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Abstract

Electronic and vibrational nuclear relaxation (NR) contributions to the dipole

(hyper)polarizabilities of the endohedral fullerene Li@C60 and its monovalent cation

[Li@C60]
+ are calculated at the (U)B3LYP level. Many results are new, while others

differ significantly from those reported previously using more approximate methods. The

properties are compared with those of the corresponding hypothetical non-interacting

systems with a valence electron transferred from Li to the cage. Whereas the NR contri-

bution to the static linear polarizabilities is small in comparison with the corresponding

electronic property, the opposite is true for the static hyperpolarizabilities. A relatively

small, but non-negligible, NR contribution to the dc-Pockels effect is obtained in the

infinite frequency approximation.

July 6, 2010

1 Introduction

Since their discovery endohedral fullerenes have been extensively investigated because of their

novel structure and properties [1]. Electrical properties have been of major interest owing to

a variety of possible applications ranging from qubits for quantum computation [2] to organic

photovoltaic devices [3]. Our interest in this connection lies in the theoretical determination of

the linear and nonlinear optical properties, i.e. the (hyper)polarizabilities, of these materials.

For that purpose we have chosen initially to study the prototypical metal endohedral fullerene,

Li@C60, and its cation [Li@C60]
+.

It has been recognized for some time now [4] that large amplitude vibrational motions,

due to weak interactions between the dopant Li atom and the fullerene cage, could give rise

to large vibrational (hyper)polarizabilities. Thus, both the pure electronic and vibrational
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contributions need to be examined. So far both contributions have been treated only at a

rudimentary level, to a large extent because of the large size of the fullerene cage and the open

shell character of the neutral. Furthermore, only static properties have been considered as far

as computations are concerned. The pure electronic first hyperpolarizability [5] and second

hyperpolarizability [6] of the neutral have been calculated using an uncoupled Hartree-Fock

scheme with molecular orbitals obtained from a restricted open-shell Hartree-Fock calculation.

These papers also contain experimental measurements. Very recently Yaghobi, et al. [7] used a

modified Su-Schrieffer-Heeger (Huckel-type) Hamiltonian [8], coupled with a sum-over-states

procedure, to obtain the Li@C60 electronic linear polarizability and second hyperpolarizability

tensors.

Whereas all the theoretical papers mentioned here discuss the vibrational contribution to

the (hyper)polarizabilities, only Whitehouse and Buckingham[4] made an attempt to calculate

these properties for the type of system in which we are interested. They used a much simplified

potential, in conjunction with a classical analysis - estimated to be valid above 20 K - to obtain

a (temperature-dependent) expression for the vibrationally averaged dipole moment. Then,

from the field-dependence of this expression, formulas for the vibrational linear polarizability

and second hyperpolarizability were extracted and the former quantity was evaluated for the

[Li@C60]
+ cation. Their work indicated that the vibrational contribution could be many

times larger than the electronic contribution for this system.

As concerns endohedral fullerenes in general, some calculations of their polarizabilities

have been reported, usually employing DFT methods [9], but reports on vibrational polar-

izabilities are rare. We mention here the work of Pederson et al. [10], who computed the

vibrational polarizability of Kr@C60, as well as of C60 itself, in the lowest order of perturba-

tion theory (double-harmonic approximation). At that level, these contributions were found
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to be very small compared with the electronic property.

There have been many important advances in computational capability and theoretical

methodolgy since the articles on Li doped C60 noted above have appeared. While these articles

establish a clear interest in the linear and nonlinear optical properties of the prototypical

neutral and cation, the time is ripe for a significantly improved treatment. That is the goal

of our current paper.

