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Abstracts

Abstract

Automated planning is a discipline in the field of Artificial Intelligence that
can be described as the process of finding a course of action that achieves
a specified task. In other words, it focuses on reasoning about causal struc-
tures and identifying the necessary actions for achieving a given goal.

Although classical planning approaches have been widely successful, the
needs of real-world applications go way beyond its potential. In the area of
automated planning many formalisms exist in order to express all the needs
these problems encompass.

This huge variety of problems range from classical planning to reasoning
about partially observable Markov decision processes, multi-agent planning,
real-time perceiving and acting or temporal and numeric reasoning. There
exist a wide range of techniques to confront each of the aforementioned
formalisms, each one having its own advantages and weaknesses. In this
thesis we restrict ourselves to the setting of hybrid planning. That is, the
combination of the propositional planning with extensions to be able to
reason about different theories, such as integer or real arithmetic.

This thesis presents a set of techniques to efficiently encode planning
problems that involve reasoning at propositional level as well as to deal with
background theories. To address reasoning about the different theories, we
use SAT Modulo Theories (SMT), an extension to SAT that allows the solver
to, in a modular way, reason about non-propositional symbols belonging to
background theories. This framework is interesting because it is expressive
enough to translate many real-world planning problems.

The main objective of the thesis is to push forward the state of the art
of planning as SMT, by devising encodings of planning problems to SMT.
The focus is especially on numeric planning, combining classical planning
with the ability to reason about integer or floating point numbers. In this
setting, many real-world resource-based problems can be encoded.

xvii
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Our implementation of the encodings resulted in a new planner called
Rantanplan, which preprocesses and translates numeric planning prob-
lems into SMT formulas, to solve them using a SMT solver of choice.

We also provide detailed experimental results on new and well-known
domains, to show that our approach is competitive with the existing exact
numeric planners.

Resum

La planificació automàtica és una disciplina dins de la intel·ligència artifi-
cial que pot ser descrita com el procés de trobar un seguit d’accions que
assoleixen una tasca espećıfica. En altres paraules, es focalitza en raonar
sobre estructures causals i identificar les accions necessàries per assolir un
objectiu donat. Encara que les aproximacions a la planificació automàtica
clàssica han tingut un gran èxit, les necessitats que tenen moltes aplicacions
al món real estan per sobre de les seves possibilitats.

Existeixen molts formalismes a l’àrea de la planificació automàtica que
poden expressar totes les necessitats que tenen aquest tipus de problemes.
Aquesta enorme varietat de problemes van des de la planificació clàssica,
passant per problemes expressats amb processos de decisió de Markov par-
cialment observables, problemes de percepció i decisió en temps real o prob-
lemes que incorporen raonament temporal i numèric. Existeixen un ampli
ventall de tècniques per a afrontar cada un dels formalismes esmentats, cada
una amb els seus avantatges i inconvenients. En aquesta tesi ens restringim
en el marc de la planificació h́ıbrida. Exactament, la combinació de la plan-
ificació proposicional amb extensions per a poder raonar sobre diferents
teories, tals com l’aritmètica real o entera.

Aquesta tesi presenta un conjunt de tècniques per a codificar de manera
eficient problemes de planificació que involucren raonament a nivell proposi-
cional aix́ı com raonament amb teories de fons. Per abordar el raonament
sobre les diferents teories, farem anar SAT Modulo Teories (SMT), una ex-
tensió de SAT que permet al resoledor, de manera modular, raonar sobre
śımbols no proposicionals pertanyents a teories de fons. Aquest marc és
interessant perquè és prou expressiu per a poder traduir molts problemes
provinents del món real.

L’objectiu principal és millorar l’estat de l’art de la planificació au-
tomàtica mitjançant SMT, a través de la codificació dels problemes de plani-
ficació a SMT. El focus de la tesi és especialment en la planificació numèrica,
on es combina la planificació clàssica amb l’habilitat de raonar sobre nom-
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bres enters o reals. En aquest context es poden codificar molts problemes
reals amb restriccions sobre recursos.

La nostra implementació de les codificacions ha donat fruit a un plan-
ificador anomenat Rantanplan, el qual preprocessa i tradueix problemes
de planificació numèrics cap a fórmules SMT, finalment resolent-los amb el
resoledor SMT que l’usuari trïı.

També s’inclouen resultats detallats d’alguns dominis ben coneguts i
alguns de nous, per a demostrar que el nostre enfocament és competitiu
amb els planificadors numèrics exactes existents.

Resumen

La planificación automática es una disciplina dentro de la inteligencia ar-
tificial que puede ser descrita como el proceso de encontrar una serie de
acciones que logren un objetivo. En otras palabras, se focaliza en razonar
sobre estructuras causales e identificar las acciones necesarias para alcanzar
un fin. Aunque las aproximaciones a la planificación automática clásica son
muy potentes, las necesidades que tienen muchas aplicaciones del mundo
real están por encima de sus posibilidades.

Existen muchos formalismos en el área de la planificación automática
que pueden expresar todas las necesidades que tienen este tipo de proble-
mas. Esta enorme variedad de problemas va des de la planificación clásica,
pasando por problemas de decisión parcialmente observables, problemas de
percepción y decisión en tiempo real o problemas que incorporan razon-
amiento temporal y numérico. Existe una amplia selección de técnicas para
afrontar cada uno de los formalismos mencionados, cada una con sus ventajas
e inconvenientes. En esta tesis nos restringimos al marco de la planificación
h́ıbrida. Exactamente, en la combinación de la planificación proposicional
con extensiones para poder razonar sobre diferentes teoŕıas, tales como la
aritmética real o entera.

Esta tesis presenta un conjunto de técnicas para codificar de manera
eficiente problemas de planificación que involucren tanto razonamiento a
nivel proposicional como razonamiento con teoŕıas de fondo. Para abordar
el razonamiento sobre las diferentes teoŕıas, usaremos SAT Modulo Teoŕıas
(SMT), una extensión de SAT que permite al solucionador, de manera mod-
ular, razonar sobre śımbolos no proposicionales pertenecientes a teoŕıas de
fondo. Este marco es interesante porqué tiene suficiente poder expresivo
para traducir muchos problemas procedentes del mundo real.

El objetivo principal es el de mejorar el estado del arte de la planificación
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automática mediante SMT, a través de la codificación de los problemas
de planificación a SMT. El foco de la tesis est puesto especialmente en
la planificación numérica, donde se combina la planificación clásica con la
posibilidad de razonar sobre números enteros o reales. En este contexto se
pueden expresar muchos problemas reales con restricciones de recursos.

Nuestra implementación de las codificaciones ha dado fruto a un planifi-
cador llamado Rantanplan, el cual procesa y traduce problemas de plan-
ificación numéricos a fórmulas SMT, finalmente resolviéndolos con un solu-
cionador SMT que el usuario escoja.

También incluimos resultados detallados de algunos dominios bien cono-
cidos y de algunos de nuevos, para demostrar que nuestro enfoque es com-
petitivo con los planificadores numéricos exactos existentes.



Chapter 1

Introduction

1.1 Motivation

The satisfiability problem (SAT) can be defined as the decision problem
for propositional formulas. That is, to be able to say if there exists an
assignment to the variables of the formula that satisfies it.

