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SUMMARY 

This work presents the development and results of an automated event detection strategy based on 
principal component analysis (PCA) for low voltage distribution grids with the presence of distributed 
generation (DG) and phasor measurement units (PMUs). The proposed methodology, relying on 
measurements provided by PMUs installed at different nodes, is capable of correctly identifying and 
distinguishing abnormal operating conditions (AOC) from normal operating conditions (NOC) without 
requiring any information about the network topology or electrical parameters of its components. 
Moreover, it is tested and validated under voltage sags and swells in a real-based power distribution 
network simulated in MATLAB with PMUs deployed in distinct settings. 

 

INTRODUCTION 

The increasing penetration level of renewable energy sources, storage systems, and new energy 
appliances is gradually changing the design and operation of electric power systems, while posing 
additional challenges to power system protection and power quality, particularly at distribution level, for 
the uncertain, dynamic, ever-changing nature of distributed energy resources1 2. Consequently, 
additional measures are required to properly detect faults and handle voltage fluctuations caused by 
the intermittent nature of renewables and sudden, random, unpredictable changes in energy 
consumption patterns within the distribution grid3 4.  

In this context, the usage of digital technology in power distribution networks may provide significant 
pieces of information that can be helpful to reduce the complexity of this problem, with data gathered 
by PMUs communicating with the Distribution System Operator (DSO)5 6. On the top of that, a 
methodology capable of detecting, identifying and isolating distinct events at distribution level such as 
power faults and voltage fluctuations may trigger automatic responses to provide self-healing or 
reconfiguration in order to reduce interruption times, improve quality of supply and optimize assets 
utilization7 8. The main contribution of this paper fits into this context, as explained in the next sections.  

 

PROPOSED EVENT DETECTION METHODOLOGY 

The proposed methodology relies on a PCA algorithm to aggregate and evaluate statistically the PMU 
data recorded at the substation nodes9 10. This method computes a statistical model that represents 
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the normal operating conditions (NOC) with a reduced number of variables (projection space) such 
that the correlation among variables is preserved11 12. As a result, abnormal operating conditions 
(AOC) can be detected by projecting the subsequent observations onto the modeled space and 
analysing consistency of observations with respect to the NOC model.  

Hence, the fault detection strategy is divided in two main steps described as follows: 

1) Statistical model of normal operating conditions with dimensionality reduction 
First, the statistical NOC model is built as an n-by-m matrix XNOC obtained from n samples collected 
over a finite time horizon of m distinct phasor quantities supposed to be centered (i.e. zero mean) and 
standardized (i.e. unit variance). Next, the eigenvalues and eigenvectors are calculated with 
eigendecomposition as the m-by-m matrices Λ and V, respectively, and dimensionality reduction is 
performed by retaining the eigenvectors associated with the r largest eigenvalues of Λ, which 
represents the major variability of the data, in an m-by-r projection matrix P. Then, the results of the 
projection are calculated as a score matrix T as follows in equation (1)  

     (1) 

Additionally, the algorithm provides two statistical indexes that help to identify when an observation 
does not fit the model and consequently can be classified as an AOC: Hotelling’s T2 (T2) and Square 
Prediction Error (SPE). The former computes the distance of an observation to the centre of the 
projection space using equation (2), whereas the latter calculates the variation of an observation out of 
the projection space with equation (3) 

    (2)  

    (3) 

with the projected value of XNOC given by equation (4) 

    (4) 
The statistical limits of (2) and (3) are given by equations (5) and (6), respectively, according to the 
desired confidence level α.  

     (5) 

 (6) 

where Fα (r, n–r) is the critical point of the Fisher-Snedecor distribution function for r and n-r degrees of 
freedom and a significance level α, cα is the value of the normal distribution function for the same 
significance level α, and the constants θ and h0 are given by equations (7) and (8) 

     (7) 

     (8) 
In this step, if the calculated values of (2) and/or (3) of any observation violate the statistical limits 
given by (5) and/or (6), then it is tagged as an outlier, removed from XNOC, and the statistical NOC 
model is re-built. It is supposed that XNOC does not contain a significant number of outliers, as a fault-
free observation lies close to the centre of the projection space (i.e. T2 ≈ 0) and is negligible in the 
residual space (i.e. SPE ≈ 0).  

2) Detection of abnormal operating conditions 
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Once the statistical NOC model is defined, an AOC can be detected by projecting subsequent 
observations onto the modeled space and evaluating consistency of results with respect to the NOC 
model. This can be achieved by replacing XNOC with XAOC in equation (1), using the result to calculate 
(2) and (3), and finally, comparing the indexes with the values of (5) and (6). 
In this step, if the calculated values of (2) and/or (3) of any observation violate the statistical limits 
given by (5) and/or (6), then it is tagged as a fault and the DSO is warned to perform further actions 
and clear it from the network. 

