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Abstract. A model for day-ahead scheduling of batteries and branch
switches in the low voltage grid, considering forecasts uncertainties, is
proposed. The objective is to reduce the energy losses of the distri-
bution lines and avoid critical events such as congestions or over and
under-voltages in the local network. Simulations of different day-ahead
situations are performed with a modified particle swarm optimisation
algorithm. The results show that critical events are avoided and energy
self-consumption within the local network is increased.
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1 Introduction

The quantity of distributed generation (DG) connected to low voltage (LV) grids
is rapidly increasing due to the technological advances in DG and policies pro-
moting them. However, LV grids have been designed to be passive elements of the
electricity network only used to provide the required energy to costumers. Thus,
distribution system operators (DSOs) managed the network under their respon-
sibility at medium voltage (MV) since it was not necessary to actively manage
the LV grid. The increase of DG raises the problem of a lack of observability of
the LV grid and an absence of systems to actively operate it.

Despite the deficiency of grid operability at LV, there are LV grid actua-
tors such as controllable distributed generators (CGs), battery energy storage
systems (BESSs) and branch switches (BSs) that permit to act on the LV grid
[1–10]. When these grid assets are available, the DSO can tackle the problem of
scheduling them to optimise objectives such as the quality of service and power
losses.

This paper formalises the problem of scheduling BESSs and BSs in a grid with
renewable energy generation. The scheduling of these grid actuators is performed
considering the energy demand and supply forecast with its corresponding un-
certainty, in order to prevent or mitigate critical events in the grid and minimise
the power losses associated with the transmission.

Previous studies of BESSs and other storage units have shown that they can
reduce power losses, perform peak shaving and solve over-voltages situations [1,



2]. Distribution network reconfiguration (DNR) with BSs approaches have also
been used to reduce losses, prevent congestions or balance loads [3–5]. The aim
of this paper is to use these actuators together to improve their efficiency and
reduce their individual costs.

The intrinsic randomness of DGs, such as photovoltaic power generation (PV)
or wind power plants, and the uncertainty of load demand are important factors
for the decision-making process in the optimisation of the operation scheduling
[6, 7]. We consider the uncertainty of load demand and renewable generation
with a chance constraint formulation [8–10] and we approximate it to robust
optimisation.

2 Problem Formulation

Optimisation problems under uncertainties are usually modelled with chance
constrained formulations, which consists of setting a confidence level of the con-
ditions of the problem given a set of uncertainties [9, 10]. The general expression
is as follows,

min{E [f(x, ξ)]} s.t. Pr{gi(x, ξ) ≤ 0} ≥ αi i = 1, 2, ...,m , (1)

where f is the objective function and gi are the constraints of the problem,
x is a vector with the deterministic variables and ξ the stochastic variables, αi
determines the probability or confidence level of the constraints. Pr{} denotes
the probability of the events, considering the probability density function (PDF)
of all the random variables. Because the objective function depends on random
variables, the trend is to optimize the expected value, but some interesting works
also consider the deviations [11].

Although the chance constrained formulation has been proved useful at mod-
elling the optimisation problem with uncertainties, it is known that solving these
approaches is very time consuming in computational terms. To reduce the com-
putation time we use a robust optimisation formulation of the problem. The
robust optimisation only considers the worst possible case instead of the proba-
bility to fulfil the constraints. This is the limit of Eq.(1) when αi = 1,

min{E [f(x, ξ)]} s.t. gi(x, ξ) ≤ 0 i = 1, 2, ...,m . (2)

With this formulation, we assume that all the conditions of Eq.(1) are fulfilled
if the worst situations given ξ meet the conditions in Eq.(2).

The stochastic variables of the study are associated with the energy de-
mand forecast uncertainty and the generation profile of the PVs. The PDFs of
both forecast errors are usually modelled as Gaussian distributions [12]. The
demand or generation output of each bus in the grid is then the sum of the
forecasted value and a random number with a Gaussian distribution N (0, σ2

l (t))
or N (0, σ2

g(t)), being σl and σg the corresponding standard deviations of energy
demand and generation.



2.1 Problem objectives

The tackled problem consists of scheduling the operation of BESSs and BSs in
order to avoid or minimise critical events such as congestion and over/under-
voltages, minimise the import/export of energy from/to the MV grid so as to
minimise transport losses, and finally minimise the operation costs of BESSs and
BSs.

