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ABSTRACT

A set of exchange-correlation functionals, including BLYP, PBE0, B3LYP, BHandHLYP, CAM-B3LYP, LC-BLYP and HSE,

has been employed to determine static and dynamic non-resonant (nuclear relaxation) vibrational (hyper)polarizabilities for a

series ofall–trans polymethineimine (PMI) oligomers containing up to eight monomer units. These functionals are assessed

against reference values obtained using the MP2 and CCSD methods.For the smallest oligomer CCSD(T) calculations confirm

the choice of MP2 and CCSD as appropriate for assessing the density functionals. By and large, CAM-B3LYP is the most

successful, since it is best for the nuclear relaxation contribution to the static linear polarizability, intensity–dependent refractive

index second hyperpolarizability, static second hyperpolarizability, and is close to the best for the electro–optical Pockels effect

first hyperpolarizability. However, none of the functionals perform satisfactorily for all the vibrational (hyper)polarizabilities

studied. In fact, in the case of electric field induced secondharmonic generation all of them, as well as the Hartree-Fock

approximation, yield the wrong sign. We have also found thatthe Pople 6-31+G(d) basis set is unreliable for computing nuclear

relaxation (hyper)polarizabilities of PMI oligomers due to the spurious prediction of a non-planar equilibrium geometry.
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I. INTRODUCTION

Reliable predictions of electric dipole (hyper)polarizablilities is critical for the rational design of materials possessing large non-

linear optical (NLO) response.[1,2] For a long time it was common to investigate only electronic NLO properties leaving aside, as

less important, the vibrational counterpart. Due to a largeeffort by several groups, however, the prominent role of thevibrational

term in many instances is now well established. Taking into account the coupling of electronic and nuclear degrees of freedom is

necessary not only for resonant processes such as two-photon absorption,[3–5] simulation of vibronic profiles[6–10] and modeling

of vibrational sum-frequency generation spectra,[11,12] but for non–resonant processes as well, which is the subjectof this paper.

Various computational methodologies, and levels of treatment, for calculating the vibrational contributions to non-resonant linear

and nonlinear optical (NLO) properties have been developedand successfully applied.[3,13–31] In particular, the level of treatment

is determined by the need to preserve a balance between accuracy and computational cost. It has been shown recently[32–35] that

electron correlation can have a significant impact separately on the electronic and vibrational terms. It is especiallydifficult to

achieve a comparable accuracy in predicting both terms for agiven NLO process.

In the case of the electronic component it is possible to perform calculations employing high–level correlated wavefunctions

as the molecular geometry could be taken either from experiment or from more approximate methods. On the other hand, the

determination of the vibrational component requires geometry optimization and the calculation of computationally demanding

potential energy and electrical property surfaces. Thus, the more efficient Kohn–Sham density functional theory (KS-DFT) is

an attractive alternative way to account for electron correlation effects. However, as shown by Champagneet al.[36,37] and oth-

ers,[38–40] when conventional functionals are used KS–DFT tends to drastically overestimate electronic contributions to electric

dipole (hyper)polarizabilities in spatially extended systems, especially (though not only) inπ–conjugated compounds. The fa-

mous DFT overshoot problem, which has its roots primarily inthe self–interaction error,[40,41] is believed to be alleviated by

the recently introduced long–range corrected (LC), as wellas screened, exchange–correlation (XC) functionals[42–46] (note that

CAM-B3LYP and, for example, LC-BLYP are both included underthe LC rubric). Indeed, the recent work of Jacqueminet

al., [47] who studied a series of polymethineimine (PMI) oligomers, tends to confirm this contention, at least for first hyperpolar-

izability. For that case, using LC-DFT they reported results that systematically approached those computed by Møller–Plesset

second–order perturbation theory (MP2) as the chain was elongated. On the other hand, in comparison with the Hartree-Fock

(HF) approximation, the performance of these functionals for linear and second hyperpolarizabilities seems to be somewhat

mixed.[48–51]

Although the electronic contributions to resonant and nonresonant (hyper)polarizabilities have been studied extensively using

LC-DFT,[49–56] there is not much known yet as far as predictions of the vibrational counterpart is concerned.[35,57–63]

In the present study, a set of the most popular exchange–correlation functionals, including recent LC and screened exchange

schemes, are utilized to evaluate the electronic and vibrational contributions to electric dipole (hyper)polarizabilities of PMI

oligomers (with number of monomer units ranging from 2 up to 8; cf. Fig. 1). These oligomers are good candidates for as-

sessment purposes as they are known to be challenging for most XC functionals as far as electronic hyperpolarizabilities are
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concerned. The results of our DFT computations are comparedwith MP2 and CCSD reference data. Additionally, the Hartree–

Fock functional is employed to analyze the importance of electron correlation. Finally, since the conclusions presented by

Jacqueminet al. were drawn from calculations carried out using geometries optimized at the HF level of theory,[47] the extent of

correlation effects due to structural changes are investigated.

II. METHODS AND COMPUTATIONAL DETAILS

In the presence of an external electric field (F), the Cartesian component of the total molecular dipole moment µi may be

expressed as a Taylor series which takes the form:[64]

µi(ωσ) = µ0
i δωσ,0 +∑

j
αi j (−ωσ;ω1)Fj(ω1)+ (1)

1
2!

K(2) ∑
jk

βi jk(−ωσ;ω1,ω2)Fj(ω1)Fk(ω2)+

1
3!

