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INTRODUCTION

In the western Mediterranean, a typical Posidonia
oceanica seagrass meadow consists of fairly con -
tinuous seafloor canopy, broken occasionally by
 vegetation-free gaps that are subject to erosion
(sensu Patriquin 1975, Boudouresque et al. 2012).
The gaps also frequently contain rhizome mattes
buried in the sand that may support regrowth
(Cabaço et al. 2008). Currents at the bottom erode
the meadow, creating a vertical edge of matte,
whereas on the other side P. oceanica colonizes the

bare sandy bottom (Boudouresque et al. 1980, Gobert
et al. 2016). The balance between vegetative growth
and spatial patchiness depends on the frequency
and amplitude of natural disturbances (Duarte 1991,
Cabaço et al. 2008); however, when human activities
exceed the natural disturbance regime the balance
may be upset, and vegetative growth may not com-
pensate for meadow fragmentation (Montefalcone
et al. 2010). For clarity, here we define ‘patchiness’
as the structure of a seascape at a time t, and ‘frag-
mentation’ as the evolution of patchiness through
time.
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ABSTRACT: Fixed weights moorings, once removed, can create longitudinal gaps in seagrass
meadows of different sizes, running perpendicular to the coast. We quantified the interactions
between these longitudinal gaps and the hydrodynamic environment of the nearshore environ-
ment to determine their potential impact on seagrass meadow ecology. Within the meadow at leaf
length distances from the edge, wave attenuation by the lateral vegetation next to the gap was
approximately the same as attenuation by fully vegetated areas, and the wave attenuating capac-
ity of the lateral, near-gap vegetation was independent of gap width. Gaps with widths less than
twice the leaf length exhibited 8% wave attenuation and 11% turbulent kinetic energy attenua-
tion, confirming that vegetation shelters at least small gaps. Despite similar capacity for wave
attenuation, the longitudinal gaps influenced the architectural characteristics of the adjacent (lat-
eral) meadow; lateral shoot density, percent cover and leaf length adjacent to the largest gap were
12, 16, and 20% lower than the fully vegetated site, respectively. Significant differences in the
temporal variation of the mean lateral, near-gap seagrass percent cover and the leaf length indi-
cated a strong dependence of the state of the canopy on temporal hydrodynamic conditions, which
in turn were impacted by the presence of the gap. Our results quantify the interactions between
gaps and lateral meadow vegetation, highlight the structural impact of traditional moorings and
support improved management and conservation of seagrass meadows.
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The fragmentation of meadows leads to more com-
plex seascapes and takes place via several mecha-
nisms and over different spatial scales (Abadie et al.
2015). Moorings using anchors (anchoring) and fixed
weights moorings (mooring) are one of the main
causes of anthropogenic disturbances within sea-
grass meadows (Walker et al. 1989, Hastings et al.
1995, Montefalcone et al. 2008, Boudouresque et al.
2012, Demers et al. 2013, Giakoumi et al. 2015). Gaps
caused by trawling and the anchoring of large boats
have been found along the Mediterranean coast
(Francour et al. 1999, Leriche et al. 2006) and near-
shore mooring scars can increase the loss of sedimen-
tary organic carbon stores (Serrano et al. 2016). The
resulting habitat patchiness, where large stretches of
habitat are removed or damaged, influences ecosys-
tem integrity to the point that ecological function
may be compromised (Larsen et al. 2008). Abadie et
al. (2016) found that the anchoring impacts of large
boats modified substrate quality, by increasing the
hydrogen sulfide concentration, at a month scale.
Vacchi et al. (2010) demonstrated the poor condition
of P. oceanica meadows in the Ligurian Sea; although
this has been attributed to anthropogenic impacts,
natural factors, especially wave climate were also
implicated. Indeed, in the Ligurian Sea there was a
higher degree of P. oceanica meadow patchiness in
the shallower zones (to about 14 m depth) in human-
impacted areas compared to meadows in natural
areas (Montefalcone et al. 2010), highlighting a pos-
sible interaction between anthropogenic influences,
wave climate and meadow health.