2 Methods

The geometry of Li@C60 and the singly charged cation were optimized at the DFT level using

the B3LYP functional in the unrestricted version for the former and the restricted version for

the latter. We note here that spin contamination was not an issue in the unrestricted DFT

calculations, neither with nor without applied electric fields. In all cases, the expectation value

of the total spin squared operator, <S2> for the converged Li@C60 wavefunctions was found to

be between 0.755 and 0.756, which is close to the exact value of 0.75 for a pure doublett. Due

to the large size of the molecule, as well as the tight convergence requirement for calculating

vibrational (hyper)polarizabilities, the rather small 6-31G basis set was employed in the latter

calculations (some 6-31+G values are included for comparison). For the electronic properties,

the 6-31G basis was found to be inadequate, thus they were additionally computed with the

6-31+G and 6-31+G* basis sets. In addition, several geometry optimisations were done with

6-31+G and 6-311G*, although no Hessians could be computed with these large basis sets.

The static electronic polarizabilites (αe
αβ ≡ αe

αβ(0; 0)), first hyperpolarizabilities (βe
αβγ ≡

βe
αβγ(0; 0, 0)), and second hyperpolarizabilities (γe

αβγδ ≡ γe
αβγδ(0; 0, 0, 0)) are defined by the

Taylor series expansions for the dipole moments µα(F ) [11] or energies E(F ) [11], in terms of
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the static field F :

E(F ) = E(0) − µe
iFi −

1

2
αe

ijFiFj −
1

6
βe

ijkFiFjFk −

1

24
γe

ijklFiFjFkFl − ... (1)

µi(F ) = −

∂E(F )

∂Fi
= µe

i + αe
ijFj +

1

2
βe

ijkFjFk +
1

6
γe

ijklFjFkFl + ... (2)

From these computed properties, i.e. the dipole moment and energy, the (hy-

per)polarizabilites were obtained using the Romberg differentiation procedure. Convergence

difficulties in the DFT self-consistent orbital calculations severely limit the accuracy of the

numerical differentiation as well as the range of fields that can be used. The problem increases

for larger fields and thereby impacts the accuracy of the (hyper)polariabilities. Thus, the

second hyperpolarizability could be obtained with sufficient statistical confidence from the

dipole moments, but not from the energies. Generally, a third order Romberg differentiation

[12] with a minimal applied field strength of 0.001 au was applied. In some cases, only a

second order Romberg differentiation was possible due to convergence problems, but in some

other cases even a higher order was used to ensure the reliability of the values. In addition to

the DFT computations, selected Hartree-Fock (HF) and second order Møller–Plesset (MP2)

computations were performed with the 6-31G basis set to provide a comparison with tradi-

tional wavefunction theory methods. The computations were done with Gaussian03 [13] and

Gaussian09 [14].

Some of the problems mentioned above could have been avoided by using an analytical

derivative method, e.g. analytical response theory, as implemented for linear, quadratic and

cubic response functions in time-dependent DFT by Jansik et al. [15] in the program package

Dalton [16]. This method has also been extended using spin-restricted DFT for open-shell

systems [17, 18]. However, trials to compute the (hyper)polarizabilities of Li@C60 using the

smallest basis set (6-31G) were successful only for linear polarizabilities; convergence prob-
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lems in determining the response vectors prevented calculation of the hyperpolarizabilities.

Considering that these calculations were quite expensive, and finite fields were needed for

the nuclear relaxation treatment of vibrational contributions, we decided to employ finite

field techniques throughout. We mention, finally, that the polarizabilities obtained from spin-

restricted analytical response theory were nearly identical to those calculated by unrestricted

finite field methods, showing again that spin-contamination is not a problem in our case.

Although there has been a lot of progress in the last few years in the field of computing

vibrational (hyper)polarizabilities based on vibrational seld-consistent field theory and corre-

lated versions thereof (see e.g. Refs. [19, 20]), the corresponding methods are computationally

still much to expensive for the large systems of interest here. Thus, the vibrational contribu-

tions were mostly computed using the finite field approach pioneered by Bishop, Hasan and

Kirtman [21], and later implemented by Luis et al. [22]. In this approach, the molecular

geometry is first optimized in the presence of a static electric field while strictly maintaining

the Eckart conditions [22]. Then the difference in the static electronic properties due to the

change in geometry induced by the field is expanded as a power series in the field. Each term

in the expansion yields the sum of a static electronic (hyper)polarizability plus a nuclear

relaxation (NR) vibrational term. For example, the change of the dipole moment and of the

linear polarizability are given by [21]:

∆µi(F, RF ) = a1,ijFj +
1

2
b1,ijkFjFk +

1

6
g1,ijklFjFkFl + ... (3)

∆αij(F, RF ) = b2,ijkFk + ... (4)

with

a1,ij = αe
ij(0; 0) + αnr

ij (0; 0) (5)

b1,ijk = βe
ijk(0; 0, 0) + βnr

ijk(0; 0, 0) (6)
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g1,ijkl = γe
ijkl(0; 0, 0, 0) + γnr

ijkl(0; 0, 0, 0) (7)

b2,ijk = βe
ijk(0; 0, 0) + βnr

ijk(−ω; ω, 0)ω→∞ (8)

The argument RF implies structure relaxation in the field, and Pnr means the nuclear relax-

ation part of P , while the subscript ω → ∞ invokes the so-called ”infinite optical frequency

(IOF)” approximation. In principle, this procedure allows one to obtain most of the ma-

jor dynamic vibrational NR contributions in addition to the purely static ones of Eqs. 5-7.

The linear term in the electric field expansion of Eq. (4) gives the dc-Pockels effect; the

quadratic term gives the optical Kerr Effect; and the linear term in the expansion of beta

yields dc-second harmonic generation (all in the IOF approximation). For laser frequencies in

the optical region it has been demonstrated that the latter approximation is normally quite

accurate [23, 24, 25]. In fact, this approximation is equivalent to neglecting terms of the

order (ωv/ω)2 with respect to unity (ωv is a vibrational frequency). In terms of Bishop and

Kirtman perturbation theory [26, 27, 28] all vibrational contributions through first-order in

mechanical and/or electrical anharmonicity, and some of second-order, are included in the

NR treatment [29].

The remaining (higher-order) vibrational contributions can, in principle be computed as

well using a related formulation [30]. However, that treatment requires computation of the

field-dependent zero-point vibrationally averaged properties, which was not feasible for the

systems studied here because of their large size and complicated potential energy surface

(PES). Indeed, of the dynamic properties mentioned above, we were only able to obtain the

dc-Pockels Effect due to instabilities for high fields that will be described later.

Generally, field strengths from 0.0001 au up to 0.0128 au were tried in the Eckart-

constrained optimizations and the energies and dipole moments of the successfully optimized
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structures were subjected to a numerical Romberg differentiation. As in the case of the elec-

tronic properties, the numerical differentiation of the energies was too unstable to yield all the

properties of interest. However, the numerical differentiation of field-induced dipole moments

allowed us to obtain stable values for most of the components of the NR contribution to the

static α , β and γ and to the IOF approximation for the dc-Pockels first hyperpolarizability.

Due to the high computational cost of these calculations, the 6-31G basis set had to be used.

A few control calculations with the 6-31+G basis set showed that the influence of diffuse basis

functions on the vibrational properties is not negligible, but smaller than on the electronic

properties.

3 Results and Discussion

3.1 Geometry optimization

Zhang et. al [31] have calculated the UB3LYP/6-311G* potential energy surface (PES) for

motion of Li along five different rays passing through the center of an undistorted fullerene

cage in Li@C60. The two most important rays, as far as the structure is concerned, were

along the line from the cage center to the center of a C6 hexagon (symmetry C3v) and

along the line from the cage center to the center of a C5 pentagon (symmetry C5v). Since

localization due to cage distortion can be important, as they found, we carried out geometry

optimizations for near C3v and near C5v symmetry at the same level while allowing the cage

to fully relax. We also obtained the stationary point at the near icosahedral symmetry under

the same conditions. In all cases, it was necessary to lower the actual symmetry to obtain the

optimized structure, due to SCF convergence problems in the high symmetry calculations.
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Zhang et al. [31] report that similar difficulties ocurred in their calculations.