K(3) ∑
jkl

γi jkl (−ωσ;ω1,ω2,ω3)Fj(ω1)Fk(ω2)Fl (ω3)+ . . .

whereµ0
i is thei-th component of the permanent dipole moment;αi j (−ωσ;ω1),βi jk(−ωσ;ω1,ω2) andγi jkl (−ωσ;ω1,ω2,ω3) are

components of the linear polarizability, first hyperpolarizability and second hyperpolarizability respectively;ωσ is the sum of the

external field frequenciesωi ; andK(2) andK(3) are factors required in order that all hyperpolarizabilities of the same order have

the same static limit. For instance, in the presence of a time-dependent field,F = F0 +Fωcos(ωt): [65]

µi(ω) = ∑
j

αi j (−ω;ω)Fω
j cos(ωt)+ (2)

∑
jk

βi jk(−ω;ω,0)Fω
j cos(ωt)F0

j +

1
2 ∑

jkl

γi jkl (−ω;ω,0,0)Fω
j cos(ωt)F0

j F0
l +

1
8 ∑

jkl

γi jkl (−ω;ω,−ω,ω)Fω
j cos(ωt)Fω

k cos(ωt)Fω
l cos(ωt)+ . . .

Within the Born–Oppenheimer (BO) approximation, the molecular (non)linear optical properties in Eq. (1) may be separated

into pure electronic (Pele) and pure vibrational (Pv) contributions, as well as the zero–point vibrational averaging (ZPVA) cor-

rection:[2,14]

P = Pel +Pv +PZPVA (3)

whereP = α,β,γ.

In the following sub–sections, a brief introduction to the computational schemes employed herein to obtain these properties will

be given together with a detailed description of the numerical protocols applied. The reader unfamiliar with this material can find

more in the rich literature on the subject.[2,66] As far as the orientational averaging of static properties is concerned, we use:[14]

ᾱ = ∑
i∈{x,y,z}

αii

3
(4)
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β̄ = ∑
i∈{x,y,z}

µiβi

||µ||
(5)

γ̄ = ∑
{i, j}∈{x,y,z}

γii j j

5
(6)

where||µ|| is the norm of the dipole moment,

βi =
3
5 ∑

j∈{x,y,z}

βi j j (7)

and the frequency designations have been suppressed for convenience.

A. Electronic contribution

In the case of DFT calculations, the electronic contribution to the (hyper)polarizability was evaluated either analytically (α,

β) or fully numerically based on differentiation of the dipole moment with respect to an external electric field. In the latter

event, we used the Romberg–Rutishauser algorithm (employing the electric field amplitudes±2nh, whereh=0.0002 a.u. and

n=0,1,. . . ,6).[67] At the MP2 level of theory, a semi–analytical procedure was employed, viz numerical differentiation of the

analytical electronic polarizability was used to obtainβ andγ; at the CCSD level we used the energy expansion to determine

(hyper)polarizabilities in fully numerical fashion.

B. Vibrational contributions

Based on time–dependent perturbation theory, Bishop and Kirtman proposed a double (electrical and mechanical) perturbation

theory (BKPT) treatment for the pure vibrational contributions to molecular (hyper)polarizabilities.[17] Within this approach

the pure vibrational contributions may be expressed in a short–hand “square bracket” notation as (frequency dependence is

suppressed on the r.h.s. of the following equations, again for brevity of notation):

αv
i j (−ω;ω) = [µ2]i j (8)

βv
i jk(−ωσ;ω1,ω2) = [µα]i jk +[µ3]i jk (9)

γv
i jkl (−ωσ;ω1,ω2,ω3) = [α2]i jkl +[µβ]i jkl +[µ2α]i jkl +[µ4]i jkl (10)

Each square bracket involves products of normal coordinatederivatives of the electronic electrical properties indicated, as well

as harmonic vibrational frequencies and anharmonic force constants. First derivatives of the electrical properties constitute the

zeroth–order harmonic approximation; second derivativesare first-order in electrical anharmonicity, etc. Similarly, the quadratic

terms in the potential energy expansion give rise to the mechanical zeroth–order harmonic model; cubic terms are first–order

in mechanical anharmonicity, and so forth. Thus, each square bracket term may be identified by a pair of superscripts(n,m)

denoting the order in electrical and mechanical anharmonicity, respectively.

Within the double harmonic approximation only four square bracket terms do not vanish. For static fields (ω1 = ω2 = ω3 = 0)

they may be expressed as follows:
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[µ2]
(0,0)
i j = ∑

a

(
∂µele

i
∂Qa

)Qa=0(
∂µele

j
∂Qa

)Qa=0

ω2
a

(11)

[µα]
(0,0)
i jk =

1
2 ∑Pi, j,k∑

a

(
∂µele

i
∂Qa

)Qa=0(
∂αele

jk
∂Qa

)Qa=0

ω2
a

(12)

[α2]
(0,0)
i jkl =

1
8 ∑Pi, j,k,l ∑

a

(
∂αele

i j
∂Qa

)Qa=0(
∂αele

kl
∂Qa

)Qa=0

ω2
a

(13)