Wave-induced forces can control the distribution of
seagrass populations (Gacia & Duarte 2001, Madsen
et al. 2001, Hansen & Reidenbach 2013). Specifically,
waves have been found to determine the upper
(Infantes et al. 2009) and lower (Vacchi et al. 2012)
depth distribution limits of P. oceanica and can also
influence species, size and morphology (Lewis 1968,
Menge 1976, Blanchette 1997). Several studies have
demonstrated wave attenuation by P. oceanica mea -
dows. Granata et al. (2001) found that at the edge of
a P. oceanica canopy, with densities between 200 and
500 shoots m−2, the vertical reduction in kinetic
energy (KE) ranged from 65 to 95%. Infantes et al.
(2012) measured wave heights and orbital velocities
along a meadow, finding 50% attenuation of root
mean squared wave heights in a meadow of P. ocean-
ica with shoot density of 600 shoots m−2. Manca et al.
(2012) showed that wave-induced flow attenuation
within model P. oceanica meadows increased with
increasing meadow density and was always larger
within the meadow (59%) than near the edge of the

meadow (12%). Similar flow attenuation was ob -
served by Koftis et al. (2013) over artificial P. ocean-
ica meadows of densities of 180 and 360 shoots m−2.
Granata et al. (2001) showed that hydrodynamics
may be reduced both under and above the canopies
by 10 to 75%. In summary, higher flow attenuation
has been observed inside canopies with increasing
shoot density (Leonard & Luther 1995, Koch & Gust
1999, Peterson et al. 2004, Nepf et al. 2007, Hansen &
Reidenbach 2012, Pujol et al. 2012, 2013a,b)

Pujol et al. (2013b) conducted oscillatory flow
experiments in the laboratory using a submerged
flexible canopy constructed to simulate P. oceanica
properties. They found orbital velocity reductions of
22 and 39% for solid plant fractions (SPF; i.e. canopy
densities) of 5% (640 shoots m−2) and 10% (1280 shoots
m−2) respectively. They also found a 46% reduction
in turbulent kinetic energy (TKE) in a dense canopy
of 10% SPF compared to non-vegetated experi-
ments, and a 34% reduction in TKE in an intermedi-
ate density (5% SPF). Koftis et al. (2013) also found
that wave orbital velocities were significantly attenu-
ated inside a model canopy. Fonseca & Callahan
(1992) determined from flume experiments that sea-
grass canopies that occupy the entire water depth
could reduce wave heights between 20 and 76%.
While canopy effects on the hydrodynamics inside a
canopy have been clearly confirmed, conditions at
the canopy edge are more variable (Gruber & Kemp
2010). The edge of seagrass canopies is a dynamic
region were both ambient hydrodynamics and sedi-
ment transport are modified (Fonseca et al. 1982,
Granata et al. 2001, Tigny et al. 2007, Gruber &
Kemp 2010, Nepf 2012a,b) with non-linear responses
to variable morphodynamics (Zhu et al. 2003, Fontan
et al. 2013, Hu et al. 2014). Spatial fragmentation of
meadows, whether natural or anthropogenic, dra-
matically increases the frequency of edges; however,
the impact of fragmentation on hydrodynamic edge
effects has been poorly documented. In a laboratory
experiment, El Allaoui et al. (2016) studied the effects
of canopy patchiness on the mixing level in a canopy
and quantified the extent to which small gaps, ori-
ented perpendicular to the wave direction, were
sheltered by the canopy, and also the extent to which
gap width impacted the degree of sheltering. 

In the present field-based study, we assess the
hydrodynamics within mooring-induced longitudinal
gaps in a P. oceanica meadow, focusing on the effect
of meadow architectural characteristics (shoot den-
sity, coverage and leaf length on the attenuation of
orbital velocities and TKE. We aimed to improve our
understanding of (1) how gaps modify the ecosystem
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engineering capacity of a shallow P. oceanica mea -
dow and (2) the extent to which the modified hydro-
dynamics can be explained by the plant character -
istics. Hydrodynamic parameters were measured
within a P. oceanica meadow and within 3 different
sized gaps. This paper complements research on
habitat fragmentation, which showed that ecological
processes in isolated habitat patches may differ sub-
stantially from those in larger, continuous habitats
(Hovel & Lipcius 2001, Fonseca et al. 2002, Borg et al.
2005).

MATERIALS AND METHODS

Study site

Hydrodynamic parameters were measured within
a Posidonia oceanica meadow located in an approxi-
mately 0.5 km2 study site, Cala Montgó, in the north-
west Mediterranean Sea (42° 6.4’ N, 3° 10.3’ E), within
in the Natural Park of Montgrí, Medes Islands and
Baix Ter (code Natura 2000 ES5120016) (Fig. 1). The
cala (beach) is a semi-enclosed bay exposed to the
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Fig. 1. Study sites located in Cala Montgó, Catalonia, Spain. (A) The 5 study stations (ST0, ST1, ST2, ST3 and ST4) within and
outside the Posidonia oceanica bed are labeled on the aerial image. Coordinates at given in UTM 31N datum ETRS89. (B) Pho-
tographs of Stns ST2 (left, photograph taken at 1 m above the bottom) and ST3 (central, photograph taken at 3 m above the
bottom) with the traditional moorings, and Stn ST2 (right, photograph taken at 1 m above the bottom) with the ‘ecological’
mooring. Left and central photographs were taken by Jordi Sànchez (SUBMON) and right photograph by Marianna Soler. The 

photographs of the bottom were taken between 6 and 8 m water depth
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incoming wind and waves from the
southeast and east. Mild southeast
winds prevail during most of the
year, but storms arriving from the
east along the Catalan coast contri -
bute the most extreme wave stress
in the study area due to the long, un -
interrupted fetch from that direction.

