architecture was first fully trained using 35
images from the two publicly available MS lesion segmentation datasets
of the MICCAI society. Both the MICCAI2008 (Styner et al., 2008) and
MICCAI2016 (Commowick et al., 2018) are currently used as bench-
marks to compare the accuracy of novel MS lesion segmentation pipe-
lines. Please note that for each individual challenge, the proposed
network architecture performed in the top rank (see Valverde et al.
(2017) for the final ranking and comparison with other state-of-the-art
methods).

2.2.1. MICCAI 2008 dataset
The MICCAI 2008 MS lesion segmentation challenge was composed

of 20 training scans from research subjects, which were acquired at
Children's Hospital Boston (CHB, 3 T Siemens) and University of North
Carolina (UNC, 3 T Siemens Alegra). For each subject, the original T1-
w, T2 weighted (T2-w) and FLAIR image modalities were provided with
voxel size = 0.5 × 0.5 × 0.5 mm3. The provided FLAIR and T2-w image
modalities were already rigidly co-registered to the T1-w space. All of
the subjects were provided with manual expert annotations of WM le-
sions from a CHB and UNC expert rater. As pointed out by Styner et al.
(2008), the UNC manual annotations were adapted to closely match
those from CHB, and thus, only the CHB annotations were used.

As a previous step, we skull-stripped both the T1-w and FLAIR
images using the Brain Extraction Tool (BET) (Smith et al., 2002) and
bias corrected using N3 (Sled et al., 1998). In order to keep the same
voxel spacing between all the experiment datasets used in the paper, all
the training images were then interpolated to (1 × 1 × 1 mm3) using
the FSL-FLIRT utility (Greve and Fischl, 2009).

2.2.2. MICCAI 2016 dataset
The MICCAI 2016 MS lesion segmentation challenge (Commowick

et al., 2018) was composed of 15 training scans acquired in three dif-
ferent scanner vendors: 5 scans (Philips Ingenia 3 T), 5 scans (Siemens
Aera 1.5 T) and 5 scans (Siemens Verio 3 T). For each subject, 3D T1-w
MPRAGE, 3D FLAIR, 3D T1-w gadolinium enhanced and 2D T2-w/
Proton Density (PD) images were provided, with voxel sizes ranging
from (0.74 × 0.74 × 0.7 mm3) to (0.72 × 0.72 × 4.0mm3). Please refer1 http://github.com/NIC-VICOROB/nicmslesions.
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to the original publication for more details for the exact details of the
acquisition parameters and image resolutions (Commowick et al.,
2018). Manual lesion annotations for each training subject were pro-
vided as a consensus mask among 7 different human raters.

Pre-processed images were already provided. The pre-processing
pipeline consisted of a denoising step with the NL-means algorithm
(Coupé et al., 2008) and a rigid registration (Commowick et al., 2012)
of all of the modalities against the FLAIR image. Then, each of the
modalities were skull-stripped using the volBrain platform (Manjón and
Coupé, 2016) and bias corrected using the N4 algorithm (Tustison et al.,
2010). Finally, all the training images were also interpolated to
(1 × 1 × 1 mm3) using the FSL-FLIRT utility (Greve and Fischl, 2009)
in order to match the same voxel spacing between all the experiment
datasets.

2.2.3. Experiment details
All of the training images were first normalized with a zero mean

and a standard deviation of one. The normalized images were used to
build a set of 1,200,000 training patches, where 25% was selected for
validation and the others were used to optimize the network's weights.
We trained each of the two networks for 400 epochs with an early
stopping of 50 epochs for each network. This technique permits to
prevent over-fitting by stopping training after a number of 50 epochs
without a decrease in the validation error. The parametric rectified
linear activation function (PReLU) (He et al., 2015) was applied to all
layers. The convolutional layers were regularized using batch normal-
ization (Ioffe and Ioffe and Szegedy, 2015), while dropout (Srivastava
et al., 2014) was applied to each of the FC layers with (p = 0.5). Net-
work optimization was performed using the adaptive learning rate
method (ADADELTA) (Zeiler, 2012) with a batch size of 128 and ca-
tegorical cross-entropy as the loss cost. The post-processing parameters
≥tbin and lmin were set to 0.5 and 10, respectively.