In the case of approximate Ih symmetry the cage was slightly distorted yielding a Cs

optimized structure with the Li atom slightly (0.015 Å for UB3LYP/6-31G) removed from

the cage center. As already well-known this stationary point is not a minimum; in fact, there

are four imaginary frequencies. For the two minima (near C5v and near C3v) the Li atom

shifts about 0.1 Å off the ray that goes from the center of the cage to the center of the polygon

and the symmetry is again reduced to Cs. In both instances, the Li atom was located at about

1.5 Å from the center of the cage in the optimized structure. The eccentric position of Li in

Li@C60 has been interpreted in terms of dispersion and repulsion [32] interactions.

All of the above results agree semi-quantitatively with Zhang et al. [31] as expected

(see further below). The structure with approximate C3v symmetry was found to be 3.4

kJ/mol (1.6 kJ/mol) more stable than the one with C5v symmetry using UB3LYP/6-311G*

(UB3LYP/6-31G). Our value is slightly higher than the one found by Zhang et al. (2.6

kJ/mol). The reason for this difference may be due to cage relaxation and/or small deviations

of the Li atom from the fixed ray they employed. It is also posible that the two minima are

not directly related; as shown further below, there seem to be several minima close by. The

energy difference between the near-Ih and near C3v symmetry structures was found to be

56.5 kJ/mol at the 6-31G/UB3LYP level. Since we are interested in the ground vibrational

state all further investigations were focused on the most stable near-C3v structure. The

optimization using the 6-31+G basis was started from the 6-31G optimized structure, and

the final optimized structure was very close to the starting one, as expected.

The geometry of the monovalent cation [Li@C60]
+ was also determined for the near C3v

symmetry, using restricted B3LYP and the 6-31G basis set. A control optimization using

B3LYP/6-311G* did not show any substantial structural differenes. At the minimum, the Li
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atom is about 1.4 Å off the center of mass of the cage. The average C-C bond-length (1.4406

Å) is nearly the same as that of the neutral (1.4412 Å). However, the cation is somewhat more

spherical. As a measure of the sphericality we use ∆I = [(Ia−Ib)
2 +(Ia−Ic)

2 +(Ib−Ic)
2]1/2],

where Ix is the principal component of the cage inertia tensor, with respect to the center of

mass, in the x-direction. Our values are ∆I = 1.4 g Å2/mol for the cation and ∆I = 31.5 g

Å2/mol for the neutral. For comparison, the average moment of inertia I = 1/3(Ia + Ib + Ic)

is about 3050 g Å2/mol for both species. Finally, the coordinates of both near C3v optimized

structures can be obtained from the authors.

3.2 Electronic properties

In order to assess the reliability of the level of theory chosen, we show in Table I the computed

static electronic properties of Li@C60 and [Li@C60]
+, along the dipole moment direction

(defined as z), at different levels of theory and with different basis sets. Due to the convergence

problems mentioned above, it was not possible to determine the second hyperpolarizability,

γ, at the (U)MP2 level for either species. Because of the horizontal shift of the Li atom in

the optimization process (vide supra), the z-axis does not coincide with the axis containing

the cage center of mass and the Li atom, but is tilted away by about 10o. For [Li@C60]
+ the

dipole moment is determined by placing the (arbitrary) origin at the cage center of mass.

The rather small dipole moment of the neutral depends strongly on the basis set and

correlation treatment. Fortunately our interest lies in the (hyper)polarizabilities. Nonethe-

less, we can say that our dipole moment results are in qualitative agreement with the value

computed by Campbell et al. [5], but much smaller than reported by Li and Tomanek [33].

The comparison of our calculated (hyper)polarizabilities with those of Campbell, et al. will

be made later. We note that the addition of diffuse functions to the 6-31G basis is always
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crucial. But whereas the further addition of polarization functions has a minor effect on α

and γ, for β they partially (or totally) offset the effect of the diffuse functions. Comparison of

HF and (U)MP2 shows that correlation has a very large effect on β, but not α The fact that

(U)B3LYP yields values similar to (U)MP2 suggests that both account fairly well for corre-

lation (even though the calculations are only at the 6-31G level). Due to the unavailability

of γ at the (U)MP2 level, no conclusions can be drawn in this respect for the second hyper-

polarizability. The cation properties are somewhat less sensitive to correlation than those of

the neutral. Overall, we conclude that (U)B3LYP/6-31+G* is the minimal level required to

obtain reliable electronic properties. Finally, the large change in hyperpolarizabilities upon

going from the cation to the neutral is not unexpected in view of the additional electron in

a (formerly) unoccupied orbital localized on the C60 moiety. For γ the effect is more evident

for the other two diagonal components shown in Table II (see below).