The area has a gently sloping
meadow of P. oceanica extending
from 6 to 16 or 18 m water depth. It
is a well preserved meadow which
provides habitat for both Pinna
nobilis and P. rudis. In Cala Montgó, an extensive
field of 79 fixed moorings were detected by Sánchez
et al. (2008) based on aerial imagery and divers’
inspection. In Cala Montgó, 10% of these moorings
are installed above rocky bottoms, 39% over sandy
bottoms and 47% within the P. oceanica meadow.
Damage produced by the mooring chains dragging
over the meadows denuded these areas of sea-
grasses, resulting in sandy patches which, in some
cases, extend 2 m around the moorings (Sánchez et
al. 2008). In 2012, as part of an extensive program to
preserve the P. oceanica meadow in Cala Montgó, 6
traditional moorings were replaced by ‘ecological’
screw-based moorings, and provided an opportunity
to compare the impact of gaps on meadow hydro -
dynamics.

A total of 5 field campaigns were conducted in June
and October 2012, and in January, May and July 2013
to describe demographic characteristics (shoot density,
coverage and leaf length) (see Table 2 for details). In
addition, 7 campaigns were conducted to provide hy-
drodynamics characteristics (orbital velocity and
TKE). These were conducted in June (2 different
days), October (2 different days) and December 2012,
and in July 2013 (2 different days). Photographs in
Fig. 1B (left and central bottom) show 2 stations (ST2
and ST3, respectively) with the traditional moorings
that were later removed, and Fig. 1B (right bottom)
shows a close-up of the ecological mooring at the
smallest gap (ST2) that was installed after removing
the traditional mooring (Fig. 1B, left bottom photo-
graph). Three elongated transversal gaps (perpendicu-
lar to the coast) that had been formed by previous
moorings were chosen for monitoring (Stns ST2, ST3
and ST4; Table 1B) the hydrodynamics and demo-
graphic conditions of the nearby, uninjured meadow.
The gaps were also categorized as being occupied by
sand or dead mat (in the form of a mixture of dead
leaves, rhizome and sediments) as the dead meadow
could afford some degree of protection against flow-

induced sediment movement. The gap stations were
separated by distances larger than 5 times the gap
width, and thus were considered replicates. Two ad-
ditional stations were sampled: Stn ST0, which was
dominated by bare sediment, and Stn ST1, which was
situated within a seagrass canopy with no gaps within
a distance of 15 m and was thus considered represen-
tative of a  fully vegetated (i.e. undisturbed) meadow.

Seagrass structural data

Measurements of shoot density, coverage and leaf
length were performed at the 4 vegetated stations
(ST1, ST2, ST3 and ST4). Structural data concerning
the percent cover and shoot density of P. oceanica
were obtained by divers. Coverage was defined as
the percentage of substrate covered by live P. ocean-
ica. Percent cover was measured by the diver hover-
ing 3 m above the bottom, holding at arm’s length a
30 × 30 cm transparent plastic sheet divided into nine
100 cm2 squares, and counting the number of squares
occupied by P. oceanica (Leriche et al. 2006). Percent
cover measurements were performed multiple times,
at equally spaced distances at each station. At ST2,
4 percent cover measurements were made, 1 on each
of the 4 sides of the gap. At ST3, 6 measurements
were made, 2 across each of the longitudinal sides of
the gap, and 1 across each of the width sides of the
gap. At the largest gap, ST4, 10 measurements were
made, 3 of them across each of the longitudinal sides
of the gap, and 2 across each of the width sides of the
gap. The distance between percent cover measure-
ments was approximately 50 cm. The percent cover
in the gapped meadows (ST2, ST3 and ST4) were
normalized to percent cover in the undisturbed
meadow (ST1).