During the last 20 years, there has been a dramatic improvement on the
efficiency of SAT solvers. SAT solvers went from being able to comfortably
solve problems with tens of variables and hundreds of constraints in the
early 90’s, to nowadays solve problems with a million of variables and some
millions of constraints. Although Moore’s Law helped in this regard, a twice
as fast computer does not mean that it can solve a twice as large instance,
because the search difficulty does not necessarily scale with the problem
size. The constant improvement of SAT solvers, driven by the regular SAT
competitions, has been the key to the success of many SAT-based applica-
tions. Therefore, SAT solvers transitioned from being only an academically
interesting problem, to a well-known technology used in the industry. Some
of the uses of SAT solvers are, for example, doing model checking for crit-
ical systems [BCCZ99], combinatorial design [Zha09] or solving scheduling
problems [BEG+14].

Satisfiability Modulo Theories (SMT) can be defined as the decision
problem for logical formulas with respect to combination of background the-
ories, including equality. Solvers for this problem are continuously improving
and nowadays are very efficient. This is in part due to the improvement of
SAT solvers, which are the basis of most of the SMT solvers.

Automated planning is an area of Artificial Intelligence (AI) that aims
to automate the decision of what actions an agent should perform to achieve

1
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a given objective. This area is not only important for autonomous systems,
which need deliberation capabilities to be truly autonomous; but also to
help humans to plan complex problems.

The first motivation for research in automated planning is theoretical:
planning is an important component of rational behaviour. In our everyday
activities we continuously act, anticipating the outcomes of our actions,
even if we are not fully aware of it. The prefrontal cortex of our brain is
responsible, amongst other things, for these areas of planning and decision-
making. So, if the purpose of AI is to represent some aspects of intelligence,
then certainly planning would be a key component of that purpose.

The other motivation is entirely practical: Many different fields need
tools that can give the ability to the users to face complex and changing
tasks in an efficient way. Satellites and other kind of spacecraft are an ex-
ample, where these autonomous agents need to reason about their limited
resources and their current and future goals. Some other recent uses of
planning research in the industry are, to name a few: reconfigurable manu-
facturing systems [PLF+17], planning for power grid operations [BCC+09],
automated personalized group tours [LCLK16] or optimizing warehouse op-
erations [Hüt16].

Some areas in the field of automated planning are extensively explored
and raise a lot of interest, giving many mature techniques to confront inter-
esting problems. However, there are other areas, like automated planning
with numeric reasoning, where further efforts are needed if the planning
community wants to provide useful approaches to interesting problems. As
a matter of fact, it is especially noticeable the lack of domains that require
numeric reasoning in the international planning competition (IPC). This
competition is held in the context of the International Conference on Plan-
ning and Scheduling Conference (ICAPS). It empirically evaluates state-of-
the-art planning systems on a number of benchmark problems.

Classical planning as propositional satisfiability has shown to be, by
many authors, a competitive approach to solve classical planning prob-
lems [BF97, KSH06, Rin12b]. An important improvement that made plan-
ning as propositional satisfiability competitive with state of the art planners
was the introduction of parallel plans. Sequential plans have one action per
step , while parallel plans can have multiple actions per step. Either way, the
formula always grow linearly with time. Although called parallel, the main
motivation of these parallel plans was that they could compactly represent
intermediate states of sequential plans. This reduction of explicitly repre-
sented states lead to smaller formulas with less variables, and sometimes to
more easily solvable problems. Therefore, the focus on this thesis is to give
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a response to the following question: Can Satisfiability Modulo Theories be
a good technique to translate and solve complex planning problems, as SAT
solvers has proven to be for classical planning problems?

1.2 Objectives

• The main objective of the thesis is to develop a non-heuristic planner
that can solve numeric planning problems. The main approach will be
using a SMT solver as a black box.

• SMT has many theories available, where each one has its own ex-
pressivity and strengths. For translating planning problems to SMT,
intelligent and compact encodings will have to be developed in one or
many theories.

• Classical planning as SAT flourished partly thanks to the relaxed par-
allel semantics, enabling many actions to be taken in parallel. These
semantics may not be enough for numeric planning, as classical plan-
ning as SAT only deals with Boolean variables. Therefore, any notion
on these semantics that involves reasoning with numerical variables
should be revisited. The objective is to attain finer approaches, to be
able to deal with numeric variables more effectively.

• Our final objective is to be competitive with the state of the art non-
heuristic numeric planners.

1.3 Outline of the Thesis

Chapter 2 presents an overview of the automated planning area, review-
ing classical planning, its representations, basic definitions and some of the
approaches about how to attack the problem.

In Chapters 3 and 4 the approach of planning as satisfiability is ex-
plained, together with the ideas of how numeric reasoning is integrated with
classical planning and the background needed to understand how numeric
planning as satisfiability can be solved.

In Chapter 5, the definition of planning modulo theories is given, to-
gether with an encoding for translating planning problems to SMT formu-
las, with support for various parallelism semantics. Experimental results are
presented for this encoding, showing its usefulness. These contributions cor-
respond to various of the aforementioned articles: [BEV14, BEV15, BEV16b]



4 CHAPTER 1. INTRODUCTION

Chapter 6 presents the formalization of a permissive notion of inter-
ference between actions, its correctness for two parallelism semantics and
how this interference can be easily checked using SMT. Finally, experiments
show the increased parallelism and efficiency of using this new notion. The
contributions of this Chapter are published in [BEV16a].

Chapter 7 presents a different approach to the notion of parallelism in the
setting of planning as SMT. A new encoding that does not use the classical
notion of mutexes between actions is presented, using an even more relaxed
parallelism semantics. Also, an approach to prune unnecessary actions from
a plan is explained. Experiments support the claim that this encoding is even
more parallel, together with the usefulness of the unnecessary action removal
technique. This new encoding and experiments are presented in [BEV17].

In Chapter 8, the final conclusions of the thesis are discussed, together
with pointers to what interesting works could be derived from this point.

Finally, the Appendices include a description of the Rantanplan plan-
ner, where all the encodings and techniques have been implemented.



Chapter 2

Preliminaries

Regardless of which theories an automated planner can reason about, all of
them can be broadly divided in two categories: domain independent and
domain specific planners.

Domain specific planners are designed for specific problems. They gen-
erally cannot work on other problems. The advantage they have is that
they can use some problem-specific techniques that are difficult to general-
ize to other planning domains. Some examples of problems with specialized
planners can be the mars exploration rovers activities [BJMR05] or bridge
playing [SNT98].

Domain independent planners aim to solve a planning problem specified
in a given general language via some appropriate general planning algorithm.
The output of the planner is usually a totally or partially ordered plan, that
is, a sequence of actions, where some of which may be executed in parallel
sometimes. The focus in this thesis is into domain independent planners,
and therefore from now on we will be focusing on them.