2.3. Supervised domain adaptation

Although the convolutional layers can encode domain independent
valid image features that describe the location, shape and lesion con-
trast, these features are then propagated through the FC layers, which
learn to classify the lesion voxels based on the training data. However,
this process is inherently dependent on the training domain char-
acteristics, such as the intensity ratio between the lesion and the normal
appearing tissue, which enables the FC layers to learn to optimize the
best correlation between the extracted convolutional layers and the
manual labels.

However, the encoded knowledge already present in the source
model can be effectively used to adapt it to an unseen target intensity

domain because convolutional layers contain related features that can
be transferred to unseen data while only re-training the FC layers (see
Fig. 2). In our experiments, domain adaptation is performed by re-
training all or some of the source FC layers using images from the target
domain. Table 1 shows the number of network parameters used in each
of the proposed configurations. As a result of reusing part of the implicit
knowledge trained on the source model, the number of weights to op-
timize on the target model is significantly lower, which permits us to
train the model with a reduced number of training images without over-
fitting the model.

2.4. Implementation

All of the experiments were run on a GNU/Linux machine box
running Ubuntu 16.04, with 32GB of RAM memory. CNN training was
conducted on a single NVIDIA TITAN-X GPU (NVIDIA Corp, United
States) with 12GB of RAM memory. All of the procedures were im-
plemented in the Python language,2 using the Keras3 and Tensorflow4

libraries. The proposed method was integrated as part of our MS lesion
segmentation software nicMSlesions, which is available for downloading
at our research website1.

3. Experiments

3.1. Clinical MS dataset

3.1.1. Data
A total of 60 patients with a clinically isolated syndrome

(Hospital Vall d'Hebron, Barcelona, Spain) were scanned on a 3 T
Siemens with a 12-channel phased-array head coil (Trio Tim, Siemens,
Germany) with the following acquired sequences: 1) transverse PD
and T2-w fast spin-echo (TR = 2500 ms, TE = 16–91 ms,
voxel size = 0.78×0.78×3 mm3), 2) transverse fast T2-FLAIR
(TR = 9000 ms, TE = 93 ms, TI = 2500 ms, flip angle = 120°, voxel
size = 0.49×0.49×3 mm3), and 3) sagittal 3D T1 magnetization pre-
pared rapid gradient-echo (MPRAGE) (TR = 2300 ms, TE = 2 ms,
TI = 900 ms, flip angle = 9°; voxel size = 1×1×1.2 mm3). For each
patient, WM lesion masks were semi-automatically delineated from
either DP or FLAIR masks using JIM software5 by an expert radiologist
of the same hospital center. The T1-w and FLAIR images were first

Fig. 1. Eleven-layer CNN model architecture trained using multi-sequence 3D image patches (FLAIR and T1-w) that are 11 × 11 × 11 in size. Compared to the
original implementation in Valverde et al. (2017), we double the number of convolutional layers (3DCONV) before each of the two max-pooling layers (MP) and we
add two additional fully connected layers of sizes 128 (FC2) and 64 (FC3), before the softmax layer.

2 https://www.python.org/.
3 https://keras.io.
4 https://tensorflow.org.
5 Xinapse Systems, http://www.xinapse.com/home.php.
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skull-stripped using BET (Smith et al., 2002) and bias corrected using
N3 (Sled et al., 1998). The FLAIR images were affinely co-registered to
the T1-w space using the FSL-FLIRT utility (Greve and Fischl, 2009).

3.1.2. Evaluation
The images were first randomly split into two sets composed of 30

training and testing images. Then, the training data were used to train
the different target models while accounting for the following factors:

• The effect of one-shot domain adaptation training. Each proposed
domain adaptation configuration was trained using a single training
case with a lesion size in the range of [0.5–18] ml.