[µβ]
(0,0)
i jkl =

1
6 ∑Pi, j,k,l ∑

a

(
∂µele

i
∂Qa

)Qa=0(
∂βele

jkl
∂Qa

)Qa=0

ω2
a

(14)

whereQa,ωa denote theath normal coordinate and corresponding (circular) harmonic frequency whereasPi, j,... stands for all

permutations ofi, j . . . . In the present study, the diagonal components and average value of each of the above square brackets

were evaluated. The derivatives of the electronic dipole moment and linear polarizability with respect to normal modeswere

obtained analytically together with the harmonic frequencies. At DFT and HF levels of theory the derivatives of the linear

polarizability with respect to normal modes were also computed analytically. For those methods gradients of the electronic

first hyperpolarizability were computed semi–numerically, that is to say as derivatives of the electronic linear polarizability with

respect to Cartesian coordinates were transformed to normal coordinates and differentiated with respect to the electric field. In

doing so, the 7–point central difference algorithm was applied in the numerical differentiation and the accuracy of theprocedure

was compared with analytical derivatives at the Hartree–Fock level of theory. At MP2 level the derivatives of theαele andβele

respect to the normal modes were computed numerically. At this levelαele was obtained analytically, whereasβele was computed

by finite field differences ofαele. A check of the numerical stability of the[µβ](0,0) tensor computed at all levels of theory was

obtained by separately computing symmetrically related components and verifying their equality, i.e.:

[µβ]
(0,0)
i jkl = [µβ]

(0,0)
i jlk (15)

As a variational alternative to the BKPT approach it was shown by Bishop, Hasan and Kirtman (BHK) that one may employ a

finite–field nuclear relaxation (FF-NR) formalism to evaluate vibrational (hyper)polarizabilities approximately including some

(low-order) anharmonicity.[18,20] Both static and dynamic properties are included, the latterwithin the infinite optical frequency

approximation (squared vibrational frequencies are assumed to be negligible in comparison with squared applied field frequen-

cies). According to this treatment:[38]

Pv = PNR +Pcurv−PZPVA (16)

wherePNR is the nuclear relaxation (NR) contribution. The combination Pcurv - PZPVA, is of higher–order than the nuclear relax-

ation term and is neglected in the present study.

As far as the NR contribution is concerned, following BHK we define:[20]

(∆P)RE = P(E,RE)−P(0,R0) (17)

Page 7 of 34

John Wiley & Sons, Inc.

Journal of Computational Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

On the performance of density functional theory in computing non–resonant vibrational (hyper)polarizabilities 6

whereP(E,RE) is an electronic property obtained at the field–relaxed geometry andP(0,R0) is the same property for field–free

conditions. It is possible to expand the right hand side of this relation as a power series in the electric field. For example:

(∆µi)RE = ∑
j

a1
i j Fj +

1
2 ∑

jk

b1
i jkFjFk +

1
6 ∑

jkl

g1
i jkl FjFkFl + . . . (18)

where the expansion coefficients yield the static properties:

a1
i j = αele

i j (0;0)+ [µ2]
(0,0)
i j (19)

b1
i jk = βele

i jk(0;0,0)+ [µα]
(0,0)
i jk +[µ3]

(1,0)
i jk +[µ3]

(0,1)
i jk (20)

g1
i jkl = γele

i jkl (0;0,0,0)+ [α2]
(0,0)
i jkl +[µβ]

(0,0)
i jkl +[µ2α]

(1,0)
i jkl +[µ2α]

(0,1)
i jkl +[µ4]

(2,0)
i jkl +[µ4]

(0,2)
i jkl +[µ4]

(1,1)
i jkl (21)

As one may readily notice, having obtained theb1 coefficient, together with the electronic and vibrational double harmonic

(available through BKPT) terms, the first-order anharmonicvibrational contributions to the static first hyperpolarizability may

be determined. Of course, one may also useb1 directly as an estimate of the total staticβ. An analogous interpretation holds

for g1, while the corresponding expansions of∆α and∆β yield dynamic vibrational hyperpolarizabilities in the infinite optical

frequency approximation (see further below).

In applying these FF–NR formulae, one should not forget thatthe geometry relaxation must not result from rotations of the

molecule through alignment of the permanent and/or induceddipole moment in the field direction (indeed this may be the easiest

way for the system to lower its energy). For that reason, the field–dependent optimization should be performed while strictly

maintaining the Eckart conditions.[68] Such optimizations can be carried out with the aid of the procedure developed by Luiset

al. [19]

The numerical differentiation needed to evaluatea1, b1 andg1 was performed with the Romberg–Rutishauser algorithm (apply-

ing the electric field amplitudes±2nh, whereh=0.0002 a.u. andn=0,1,. . . ,6), thereby minimizing the contamination of higher

power (in the field) terms.[67] Additionally, the accuracy of the FF-NR procedure was confirmed in each case by comparing

[µ2]
(0,0)
i j with the result of BKPT calculations. In order to reduce computational cost, the FF-NR treatment was applied only for

the diagonal longitudinal (z) component of the static vibrational hyperpolarizabilities with the PMI oligomers oriented as shown

in Fig. 1 (terminal carbon atoms are aligned along the Cartesianz–direction).

On the other hand, for many of the vibrational dynamic properties, the double harmonic square bracket terms are sufficient

to compute the nuclear relaxation contribution (there are no first– or second–order terms) within the infinite optical frequency

approximation. Such properties include: the electro–optical Pockels effect (EOPE), intensity–dependent refractive index (IDRI)

and electric field induced second harmonic generation (ESHG). In square bracket notation the average properties were determined

as:[15]

β
NR
EOPE =

1
3
[µα]

(0,0)
(22)

γNR
IDRI =

2
3
[α2]

(0,0)
(23)

γNR
ESHG =

1
4
[µβ]

(0,0)
(24)
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In addition, the nuclear relaxation static linear polarizability is completely determined by the double harmonic approximation

(cf. Eq. (11)) whereas the dynamicαNR vanishes in the infinite optical frequency approximation.