P. oceanica shoot density was measured following
Vacchi et al. (2010), by counting shoots within a 40 ×
40 cm area subdivided into 4 sub-quadrats of 20 ×
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Stn Depth Gap dimensions Length/width Gap area 
(m) (length × width; m) ratio (m2)

Reference stations
ST0 (sandy bottom) 6.2
ST1 (Full vegetated) 7.5

Gap stations
ST2 7.30 ± 0.05 1.2 × 1.1 1.09 1.32
ST3 8.6 ± 0.1 2.9 × 1.6 1.81 4.64
ST4 8.2 ± 0.2 6.3 × 3.9 1.80 24.57

Table 1. Description of Stns ST0 (sandy bottom), ST1 (continuous Posidonia
oceanica meadow), and ST2, ST3 and ST4 (longitudinal gaps; depth: mean ± SD)
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20 cm for sub-meter spatial resolution, placed on the
seagrass canopy. In fully vegetated Stn ST1, 8 repli-
cates were performed while at Stns ST2, ST3 and ST4,
3, 5 and 7 replicates were performed, respectively. P.
oceanica leaf lengths were measured to the nearest
mm (Alcoverro et al. 1995), on 10 vertical shoots col-
lected at each station (see Table 2). Surveys were
 repeated during each of 5 field campaigns which cap-
tured the seasonal variability of the structural charac-
teristics of each station during (1) summer: 22 June
2012; (2) autumn: 5 October 2012; (3) winter: 30 Janu-
ary 2013; (4) spring: 20 May 2013 and (5) summer: 1
July 2013. Data on shoot density, cover and leaf length
was checked for normality by using the Shapiro-Wilk
test with the SPSS software package (SPSS Statistics,
IBM). In the case of  non-normally distributed data, a
data transformation was first applied following Sokal
& Rohlf (1995) before performing a 2-way ANOVA
without replication on the structural data.

Hydrodynamic data

Hydrodynamic data also were collected during 7
field campaigns that corresponded to seasonal sam-
pling periods for the canopy structural data: (1) sum-
mer: 21 and 29 June 2012; (2) autumn: 24 and 26
October 2012; (3) winter: 7 December 2012 and (4)
summer: 2 and 9 July 2013. During the hydrody-
namic campaigns, water velocities and KE within the
gaps under relatively calm conditions were recorded
to determine any inherent seasonal variability in
hydrodynamics associated with seasonal change of
the canopy structure (note that no acoustic Doppler
velocity [ADV] data were collected in spring 2012).
Wind data were obtained from a meteorological sta-
tion in the city of L’Estartit, located 6.2 km south of
Cala Montgó; wind velocities did not exceed 3 m s−1

during the field campaigns. We note, however, that
on 31 October 2012, between field campaigns, an
easterly storm occurred lasting 22 h with significant
wave heights between 3 and 6 m. The occurrence of
this extreme event during our evaluation period is
noted as it can be used to explain some observed sea-
scape-scale differences.

High-frequency u (east−west), v (north−south) and
w (vertical) velocity components were measured at
2 heights above the bottom at each station, using 2
acoustic Doppler current meters mounted vertically
in line on a stainless steel bar. One Doppler current
meter (ADV Vector, Nortek) was positioned facing
down so that the sampling volume was 25 cm above
the bottom, and the second current meter (ADV

Ocean, Sontek) was positioned facing up so that the
sampling volume was 60 cm above the bottom. At
Stn ST1, the apparent canopy height during the
spring and summer periods was ~0.45 m (10%
shorter than the leaf length) while in winter it was
0.20 m; almost all leaves had undergone seasonal
dehiscence from the individual shoots. To measure
velocities within the meadow at ST1, 4 to 7 plants
were removed to prevent leaves from blocking the
sampling volume (Neumeier & Amos 2006).

At each station, flow velocity was measured over
10 min at 25 Hz (ADV Sontek) and 32 Hz (ADV
Nortek) sampling frequencies, after which the instru-
ments were moved by divers to the next station. After
removing spikes from the velocity time-series, the
axes of the instantaneous velocities were rotated par-
allel and perpendicular to the shore. In addition, an
acoustic Doppler current profiler (ADCP Sentinel,
Teledyne RDI) was deployed at the bare sediment
station, ST0 (Fig. 1, Table 1), 5 m above bottom and
positioned facing down. It recorded 3D velocities at a
frequency of 2 Hz, in beams of 20 cm width, during
each field campaign. Measurements at ST0 were
analysed to extract wave velocities and wave direc-
tion during the field campaigns. The variation of
mean velocities and mean directions at ST0 and at
1.5 m above the bottom over the measurement time
between stations was always below 10%, allowing
comparison of results between stations.

ADV measurements were collected across 5 points
at each gap station (Stns ST2 to ST4): at the mea -
dow−gap interface and at 4 different distances per-
pendicular to the interface (y-axis). The interface was
set at y = 0, with y being positive within the gap and
negative within the meadow. At all 3 sites, the largest
y-value was approximately at the center of the gap
(Fig. 2). At ST4, measurements were taken at y = −2,
−1, 0, +1 and +2 m. At ST3, measurements were
taken at y = −1, −0.5, 0, +0.5 and +1 m. At ST2, meas-
urements were taken at y = −0.5, −0.25, 0, +0.25 and
+0.5 m. At ST4, transects were repeated twice to
encompass longitudinal variations in the hydro -
dynamic conditions. A 2-way ANOVA without repli-
cation was also applied to the wave velocity data at
the middle of the gap for the different stations and for
different surveys. Levene’s test was used to test data
homogeneity and a log-normal transformation was
accordingly applied.