• The effect of the proposed domain adaptation configurations on the
accuracy of the target model (retraining 1, 2 or all of the FC layers,
see Table 1).

• The effect of the number of training images used to re-train the
target model. Each proposed domain adaptation configuration was
trained using 1, 2, 5, 10, 15 or all of the available training images.

Fig. 2. Supervised intensity domain adaptation framework. From the 11 layer CNN source model trained on two public MS datasets (see Subsection 2.2), we transfer
the model knowledge to an unseen target image domain. Domain adaptation is performed via 3 possible configurations by retraining the first FC layer, two FC layers
or all FC layers using images and labels from the target intensity domain. In all of the configurations, the layers that are not re-trained are depicted in gray.
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After training, each of the target models was evaluated on the test
set, evaluating the accuracy of the resulting segmentations against the
available lesion annotations using the following evaluation metrics:

• The overall % segmentation accuracy in terms of the dice similarity
coefficient (DSC) between the manual lesion annotations and the
output segmentation masks:

= ×
+ + ×

×DSC TP
FN FP TP

2
2

100s

s s s

where TPs and FPs denote the number of voxels correctly and in-
correctly classified as a lesion, respectively, and FN denotes the number
of voxels incorrectly classified as a non-lesion.

• Sensitivity of the method in detecting lesions between manual lesion
annotations and output segmentation masks, expressed in %:

=
+

×TP
TP FN

sensitivity 100d

d d

where TPd and FNd denote the number of correctly and missed lesion
region candidates, respectively.

• Precision of the method in detecting lesions between manual lesion
annotations and output segmentation masks, also expressed in %:

=
+

×TP
TP FP

precision 100d

d d

where TPd and FPd denote the number of correctly and incorrectly
classified lesion region candidates, respectively.

To evaluate the effectiveness of the proposed framework, the ob-
tained results were compared against the source model without re-
training and the same target model fully trained using all of the
available training images. For comparison, the segmentation accuracies
of two state-of-the-art MS lesion segmentation pipelines LST (Schmidt
et al., 2012) and SLS (Roura et al., 2015), were also reported.

3.1.3. Experiment details
All of the training images were first normalized with a zero mean

and standard deviation of one. Each of the trained models was run with
the exact parameters used to train the source model (see Subsection
2.2.3). The number of lesion voxels was equal during all of the training
epochs. Normal appearing tissue voxels were re-sampled every 10
epochs to augment the tissue variability during the training. As in the
source model, the post-processing parameters ≥tbin and lmin were set to
0.5 and 10, respectively. In the LST, the parameters κ and lgm were
optimized for the current dataset with the values κ = 0.15 and
lgm = gm, respectively. In the SLS, the parameters α, λts and λns were
also optimized for this particular dataset with the values α = 3,
λts = 0.6 and λnb = 0.6 for both iterations.

3.1.4. Results
First, we evaluated the models under a one-shot domain adaptation

scenario, by training them again several times using only a single case

from the training set with lesion burdens equal to 0.5, 1.2, 3.1, 8.3 and
18 ml. Table 2 shows the DSC, sensitivity and precision coefficients of
each of the re-trained models under different one-shot training sets. The
same evaluation is also shown for LST, SLS, and the cascaded CNN
architecture without fine-tunning (source) and fully trained using the
entire training dataset. As expected, the model without domain adap-
tation reported the worst accuracy by the lack of adaptability of the
source knowledge. In contrast, the models performance increased with
the number of annotated lesions on the target domain, showing better
DSC with the manual annotations than LST and SLS, even in extreme
cases in which only 9 lesions are manually annotated on the target
domain (0.5 ml).