2.1 State-Variable Representation

Our formalization of the classical planning problem is inspired in the ideas
in [GNT16]. A planning domain is the description of a problem to be solved
by a planning system. These domains can be seen as simplified representa-
tions of the real-world problem they are trying to solve. A classical planning
domain can be seen as a finite-state automaton:

Definition 2.1.1 (State transition representation). A state transition sys-
tem (also called a classical planning domain) is a tuple

∏
= (S,A, γ), where:

5



6 CHAPTER 2. PRELIMINARIES

• S is a finite set of states

• A is is a finite set of actions that can be performed

• γ : S × A → S is a partial function that maps pairs of states and
actions to states. If γ(s, a) s.t. s ∈ S, a ∈ A is defined, then a is
applicable in s and γ(s, a) is the state resulting from applying a to s.
If γ(s, a) is not defined then a is not applicable in s

Example 1. Consider a scenario where an airline that has to transport
some passengers to their destinations. The airline operates in three major
cities: Barcelona, Berlin and London. The airline has only one aircraft,
stationed in Barcelona, and two passengers, one in Barcelona and the other
in Berlin. The objects of the problem are:

Cities = {Barcelona, London, Berlin}
Aircrafts = {Aircraft1}
Passengers = {Person1, Person2}

Barcelona Berlin London

Person1

Aircraft1

Person2

Figure 2.1: A representation of the initial state

The problem actions are: fly, where an aircraft moves from one city
to another, embark, where a passenger embarks an aircraft and disembark,
where a passenger disembarks from the aircraft.

To make problem representation and solving easier, some simplifications
are commonly made. Those are called the classical planning assumptions:

• There is no explicit model of time. Only discrete sequences of actions
are considered.

• The set of states is finite, observable and static. The change in the
current state is only due to executed actions. The initial state is unique
and known, and the set of actions is finite.
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• All actions are deterministic. This excludes the possibility of interfer-
ence by external events, or random effects in actions.

Since the initial state is known and actions are deterministic, the state of the
world after any given sequence of actions can be determined unambiguously.

The states in this transition system are configurations of the objects
considered in the problem. To represent them, we will use sets B and X.

• B is a set of names for all the objects, and all the constants (values)
needed to represent properties of these objects. Typically, constants
true and false (> and ⊥ respectively) are added to B.

• X is a set of state variables, which will be used to represent the relevant
properties of the problem. The value of each x ∈ X will depend solely
on the states s ∈ S.

State variables are defined as follows:

Definition 2.1.2 (State Variable). A state variable over B is expressed as

x = sv(b1, . . . , bn)

where sv is a symbol representing the state variable name and b1, . . . , bn are
members of B. Each state variable x has a domain Domain(x) ⊆ B, which
is the set of all possible values for x.

These variables associate a value, which changes over time, with a rele-
vant attribute of the world. For example, consider a logistics domain that
involves transporting packages using trucks. State variables would describe
the location of a truck or a package, and how it changes over time. Handy
values to include to B could be the Booleans or a nil.

Definition 2.1.3 (State). A state is a variable-assignment (or valuation)
function over state variables X, which maps each xi ∈ X into a value zi ∈
Domain(xi). This function is a set of ordered pairs

s = {(x1, z1), (x2, z2), . . . , (xn, zn)}

which we will usually represent as a set of assertions:

s = {x1 = z1, x2 = z2, . . . , xn = zn}
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Example 2. In Example 1, if we consider a state variable at saying where
a plane or a passenger is and a predicate in saying if a passenger is inside
a plane, the initial state s0 could be represented as follows:

s0 = {at(Aircraft1) = Barcelona, at(Person1) = Barcelona,

at(Person2) = Berlin, in(Person1) = nil, in(Person2) = nil}

where the nil value in the in predicate represents that the passenger is not
inside any plane.

Note that as X and B are finite, so is the number of variable-assignment
functions. This definition of state is the same as the one in the SAS+
formalism [Bäc92].

Definition 2.1.4 (State-variable state space). The state-variable state space
S is a set of states over state variables X.

Note that the purpose of a state is to represent a feasible configuration
of the problem elements. Therefore, typically not all variable-assignment
functions can be considered meaningful states.

To express a way to write actions, we introduce some terminology loosely-
borrowed from first-order logic with equality.

Definition 2.1.5 (Literal). A positive literal, or atom, is an expression of
the form:

sv(z1, . . . , zn) = z0

sv is a state variable name and each zi is either a variable (an ordinary
mathematical variable, not a state variable) or an element of B. The left-
hand side of the literal (sv(z1, . . . , zn)) is said to be the target.

A negative literal is an expression of the form:

sv(z1, . . . , zn) 6= z0

A literal is ground if it contains no variables, and unground otherwise.

Definition 2.1.6 (Instance of a Literal). Let l be an unground literal, and Z
a subset of the variables in l. An instance of l is any expression l′ produced
by replacing each z ∈ Z with a term z′ such that z′ ∈ Domain(z) or z′ is a
variable with Domain(z′) ⊆ Domain(z).

Definition 2.1.6 generalizes to any syntactic expression that contains lit-
erals. We will say that the expression is ground if it does not contain any
(ordinary) variable, or unground otherwise. Now we can introduce actions.
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Definition 2.1.7 (Action). An ungrounded action, or action template, is
a tuple α = (head(α),Pre(α),Eff (α)) such that:

• head(α) is an expression of the form:

act(z1, . . . , zn)

such that act is the action name and z1, . . . , zn are variables (ordinary
variables, not state variables) also called parameters. These parame-
ters must include all variables that appear in Pre(α) and Eff (α).

• Pre(α) = {p1, . . . , pn} is a set of preconditions, each of it being a
literal.

• Eff (α) = {e1, . . . , en} is a set of effects, each of it being a positive
literal. No target can appear in Eff more than once.

A ground action a is a ground instance of an action template α where all
state variables in Pre(a) and Eff (a) are ground, its parameters contain no
variables and no target can appear in Eff more than once. For the action
to be applicable in a state s, s must satisfy Pre(a). The outcome after the
application of the action will be the state:

γ(s, a) = {(x,w) | x = w ∈ Eff (a)} ∪
{(x,w) ∈ s | x is not a target of any effect in Eff (a)}

Note that if a is not applicable, γ(s, a) is undefined.

Example 3 (Action representation). If we continue with Example 1, the
action named fly could be represented as follows:

α1 = (fly(plane, from, to), {at(plane) = from}, {at(plane) = to})

And a grounded instantiation of this action could be:

a1 =(fly(Aircraft1, Barcelona, London),

{at(Aircraft1) = Barcelona}, {at(Aircraft1) = London})

This action would be applicable in any state satisfying at(Aircraft1)

= Barcelona. The effects after applying a1 would satisfy at(Aircraft1) =

London.
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Definition 2.1.8 (Plan). A plan is represented as a finite sequence of
ground actions π = 〈a1, . . . , an〉. A plan is applicable in a state s0 if there
are states s1, . . . , sn such that si results from applying action ai to state si−1
for i ∈ 1, . . . , n, i.e. γ(si−1, ai) = si. We call the resulting final state the
state sn.

As a special case, the 〈〉 is the empty plan, which contains no actions
and its length is 0.

Definition 2.1.9 (Classical Planning Problem). A classical planning prob-
lem is a tuple

∏
= (S,A, I,G), where

• S is the set of possible states,

• A is a set of action templates,

• I is the initial state and

• G is a set of positive ground literals, the goal.