In Table II we show the computed static (U)B3LYP/6-31+G* electronic properties of

Li@C60, [Li@C60]
+, C−

60, C60 and Li. The several additional species were included for com-

parison of Li@C60 with both non-interacting Li + C60 and Li+ + C−

60, as well as for comparison

of [Li@C60]
+ with non-interacting Li+ + C60. For α and γ only selected components useful

for this purpose are displayed whereas, for β, all symmetry allowed components are given

(see later). The 6-31+G* basis is inadequate for the Li atom. Although it is not important

here, we have added results for Li atom obtained with two larger basis sets (aug-cc-pVQZ and

aug-cc-pV5Z) showing that the negative 6-31+G* value of γ becomes positive for the larger

Dunning basis sets. The properties of Li+ are negligible [34] in the current context and are

not taken into account in the discussion below. For our comparisons the geometry of the en-

dohedral fullerenes was optimized at the (U)B3LYP/6-31G level and the same geometry was

retained for the non-interacting species. In principle, a BSSE correction should be applied to
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the Li-doped fullerenes, but is omitted since it would have no effect on our conclusions.

As compared to the hypothetical non-interacting species the interaction between the Li+

cation and either the C−

60 or C60 cage leads to a moderate reduction of the diagonal polariz-

abilities and, in the case of [LiC60]
+ also of the second hyperpolarizabilities. The reduction

for α may be due to a contraction of the electron density caused by the attraction of the

cation. Such an explanation will not suffice for γ since the effect of the interaction on the

diagonal components is quite different for Li@C60, and the second hyperpolarizability is not

simply related to the size of the electron distribtion. The first hyperpolarizabilities arise

from asymmetry of the charge distribution and are, consequently, strongly enhanced in the

endohedral species.

Campbell et al. [6] used an uncoupled approximation to coupled-perturbed HF theory -

or, as they prefer to call it, a ”computationally expensive tight-binding approach” to compute

the hyperpolarizabilities of Li@C60, using the 6-31G* basis set, and obtained for γ the values

∼(320, 540, -320)x103 au, for the x, y, and z diagonal components respectively. While the x

value is quite close to ours, the other two values do not agree even in sign. In Ref. [5], Campbell

et al. also computed the first hyperpolarizability using the same methodology. The values

they obtained (βzzz ∼15000 au, βyyy ∼-7000 au) are at least one order of magnitude larger

than ours in the most similar geometry they considered (Li displaced about 1.5 Å from the

center towards an hexagon). Campbells’ values are based on orbitals obtained from a ROHF

calculation, while ours are computed at the UB3LYP level. The large differences between

the two results confirm the unreliability of the HF method for the hyperpolarizabilities of

Li@C60, as found here for the UHF values (cf. Table I). In the same approximation, but

now using RHF, they obtain ∼50.000 au for the diagonal component in C60 [6]. This value is

about 2.5 times smaller than ours, which may be mostly due to the different basis sets, but
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also due to different approximations in both approaches, as well as differences in geometry

etc. Finally, we note that Jansik et al. [15] computed values for the (hyper)polarizabilities

of C60 in Ih symmetry with analytic response theory using larger basis sets, specifically

tailored for the purpose of computing hyperpolarizabilities, and obtained αav = 547.0 au and

γav = 118 103 au with B3LYP using the cc-pVDZ+spd (their notation) basis set. These values

are quite comparable to ours, taking into account the differences in symmetry (Ih versus Cs),

geometry, and basis set (it was assumed in our case that the geometry of C60 is sufficiently

spherical so that the nondiagonal terms of γ do not deviate appreciably from the relation

γiijj = 1/3γiiii).