As a second experiment, we evaluated the effect of adding more
training data on the accuracy of the domain adapted models. Fig. 3
shows the DSC, sensitivity and precision coefficients of each of the re-
trained models using different number of training image patients which
ranged from 1 to 30. The number of training samples was
∼18K, ∼ 36k, ∼ 48k, ∼ 60K, ∼ 70K, ∼ 95K and ∼130K for 1, 2, 5,
10, 15, 20 and 30 images, respectively. When more training data on the
target space were available, the performances of the re-trained models
were similar to that of the fully trained CNN pipeline, especially those
of the models in which the last two or all of the FC layers were re-
trained. In contrast, in the sensitivity and precision plots, the re-trained
models were in general more sensitive to inferring WM lesions but at
the cost of increasing also the number of false-positive outcomes.

3.2. ISBI 2015 dataset

3.2.1. Data
The ISBI2015 MS lesion challenge (Carass et al., 2017) was com-

posed of 5 training and 14 testing subjects with 4 or 5 different image
time-points per subject. All of the data were acquired on a 3.0 Tesla
MRI scanner (Philips Medical Systems, Best, The Netherlands) with T1-
w MPRAGE (voxel size=0.82 × 0.82 × 1.17mm3), FLAIR, T2-w and PD
(voxel size=0.82 × 0.82 × 2.2mm3), DP and FLAIR sequences. A
complete description of the image protocol and pre-processing details is

Table 1
Training parameters on each of the CNN models used. When training the source
model (see Subsection 2.2), all of the network layers are optimized from
scratch. On the target models, only the last FC layer (FC3), last two FC layers
(F2 + FC3) or all FC layers (FC1 + FC2 + FC3) are optimized, which sig-
nificantly reduces the number of training parameters.

Model Trained layers Network param

Source All (11 layers) 470,466
Target 3 layers FC1 + FC2 + FC3 172,928
Target 2 layers FC2 + FC3 41,344
Target 1 layer FC3 8320

Table 2
Clinical MS dataset: DSC, sensitivity and precision coefficients for each of the
models re-trained using a single case with varying degree of lesion load. For
comparison, the obtained values for SLS (Roura et al., 2015), LST (Schmidt
et al., 2012) and the same cascaded CNN method fully trained using the 30
available training cases (Valverde et al., 2017) are also shown. For each coef-
ficient, the reported values are the mean (standard deviation) when evaluated
on the 30 testing cases.

llesion vol (num lesions) DSC Sensitivity Precision

1 layer (FC3)
0.5 ml (9 lesions) 0.30 (0.19) 0.44 (0.23) 0.49 (0.30)
1.2 ml (11 lesions) 0.39 (0.19) 0.44 (0.19) 0.67 (0.23)
3.1 ml (17 lesions) 0.38 (0.22) 0.46 (0.20) 0.54 (0.25)
8.3 ml (90 lesions) 0.44 (0.17) 0.58 (0.19) 0.58 (0.26)
18 ml (78 lesions) 0.47 (0.18) 0.59 (0.18) 0.58 (0.23)
2 layers (FC2 + FC3)
0.5 ml (9 lesions) 0.30 (0.17) 0.52 (0.23) 0.54 (0.28)
1.2 ml (11 lesions) 0.39 (0.18) 0.49 (0.21) 0.72 (0.29)
3.1 ml (17 lesions) 0.36 (0.22) 0.42 (0.20) 0.54 (0.27)
8.3 ml (90 lesions) 0.45 (0.15) 0.55 (0.18) 0.66 (0.24)
18 ml (78 lesions) 0.44 (0.19) 0.62 (0.20) 0.52 (0.25)
3 layers (FC1 + FC2 + FC3)
0.5 ml (9 lesions) 0.28 (0.17) 0.48 (0.22) 0.48 (0.28)
1.2 ml (11 lesions) 0.38 (0.17) 0.52 (0.22) 0.72 (0.26)
3.1 ml (17 lesions) 0.38 (0.21) 0.46 (0.21) 0.55 (0.25)
8.3 ml (90 lesions) 0.44 (0.17) 0.61 (0.17) 0.57 (0.26)
18 ml (78 lesions) 0.45 (0.18) 0.60 (0.21) 0.55 (0.23)
Source (0 lesions) 0.23 (0.22) 0.42 (0.43) 0.45 (0.34)
SLS 0.25 (0.17) 0.34 (0.25) 0.51 (0.30)
LST 0.28 (0.23) 0.31 (0.21) 0.59 (0.27)
CNN 0.53 (0.16) 0.60 (0.21) 0.75 (0.21)
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available on the organizer's website.6 On the challenge competition,
each subject image was evaluated independently, which led to a final
training and testing sets composed of 21 and 61 images, respectively.
Additionally, manual delineations of MS lesions performed by two ex-
perts were included for each of the 21 training images.