A plan π = 〈a1, . . . , an〉 is also called a solution of
∏

when all a1, . . . , an
are grounded actions of A, π is applicable in I and the resulting final state
satisfies the goal.

A state is said to be a goal state when it satisfies the goal.

A solution (or plan) can be described as a sequence of actions taken one
at a time that brings the problem from the initial state to a goal state. Due
to the classical planning assumptions, the initial state is unique and known
(a total function).

Example 4. To quantify the state space size, we recover Example 1. The
size of the domains of the state variables are:

size(Domain(at(Person1))) = |{Barcelona, London, Berlin}| = 3

size(Domain(at(Person2))) = |{Barcelona, London, Berlin}| = 3

size(Domain(in(Person1))) = |{Aircraft1, nil}| = 2

size(Domain(in(Person2))) = |{Aircraft1, nil}| = 2

size(Domain(at(Aircraft1))) = |{Barcelona, London, Berlin}| = 3

which gives (1 + 2)3 × 22 = 36 as the number of possible states of the
problem with this representation. This is a small number of states, but as
the problem grows in size, the number of possible states grows quickly. With
the same representation, a fleet of 20 planes, 30 cities and 100 passengers
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yields a search space of approximately (20 + 100)30 × 10021 = 2.37 × 10104.
Given that the estimated number of atoms in the universe is about 1080, it
can be said that the search space grows quickly enough.

However, note that few of those values are valid states in S. For example,
a passenger cannot be at two different cities at the same time. A consistent
representation of the problem would only permit a transition from one state
to another if the next state would be a valid state.

2.2 The STRIPS formalism

The situation calculus [McC69] was one of the first approaches to represent
and solve a planning problem based on state variables. The STRIPS [FN71]
planning system followed, together with some other planners [GNT04, RN10]
that used a slightly different problem representation. STRIPS was also the
planner used in Shakey [Int70], one of the first robots built using Artificial
Intelligence techniques.

The STRIPS representation used a similar representation than the one
introduced in the previous section, but with only propositional state vari-
ables. Therefore the domain of all state variables is restricted to {>,⊥}.

Example 5 (Classical state representation). Following Example 2, now the
representation of the initial state would be:

s0 = {at(Aircraft1, Barcelona) = >, at(Aircraft1, London) = ⊥,
at(Aircraft1, Berlin) = ⊥, at(Person1, Barcelona) = >,
at(Person1, London) = ⊥, at(Person1, Berlin) = ⊥,
at(Person2, Barcelona) = ⊥, at(Person2, London) = >,
at(Person2, Berlin) = ⊥, in(Person1, Aircraft1) = ⊥,
in(Person2, Aircraft1) = ⊥}

While an action that brings an aircraft from one city to another would be:

α1 = (fly(plane, from, to),{at(plane, from) = >},
{at(plane, to) = >, at(plane, from) = ⊥})

and one of the many possible ground instantiations of it:

a1 = (fly(Aircraft1, Barcelona, London),

{at(Aircraft1, Barcelona) = >},
{at(Aircraft1, London) = >, at(Aircraft, Barcelona) = ⊥})
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Again, this action would be applicable in any state that the action precon-
dition at(Aircraft1,Barcelona) has the value >. The effects after apply-
ing this action would make ground state variable at(Aircraft1, London) =
> and at(Aircraft1, Barcelona) = ⊥.

There are other formalisms to express planning problems, such as SAS+,
TWEAK or variants of STRIPS. Although these may seem to exhibit differ-
ent degrees of expressive power, it is proven that they are, in fact, expres-
sively equivalent [Bäc95]. This means that, for example, neither negative
goals, partial initial states nor multi-valued state variables increase the ex-
pressiveness of propositional STRIPS.

2.3 State-Space Planning

The main approach to planning is searching forward from the initial state
and try to build a sequential plan that can reach one of the goal states.

Algorithm 1 Schematic Forward Search

Input:
∏

= (S,A, I,G)
Output: A valid sequential plan π or UNSAT

1: Frontier ← {(〈〉, I)}
2: V isited← ∅
3: while Frontier 6= ∅ do
4: Select a node n = 〈π, s〉 ∈ Frontier
5: Remove n from Frontier and add it to V isited
6: if s satisfies G then
7: return π
8: end if
9: NewNodes← generate nodes that can be reached from s

10: Update Frontier with NewNodes with unseen states
11: end while
12: return UNSAT

A schema that implements a forward search approach could be Algo-
rithm 1. Note that, as the domains of the state variables are finite, ter-
mination is guaranteed. Each node is a pair 〈π, s〉 where π is a plan that
represents the actions already selected and s is the state resulting of the ap-
plication of the plan π to I. Frontier is a set of nodes waiting to be visited
by the search algorithm. The plan and states of nodes are being generated
on line 9, while in line 10 the reachable nodes that generate an unseen state
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are added to the Frontier. Visited is the set of nodes already visited by
the algorithm. The algorithm has two ways of finishing: If the state being
considered a goal state, it returns the plan. Otherwise, returns UNSAT.
Many forward-search algorithms can be represented as algorithm 1 by slight
modifications and specifying how they select the next node.

Most forward-search algorithms try to find a solution without having to
explore all the search space, as it can get exponentially large. The key is the
operation select on line 4, where the algorithm deterministically selects the
best node out of all the nodes in the frontier. This select function is often
called a heuristic function h : S → R≥0 that maps a state to an estimate of
the cost of reaching a goal state from that state.

2.3.1 Heuristic Functions

Many well known search algorithms can be used, for example the A∗ algo-
rithm [HNR72], IDA∗ [Kor85a], Hill climbing [RN10] or the Greedy Best-
First search (GBFS) [RN10]. Choosing the right algorithm depend on factors
like the search space size, optimality of the solution or the characteristics of
the heuristic function, among many other possible factors.

A heuristic function for a planning problem is a function h that, given
a state s returns an estimate h(s) of the minimum cost h∗(s) of getting
from s to a goal state. The heuristic function is said to be admissible if
h(s) ≤ h∗(s) for every state s. The main way of computing a heuristic
is doing a relaxation of the planning problem: given a planning problem∏

, produce an easier problem
∏′. This is done by weakening some of the

constraints that restrict when an action is applicable or what it achieves,
by restricting what the problem states are, by redefining what the problem
actions are, . . . This new problem

∏′ has the property that for every valid
plan π for

∏
,
∏′ has a solution π′ such that cost(π′) ≤ cost(π).

Given an algorithm that can find a valid plan in
∏′, it can be used to

make a heuristic function for
∏

that works as follows: given a state s, solve∏′ = (S′, A′, I, G) and return the cost of the solution. Heuristics can be
domain-independent. In the following subsections some of these approaches
are described.

A delete relaxation heuristic tries to estimate the cost to a goal state
by making

∏′ a copy of
∏

where now state variables can have not one but
many values at the same time. Moreover, once a state variable “obtains” a
certain value, that value can always be used to satisfy further preconditions
or goals. For example, in the setting of classical planning, if the initial state
valuates a set of state variables X all to ⊥ and the goal needs all of them
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to >, the relaxation will remove all positive literals of the form x = ⊥ for
all x ∈ X from the effects of the actions.