The resolution and accuracy of the velocity meas-
urements were 0.01 and 0.1 cm s−1 for the NorteK
ADV, and 0.1 and 0.5 cm s−1 for the Sontek ADV.
Wave data were filtered to remove waves not
approaching perpendicular to the beach (Infantes et
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al. 2012). Within the duration of each campaign
(~5 h), neither the wind nor wave velocities changed
substantially (<10%). The instantaneous velocities
(u, v, w) were decomposed into mean (Uc, Vc, Wc),
orbital (Uw, Vw, Ww) and turbulent (u ’, v ’, w ’) veloci-
ties following the method described by Pujol et al.
(2013a). TKE was then calculated as: 

TKE = 0.5(u ’2 + v ’2 + w ’2) (1)

To quantify changes in the longitudinal component
of the wave-induced flow, as potentially influenced
by the gap dimensions and structural characteristics
of lateral meadows, the velocities at each station
sampling point (Uw) were normalized by the veloci-
ties measured at the center of largest gap, Uw0, at the
same elevations, z = 0.25 and z = 0.60 m (Fig. 2). We

considered the wave characteristics to be approxi-
mately the same at the gap stations since the distance
of each gap to the upper canopy height was the
same. The resulting dimensionless parameter:

α = Uw /Uw0 (2)

provided the change in the longitudinal component
of the wave-induced flow induced by either the
meadow (Lowe et al. 2005, Manca et al. 2012) or the
gap, and can be considered an indicator of flow
attenuation. The TKE at each station sampling point
was normalized by the TKE at the center of the
largest gap, TKE0, at the same elevations, resulting in
another dimensionless parameter:

β = TKE / TKE0 (3)
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Fig. 2. Field campaign characteristics at the gap stations in the Posidonia oceanica meadow. Vertical axis measurements were
done at heights of 25 and 60 cm (i.e. z25 and z60). Transversal y direction measurements were done at 5 positions indicated by
grey circles: 2 on the gap, at the edge−meadow interface and 2 in the adjacent meadow. Stn ST2 was the lowest width gap
while ST4 was the largest. Left panels refer to measurements carried out under standard conditions, right panels refer to a
canopy after a storm in which leaf length is largely reduced. Under such conditions the measurements at 25 cm (i.e. z25) are 

above the canopy since the height of the canopy (hp) was around 20 cm
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RESULTS

Seagrass bed architectural measurements

Mean shoot densities and percent cover were
higher at the full canopy station (Stn ST1; Table 2)
and lower at the vegetated margins of Stns ST2, ST3
and ST4. The mean lateral seagrass shoot density,
the lateral percent cover and the leaf length of the
largest gap area (gap Stn ST4; Table 1) were 12, 16
and 20%, respectively, lower than the shoot density,
coverage and leaf length at the full canopy Stn ST1
(Table 2).

ANOVA showed that significant differences oc -
curred in shoot density across gap stations, whereas
smaller differences occurred across time. In contrast,
there were significant differences in percent cover

and leaf length across time, but smaller across sta-
tions (Table 3). Both mean percent cover and mean
leaf length were 60% lower at the end of January
compared to the highest values measured during the
July campaign.

The ratio between the percent cover at each
gap station and at the full canopy increased be -
tween June 2012 and February 2013 for all stations
and de creased in summer 2013 (Fig. 3). In spring
and summer 2013, percent cover at fully vegetated
Stn ST1 increased more than the percent cover
at Stns ST2, ST3 and ST4, therefore the ratio of
STi /ST1 de creased during the summer 2013 cam-
paigns. Furthermore, stations with larger gap di -
mensions presented lower percent cover ratios
than stations with smaller gaps (Fig. 3), indicating
that plants around smaller gaps were structured
more like the fully  vegetated site than those with
larger gaps.
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Stn Day Density Percent Leaf 
(dd/mm/ (shoots cover length

yyyy) m−2) (%) (m)

ST1 22/06/2012 286 ± 41 45.5 ± 6.6 0.51 ± 0.06
05/10/2012 288 ± 16 43.8 ± 5.0 0.40 ± 0.05
30/01/2013 311 ± 19 20.4 ± 5.5 0.21 ± 0.09
20/05/2013 295 ± 23 58.4 ± 8.3 0.52 ± 0.04
01/07/2013 290 ± 32 55.4 ± 7.8 0.49 ± 0.05