The evaluation of the ISBI 2015 challenge is performed blind for the
teams by submitting the segmentation masks of the 61 testing cases to
the challenge website evaluation platform.7 Different metrics are
computed as part of an overall performance score (Carass et al., 2017),
where values above 90 are considered to be comparable to human
performance.

3.2.2. Evaluation
Here, we analyzed the effect of one-shot domain adaptation on the

overall performance of the testing set. To do so, we retrained all of the
model configurations (1, 2 or all FC layers) with the first training case
from each training subject, which led to 5 different training sets with
varying number of lesions and a total lesion volume in the range
[2.3–26.8 ml]. Then, each of the resulting trained models was evaluated
on the blind test set. Based on that approach, we evaluated the fol-
lowing experiments:

• The effect of the number lesions and lesion volume on the perfor-
mance of each of the one-shot domain adaptation models. We con-
sidered the segmentation masks of the same cascaded architecture
fully trained using the 21 training images (Carass et al., 2017) as
silver mask annotations, given that this particular model already
reported human-like accuracy (score 91.44) when submitted to the
challenge platform. We evaluated the performance of each of the
one-shot models again while computing the DSC, sensitivity and
precision coefficients between the one-shot segmentation masks and
the silver masks.

• The performance of the best one-shot domain adaptation model on
the blind test set. The best performing model from the previous
experiment was sent to the challenge's evaluation platform, com-
paring its accuracy to those of the other submitted MS lesion seg-
mentation pipelines fully trained using the entire available training
set. Among the set of evaluated coefficients computed in the chal-
lenge, only the DSC, sensitivity and precision metrics are shown for
comparison.

3.2.3. Experimental details
Like in the clinical MS dataset, all of the training images were first

normalized with a zero mean and a standard deviation of one. Each of
the trained models was run with the exact parameters used to train the
source model (see Subsection 2.2.3). The number of lesion voxels was
equal during all of the training epochs. Normal appearing tissue voxels
were re-sampled every 10 epochs to augment the tissue variability
during the training. The post-processing parameters ≥tbin and lmin were
set also to 0.5 and 10, respectively.

3.2.4. Results
Table 3 shows the performance of each of the one-shot domain

adaptation models when trained on different images with varying de-
grees of lesion size. For comparison, the results for the source model
without re-training on the target domain are also depicted. The per-
formance of the source model pre-trained only on the MICCAI2008 and
MICCAI2016 datasets shows the lack of accuracy of the method in de-
lineating WM lesions on the unseen target domain. Following the same
pattern seen on the clinical MS dataset, the best performance with re-
spect to the silver masks was obtained when re-training all of the FC
layers with the maximum number of available voxels (ISBI02, 26.8 ml.).
Interestingly, the performance of the model re-trained using just 26
lesions (ISBI03, 5.9 ml.) was remarkably higher than that of the other
trained models, especially when only the last two or one FC layers were
re-trained. Fig. 4 depicts the effect of the available number of lesion
voxels on the resulting number of true-positive, false-positive and false-
negative outcomes when re-training only the last FC layer.