C. Software and density functionals

All calculations were performed with the GAUSSIAN 09 suite of programsusing default definitions of functionals (including

those asymptotically corrected).[69] Geometries were optimized so that the root-mean-square (RMS) gradient was less than 10−6

Hartree/Bohr and numerical integrations were done using a pruned (99,590) point grid. The SCF convergence was set at 10−12 on

the density matrix RMS for smaller oligomers (PMI2, PMI3) and 10−10 for larger members of the set. This protocol is believed

to be sufficient for description of even the low frequency modes.[70]

From the plethora of available approximations to the XC energy, the set of functionals that were studied in the present work

includes popular representatives of the most commonly usedDFT models. We employed the BLYP generalized gradient approx-

imation (GGA) functional, together with a family of more sophisticated schemes based upon it. This consists of the B3LYP[71]

and BHandHLYP[69] global hybrids as well as the CAM–B3LYP[72] and LC-BLYP[43] long–range corrected hybrids. This com-

bination allows us not only to assess the impact of exact exchange on the quality of the properties of interest, but also togain an

insight into the dependence of the vibrational (hyper)polarizabilites on the range in which the nonlocal exchange is included. The

latter is particularly important, as previous studies indicated significant improvement in the quality of predictionsof the electronic

contributions to the molecular NLO properties with the asymptotically corrected exchange–correlation potentials. Finally, we

employed the screened hybrid functional of Heyd, Scuseria and Ernzerhof (HSE)[73–77] where the nonlocal exchange energy is

included only for small inter-electronic distances, such that the asymptotic behaviour of the XC potential is dictatedby the GGA

approximation. For the sake of comparison, the parent functional of HSE, the PBE0 global hybrid[78,79] was also included.

III. RESULTS AND DISCUSSION

Electronic and vibrational (hyper)polarizabilities, unless indicated otherwise, were calculated using the medium-size aug-cc-

pVDZ basis set. This choice was dictated by the usual compromise between accuracy and computational feasibility; again, one

should not overlook a more demanding protocol for calculations of the vibrational counterpart of nonlinear optical response. The

recent work of Torrent-Sucarrat,et al.[32] suggests that a smaller 6-31+G(d) basis set might be satisfactory. However, it will

be shown that the latter does not suffice for vibrational properties due to an inability to predict a sufficiently accuratepotential

energy hypersurface. A previous study of the basis set dependence for NLO properties of PMI was performed by Jacqueminet

al. [80] However, their study dealt only with the static electronic first hyperpolarizability and, in addition, was limited to short

chains (up to PMI3).

In the present work, all structures optimized using the aug-cc-pVDZ basis set were found to be planar, all–trans conformers.
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This is in agreement with an earlier study of Medvedet al.[81] On the other hand, when using the 6-31+G(d) basis set we have

found in this work a spurious deviation from planarity for PMI4-PMI8.

A. Polarizability

Electronic and nuclear relaxation contributions to the static longitudinal polarizability, computed using the B3LYP, CAM-B3LYP,

HF, MP2, and CCSD methods with the aug-cc-pVDZ basis set, arepresented in Table 1 for PMI2-PMI4. These calculations on

the smaller chains were done to provide a preliminary assessment of the various levels of treatment. Just two representative

functionals, one hybrid (B3LYP) and one LC-hybrid (CAM-B3LYP), were chosen for that purpose. For PMI2 the polarizability

values obtained at the MP2/aug-cc-pVTZ level (in parentheses) display very good agreement with the MP2/aug-cc-pVDZ results,

which suggests that the double–ζ basis is sufficient. Our data show that the relative error in the B3LYP electronicα value, in

comparison with the CCSD reference, increases from PMI2 to PMI3. The same is true for the CAM-B3LYP values, although the

relative errors are much smaller (roughly by a factor of two). On the contrary, although an increase in the relative errorfrom PMI2

to PMI3 is also observed for theαNR, in that case the B3LYP error is about half that of the CAM-B3LYP one. The performance

of the HF method is surprisingly good for the electronic linear polarizability. However, HF gives the worst results of all methods

for the NR contribution. In comparison with CCSD, MP2 has lower errors overall than either B3LYP or CAM-B3LYP.We have

also determined the electronic and nuclear-relaxation polarizability of PMI2 at the CCSD(T)/aug-cc-pVDZ level of theory (cf.

Table 1). The comparison withαel values determined using the MP2 and CCSD methods reveals that the former is slightly more

successful (note that geometry differences are taken into account in our electronic values). In the case ofαNR, both approaches

predict equally small deviations from the reference value determined using the CCSD(T) method.

In order to examine the reliability of DFT calculations for theαNR of longer PMI chains we present the average static vibrational

(NR) linear polarizability of PMI2-PMI8 chains in Figure 2.In this case we take the MP2 values as a reference because CCSD

calculations are not feasible for the longer chains. Despite the arguments made above to justify this choice any conclusions that

rely on MP2 as the reference should be regarded with caution.As one may readily notice in Fig. 2, the LC-BLYP[µ2](0,0) values

strongly exceed the MP2 results. In fact, in comparison withall other methods, LC-BLYP has the largest average difference from

MP2 (71.8%). Fig. 2 also shows that, contrary to LC-BLYP, theremaining tested functionals clearly underestimate the MP2

values for PMI4-PMI7, with CAM-B3LYP being the sole exception. Indeed, CAM-B3LYP has the best agreement with MP2

(average error = 11.6%). HF also performs very well for theαNR; the average difference from MP2 is 13.5%. After CAM-B3LYP,

the DFT approaches that agree best with MP2 are BHandHLYP, PBE0 and HSE, with relative differences of 16.0%, 17.1% and

17.6%, respectively.