We also investigated the influence of the position of the Li atom along the dipole axis

on the electric properties of Li@C60. The UB3LYP/6-31+G* values for different distances

rLi-O, where O denotes the center of mass of the cage, are shown in Table III. For reference

purposes the surface of the cage is at a distance of ∼3.4 Å. Interestingly, the diagonal z-

component of the polarizability, first hyperpolarizability, and dipole moment change little (µ,

α) or moderately (β) (for µ we are assuming that the value of the change is reliable even

though the value of the dipole moment itself is not) between r = 0.729 Å and r = 2.0 Å, but

γzzzz is altered much more drastically, even undergoing a sign change at small distances from

the cage center. This is consistent with γ being due to electron density that is distant from

the surface of the cage.

The large gradient in γzzzz for Li@C60 could possibly be used in a potential nonlinear

”flip-flop” device. This would require a mechanism such as an STM electric field to shift the

equilibrium position of the Li atom between different regions. The magnitude of such a shift

has been investigated by Delaney and Greer [2] who found that it is difficult to move the Li

atom very far because of the large screening effect of the fullerene cage. In the calculations
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reported below we find that a shift from the field-free position of about ∆z ∼ 0.03 au will

result when a 0.0128 au field is applied. According to Table III, this shift is much too small

to change γzzzz appreciably.

3.3 Nuclear relaxation contribution to vibrational nlo properties

In this sub-section we present the nuclear relaxation (NR) contributions to the vibrational

(hyper)polarizabilities of Li@C60 and [Li@C60]
+. As mentioned in Sec.II our treatment re-

quires a geometry optimization in the presence of a finite field. A problem can arise when

there are multiple minima on the PES separated by low energy barriers. The finite field

method works satisfactorily in that event as long as the field-dependent optimized structure

corresponds to the same minimum as the field-free optimized structure. This was the case

in previous work on ammonia [35], which has a double minimum potential. However, it is

sometimes not the case for the endohedral fullerenes considered here, especially Li@C60. In

fact, we were unable to determine the NR contribution in the x direction, i. e. perpendicular

to the symmetry plane, for that molecule. It was possible to obtain αnr
xx, based on the al-

ternative analytical formulation [26, 27, 28], utilizing field-free dipole (first) derivatives and

the Hessian. The analytical polarizability components in the other two directions were, then,

used to confirm the values of the corresponding finite field method for those properties.

In addition to the situation just discussed, it was also found that the electric field can

sometimes lead to a change of electronic state, as detected by a sudden jump in the computed

polarizability. This further limited the range of applicable field strengths and, thus, the range

of properties that could be computed with sufficient statistical confidence.

Our results for the static NR contributions to the diagonal (hyper)polarizability compo-

nents are shown in Table IV. Most of the values were obtained at the (U)B3LYP/6-31G level.
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For comparison, a few calculations were also done for Li@C60 at the UB3LYP/6-31+G level.

As seen from the Table, diffuse basis functions have a non-negligible effect on the computed

values, although the effect is smaller than on the electronic properties (cf. Table I). Note

in particular that there is no qualitative change of any vibrational property upon going from

6-31G to 6-31+G, in contrast to the electronic properties where 6-31G gives a negative value

for γzzzz, while it is positive for 6-31+G. Thus, we expect that the values of vibrational prop-

erties obtained with the 6-31G basis are qualitatively correct, although the accuracy becomes

worse for γnr than it is for αnr or βnr.

For α the vibrational contributions are quite small in comparison with their electronic

counterparts (cf. Table II) . In the case of [Li@C60]
+ this appears, at first glance, to contrast

with what Whitehouse and Buckingham (WB) [4] have previously found. However, their

values were obtained by classical averaging in the high temperature limit - in this case above

20 K - while ours are for 0 K. Another difference is that WB obtain the complete vibrational

polarizability and second hyperpolarizability, albeit very approximately, whereas we have not

included the so-called curvature contribution [30]. For the polarizability one would ”normally”

expect the latter to be substantially smaller than the NR term, but endohedral fullerenes are

not ”normal” molecules and that may not be the case here. Of the several approximations

in the WB treatment, one of the most questionable is the spherical approximation for the

field-free potential, which Zhang, et al. have shown does not qualitatively reproduce the low

energy vibrational spectrum of the neutral. This is not to mention that WB considered a rigid

cage and motion along the C5v symmetry axis, rather than the lower energy C3v symmetry

axis.