ST2 22/06/2012 285 ± 39 41.8 ± 6.6 0.50 ± 0.05
05/10/2012 274 ± 16 38.5 ± 5.6 0.38 ± 0.06
30/01/2013 298 ± 20 17.6 ± 5.0 0.20 ± 0.09
20/05/2013 306 ± 26 54.9 ± 7.9 0.46 ± 0.05
01/07/2013 303 ± 36 51.6 ± 7.8 0.49 ± 0.04

ST3 22/06/2012 257 ± 37 48.4 ± 3.6 0.44 ± 0.06
05/10/2012 258 ± 18 45.3 ± 4.5 0.36 ± 0.06
30/01/2013 289 ± 20 21.1 ± 5.4 0.17 ± 0.09
20/05/2013 281 ± 22 53.1 ± 6.9 0.44 ± 0.04
01/07/2013 282 ± 36 49.8 ± 6.8 0.47 ± 0.05

ST4 22/06/2012 231 ± 40 40.6 ± 4.3 0.42 ± 0.07
05/10/2012 245 ± 17 36.0 ± 4.6 0.31 ± 0.07
30/01/2013 263 ± 20 15.8 ± 6.2 0.15 ± 0.10
20/05/2013 280 ± 24 50.0 ± 6.7 0.40 ± 0.06
01/07/2013 277 ± 38 45.9 ± 6.9 0.42 ± 0.06

Table 2. Posidonia oceanica morphometrics, including shoot
 density, percent cover and leaf length for Cala Montgó. Values 

represent means ± SD

Source of df Shoot density Percent cover Leaf length
variation MS F p MS F p MS F p

Station 3 0.0035 16.11 <0.01 0.0038 7.18 <0.01 0.00068 45.3 <0.01
Date 4 0.002  8.08 <0.01 0.041  78.46 <0.01 0.0065  427.44 <0.01
Transformation Log(x + 1) Arcsin[(x / 100)2] Log(x + 1)

Table 3. Two-way ANOVA statistics for Posidonia oceanica shoot density, percent cover and leaf length, as well as the trans-
formation applied to achieve data homogenization

Fig. 3. Ratio between percent cover of Posidonia oceanica at
each gap station (STi) and full canopy Stn ST1 during the 

study period
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Wave field and TKE in the gaps

Significant differences (2-way ANOVA, p < 0.01)
were found for wave velocities at the center of the
gaps not only between dates but also between
 stations, showing the heterogeneous distribution of
hydrodynamics due to the seagrass architecture at
each station.

Both α and β varied with distance to the mea dow−
gap interface as well as between vertical heights and
time of the year (Figs. 4 & 5). α25 (α60) and β25 (β60) are
the values at 25 cm (60 cm) above the bottom, were
velocities were measured.

During the June 2012, October 2012 and July 2013
campaigns within the lateral vegetation of the small-
est gap station (Stn ST2), at z = 25 cm, mean wave
velocities were attenuated by 26% (as indicated by
α25 at y = −0.5 m). In contrast, in the center of the gap
at y = 0.5 m, wave attenuation was only 8% (Fig. 4a).
Within the lateral vegetation at y = −0.5 m, and above
the canopy at z = 60 cm, mean wave velocities were
attenuated by 10%, compared to the 4% attenuation
in the gap at y = 0.5 m (Fig. 4b). During the December
2012 campaign, α25 and α60 were greater than during
the June 2012, October 2012 and July 2013 cam-
paigns (Fig. 4a,b). The higher α25 and α60 values in
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Fig. 4. Transversal flow attenuation parameter α (see Eq. 2) at gap Stn ST2 (lowest area) at height (a) z = 25 cm (α25) and (b) z =
60 cm (α60), and transversal turbulent kinetic energy attenuation parameter β (see Eq. 3) at Stn ST2 at height (c) z = 25 cm (β25) 

and (d) z = 60 cm (β60) for June, October, December and July campaigns
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December 2012 may have been the result of a storm
at the end of October 2012 during which leaf length
was reduced, so that α25 in December 2012 was con-
sidered to more closely reflect the wave attenuation
at the top rather than within the canopy.

During the June 2012, October 2012 and July
2013 campaigns at Stn ST2, β25 and β60 were similar
(Fig. 4c,d). TKE at y = −0.5 m inside the lateral vegeta-
tion was 39%, while at the center of the gap at y =
0.5 m, it was only 11% (Fig. 4c). At z = 60 cm, during
the summer and autumn months, the TKE at y = −0.5 m
above the lateral vegetation was 24% greater than the

TKE at the center of the largest gap while at the center
of the gap, at y = 0.5 m, TKE was only 5% larger than
TKE at the center of the largest gap (Fig. 4d). How -
ever, during the December campaign, both β25 and β60

were >1 all along the transect (Fig. 4c,d).
The α and β parameters for the largest gap station