Table 4 depicts the performance of the best domain adaptation
model (ISBI02 with 3 re-trained layers) against different top rank par-
ticipant challenge strategies. From the list of compared methods, the
best five strategies were based on CNN models (Andermatt et al., 2017;
Hashemi et al., 2018; Valverde et al., 2017; Birenbaum and Greenspan,
2017; Roy et al., 2018), while the others were based on either other
supervised learning techniques (Valcarcel et al., 2018; Deshpande et al.,
2015; Sudre et al., 2015) or unsupervised intensity models (Shiee et al.,
2010; Jain et al., 2015). The accuracy of the one-shot domain model
was similar to those of other recently fully trained submitted CNN
models (Roy et al., 2018), yielding a performance that was comparable
to human performance (score 90.3), even when trained it with a single
training case. Furthermore, the proposed one-shot method reported a
performance similar to that of the same fully trained cascaded CNN
architecture (score 91.44) (Valverde et al., 2017), which shows the
capability of the model to adapt the source knowledge into the target
domain using a reduced training dataset.

4. Discussion

In this paper, we have studied the effect of intensity domain adap-
tation on our recently published CNN-based MS lesion segmentation

Fig. 3. Effect of the number of re-trained FC layers and training images on the DSC, sensitivity and precision coefficients when evaluated on the clinical MS dataset.
The represented value for each configuration is computed as the mean DSC, sensitivity and precision scores over the 30 testing images. For comparison, the obtained
values for the lesion segmentation methods SLS (Roura et al., 2015) (× pink line), LST (Schmidt et al., 2012) (+ cyan line) and the same cascaded CNN method fully
trained using all of the available training data (Valverde et al., 2017) (− black line) are shown.

6 http://iacl.ece.jhu.edu/index.php/MSChallenge/data.
7 https://smart-stats-tools.org/node/26.
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method. The model was fully trained on two public MS lesion datasets
(MICCAI2008, MICCAI2016), analyzing its capability to transfer the ac-
quired knowledge to two completely unrelated datasets. For this parti-
cular architecture, we evaluated the number of necessary layers that
must be retrained and the minimum number of annotated images from
the unseen domain that is required to obtain a similar fully trained
performance. Our results highlighted the effectiveness of the proposed

domain adaptation model in transferring previously acquired knowledge
to new image domains even if only a single training case was available on
the target dataset. Furthermore, in some scenarios such as the ISBI2015
dataset, the performance of these one-shot models was similar to fully
trained models and comparable to human rate performance.

Our experiments on the ISBI dataset show a similar score between
the original architecture presented in Valverde et al. (2017) and the

Table 3
ISBI dataset: DSC, sensitivity and precision coefficients for each of the models
re-trained using a single case of the training dataset against the silver masks.
For comparison, the obtained values for the same source CNN method without
domain adaptation (see Subsection 2.2) are also shown. For each coefficient,
the reported values are the mean (standard deviation) when evaluated on the
61 testing images.

lesion vol (num lesions) DSC Sensitivity Precision

1 layer (FC3)
ISBI01 (17.4 ml, 29 lesions) 0.56 (0.14) 0.80 (0.11) 0.62 (0.07)
ISBI02 (26.8 ml, 45 lesions) 0.51 (0.21) 0.83 (0.13) 0.55 (0.07)
ISBI03 (5.9 ml, 26 lesions) 0.65 (0.11) 0.60 (0.17) 0.80 (0.14)
ISBI04 (2.3 ml, 20 lesions) 0.33 (0.12) 0.41 (0.16) 0.81 (0.14)
ISBI05 (4.3 ml, 22 lesions) 0.54 (0.11) 0.56 (0.16) 0.84 (0.12)
2 layers (FC2 + FC3)
ISBI01 (17.4 ml, 29 lesions) 0.56 (0.14) 0.74 (0.11) 0.59 (0.06)
ISBI02 (26.8 ml, 45 lesions) 0.53 (0.21) 0.87 (0.11) 0.56 (0.06)
ISBI03 (5.9 ml, 26 lesions) 0.65 (0.11) 0.66 (0.15) 0.79 (0.13)
ISBI04 (2.3 ml, 20 lesions) 0.47 (0.12) 0.48 (0.18) 0.83 (0.11)
ISBI05 (4.3 ml, 22 lesions) 0.56 (0.11) 0.54 (0.16) 0.82 (0.13)
3 layers (FC1 + FC2 + FC3)
ISBI01 (17.4 ml,29 lesions) 0.66 (0.10) 0.73 (0.11) 0.78 (0.10)
ISBI02 (26.8 ml,45 lesions) 0.69 (0.13) 0.70 (0.18) 0.77 (0.10)
ISBI03 (5.9 ml, 26 lesions) 0.65 (0.11) 0.63 (0.13) 0.79 (0.14)
ISBI04 (2.3 ml, 20 lesions) 0.47 (0.14) 0.40 (0.16) 0.84 (0.08)
ISBI05 (4.3 ml, 22 lesions) 0.46 (0.12) 0.46 (0.17) 0.87 (0.13)
Source (0 lesions) 0.33 (0.12) 0.40 (0.16) 0.72 (0.14)