In contrast to α, the NR contributions to β and γ, are quite large. For the cation,

in particular, two diagonal components of γnr are larger than the corresponding electronic
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components. Such an increase in the relative magnitude of the NR (hyper)polarizabilities, as

compared to the electronic values, as the order of nonlinearity increases is often observed in

conjugated systems [25, 36]. However, it is usually not to as large an extent as found here.

The relationship with degree of nonlinearity may be connected with the fact that only dipole

derivatives enter into the linear NR polarizabilities, whereas βnr and γnr depend additionally

on polarizability derivatives, as the perturbation expressions for these quantities show [28].

Because of the conjugation the polarizability derivatives tend to be large (small changes in

bond length alternation cause large changes in α). Furthermore, the higher-order vibrational

polarizabilities (as opposed to the linear vibrational polarizability) depend upon electrical

and mechanical anharmonicity which, undoubtedly, is especially large for the systems we

are considering. WB give an expression for γ, but no numerical values. In addition, they

considered only linear terms in their field-dependent vibrational Hamiltonian. This omits

contributions to the vibrational hyperpolarizability that are generally important as suggested

above.

In Table V we show the computed NR contribution to several components of the dc-Pockels

effect for Li@C60, i.e. βnr
ijy(−ω; ω, 0) and βnr

ijz(−ω; ω, 0) where ij = xx, yy, yz, and zz. (see eq.

8). Comparison with the corresponding electronic values of Table II shows that the vibrational

contribution is relatively small, compared to the corresponding static electronic component,

but not negligible. The values obtained here may be compared with those of a typical donor-

acceptor molecule, H2N-(CH=CH)3-NO2, for which the ratio βnr
iii (−ω; ω, 0)ω→∞/βe

iii(0; 0, 0)

along the dipole direction was found to be about 0.7 at the RHF level and about 0.2 at the

MP2 level [36]. For LiC60 this ratio is 0.13 at the UB3LYP level.
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4 Conclusions

We have computed both electronic and NR vibrational contributions to the (hy-

per)polarizabilities of the prototype endohedral fullerene Li@C60 and its cation. A number

of these properties were obtained for the first time. In other cases our results differ quite

signicantly from those previously determined using more approximate approaches. The latter

include the static electronic properties calculated by Campbell et al. [5, 6]. Although, for the

cation, there is a large difference between our values of the static vibrational contribution to

α and those reported by Whitehouse and Buckingham [4], these results are not really compa-

rable because their calculations include the effect of temperature. In addition, they applied

several strong approximations, such as assuming a spherical field-free potential inside the

cage. On the other hand, our calculations do not include higher-order vibrational contribu-

tions omitted in the NR treatment. It would be worthwhile to add temperature-dependence

to the NR approach as we plan to do in the future. Whereas the NR contribution to the

static α is quite small for both endohedral fullerenes, it becomes quite large for the static

hyperpolarizabilities. This contribution is reduced for the dynamic Pockels effect, computed

in the infinite optical frequency approximation, but is still not negligible.

For [Li@C60]
+ the calculated (hyper)polarizabilities are roughly comparable to those of the

hypothetical non-interacting system obtained by charge transfer of the Li valence electron to

the cage giving Li+ + C60. The same is true for the linear polarizability of the neutral but the

non-interacting charge transfer model completely breaks down for the hyperpolarizabilities.