It can be expressed more generally as
∏′ is a planning problem that

never removes literals from the state, it only adds new ones. For example,
if the positive literal at(Aircraft) = Barcelona is true, and an action
that has at(Aircraft) = Berlin as an effect is executed, the state be-
comes {at(Aircraft) = { Barcelona, Berlin }}. The additive heuristic
hadd [BG99], the Fast Forward hff heuristic [HN01] and the h+ heuristic are
examples of delete relaxation heuristics.

Let φ = φ1∨· · ·∨φn be a disjunction of atoms. φ is a disjunctive landmark
if all valid plans for a problem produce a state during its execution where φ
is true. Fact landmarks consider atoms in φ as ground state variables, while
action landmarks consider atoms in φ as ground actions that must exist in
any plan.

Landmarks can be used to help heuristics be more precise in their cost
estimations. As computing landmarks has proven to be very complex (in
fact, PSPACE-complete [HPS04] in the worst case) many heuristics in this
category, like the LAMA heuristic [RHW08] work not on the original, but
on a relaxed problem. Research on landmark generation has also focused
on the development of polynomial-time criteria that are sufficient (but not
necessary) to guarantee that a fact is a landmark.

Other work on landmarks includes, for example, using them to find op-
timal solutions to planning problems [KD09], improving the efficiency of
planning by splitting planning problems into subproblems [VIV13].

Critical path heuristics estimate the cost of achieving a goal by examining
the critical path length (the makespan) of a concurrent plan for a simplified
problem. Some examples of this family of heuristics are hm [HG00], or the
additive hm [HBG05] heuristics.

Another approximation are abstraction heuristics, where the idea is to
estimate the cost by projecting the state space to a smaller space applying
a graph homomorphism. Pattern databases [HBH+07] are an example of an
abstraction heuristic. A pattern is considered a subset of the state variables,
and the simplified problem has all literals with state variables not in this
subset removed. This approach has the problem of the lack of informedness
of variables outside this set, and thus techniques that try to merge various
abstractions have been developed [KD08].

The basic idea of the network flow heuristic is that, in all plans, the
number of times each fact is asserted versus the number of times it is negated
must be “balanced”. This heuristic is normally calculated by solving a linear
program encoding this idea. The flow heuristic [vdBBKV07] or its enhanced
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version [BvdB14] are examples of this family.

2.4 Plan-Space Planning

One of the problems with forward state-space planning is that given a plan,
the search algorithm has to try all the possible combinations of orders be-
tween the actions in the plan to conclude that a goal cannot be reached.

A partial order plan is a plan in which the actions are partially ordered,
along with a guarantee that every total ordering that is compatible with
this partial ordering will be a solution plan. This idea gives the planner
flexibility to postpone some of the ordering decisions until they are really
needed. This concept is described as the least-commitment strategy: do not
commit to orderings or instantiations until necessary.

The idea is to keep doing refinements to a partial plan until a solu-
tion is found. A partial plan can be defined as a set of totally or partially
grounded actions, together with a set of constraints. This constraints can
be of two types: causal links or value constraints. A causal link is a re-
lation between two actions, involving a state variable. For example, the
action disembark(Passenger,Aircraft) needs the passenger to be inside
the plane, so to fulfill the condition in(Passenger,Aircraft) the action
embark(Passenger,Aircraft) is needed. Value constraints can be equal-
ity or inequality constraints. An example of this kind of constraints would
be: at(Aircraft1, London) 6= at(Aircraft1, Barcelona).

A plan can be found when a partial plan has no flaws. Flaws can be
open goals or threats. An open goal is a goal that has no causal link. That
is, a condition that no action in the plan can set to true. A threat is
the negation of a needed precondition. For example, consider that action
a = fly(Aircraft, Barcelona, London) needs at(Aircraft, Barcelona) =
>, and action b = fly(Aircraft, Berlin, Barcelona) is responsible for set-
ting variable at(Aircraft, Barcelona) = >. Consider that action c =
fly(Aircraft, Barcelona, Berlin) is also part of the plan, with the effect
at(Aircraft, Barcelona) = ⊥. To resolve the threat, a constraint can be
imposed to prevent c from affecting the link between a and b: Make c go
before b or after a or impose constraints over some state variables to prevent
c from setting at(Aircraft, Barcelona) = ⊥.

Algorithm 2 depicts the idea of Plan-space Planning (PSP) [MR91]. It
solves a planning problem by modifying a partial plan π, initialized with the
facts entailed by the initial state and the goal, in which actions are partially
ordered and partially grounded.
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The objective is to produce a valid plan for
∏

. It does this by repeatedly
finding flaws and applying resolvers (a refinement that removes the flaw) for
each one until it cannot find more flaws. Generally speaking, implementa-

Algorithm 2 PSP Algorithm

Input: (
∏
, π)

Output: A valid partially ordered plan π or UNSAT
1: while true do
2: if Flaws(π) = ∅ then
3: return π
4: end if
5: Select a f ∈ Flaws(π)
6: R← {all valid resolvers forf}
7: if R = ∅ then
8: return UNSAT
9: end if

10: Select a p ∈ R
11: π ← p(π)
12: end while
13: return π

tions of PSP search tend to run slower than the fastest state-space planner.
This is due to very good heuristics in combination with greedy best-first
search algorithms, and these heuristics are not directly applicable to PSP,
because plan-space search have no explicit states. On the other hand, ideas
from PSP have been transported to the realm of temporal planning, and
have been useful for maintaining flexibility in uncertain environments. For
more information, the reader can refer to [GNT16].

2.5 Planning as SAT

Propositional satisfiability (SAT) was the first known NP-Complete prob-
lem, and the improvements in SAT technology during the last two decades
have made it viable for solving many problems. Examples of its useful-
ness are its application to solve scheduling problems [BEG+14] efficiently,
solving classical planning problems [KSH06] or model checking applica-
tions [BCCZ99]. Some definitions follow to formally define the SAT problem.

Definition 2.5.1 (Atom). An atom can be seen as a statement, which can
be true or false.
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An atom is the most simple formula of propositional logic, with no struc-
ture. For example, the atom p, can represent the statement “I like pizza”.

Definition 2.5.2 (Literal). A literal is an atom (positive literal), or a
negated atom (negative literal).

For example, ¬p, could represent the negation of the statement “I like
pizza”.

Definition 2.5.3 (Clause). A clause is a disjunction of literals

For example, p∨q∨¬r is a clause, where p, q and ¬r are literals. Clauses
are sometimes represented as a set of literals. The empty disjunction (empty
clause) is represented by �.

A unit clause is a clause with only one literal, and a binary clause is a
clause with two literals.

Definition 2.5.4 (CNF). A formula is a set of clauses. The formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses.

For example, (p ∨ q) ∧ (¬r ∨ s) is a formula in CNF composed by two
clauses: p ∨ q and ¬r ∨ s.

Definition 2.5.5 (Truth Assignment). A truth assignment, interpretation,
or model is a function that maps each atom to true (>) or false (⊥).

Now, given a truth assignment, a positive literal is said to be true only
if the assignment maps its atom to >. A negative literal is true only if the
assignment maps its atom to ⊥. Finally, a literal is false if its not true.