Fig. 4. Output segmentation masks for the first image of the ISBI testing set. (A) FLAIR and (B) T1-w input masks. Silver mask (C) obtained based on the same CNN
method fully trained on the entire training dataset (Valverde et al., 2017). The other panels show the output masks for the one-shot domain adaptation model re-
trained only for the last FC layer using the images (D) ISBI01 (17.4 ml), (E) ISBI02 (26.8 ml), (F) ISBI03 (5.9 ml), (G) ISBI04 (2.3 ml), and (H) ISBI05 (4.3 ml). The
blue regions depict the overlapped lesion voxels between the silver mask and each of the models. The red and green regions depict false-positive and false-negative
lesion voxels, respectively, with respect to the silver masks.

Table 4
ISBI challenge: DSC, sensitivity, precision and overall score coefficients for the
best one-shot domain adaptation model (ISBI02 with 3 layers) after submitting
the segmentation masks for blind evaluation. The obtained results are com-
pared with different top rank participant strategies and the same model fully
trained on all the available data. For each method, the reported values are
extracted from the challenge results board. The reported values are the mean
(standard deviation) when evaluated on the 61 testing images. The performance
of the methods with an overall score ≥ 90 is considered to be similar to human
performance.

Method DSC Sensitivity Precision Score

Andermatt et al. (2017) 0.63 (0.14) 0.54 (0.19) 0.84 (0.10) 92.07
Hashemi et al. (2018) 0.66 (0.11) 0.67 (0.20) 0.71 (0.16) 91.52
Valverde et al. (2017) 0.64 (0.12) 0.57 (0.17) 0.79 (0.15) 91.44
Birenbaum and Greenspan

(2017)
0.63 (0.14) 0.55 (0.18) 0.80 (0.15) 91.26

Roy et al. (2018)a 0.52 (− −) - - (− −) 0.86 (− −) 90.48
Deshpande et al. (2015) 0.60 (0.13) 0.55 (0.17) 0.73 (0.18) 89.81
Jain et al. (2015) 0.55 (0.14) 0.47 (0.15) 0.73 (0.20) 88.74
Shiee et al. (2010) 0.55 (0.19) 0.54 (0.15) 0.70 (0.29) 88.46
Valcarcel et al. (2018) 0.57 (0.13) 0.57 (0.18) 0.61 (0.16) 87.71
Sudre et al. (2015) 0.52 (0.14) 0.46 (0.15) 0.66 (0.18) 86.44
Full train 0.63 (0.13) 0.55 (0.16) 0.79 (0.14) 91.33
One-shot (3 layers, 26.8 ml.) 0.58 (0.16) 0.48 (0.19) 0.84 (0.13) 90.32

a Obtained results for Roy et al. (2018) were extracted from the related
publication.
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proposed method when both were fully trained on the 21 training
images, suggesting a similar performance when enough training data is
available. However, compared to the original architecture, the pro-
posed model doubles the number of network parameters in order to
incorporate more expressive features and potential retrained layers,
increasing the probability of overfitting if the model is fully trained on
small datasets. In this regard, the performance of the models in which
only the FC layers were re-trained were very similar to that of the same
model fully trained for both the convolutional and FC layers. This result
suggests that there is an inherent capability of the convolutional layers
to encode useful image features that can be used across different image
domains without re-adaptation. As shown in Table 1, by re-using some
of the network layers we drastically reduce the number of parameters to
optimize on the target domain, and thus, the domain-adapted networks
can be fitted using a small number of training samples without over-
fitting the model.