(Stn ST4; Table 1) within the lateral vegetation and
within the gap were also dependent on the distance
to the meadow−gap interface as well as on vertical
heights and time of the year. Greatest differences in
the ST4 gap were found within the lateral vegetation;
at y = −2.0 m, α25 was 0.70 (Fig. 5a) and β25 varied
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Fig. 5. Transversal flow attenuation parameter α (see Eq. 2) at gap Stn ST4 (largest area) at height (a) z = 25 cm (α25) and (b) z =
60 cm (α60), and transversal turbulent kinetic energy attenuation parameter β (see Eq. 3) at Stn ST4 at height (c) z = 25 cm (β25) 

and (d) z = 60 cm (β60) for June, October, December and July campaigns
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between 0.51 and 0.57 (Fig. 5c), indicating that well
inside the lateral vegetation the reduction of orbital
velocity can be up to 30% while the TKE can be
reduced to a mean of 46%. Above the canopy, α60

and β60 were close to that found at Stn ST2.
Both α25 and β25 in the lateral vegetated area and at

both Stns ST2 (Fig. 4a,c) and ST4 (Fig. 5a,c) were
lowest during the July campaign, presumably a
period of peak growth. In contrast, β60 was greatest in
the July campaign (Figs. 4d & 5d). These characteris-
tics coincided with greater percent cover during
summer (peak growth) at both sites (Table 2).

For all stations and in all field surveys, α was
always below 1 within both the vegetation and the
gap, with the lowest α25 occurring during high per-
cent cover and the highest α60 occurring during low
percent cover (Fig. 6). α presented a linear relation-
ship with y/GW, where GW is the gap width, with a
positive slope in all cases. The highest slope (m =
0.261, R2 = 0.927, 99% significance) was for α25 with
high percent cover. α60 with high percent cover and
α60 with low percent cover also presented a linear
trend with y/GW, with slopes m = 0.095 (R2 = 0.881,
99% significance) and m = 0.016 (R2 = 0.833, 99%
significance) respectively. All 3 trend lines reached a
value of 1 when y/GW ≈ 0.6, indicating that attenua-
tion had stabilized.
β also varied linearly with y/GW (Fig. 7); however,

contrary to what was found for α, the slope for β60 was

negative, indicating that the higher the y/GW, the
smaller the β60. The slope for β60 with high percent
cover was higher (m = −0.260, R2 = 0.869, 99% confi-
dence) than that for the low percent cover case (m =
−0.030, R2 = 0.696, 99% confidence). In contrast, β25

had a positive slope of m = 0.384 (R2 = 0.921, 99%
confidence). β60 and β25 both reached a value close to
1 within the gap at y/GW ≈ 0.6 (Fig. 7).

DISCUSSION

In this field-based investigation of seagrass meadow
fragmentation and sandy gaps, we found that both
structural characteristics of the meadow and the size
of the longitudinal gap determined the capacity of the
vegetation to attenuate both the wave velocities and
the TKE. Thus, gap size, architectural characteristics
and temporal variability must be  considered when
 assessing both the influence of  seagrass habitat on
wave hydrodynamics and the  severity of anthro-
pogenically created gaps in seagrass canopies. Sea-
grass meadows modify the benthic boundary layer,
which manifests in changes in mean velocities, orbital
velocities and turbulence (Granata et al. 2001, In -
fantes et al. 2012, Ros et al. 2014). This modification is
generally understood to be moderated by the archi-
tectural characteristics of the meadow (both shoot
density and number of leaves per shoot) and the plants
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Fig. 6. Wave attenuation (α, see Eq. 2) at heights z = 25 and
60 cm versus y/GW, where GW is the gap width, for gap 

Stns ST2, ST3 and ST4

Fig. 7. Turbulent kinetic energy attenuation (β, see Eq. 3) at
different heights versus y/GW, where GW is the gap width, 

for gap Stns ST2, ST3 and ST4
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(shoot biomass, leaf length, leaf width, blade stiffness)
(Borg et al. 2005, Peralta et al. 2008, Paul et al. 2012).
The presence of gaps within a canopy reduces the
 capacity of meadows to attenuate waves and turbu-
lence (Boudouresque et al. 2012).

Differences in leaf length and percent cover in the
vegetated area situated adjacent to the gap can be
driven by changes in light climate, water tempera-
ture and seasonal hydrodynamic conditions. While
light climate and temperature were not measured in
this study, we recognize that the change in seagrass
structure among campaigns could markedly influ-
ence the observed hydrodynamic conditions in the
vicinity of the seagrass bed. El Allaoui et al. (2016)
highlighted the increase in the mixing level that
occurred in a patchy canopy compared with a canopy
without gaps. An increase in mixing can cause an
increase in sediment resuspension, which can result
in a reduction in water clarity, threatening seagrass
growth (Lawson et al. 2007, van der Heide et al. 2007,
Carr et al. 2012).