B. First hyperpolarizability

Table 1 contains a summary of static NR longitudinal (hyper)polarizabilities for the smaller oligomers (n=2–4) obtained using

the aug-cc-pVDZ basis set. For comparison purposes the corresponding electronic (hyper)polarizabilities are included as well.

As in the case of the linear polarizability, the small differences between the aug-cc-pVDZ and aug-cc-pVTZ (in parentheses) first

hyperpolarizabilities for PMI2 support the choice of the former for calculations on larger oligomers.
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We begin here with a brief discussion of the electronic first hyperpolarizability. Our MP2 results in Table 1 and Fig. 3 arein

agreement with those of Jacquemin,et al.[47] For short chains (PMI2 and PMI3) the longitudinal componentis overestimated

(in magnitude) at the MP2 level of theory as compared to the CCSD(and CCSD(T) for PMI2)reference. The percent difference

decreases significantly, however, upon going from PMI2 to PMI3. As opposed to HF, B3LYP and CAM-B3LYP, it is noteworthy

that MP2 correctly predicts the negative sign of the electronic longitudinal first hyperpolarizability for PMI2 and PMI3.

For longer chains average values of the static electronic first hyperpolarizability calculated by means of the seven DFTschemes

studied here, as well as the HF and MP2 methods, are presentedin Figure 3. In agreement with the results of Table 1, all DFT

methods and HF predict that̄βele has the opposite sign to that of the reference MP2 value. These methods also predict that the

average values change in the opposite direction from MP2 as afunction of increasing chain length (the sign ofβ̄ele is opposite

to that of the longitudinalβele becauseµz is negative (see Eq. (5)). The only exception is LC-BLYP; in that casēβele initially

becomes more negative for small chains but begins to increase for PMI7 and PMI8.

The general behavior just described is quite similar to thatfound by Jacquemin,et al. over the range of chain lengths considered

here, although geometry and basis set considered by these authors are different. It is only for longer chains that they find CAM-

B3LYP and B3LYP begin to approach the MP2 value (in their casefor the longitudinal electronic first hyperpolarizability). [47]

We have examined the effect of geometry, for the PMI2-PMI6 oligomers using the CAM-B3LYP functional at the MP2 optimized

geometries. Note in Fig. 3 the rather insignificant change inthe property value. Thus, the sign disagreement between theDFT

and MP2 descriptions of the electronicβ for PMIn oligomers (n=2-6 and, possibly,n=7-8) is not due to the choice of geometry.

Now we turn to the NR vibrational first hyperpolarizabilities. The comparison between MP2 and CCSD in Table 1 shows good

agreement between both methods, especially for PMI3. This suggests that MP2 is a reasonable choice as the reference for NR

first hyperpolarizability values. On the contrary, HF, B3LYP and CAM-B3LYP strongly underestimate the static longitudinal

βNR (as compared to CCSD) with relative errors between 53% and 134%. The choice of MP2 is further supported by the results

of βNR calculations for PMI2 at the CCSD(T)/aug-cc-pVDZ level of theory. The |βNR
CCSD(T)-β

NR
CCSD| and |βNR

CCSD(T)-β
NR
MP2| are about

one order of magnitude smaller than |βNR
CCSD(T)-β

NR
HF |, |βNR

CCSD(T)-β
NR
B3LYP| and |βNR

CCSD(T)-β
NR
CAM−B3LYP|

As far asβ̄NR for longer chains is concerned, the EOPE is simplest to deal with since the infinite optical frequency approximation

(IOFA) causes the anharmonic contribution to vanish, thereby leaving only the double harmonic term (cf. Eq. (22)). It happens

that the behavior of the DFT functionals bears a similarity to what was observed for̄αNR (cf. Fig. 4). Once again, up to PMI7, all

XC functionals, except for LC-BLYP underestimate the average MP2 property value. (B3LYP, CAM-B3LYP and HSE are larger

than MP2 for PMI8). Again, for this property LC-BLYP exhibits the largest divergence from MP2, with an average difference

of 76.9%. Discounting the two smallest PMI oligomers, HF agrees best with MP2; the average difference being only 3.4%. The

DFT methods that differ least from MP2 are PBE0 (8.4%), BHandHLYP (10.1%), HSE (10.8%) and CAM-B3LYP (12.2%).

For the static NR first hyperpolarizability, there is also a first–order anharmonic contribution. In carrying out the required field-

dependent geometry optimizations, these calculations proved to be very expensive using the MP2 method for the longer PMI
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molecules. Thus, our conclusions regarding the DFT performance are limited to the PMI2-PMI4 values presented in Table 1.

Contrary to the electronic static longitudinalβ, the MP2 and CCSD values for the corresponding NR property are quite similar

to one another for both PMI2 and PMI3. All three oligomers in the table give B3LYP and CAM-B3LYP results that are roughly

1.5-2.0 times larger in magnitude than the corresponding MP2 value. The HF value is even somewhat larger in magnitude. Itis

clear from the table that the double harmonic term,[µα]
(0,0)
zzz , makes the dominant contribution for all methods and is the major

source of the difference between MP2 and the DFT values. The DFT electrical anharmonicity contribution amplifies this dis-

crepancy, whereas the larger mechanical anharmonicity term improves the agreement.