Critical events. One purpose is to avoid congestions and over/under voltages
on the branches, these are considered as constraints of the optimisation. The
congestions are avoided as single constraints that assure the loading of each
branch to be below a particular threshold, in this case, 90% of the thermal limit.
The voltages are secured to be between plus-minus 5% of the nominal value with
a joined constrain. In the chance constrained picture

Pr{φr(x, ξ) < φthresh} ≥ α ∀r , (3)

Pr{Vmin < Vr(x, ξ) < Vmax} ≥ β ∀r , (4)

where φr and Vr are the load and voltage of the grid branch r and φthresh,
Vmin, Vmax are the corresponding limits to fulfil with probabilities α and β
given all the stochastic possibilities.

Instead, we can consider a robust optimisation approach and reduce this to
only looking if the conditions inside Pr{} are met in the three worst scenarios:

1. maximum load demand and maximum variable generation.

2. maximum load demand and minimum variable generation.

3. minimum load demand and maximum variable generation.

The first case corresponds to the worst scenario for congestion, while the second
and third to the under- over- voltages respectively.

If the conditions are violated, the corresponding solution is punished for each
hour that does not fulfil at least one of these conditions, the term is formulated
as

fcritical =

tf∑
t=t0

c(t) , (5)

where c is a binary variable being 0 if the conditions are met for the three
scenarios and 1 if any condition is not satisfied, thus fcritical is the number of
hours that present possible critical events, t0 is the initial or present time and
tf is the time horizon or final time of the scheduling and time is discretised in n
periods of ∆t time steps, being n∆t = 24 h.



Power losses. On the other hand, we also want the grid to as self-sufficient as
possible. To achieve this, we minimise the difference between the total energy
given by the variable generators EVG and the BESSs EB with the demanded
in the grid EL. Actually, this is the same as minimising the exchange with the
external grid EEG, since the energy balance equation between the local and the
external grid is

EEG(t) = EL(t)− EB(t)− EVG(t) , (6)

assuming there are no power losses in the local grid. The self-consumption
term for the objective function is formulated as

fself =

tf∑
t=t0

|EL(t)− EB(t)− EVG(t)| . (7)

Operational costs and restrictions. Critical events and power losses may
be avoided or reduced with the scheduling of BESSs, nevertheless its use has
associated restrictions and costs. The energy given or stored by a BESS during
a time period ∆t depends on the change of the state of charge (SoC) as

SoC(t) =


SoC(t−∆t)− ηc Eb(t)

Em
∆t if Eb(t) ≤ 0

SoC(t−∆t)− 1
ηd

Eb(t)
Em

∆t if Eb(t) ≥ 0

(8)

with SoC(t) the charge of the battery at time t, ηc and ηd the charging/discharging
efficiency of the battery, Em the energy that the BESS can charge/discharge in
an hour, depending on the nominal capacity and the ramping down/up, and
Eb(t) the energy exchanged during the period (t, t + ∆t) between the grid and
the BESS b. The BESSs energy exchange depends on the SoC restrictions, which
are the initial and final charge and

SoCmin < SoC(t) < SoCmax , (9)

∆SoCmin < |∆SoC(t)| < ∆SoCmax , (10)

where ∆SoC(t) = SoC(t)− SoC(t−∆t).
In order to maximise the life of the batteries we consider a term to model

the use of the battery. Since the wear and tear of the BESS depend on many
technicalities of the kind of BESS used, we simply add a term with the total
exchanged energy during the time horizon. In this way, the use of all the batteries
in the grid is described via

fbatt =
∑
∀b

tf∑
t=t0

|Eb(t)| . (11)



The presence of BSs can also be very helpful preventing grid critical events,
nevertheless changing the state of one switch presents a hard operational cost
we want to avoid and it is preferred to keep the BSs inactive. For these reasons
we want to reduce the number of BSs changes and the number of time slots the
BSs are active. The function associated with these costs is formulated as

fswitches =
∑
∀s

{ tf∑
t=t0

as(t) +

tf∑
t=t0+∆t

|as(t)− as(t−∆t)|

}
, (12)

where as(t) is the state of the branch switch s during the period (t, t + ∆t),
with 1 as active and 0 inactive. The first part of Eq.(12) is the number of hours
active and the second are the amount of changes.

3 Solution Approach

3.1 Objective Function

The formulation presented in the previous section is a multi-objective optimisa-
tion problem of Eq.(5),(7),(11) and (12). The solution approach proposed for the
multiple-criteria decision-making is a hybrid between a hierarchical method and
a weighted sum. Through scalarization, the multi-objective problem is converted
into a single objective with the following hierarchical preferences.