Now we can say that, given a truth assignment, a clause is true (satisfied)
if at least one of its literals is true, and false if all of its literals are false.
In particular, the empty clause is always false. A CNF is true if all of its
clauses are true, and false otherwise. An empty CNF is always true.

Definition 2.5.6. The Satisfiability Problem (SAT) for a CNF φ is the
problem of deciding if there exists a truth assignment that satisfies all the
clauses of φ.

Example 6. Let us consider a CNF formula φ having three clauses c1, c2
and c3:

c1 : p ∨ ¬q
c2 : p ∨ r
c3 : ¬p ∨ q ∨ r
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Under the (partial) truth assignment {¬p,¬q}, clauses c1 and c3 are satisfied
and clause c2 is undefined. Therefore, the CNF formula φ is undefined under
this assignment.

Suppose now that this assignment is completed by adding the literal ¬r.
Then, clause c2 becomes unsatisfied. Finally, if we consider the assignment
{¬p,¬q, r}, all the clauses are satisfied.

From now on, and for the sake of readability, we will use a more general
syntax for expressing formulas. We will incorporate the use negations at
any level and logical implications (→). This kind of formulas can be trans-
formed to equivalent CNFs by using distributivity, De Morgan’s rules and
the equivalence of a→ b to ¬a ∨ b.

2.5.1 Translation to SAT

Planning is a notoriously hard problem. In fact, the problem of finding out if
there is a plan in a classical planning problem is PSPACE complete [Byl91,
ENS92, Bäc92] The PSPACE hardness holds when the potential solutions
can be of exponential length. If we are only interested in polynomial-length
plans, then planning is indeed NP-complete.

In the planning as satisfiability approach, a planning problem is trans-
lated to a Boolean formula, with the property that any model of this formula
corresponds to a valid plan. As the length of a valid plan is not known a
priori, the basic idea is to bound the planning problem to a positive integer
n, and then for n = 1, 2, . . . to take the problem of finding a plan of length
n, rewrite it as a propositional formula f(n) , and try to solve it. If the
planning problem is solvable, then f(n) will be solvable for sufficiently large
n.

We define St = {st|s ∈ S}, consisting of all state variables in S super-
scripted with an integer t ≥ 0. From now on, given a formula φ, φt will
represent the same formula but replacing all s ∈ S by the corresponding
st ∈ St. This superscripted integer t will represent the time step. So when
t = 0, the formula will be representing the initial state, and with t = 1 the
state after executing one action, and so on.

To represent the plan π, for all action a ∈ A a Boolean variable at

will represent if that action is executed at that time step t. The encoding,
simplified from [Rin09], goes as follows. First, we express that the execution
of an action implies its preconditions

at → pt ∀a = 〈p, e〉 ∈ A (2.1)
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Then, if the action is executed, its effects will take place at the next time
step.

at → et+1 ∀a = 〈p, e〉 ∈ A (2.2)

Note that p and e are defined as sets of valuations. These sets are translated
to propositional form as conjunctions.

A change of value of a state variable must occur only if an action that
can change that state variable has been executed.

(st ∧ ¬st+1)→
∨
{at|¬s ∈ e, a = 〈p, e〉 ∈ A} ∀s ∈ S (2.3)

(¬st ∧ st+1)→
∨
{at|s ∈ e, a = 〈p, e〉 ∈ A} ∀s ∈ S (2.4)

Finally, we have to restrict the execution of actions to one per time step:∨
at a ∈ A (2.5)

¬(at1 ∧ at2) a1 ∈ A, a2 ∈ A, a1 6= a2 (2.6)

If we retake Example 1, the actions fly(Aircraft1,Barcelona,London)

and fly(Aircraft1,Barcelona,Berlin) can not be executed in parallel,
as the effects would wrongly place the aircraft at two cities at the same time.
In Chapter 4, the semantics to execute more than one action per time step
will be explained.

To illustrate this encoding, let us consider Example 1 in Section 2.1.
The set of state variables would be comprised by a total of 11 propositional
variables, matching the variables reflected in Example 2. To express if an
action with a given set of parameters is executed in a given time step, a
propositional variable is used. We will be abbreviating Aircraft1 as a1,
Barcelona as bcn, London as lon and Berlin as ber for brevity.

Then, we would need to express actions. To have a complete toy problem,
we would need at least three actions to be able to express the transportation
of persons between cities: fly, embark and debark. For the sake of brevity, if
we only consider action fly in Example 3, the extra propositional variables
to represent if an action is executed would be:

fly bcn bcn, fly bcn lon, fly bcn ber

fly lon bcn, fly lon lon, fly lon ber

fly ber bcn, fly ber lon, fly ber ber
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Constraints 2.1 would be:

fly a1 bcn bcnt → at a1 bcnt

fly a1 bcn lont → at a1 bcnt

fly a1 bcn bert → at a1 bcnt

fly a1 lon bcnt → at a1 lont

fly a1 lon lont → at a1 lont

fly a1 lon bert → at a1 lont

fly a1 ber bcnt → at a1 bert

fly a1 ber lont → at a1 bert

fly a1 ber bert → at a1 bert

Now, Constraints 2.2 would be:

fly a1 bcn bcnt → (at a1 bcnt+1 ∧ ¬at a1 bcnt+1)

fly a1 bcn lont → (at a1 lont+1 ∧ ¬at a1 bcnt+1)

fly a1 bcn bert → (at a1 bert+1 ∧ ¬at a1 bcnt+1)

fly a1 lon bcnt → (at a1 bcnt+1 ∧ ¬at a1 lont+1)

fly a1 lon lont → (at a1 lont+1 ∧ ¬at a1 lont+1)

fly a1 lon bert → (at a1 bert+1 ∧ ¬at a1 lont+1)

fly a1 ber bcnt → (at a1 bcnt+1 ∧ ¬at a1 bert+1)

fly a1 ber lont → (at a1 lont+1 ∧ ¬at a1 bert+1)

fly a1 ber bert → (at a1 bert+1 ∧ ¬at a1 bert+1)

Frame axioms, represented in Constraints 2.3 would be:

(at a1 bcnt ∧ ¬at a1 bcnt+1)→
(fly a1 bcn lont ∨ fly a1 bcn bert ∨ fly a1 bcn bcnt)

(¬at a1 bcnt ∧ at a1 bcnt+1)→
(fly a1 lon bcnt ∨ fly a1 ber bcnt ∨ fly a1 bcn bcnt)

(at a1 lont ∧ ¬at a1 lont+1)→
(fly a1 lon bcnt ∨ fly a1 lon bert ∨ fly a1 lon lont)

(¬at a1 lont ∧ at a1 lont+1)→
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(fly a1 bcn lont ∨ fly a1 ber lont ∨ fly a1 lon lont)

(at a1 bert ∧ ¬at a1 bert+1)→
(fly a1 ber bcnt ∨ fly a1 ber lont ∨ fly a1 ber bert)

(¬at a1 bert ∧ at a1 bert+1)→
(fly a1 bcn bert ∨ fly a1 lon bert ∨ fly a1 ber bert)