Table 1 also contains the property values determined for PMI4 at the MP2/6-31+G(d) level of theory. At that level the values of

βNR (andγNR as well) are strikingly different from the MP2/aug-cc-pVDZresults. As noted above, using the 6-31+G(d) basis set

non-planar field-free equilibrium geometries are obtainedfor PMI4-PMI8. Furthermore, the field-dependent geometry optimiza-

tions, even in a weak-field regime, lead to highly distorted structures not observed when using the aug-cc-pVDZ basis set. Such

spurious non-planar geometries predicted by the 6-31+G(d)basis set lead to longitudinalβNR values with the wrong sign and

a strongly overestimated longitudinalγNR. These strange finite-field NR results were checked using analytical BKPT formulas

and the field-induced coordinate method,[82,83] which gave almost identical values ofβNR (within the range of numerical error

estimated as±5 a.u.). The inability of the 6-31+G(d) basis set to predict,even qualitatively, the anharmonic contribution toβNR

is probably due to the fact that members of the family of basissets developed by Pople and coworkers, if not well balanced,will

tend to give a poor description of potential energy hypersurfaces.[84,85]

C. Second hyperpolarizability

Finally, we come to the second hyperpolarizability. Two main conclusions can be drawn from our results for the static elec-

tronic longitudinal second hyperpolarizability presented in Table 1). Firstly, electron correlation effects are important. For both

PMI2 and PMI3 the relative difference between the HF value and the CCSD reference is 36%. A similar conclusion was drawn

by Medved’et al. for PMI chains up to PMI6.[81] For PMI2 there is an excellent agreement betweenγNR value computed at

CCSD(T)/aug-cc-pVDZ level of theory and the data obtained at the MP2 and CCSD levels.Secondly, as the chain is elongated,

the value predicted by the B3LYP functional becomes worse ascompared to the CCSD or MP2 method (for PMI2, PMI3 and

PMI4 the relative differences with respect to the MP2 (CCSD)values are 6% (21%), 25% (49%) and 63%, respectively). As

we have come to expect, the Coulomb–attenuated correction (CAM-B3LYP) leads to a substantial improvement of the B3LYP

predictions. In this case the PMI2, PMI3 and PMI4 relative differences with respect to MP2 (CCSD) are reduced to 2% (11%),

14% (5%) and 6%, respectively. Although there is a significant difference between MP2 and CCSD the same trends are revealed

in either comparison. Once more, we add the proviso that the above statements may need to be revised when longer chains are

examined.

As far as the NR vibrational contribution to the longitudinal second hyperpolarizabilities are concerned, it is again convenient

to begin with the dynamic properties for which there is no anharmonicity correction in the IOFA, namelyγIDRI andγESHG. In

the case of the averageγIDRI the BLYP, B3LYP, HSE and PBE0 functionals (see Fig. 5) strongly overestimate this property in

comparison with MP2 and, what is worse, the relative deviation rapidly increases with increasing chain length. Again the BLYP
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values show the poorest agreement; the relative differencewith regard to the MP2 values is 71.9% and 202.3% for PMI2 and

PMI7, respectively. As in the case of the other double harmonic properties treated thus far, the CAM-B3LYP functional gives

the best agreement. In fact, discounting the two smallest oligomers, the relative difference from MP2 is always smallerthan

10.1%, with an average difference of only 5.2%. The other twoDFT approaches that differ least from MP2 are BHandHLYP and

LC-BLYP, with average relative differences of 11.5% and 16.0%, respectively.

The scenario is clearly worse for the ESHG process. As one cansee from Fig. 6, all DFT functionals, and the HF approximation,

strongly underestimate the MP2 value. For chains longer than PMI2 they even fail to predict the correct sign. In order to further

validate the MP2 method as the reference, theγ̄ESHG value was computed for PMI3 at the CCSD/aug-cc-pVDZ level oftheory.

The latter was found to be 537 a.u., which may be compared withthe MP2 value of 773 a.u. This validates the sign of the MP2

result. Since the NR IOFA for̄γESHG involves the first derivative of the electronicβ with respect to normal coordinates, (see

Eq. (14)), the erroneous sign is related to the result, discussed above, that neither HF nor any of the DFT methods used here

reproduces the proper sign ofβ̄ele (see Fig. 3).

Finally, the NR static second hyperpolarizability is the most difficult property to determine. It contains both first- and second-

order anharmonicity contributions. From the results reported in Table 1 the longitudinalγNR(0;0,0,0) is found to be about the

same for bothab initio methods as well as the DFT treatment with the B3LYP and CAM- B3LYP functionals (for PMI2 and PMI3

the relative differences of all methods considered with respect to the CCSD values are smaller than 9.5%). There are two square

bracket terms that combine to constitute the double harmonic contribution. The[α2](0,0) term obtained for the DFT functionals

overshoots the MP2 value, although the ratio is less than about 1.5 with CAM-B3LYP and decreases to 1.1 in that case for PMI4.

On the other hand, the[µβ](0,0) term obtained with the DFT functionals has the wrong sign. This is undoubtedly a reflection of

the fact that the static electronicβ has the wrong sign as discussed above. It is clear that the satisfactory performance of HF,

B3LYP and CAM-B3LYP for the totalγNR(0;0,0,0) is due to a fortuitous error cancellation where the anharmonic corrections

are substantially overestimated and alleviate the poor performance of the[µβ](0,0) term. Judging by the values determined using

the MP2 method, the first- and second-order anharmonic contributions to the static nuclear relaxation second hyperpolarizability

are substantially more important than the double harmonic contribution.