The first objective to accomplish is to reduce the critical events of the grid
Eq.(5), with an assigned coefficient M1 >> 1. Secondly, minimise the operational
cost of the BSs Eq.(12), with a coefficient M2 << M1. Finally, a weighted
combination of the self-consumption Eq.(7) and the BESSs use Eq.(11) is also
minimised, with a relation weight ν. Altogether, the objective function

f = M1fcritical +M2fswitches + νfself + (1− ν)fbatt . (13)

3.2 Simulation Algorithm

This paper adopts a particle swarm optimisation (PSO) to solve the model pro-
posed because of its efficiency of computation and adaptable implementation
[13–17]. Each particle of the algorithm, represents a solution with all the sched-
uled BESSs and BSs, these particles move according to simple rules converging
to the optimal schedule. All the particles adjust their positions through itera-
tions according to their experience and to the entire community’s. The status of
the particles is described by its position xp and velocity vp which are updated
as

vp = ωvp + c1ran1(pp − xp) + c2ran2(g − xp) , (14)

xp = xp + vp , (15)



where ω is the inertia weight, c1 and c2 are the learning factors, ran are
random numbers in (0, 1), pp is the best position of the particle and g the best
position of all the particles [14].

If a new velocity moves the particle out of the search space it is changed by
the maximum velocity such the particle keeps inside vmax.

Each BESS in the grid is a dimension of the particle, while all the BSs act
together as one single dimension. At the same time each dimension in the particle
consists of an array with a number of values equal to the number of time-series
slots we want to schedule. Therefore, we have a position and velocity for every
time-slot, for each dimension and for all particles.

We have adopted a dissipative-PSO (DPSO) with a linear time varying (LTV)
inertia descending from ωmax to ωmin to avoid local minima. With the LTV
weight we reduce the movements in the search-space progressively, starting with
large movements through all the space and increasing the convergence speed
when reducing the weight [15].

The dissipative part is introduced changing the positions and velocities ran-
domly after the updates with a given probability dv for the velocity and dx
for the position. Therefore, we create an open system out from equilibrium and
improve the efficiency [16].

To move the BSs in the PSO, the set of binary states of the switches is ordered
and converted into a decimal number. After moving the decimal number with
the updated velocity it is rounded up and the state of the switches is changed to
the corresponding binary state. Other more sophisticated approaches can also
be used for the network reconfiguration [17].

After moving the particles, the fitness of each one is evaluated and the best
individual and global solution are determined. With the robust approach, we
only need to run the three power flow solvers (PFSs) corresponding to the worst
possible scenarios described in section 2.1, in order to compute the fitness. Oth-
erwise, if we apply chance constrained optimisation we would have to evaluate
the probabilities by sampling, thus, run many PFSs (what takes a lot of com-
puter time). Notice that, the only term with stochastic variables is fself, thus
we have to average only this part to compute the mean.

The algorithm parameters used are ωmax = 0.9, ωmin = 0.4, c1 = c2 = 2,
dx = dv = 0.01. We have used GridCal as the PFS in our simulations.

4 Experimentation

4.1 Set Up

The proposed formulation is simulated with a network topology and historical
data of a real LV grid. The pilot grid consists of two radial networks connected
to the MV grid. One radial part, network-I, has 9 loads and 2 PVs, while the
other, network-II has 7 loads and also 2 PVs. To the grid we add two BESSs,
one on each network, and two BSs between buses of the networks. We can see a
schematic representation of the grid in figure 1.



Fig. 1. Pilot grid representation. Network-I in the top and network-II in the bottom.

To determine the constant terms in the objective function, Eq.(13), several
simulations were performed, first without critical events and BSs, to get a non-
dominated solution of the pareto front depending on ν. Because fself decreases
when increasing ν from 0 to 1 but stabilizes around ν = 0.65 and fbatt keeps
increasing, this weight have been set a priori. To maintain the hierarchy of the
other terms described in section 2.1 we have set M1 = 1010 and M2 = 108 in the
objective function.

The restriction values for the BESSs used in the study are SoCmin = 0.2,
SoCmax = 0.8, ∆SoCmin = 0.05, ∆SoCmax = 0.15, SoCini = SoCfinal = 0.5,
Em = 100kWh, ηc = ηd = 0.95.