Gaps of different spatial characteristics within the
Posidonia oceanica meadow of Cala Montgó created
situations in which seagrass bed margins were
exposed to different levels of KE. The larger the gap
width, the lower the percent cover of the lateral
 vegetation, indicating that the gap exerted some
influence on the architectural characteristics of the
nearby vegetation. Tanner (2005) commented that
the ecological processes associated with canopy
edges may differ from those in interior habitats. In his
study, he showed that total seagrass biomass tended
to increase smoothly with distance from the edge
rather than abruptly from zero to the maximum den-
sity. Tanner (2005) also found that most of the change
occurred within 0.5 to 1 m from the edge of the sea-
grass canopy, coinciding with the hydrodynamic re -
sults from the present study. These results highlight
differences between edge and canopy habitat interi-
ors, making it possible to determine the extent of the
modification as a function of the canopy architecture.
Within the lateral vegetation, the lower the percent
cover of plants, the lower the capacity of the vegeta-
tion to reduce waves and TKE. Therefore, we expect
a negative feedback whereby the lateral vegetation
is increasingly vulnerable through the reduction of
wave attenuation capacity. This negative feedback
may be exacerbated when mooring occurs in mead-
ows with weak meadow compactness and low shoot
density (Milazzo et al. 2004, Demers et al. 2013).
Therefore canopies fragmented with large gaps will
likely be more vulnerable (i.e. less resilient) and
allow greater penetration of waves and currents into

the canopy, which will enhance sediment resuspen-
sion and favor exchange between the meadow and
the gap. These conclusions support those of Gacia &
Duarte (2001), while Hendriks et al. (2008), El Allaoui
et al. (2015) and El Allaoui et al. (2016) reported the
buffering of sediment resuspension by P. oceanica
meadows. El Allaoui et al. (2016) found that canopies
with large gaps had a higher mixing level than
canopies with small gaps, despite both canopies hav-
ing the same total gap area.

After a major storm with predominantly easterly
winds, the meadow showed dramatic changes, spe -
cifically in percent cover and leaf length, both of
which modified the sheltering capacity of the
canopy adjacent to the gaps (although shoot density
did not change). It is likely that the variability of the
weather conditions in the Mediterranean produce
both temporal and spatial heterogeneities within
the meadow in a complicated association with
anchor damage. Manca et al. (2012) suggested that
P. oceanica cano pies significantly protect coastal
areas from wave erosion during storms and promote
sediment stabilization in the nearshore zone. Simi-
larly, Sanchez-Vidal et al. (2012) showed that
extreme coastal storms in the western Mediterran-
ean Sea rapidly impact the coastal ecosystem; one
of the most extreme coastal storms initiated the
movement of large amounts of coarse shelf sediment
that buried benthic communities.

In the present study, the October 2012 storm
resulted in a reduction of the percent cover and leaf
length at all gap stations. Also, the ratio between per-
cent cover at the gap stations (Stns ST3 and ST4) and
percent cover at the meadow station was highest
after the storm. Our results show that although mod-
erately energetic storms may alter the length of the
plants, they may not affect the density of the canopy.
Canopy percent cover was lower 3 mo after the pas-
sage of the storm, but was greater after 7 and 9 mo.
The greater increase in percent cover for the (lateral)
vegetation was observed nearest the smallest gaps,
indicating that canopies might respond to storms, not
only by recovering at a plant scale but also at a
canopy scale. The percent cover dependence on sea-
son (by changing leaf length) might represent a strat-
egy to increase the sheltering and protection of
edges or boundaries, but this requires experimental
investigation. Alternatively, the increase in percent
cover at the edge of the canopy may be the result of a
higher nutrient uptake by the plants due to increased
mixing levels (Thomas & Cornelisen 2003, Ricart et
al. 2015). Both the self-regulation mechanisms and
biogeomorphological adaptations might explain the
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patterns and dynamics observed in seagrass mead-
ows (van Katwijk et al. 2010, Möller et al. 2011).

Gaps with widths less than 2 leaf lengths of the
adjacent vegetation may still cause a reduction in
waves and turbulence, although to a lesser extent
than fully vegetated meadows. Longitudinal gaps
(transversal to the coast) with widths larger than
twice the leaf length were shown to be vulnerable to
full penetration of the wave field. It is suggested that
gaps of sufficient size could in turn exceed the capac-
ity of the meadow to dampen water motion and re -
duce meadow resilience. These results support sug -
gestions by Montefalcone et al. (2010) and Ondiviela
et al. (2014) that the equilibrium between natural dis-
turbance regimes and canopies may be altered when
human activities impose an extra stress, in which
case vegetative growth may no longer be able to
compensate for meadow fragmentation.
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