Finally, the restriction of one action per time step expressed with Con-
straints 2.5:

(fly a1 bcn bcnt ∨ fly a1 bcn lont ∨ fly a1 bcn bert∨
fly a1 lon bcnt ∨ fly a1 lon lont ∨ fly a1 lon bert∨
fly a1 ber bcnt ∨ fly a1 ber lont ∨ fly a1 ber bert)

¬(fly a1 bcn bcnt ∧ fly a1 bcn lont), ¬(fly a1 bcn bcnt ∧ fly a1 bcn bert)

¬(fly a1 bcn bcnt ∧ fly a1 lon bcnt), ¬(fly a1 bcn bcnt ∧ fly a1 lon lont)

¬(fly a1 bcn bcnt ∧ fly a1 lon bert), ¬(fly a1 bcn bcnt ∧ fly a1 ber bcnt)

¬(fly a1 bcn bcnt ∧ fly a1 ber lont), ¬(fly a1 bcn bcnt ∧ fly a1 ber bert)

¬(fly a1 bcn lont ∧ fly a1 bcn bert), ¬(fly a1 bcn lont ∧ fly a1 lon bcnt)

¬(fly a1 bcn lont ∧ fly a1 lon lont), ¬(fly a1 bcn lont ∧ fly a1 lon bert)

¬(fly a1 bcn lont ∧ fly a1 ber bcnt), ¬(fly a1 bcn lont ∧ fly a1 ber lont)

¬(fly a1 bcn lont ∧ fly a1 ber bert), ¬(fly a1 bcn bert ∧ fly a1 lon bcnt)

¬(fly a1 bcn bert ∧ fly a1 lon lont), ¬(fly a1 bcn bert ∧ fly a1 lon bert)

¬(fly a1 bcn bert ∧ fly a1 ber bcnt), ¬(fly a1 bcn bert ∧ fly a1 ber lont)

¬(fly a1 bcn bert ∧ fly a1 ber bert), ¬(fly a1 lon bcnt ∧ fly a1 lon lont)

¬(fly a1 lon bcnt ∧ fly a1 lon bert), ¬(fly a1 lon bcnt ∧ fly a1 ber bcnt)

¬(fly a1 lon bcnt ∧ fly a1 ber lont), ¬(fly a1 lon bcnt ∧ fly a1 ber bert)

¬(fly a1 lon lont ∧ fly a1 lon bert), ¬(fly a1 lon lont ∧ fly a1 ber bcnt)

¬(fly a1 lon lont ∧ fly a1 ber lont), ¬(fly a1 lon lont ∧ fly a1 ber bert)

¬(fly a1 lon bert ∧ fly a1 ber bcnt), ¬(fly a1 lon bert ∧ fly a1 ber lont)

¬(fly a1 lon bert ∧ fly a1 ber bert), ¬(fly a1 ber bcnt ∧ fly a1 ber lont)

¬(fly a1 ber bcnt ∧ fly a1 ber bert), ¬(fly a1 ber lont ∧ fly a1 ber bert)
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It is obvious now that the size of the encoding is a factor to consider,
and one cannot naively try to solve them if a solution is to be expected in
reasonable time. Chapter 4 gives a more thorough view on this approach.

2.6 Other Planning Frameworks

The real world is very complex, and thus there are situations where the
classical planning approach is not enough to be able to model some problems.

In some practical domains like robotics or control, the outcome of the
actions cannot be accurately modeled and thus the execution of a given plan
may not be fully predictable. In the planning community, this is modelled
using a variant of classical planning that incorporates non-deterministic ac-
tions. Two close models can be used: Fully Observable Non-Deterministic
planning (FOND) or Markov Decision Process (MDP). The former assumes
non-determinism on the potential effects of the actions, while the latter
breaks this assumption and assigns a probability distribution over the ac-
tion outcomes.

In some scenarios, actions can be non-deterministic and the world par-
tially observable, like in robot navigation problems. This kind of prob-
lems can be modelled as a Partially Observable Markov Decision Process
(POMDP) or a Contingent Planning problem. Problems like modelling
multi-player games, where each entity is independent, can choose to co-
ordinate and has its own goals, can be expressed as multi-agent planning
problems.

Until now, actions and effects are supposed to be instantaneous, but in
the real world actions occur over a time span and conditions may have to
hold during not only the beginning of the action but also during it. For
example, in a transportation problem, the traveling time between places is
not instantaneous, as it depends on distances. Also, trucks can only refuel in
gas stations that are actually open. These problems are normally expressed
as temporal planning problems.

These other interesting areas of automatic planning will not be further
explored, as the focus of this dissertation diverts from them. If the reader is
interested, in [GNT16] many of these interesting areas of automated plan-
ning are explored in detail.



Chapter 3

Satisfiability Modulo
Theories

In this section we introduce Satisfiability Modulo Theories (SMT), as the en-
codings presented in this thesis will translate planning problems to SMT. We
begin by explaining the Conflict-Driven Clause-Learning algorithm, which
is a complete algorithm that tends to be the base algorithm used in state-
of-the-art complete SAT and SMT solvers. First some concepts are intro-
duced to help the reader understand the algorithm. The reader can refer
to [BHvMW09] for a thorough explanation of various algorithms and its
historical evolution.

The Resolution Method

Resolution is one of the complete methods used to solve SAT. It is based
on the resolution rule, which provides a refutation complete inference sys-
tem [Rob65]. The resolution rule produces a new clause implied by two
clauses in CNF, containing complementary literals. Two literals are said to
be complements if one is the negation of the other (in the following ¬p is
taken to be the complement of p).

Example 7. Consider the two clauses p∨ q1∨· · ·∨ qn and ¬p∨r1∨· · ·∨rn.
As they have complementary literals, we can apply the resolution rule:

p ∨ q1 ∨ · · · ∨ qn ¬p ∨ r1 ∨ · · · ∨ rn
q1 ∨ · · · ∨ qn ∨ r1 ∨ · · · ∨ rn

and produce the clause q1 ∨ · · · ∨ qn ∨ r1 ∨ · · · ∨ rn.

23
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The produced clause is called a resolvent, and the dividing line stands for
logical entailment. Then, the resolvent can be used in further applications
of the resolution rule.

When coupled with a complete search algorithm [DP60], the resolution
rule yields a sound and complete algorithm for deciding the satisfiability of
a propositional formula in CNF.

Unit Propagation

Unit propagation is a simple but incomplete method to prove the satisfia-
bility of a formula. If a CNF formula φ contains a unit clause, then it can
be simplified by unit propagation. To apply unit propagation to a CNF,
Algorithm 3 can be used. This procedure receives a CNF and returns the
simplified CNF and a set of literals U , corresponding to unit clauses.

Algorithm 3 Unit-Propagation

Input: (φ : CNF)
Output: An equisatisfiable formula φ′ and a set of literals U

1: φ′ ← φ
2: U ← ∅
3: while φ′ contains no empty clause and has a unit clause l do
4: φ′ ← φ′|l
5: U ← U ∪ {l}
6: end while
7: return {φ′, U}

Given a clause φ and an atom a, φ|a stands for the result of removing
from φ all clauses containing literal a and removing literal ¬a in all remaining
clauses. The result of applying the unit propagation algorithm is that φ′ will
be equisatisfiable to φ and without unit clauses. U will contain the set of
literals that must be satisfied.