The standard deviation σl determining the error distribution of the energy
demand at each bus is set to a corresponding mean absolute percentage error
(MAPE) of 10% and a confidence level of 95%. For the deviation σg of the PVs
generation uncertainty we take the same confidence level but a MAPE of 5%.

The scheduling has been done with a time step ∆t = 1h (from 00h to 23h),
since this is the resolution of the data used. The algorithm parameters used are
N = 60 particles and 300 iterations.

4.2 Results

Based on the robust optimisation model and the solution approach described
above, a day-ahead scheduling of the BESSs and BSs of the grid has been per-
formed. The numerical calculation results of several cases are presented in table
1. Each case corresponds to a different day with the generation and consumption
values increased in order to be close or have critical events in the grid and be
coherent with the sizing of the BESSs.

Case 1 corresponds to the 1st of March with the values increased 4.5 times,
case 2 is 6.5 times the values of the 1st of May, case 3 is 7 times the 1st of
July, case 4 is 6.5 times the 1st of September and case 5 is 4.5 times the 1st of
December.

Cases 1 and 4 do not present any grid issue. Because of the hierarchy of the
objective function, the optimal solution of the BSs is to remain off and the BESS
scheduling aims to reduce fself.



Table 1. Objective function values for different cases with and without the scheduling.

Case Scheduling fcritical fswitches fself fbatt f

1
7 0 0 894950 0 581717
3 0 0 792361 186089 580166

2
7 2 0 1314848 0 2.00008 · 1010

3 0 3 1180532 230854 3.00848 · 108

3
7 1 0 919180 0 1.00006 · 1010

3 0 3 806909 196834 3.00593 · 108

4
7 0 0 815202 0 529881
3 0 0 673555 220621 515028

5
7 0 0 1162551 0 755658
3 0 0 1174690 204834 835240

We can notice the effect on the energy self-sufficiency comparing the energy
exchanged with the MV grid with and without BESSs, see figure 2. The peaks of
energy surplus (when the generation exceeds the demand) are shaved, and the
amount of energy given is also reduced almost at every hour.

In case 5 we do not have a exceed of generation at any time of the day. Thus,
there is no BESSs scheduling that can improve the energy self-sufficiency and
reduce the fitness of the objective value. Therefore, in this case the scheduling
should not be applied since it aggravates the problem.

Fig. 2. Energy exchanged with the external grid for the case 1, with and without
scheduling. Left for the grid network-I, right for network-II.

Case 2, without scheduling, presents possible congestions at two different
hours. One possible critical event is avoided only with the BESSs scheduling,
while the other is eliminated by activating one BS during one hour. Similarly, in
case 3 one congestion is avoided with the activation of one BS.

Similar results have been found using samplings to evaluate the probabili-
ties of the chance constrained formulation. Since the constraints are less severe,



better solutions are possible. Nevertheless, this approach needs much more com-
puter time to find similar results, about 6-7 hours compared with 15-25 min
of the robust method. Also, we have to take into account the error associated
with the random sampling. All this makes unfeasible the chance constrained
formulation, since the aim is to propose the scheduling in a few minutes.

With the scheduling, part of the critical events can be avoided. Nevertheless,
because of the complexity of the problem, it is not trivial to determine if an
event can be solved or not a priori.

5 Conclusions

This paper has presented a novel formulation integrating the scheduling of bat-
tery energy storage systems (BESSs) and branch switches (BSs) considering
the uncertainties associated with energy generation and demand forecasts. The
model has the purposes to avoid possible grid critical events such as congestions
and over/under voltages and reduce power losses by improving the local self-
sufficiency, while keeping the operational costs of the BESSs and BSs as low as
possible.

Simulations of the proposed approach have been done through a dissipative
particle swarm optimisation algorithm on a real grid. Results show to successfully
avoid possible critical events with the scheduling of BESSs and BSs. The peaks
of energy exchange, associated with power losses on the transmission lines, are
reduced with the BESSs if the generation in the local grid is greater than the
load in at least a period of the scheduled time.

With the approximation of the robust approach versus the chance constrained
optimisation, we lose accuracy on the formulation, but the computational im-
plementation is more efficient and makes it possible to obtain a viable solution
in less than half an hour.

In future works we expect to adopt a rolling-horizon scheme in order to permit
re-scheduling of the assets using more recent forecast. Moreover, the solution
approach algorithm could include state-of-the-art techniques such as opposition
based learning or improved selective mechanisms to enhance its performance.
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