By comparing HF with MP2 and CCSD it might seem that correlation effects are relatively unimportant for the staticγNR.However,

as pointed out above, the good performance of HF for the totalvalue is just the fruit of a fortunate cancellation of errors. Indeed,

correlation is essential to accurately reproduce both the harmonic and anharmonic contributions to the staticγNR. Finally, we

note that the staticγNR computed at the MP2/6-31+G(d) level for PMI4 is 20 times larger than the MP2/aug-cc-pVDZ value.

As discussed above, the spurious non-planar equilibrium geometry obtained with the 6-31+G(d) basis set is the origin ofthis

discrepancy.

IV. SUMMARY AND CONCLUSIONS

We have employed seven of the most popular exchange-correlation functionals, within the Kohn-Sham formulation of density

functional theory, to assess their performance in computing non-resonant NR vibrational (hyper)polarizabilities for a series of
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(PMI)n oligomers (n=2-8). The properties studied included not only static (hyper)polarizabilities but also several dynamic (hy-

per)polarizabilities within the infinite optical frequency approximation. For reference purposes, the CCSD and MP2 (for n >

3) methods were used together with the aug-cc-pVDZ basis set. An attempt to use the smaller 6-31+G(d) basis to compute NR

hyperpolarizabilities proved to be unreliable because, for n > 3, the optimum geometry is erroneously calculated to be non-planar.

The performance of the various functionals was found to be somewhat mixed. CAM-B3LYP yields the best overall results for

the DFT functionals considered in this paper. It is the best as far asαNR(0;0) , γNR
IDRI andγNR(0;0,0,0) are concerned and gives

good agreement with the reference values. ForγNR(0;0,0,0), however, this success is due to a cancellation of errors between

(smaller) harmonic and (larger) anharmonic contributionsto the total result. As far as ESHG is concerned, in contrast to the

other second hyperpolarizabilities, none of the functionals, or the HF method, predict the correct sign of the static NRvibrational

γ. This behavior is related to the inability of all functionals to predict the correct sign of the static electronicβ which, in turn,

agrees with previous reports. With regard to first hyperpolarizabilities, although the CAM-B3LYP functional does not give the

best agreement with the reference value for the NR Pockels effect, it, nonetheless, does not differ substantially from that value.

On the other hand, the CAM-B3LYP staticβNR significantly overshoots the reference value, at least for the small (n=2-4) chains

that were studied. In this case an overshoot occurs, but for other properties the error corresponds to an undershoot and,thus,

there is no systematic pattern. The effect of anharmonicityis quite small for the staticβNR but, on the contrary, it is dominant for

the static NR second hyperpolarizability.
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Table 1: Electronic and nuclear relaxation contributions to the longitudinal components of static electric-dipole (hyper)polarizabilities (αzz, βzzzandγzzzz). All values are

given in a.u. and, unless indicated otherwise, were determined using the aug-cc-pVDZ basis set.

αele αNR βele [µα](0,0) [µ3](1,0) [µ3](0,1) βNR γele [α2](0,0) [µβ](0,0) γNR

PMI2

B3LYP 67.9 5.1 81 -128 <1 17 -112 15.8×103 2.0×103 -3.6×103 10.6×103

CAM-B3LYP 65.5 5.4 62 -126 -4 16 -114 13.3×103 1.7×103 -3.0×103 10.0×103

HF 62.8 6.1 101 -156 -21 20 -157 8.4×103 1.7×103 -4.1×103 10.3×103

MP2 63.3 4.4 -87 -72 7 12 -53 14.9×103 1.1×103 1.7×103 9.8×103

MP2/aug-cc-pVTZ 62.1 4.6 -78 -78 9 11 -58 14.8×103 1.1×103 1.3×103 9.6×103

CCSD 63.0 4.6 -29 · · · · · · · · · -67 13.1×103 · · · · · · 9.7×103

CCSD(T) 64.3 4.5 -17 · · · · · · · · · -64 14.5×103 · · · · · · 9.6×103

PMI3

B3LYP 126.4 11.3 394 -735 -31 84 -682 73.7×103 22.0×103 -29.8×103 47.0×103

CAM-B3LYP 118.4 12.5 224 -686 -68 92 -662 56.4×103 16.8×103 -21.7×103 45.1×103

HF 110.6 15.2 289 -710 -168 117 -761 31.8×103 12.8×103 -23.0×103 47.0×103

MP2 113.7 9.3 -321 -495 5 58 -432 59.1×103 13.5×103 5.7×103 47.8×103

CCSD 110.7 10.3 -150 · · · · · · · · · -434 49.5×103 · · · · · · 44.0×103

PMI4

B3LYP 204.5 20.6 1326 -2296 -118 245 -2169 285.2×103 102.7×103 -137.9×103 171.9×103

CAM-B3LYP 184.9 23.7 580 -2058 -266 279 -2045 185.5×103 69.3×103 -86.8×103 160.8×103

HF 167.5 29.9 596 -1916 -607 338 -2185 88.5×103 43.9×103 -73.8×103 167.7×103

MP2 177.9 16.4 -768 -1544 -26 161 -1409 175.1×103 62.1×103 7.9×103 183.3×103

MP2/6-31+G(d) 168.5 20.1 -1021 -2271 · · · · · · 1648 178.3×103 · · · · · · 3719.3×103
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Figure 1: Orientation of PMI molecules in the Cartesian coordinates. Terminal carbon atoms are aligned along Cartesianz–

direction.
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Figure 2: Average nuclear–relaxation contribution to vibrational polarizability
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Figure 3: Average electronic contribution toβ tensor
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Figure 4: Average total nuclear–relaxation contribution to βNR
EOPE
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Figure 5: Average total nuclear–relaxation contribution to γIDRI
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Figure 6: Average total nuclear–relaxation contribution to γESHG
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Table 1: Static nuclear relaxation polarizability ([µ2]
(0,0)

) for PMIn oligomers. All values were computed using the aug-cc-pVDZ
basis set and are given in a.u.