 

CASE STUDY 

The proposed methodology is tested in a real-based power distribution network simulated in Matrix 
Laboratory (MATLAB). It represents the substation Tallers Casadesus located in L’Esquirol, Catalunya, 
which consists of a primary distribution feeder with branches connecting the substation node to the 
customers (i.e. local energy producers and/or consumers). The distribution substation has 138,64 kW 
of contracted power from a 250-kVA transformer Yyn0 (400 V secondary), with industrial and 
residential energy consumption profiles, and distributed generation from solar photovoltaic panels. 

 
Fig. 1: Network topology with a single PMU installed at the substation node 

 

 
Fig. 2: Network topology with PMUs installed at the substation and distributed generation nodes 
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Fig. 3: Voltage magnitudes simulated at the substation node over a day 

 

 
Fig. 4: Voltage magnitudes simulated at DG node 80 over a day 
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Fig. 5: Voltage magnitudes simulated at DG node 110 over a day 

 

Two different PMU settings are evaluated: (1) a single PMU installed at the substation node (Fig.1); 
and (2) PMUs installed at the substation and DG nodes (Fig.2).  

The statistical model is built with phase voltage magnitudes (in other words, m=3 in the 1st setting and 
m=9 in the 2nd setting) sampled every 100 milliseconds over a 1-day data frame window (with 
n=24x60x60x10=864000 samples per day), and tested under voltage sags and swells simulated 
sporadically. The voltage magnitudes recorded at the substation and DG nodes are illustrated in Fig.3, 
Fig.4, and Fig.5, respectively. The value of r is chosen r=1 with a single PMU installed and r=2 with 
multiple PMUs installed, as those principal component express over 99% of the total variability of 
faulty data in both PMU settings, whereas the values of Fα (r, n–r) and cα are picked for α=0.95. 

 

RESULTS 

The calculated values of the T2 and SPE indexes for phase voltage magnitudes when a single PMU is 
installed are illustrated in Fig.6 and Fig.7, respectively, together with their statistical limits, whereas the 
calculated values of the T2 and SPE indexes for phase voltage magnitudes with PMUs installed at the 
substation and distributed generation buses are illustrated in Fig.8 and Fig.9, respectively, together 
with their statistical limits. It can be noticed that some values, associated with voltage sags and swells, 
present a different statistical pattern that surpasses the statistical limits and is clearly distinguishable 
from normal operation.  
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Fig. 6: T2 index (red stars) and statistical limit (solid black line) with a single PMU installed 

 
Fig. 7: SPE index (red stars) and statistical limit (solid black line) with a single PMU installed 
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Fig. 8: T2 index (red stars) and statistical limit (solid black line) with multiple PMUs installed 

 
Fig. 9: SPE index (red stars) and statistical limit (solid black line) with multiple PMUs installed 

 
 
DISCUSSION 
The results show that the method is capable of detecting voltage sags and swells with both T2 and 
SPE indexes with usage of distinct phasor quantities from NOC and AOC as input data. The combined 
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usage of the T2 and SPE indexes is thereby recommended to detect events in PMU data, as the 
results of individual event detections are not the same in all cases.  

Although the SPE index is expected to perform better than the T2 index due to the large variability of 
faulty data in the residual subspace, it only occurs in PMU setting (1) when it comes to the number of 
different event detections. The good performance of the T2 index is due to the total variability of faulty 
data expressed in the projection space. 

In addition, it can be noticed that the PCA model built with PMU setting (1) performs better than the 
PCA model built with PMU setting (2) with respect to the number of correct event detections with the 
SPE index and the time intervals of event detection with the T2 index, but worse with respect to the 
number of correct event detections with the T2 index. Also, it is noteworthy that the PCA model built 
with (1) is computationally more efficient than the PCA model built with (2), as it requires half the 
number of principal components to express the same variability of data, but provides a less accurate 
representation of the distribution network, as it does not include information about the DG nodes.  

Moreover, it can be concluded from the choice of r that the model built with data collected by a single 
PMU is well represented by the eigenvector associated with the largest eigenvalue, as it represents a 
three-phase, symmetrical network. In turn, the model built with data collected by three PMUs is well 
represented by the eigenvectors associated with the two largest eigenvalues, as they represent a 
three-phase, symmetrical network with two different supply sources. As a result, faults can be easily 
detected with significant dimensionality reduction, as the number of variables is reduced from 3 to 1 
with a single PMU installed and from 9 to 2 with three PMUs installed. 

Furthermore, it is important to point out that the NOC model does not have to be adjusted to any 
changes in the energy production and consumption profiles, as the simulations are run in steady state. 
Consequently, the observation matrix does not have to be built or updated online to improve the 
situational awareness of the proposed methodology. 

Further information about the network topology and electrical parameters of its components is not 
necessary to perform fault detection, albeit crucial to locate and diagnose faults. 

 

CONCLUSIONS 
The automated PCA-based event detection strategy is able to detect voltage sags and swells in low 
voltage distribution grids with DGs and PMUs with good accuracy. The results obtained with the T2 and 
SPE statistical indexes allow for correct distinction between NOC and AOC in PMU data without 
requiring any information about the network topology or electrical parameters of its components. 
However, the PMU setting and the observation matrix may contribute to the task and shall be adjusted 
to different scenarios so that distinct faults can be detected. 
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