We consider our work as a substantial step towards the final goal of a full computa-

tional characterization of the linear and nonlinear electric dipole properties of endohedral

fullerenes. As far as vibrational contributions are concerned, in addition to the NR treatment

17



of low-order perturbation terms, there is an established method for obtaining all remain-

ing contributions through calculation of zero-point vibrationally averaged properties at the

relaxed field-dependent geometry [30]. What is needed is a robust procedure for carrying

out the geometry optimizations when the PES has multiple minima and/or other strongly

anharmonic features. Work is in progress on a reduced dimensionality scheme that may be

combined with quasidegenerate perturbation theory to treat such circumstances [35].
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Table I: Electronic contribution to dipole moment (µ), first– (αe), second– (βe) and third–

order polarizability (γe) for Li@C60 and [Li@C60]
+ using different levels of theory and different

basis sets, for the (U)B3LYP/6-31G optimized geometry. All values in a.u.

Li@C60 [Li@C60]
+

Method Basis set µe
z αe

zz βe
zzz γe

zzzzx103 αe
zz βe

zzz γe
zzzzx103

(U/R)B3LYP 6-31G 0.049 508.0 1540.8 −39 468.9 −237 28

(U/R)B3LYP 6-31+G 0.328 578.56 1839 64 520.2 −53 99

(U/R)B3LYP 6-31+G* 0.390 589.03 1532.6 66 533.9 −118 99

(U/R)HF 6-31G −0.18 479.0 5540 900 445.8 −83 54

(U/R)MP2 6-31G 1.39 527.1 1362.6 - 463.6 −192 -



Table II: Electronic (e) contribution to diagonal components of α, β and γ for Li@C60,

[Li@C60]
+, C60, C−

60 and Li calculated at the UB3LYP/6-31+G* level of theory. A couple of

larger basis set calculations are reported for Li.

Li@C60
a [Li@C60]

+b

i = x y z x y z

αe
ii 560.03 590.29 589.03 533.86 533.86 533.89

βe
iii 0.0 −290.0 1532.6 0 0 −118.1

γe
iiiix103 293 −20 66 102 102 99

i, j = x, y x, z y, z z, y x, y x, z y, z

βe
iij 98 −1104 514 −58 0 −52 −52

C−

60
a C60

b Li

i = x y z x y z x = y = z

αe
ii 575.9 617.7 620.5 550.5 550.5 551.3 138.6, 143.c, 142.9d

βe
iii 0 −88 441 0 0 −11 0

γe
iiiix103 211 −46 −86 136 135 136 −250,568b,631c

a At the geometry of Li@C60/UB3LYP/6-31G b At the geometry of [Li@C60]
+/B3LYP/6-31G c

aug-cc-pVQZ basis d aug-cc-pV5Z basis



Table III: Electronic dipole moment and (hyper)polarizabilities for Li@C60 along the dipole

(z) axis as a function of the distance between the center of the cage and the Li atom (rLi-O/au),

computed at the UB3LYP/6-31+G* level.

rLi-O µe
z αe

zz βe
zzz γe

zzzz(x103)

0 −0.117 597.6 416 −86

0.729 0.159 594.4 1112 −19

0.958 0.243 592.8 1278 8

1.058 0.278 592.1 1340 20

1.158 0.310 591.4 1396 32

1.358 0.367 589.9 1492 55

1.458 0.390 589.0 1533 66

1.558 0.409 588.2 1569 76

1.658 0.424 587.3 1601 87

2.0 0.440 584.5 1676 123



Table IV: Nuclear relaxation (NR) contribution to the diagonal components of the static α, β

and γ of Li@C60 and [Li@C60]
+ calculated at the (U)B3LYP/6-31G level and the UB3LYP/6-

31+G level (in square brackets).

Li@C60 [Li@C60]
+

i = x y z x y z

αnr
ii 14.7a 10.3 10.2 [11.9] 10.4 9.4 4.5

βnr
iii -b −125.9 794.6 [(912-915)] 0 95 18

γnr
iiiix103 -b −90 (25 - 40) [(52 - 81 )] 560 190 37

a Computed analytically; see text. b Not determined; see text



Table V: Components of the NR contribution to the dc-Pockels effect (βnr
ijk(−ω; ω, 0)ω→∞)

computed for Li@C60 in the infinite optical frequency approximation from eq. 8, at the

(U)B3LYP/6-31G level.

ij = xx yy yz zz

βnr
ijy −23 −33 51 −9

βnr
ijz −199 119 15 200