------------------------------------------------------------------------------------
n B3LYP BLYP CAM-B3LYP LC-BLYP HSE BHandHLYP PBE0 HF MP2
------------------------------------------------------------------------------------
2 3.1 3.1 3.2 3.2 3.1 3.1 3.1 3.3 2.7
3 6.9 6.6 8.0 9.6 7.0 7.3 7.2 8.3 6.8
4 22.9 20.8 33.2 51.2 25.9 26.6 27.4 32.2 30.7
5 90.4 74.8 148.1 266.9 103.2 112.9 111.7 145.2 140.3
6 243.9 178.0 455.0 992.9 314.1 341.3 352.1 496.3 456.2
7 480.4 375.3 965.7 2048.3 732.1 739.2 779.5 1200.4 1047.3
8 2178.0 12766.5 2323.5 3183.0 1919.9 1821.6 1459.1 2196.6 1852.2
------------------------------------------------------------------------------------
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Table 2: Static[µα]
(0,0)

contribution to the vibrational first hyperpolarizabilityfor PMIn oligomers. All values were computed
using the aug-cc-pVDZ basis set and are given in a.u.

-------------------------------------------------------------------------------
n B3LYP BLYP CAM-B3LYP LC-BLYP HSE BHandHLYP PBE0 HF MP2
-------------------------------------------------------------------------------
2 -9 -28 1 8 -8 11 -7 37 -15
3 183 148 215 243 191 216 193 261 162
4 1073 970 1289 1631 1128 1116 1156 1186 1111
5 4292 3657 5796 8708 4690 4681 4909 5125 5125
6 11898 9418 17474 31679 13843 13579 14900 16559 16513
7 24675 20112 38085 67293 33133 30351 33962 41002 38897
8 91114 427903 87991 106056 80088 69862 62991 74023 70887
-------------------------------------------------------------------------------
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Table 3: Static[α2]
(0,0)

contribution to the vibrational second hyperpolarizability for PMIn oligomers. All values were computed
using the aug-cc-pVDZ basis set and are given in a.u.

-----------------------------------------------------------------------------------------
n B3LYP BLYP CAM-B3LYP LC-BLYP HSE BHandHLYP PBE0 HF MP2
-----------------------------------------------------------------------------------------
2 3478 4112 3022 2566 3289 2974 3246 2860 2393
3 16206 20609 12442 9500 15291 12230 14884 9722 9991
4 63012 87300 43361 32091 60044 41644 57342 28025 39394
5 197657 296815 126456 101787 191021 117568 178018 74096 125228
6 503018 833188 306289 290926 502057 276369 457367 181471 321498
7 1089079 2049458 613792 589383 1134904 550040 987395 382605 677917
8 2402456 7941725 1200545 965011 2348942 1057073 1856590 677003 1211617
-----------------------------------------------------------------------------------------
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Table 4: Static[µβ]
(0,0)

contribution to the vibrational second hyperpolarizability for PMIn oligomers. All values were computed
using the aug-cc-pVDZ basis set and are given in a.u.

----------------------------------------------------------------------------------
n B3LYP BLYP CAM-B3LYP LC-BLYP HSE BHandHLYP PBE0 HF MP2
----------------------------------------------------------------------------------
2 315 735 230 232 262 -10 260 -390 1148
3 -3480 -2868 -2048 -176 -3288 -3268 -3152 -3624 3092
4 -19680 -13936 -11540 -2472 -1932 -16448 -18384 -14380 8884
5 -82361 -48910 -55467 -35209 -83326 -67492 -80108 -58880 22008
----------------------------------------------------------------------------------
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Figure 1: Average nuclear–relaxation contribution to vibrational polarizability per unit cell (α(N)-α(N−1))
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Figure 2: Average total nuclear–relaxation contribution to βNR
EOPEper unit cell (β(N)-β(N−1))
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Figure 3: Average total nuclear–relaxation contribution to γIDRI per unit cell (γ(N)-γ(N−1))

Page 33 of 34

John Wiley & Sons, Inc.

Journal of Computational Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  -2.4⋅104

  -2.0⋅104

  -1.6⋅104

  -1.2⋅104

  -8.0⋅103

  -4.0⋅103

   0

   4.0⋅103

   8.0⋅103

 3  4  5

γ E
S
H
G

N
R
 
 
p
e
r
 
u
n
i
t
 
c
e
l
l
 
[
a
.
u
.
]

B3LYP

BLYP

CAM-B3LYP

LC-BLYP

MP2

  -2.4⋅104

  -2.0⋅104

  -1.6⋅104

  -1.2⋅104

  -8.0⋅103

  -4.0⋅103

   0

   4.0⋅103

   8.0⋅103

 3  4  5

γ E
S
H
G

N
R
 
 
p
e
r
 
u
n
i
t
 
c
e
l
l
 
[
a
.
u
.
]

PMI

HSE

BHandHLYP

PBE0

HF

MP2

Figure 4: Average total nuclear–relaxation contribution to γESHG per unit cell (γ(N)-γ(N−1))
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