Our experiments highlight the relationship between the number of
available lesion samples used to re-train the model and the resulting
accuracy. As seen in the first experiment, the incorporation of addi-
tional training samples increases the segmentation DSC coefficient on
all of re-trained models. Domain adaptation was progressively more
effective with increasing training cases, since the additional char-
acteristics of the target dataset could be fine-tuned on the FC layers. As
expected, the number of false-positive lesion voxels was reduced also
with the addition of more lesion examples with contextual information
of the target dataset. More interestingly, the models still yielded a re-
markably high performance on reduced training sets, such as a single
training case. In some cases, one-shot models trained with extremely
low lesion load showed a similar or better accuracy than those with
higher lesion volume, suggesting that lesion location may be also an
important factor. Related to that, one-shot models tended in general to
perform better on images with higher number of lesions but not ne-
cessarily higher lesion load, which suggests that the addition of dif-
ferent lesion locations may help to increase the variability of the target
patches extracted.

On the clinical MS dataset, the performances of the one-shot
adapted models were significantly higher than those of the LST and SLS,
even when trained using a single case with a 3.1 ml. lesion load and 17
manual annotated regions. Although the SLS and LST methods were
unsupervised models that did not require strict training, their para-
meters were optimized for the target image domain using a time con-
suming grid-search. In the ISBI2015 challenge, the same cascaded CNN
model fully trained on the 21 training images performed in the top rank
(4th position/46 participants), yielding comparable human-like accu-
racy. When compared with this fully trained model, the accuracy of the
one-shot domain-adapted model trained with only one of the 21
training images was still remarkably higher than those of most of the
participant strategies, which was very similar to other CNN methods
and still yielded a comparable human-like accuracy. This finding is
relevant, and it shows the potential applicability of our cascaded CNN
method on very reduced datasets with a limited loss in the accuracy.

In general, none of the hyper-parameters optimized for the source
model were fine-tuned on any of the domain-adapted models, which kept
them fixed along of all the experiments conducted in this study. As
previously observed, for a training dataset that contained at least 3000
lesion voxels (3 ml. on a isotropic 1mm3), the best results were obtained
when the last two or all of the FC layers were re-adapted. In contrast, on
extremely small datasets of < 3 ml., re-training only the last layer ap-
peared to be more indicative in order reducing the over-fitting of the
model. Given that these parameters appeared to work well in most of the
datasets, we propose using them as a rule of thumb on future settings.

5. Conclusions

In this study, we analyzed the effect of intensity domain adaptation
on a recent CNN-based MS lesion segmentation method. Given a source

model trained on two public MS datasets, we studied how transferable
the acquired knowledge was when applied to a private dataset and the
ISBI2015 challenge dataset, upon evaluating the minimum number of
annotated images needed from the new domain and the minimum
number of layers needed to re-train to obtain a comparable accuracy.

Our experiments showed the effectiveness of the proposed domain
adaptation model in transferring previously acquired knowledge to new
image domains even if only a single training case was available on the
target dataset. On the ISBI2015, the accuracy of our one-shot domain-
adapted model was comparable to that of a human expert rater and
similar to those of other CNN methods trained on a wide set of training
data. In this aspect, we believe that the performance shown by our
domain adapted models will encourage the MS community to in-
corporate its use in different clinical settings with reduced amounts of
annotated data. This finding could be meaningful not only in terms of
the accuracy in delineating MS lesions but also in the related reductions
in time and economic costs derived from manual lesion labeling.
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