Example 8. Suppose we have the CNF formula φ = φ1 ∧ φ2 ∧ φ3, where
φ1 = p, φ2 = ¬p ∨ ¬q and φ3 = ¬q ∨ r. We apply unit propagation to φ by
invoking algorithm 3. After the first execution of the loop, we select φ1 as
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the unit clause and

φ1 is removed

φ2 = ¬q
φ3 = ¬q ∨ r
U = {p}

and after the second iteration, ¬q is selected,

φ1 was removed

φ2 is removed

φ3 is removed

U = {p,¬q}

Finally, as all the clauses have been removed, φ has been proven satisfiable.
A model can be found by satisfying the literals in U .

In Example 8, note that on the last step all clauses are removed, and as
the original formula is in CNF, the empty conjunction left evaluates to >.

Example 9. Suppose now that we also have a CNF formula φ = φ1∧φ2∧φ3,
where φ1 = q, φ2 = p and φ3 = ¬p ∨ ¬q. After the first execution of the
loop, the unit clause chosen is φ2 and we have

φ1 = q

φ2 is removed

φ3 is simplified to ¬q
U = {p}

On the second iteration, φ1 is selected, giving the formula φ = q∧¬q, clearly
a contradiction. If we apply another iteration

φ1 is removed

φ2 was removed

φ3 is simplified to �

U = {p, q}

Being � the empty clause, we demonstrate the unsatisfiability of φ.

In Example 9, the empty clause (�) is found in φ3, and therefore φ has
been proven unsatisfiable. Remember that the empty disjunction evaluates
to ⊥.
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The Davis-Putnam-Logemann Loveland Algorithm

Since the SAT problem is NP-complete, only algorithms with exponential
worst-case complexity are known for it. Many SAT solvers are based on
the Davis-Putnam-Logemann Loveland procedure, or DPLL [DLL62]. This
procedure can decide if a CNF formula is satisfiable and find a satisfying
interpretation if it is.

Algorithm 4 shows the Davis-Putnam-Logemann-Loveland (DPLL) pro-
cedure. It is an extension of the unit propagation method that can solve the
satisfiability problem for any propositional formula.

Algorithm 4 DPLL

Input: φ : CNF formula
Output: unsatisfiable or a model of φ

1: φ,U ′ ← Unit-Propagation(φ)
2: U ← U ∪ U ′
3: if � ∈ φ then
4: return unsatisfiable
5: end if
6: if φ = > then
7: return U
8: end if
9: l← a literal from φ

10: L ← DPLL(φ|l, U ∪ {l})
11: if L 6= unsatisfiable then
12: return L
13: else
14: L ← DPLL(φ|¬l, U ∪ {¬l})
15: if L 6= unsatisfiable then
16: return L
17: else
18: return unsatisfiable
19: end if
20: end if

The selection of the literal on line 9 can have a dramatic impact on the
running time of the algorithm. Also note that the value of the selected literal
is not assumed to be first true and then false, as literals can be positive or
negated atoms. The state where the algorithm makes a decision on the
polarity of an atom it is called a decision level.
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The algorithm is recursive, making an implicit backtracking step in
line 10. If the call returns unsatisfiable, then the parent caller continues
by calling line 14 with the inverted polarity of the atom. If both values lead
to a contradiction, then the algorithm backtracks to a previous decision
level, and continues trying other values. The process of moving from the
current decision level to a previous one only after trying both values is called
chronological backtracking. The problem with chronological backtracking is
that it does not take into account the information of the contradiction that
triggered the backtrack.

Non-Chronological Backtracking

When a backtrack occurs, it can happen that the real cause of the conflict
emerges from many levels before the current decision level. This leads the
solver to explore many irrelevant branches before finding the real cause of
the contradiction in a much higher level of decision. Non chronological back-
tracking addresses this problem by taking into account the set of variables
that are actually involved in the contradiction. This technique was origi-
nally proposed as a technique for solving constraint satisfaction problems
(CSPs) [SS77].

Non-chronological backtracking can be performed by first identifying the
conflict set : Every assignment that contributes to the derivation of the
empty clause. Then, when the empty clause is derived, instead of back-
tracking to the last level of decision, the algorithm backtracks to the last
variable of the conflict set, while erasing all decisions between. The reader
can refer to [BHvMW09] for further details.

Conflict-Driven Clause Learning

What can happen with non-chronological backtracking, is that the algorithm
backtracks past every variable in a conflict set. This can occur due to a
new decision triggering another conflict and then backtracking to a previous
decision level with respect to the variables of the first conflict set. This
new backtrack avoids the analysis of the first conflict and therefore the
same mistakes that lead to the first conflict can be repeated in the future.
To address this problem, a possible idea is to add clauses to the CNF to
prevent this. But, how can these clauses can be identified? Each time unit
resolution finds a conflict, there is a possibility to identify a clause implied
by the CNF that can help unit resolution to detect this contradiction earlier.
With this clause, unit resolution will be able to avoid the same mistake in



28 CHAPTER 3. SMT

the future much earlier.
For example, once a conflict set is identified, a conflict-driven clause can

be created by simply negating all the assignments in the set. For example,
if the conflict set is {x1 = >, x2 = ⊥, x3 = ⊥}, the conflict-driven clause
should be ¬x1 ∨ x2 ∨ x3. Once the conflict-driven clause is derived, it is
added to the CNF formula. This process of adding a conflict-driven clause
to the CNF is called clause learning [JS97, SS99, ZMMM01, BKS04].

Restarts

Another important technique employed by many modern SAT solvers are
restarts [GSC97]. When a SAT solver restarts, it forgets all the current as-
signments and starts the search again at the root of the search tree, while it
maintains other information, most notably the previously learned conflict-
driven clauses. Restarting is a way of dealing with the heavy-tailed distri-
bution of running time often found in combinatorial search [GSC97]. In-
tuitively, restarting prevents the solver from being stuck in an area of the
search space that contains no solution. In practice, solvers normally restart
after a given number of conflicts have been found, but also many other types
of restart policies have been studied, such as arithmetic o geometric series
over the number of conflicts.

The Conflict-Driven Clause-Learning Algorithm

One of the main reasons of the widespread usage of SAT solvers is the ef-
fectiveness of Conflict-Driven Clause-Learning (CDCL) SAT solvers. CDCL
solvers are classically based on DPLL algorithms, incorporating many tech-
niques, from which the most important ones are the non-chronological back-
tracking, the learning of conflict clauses and the policy-based restarts. Al-
gorithm 5 shows the structure of the typical CDCL algorithm. It starts by
simplifying the input formula by unit propagation. Then, while it has not
assigned all variables a polarity, it keeps deciding on a variable, assigning it
a polarity, and doing unit propagation again. If unit propagation finds the
empty clause, it learns from the conflict: it adds new clauses to the CNF
to prune the search space, and backtracks to the decision level it needs to
undo the conflict. The newly introduced functions are the following:

• PickBranchingVariable selects a variable to assign, and its respec-
tive polarity. It returns an atom that reflects the decided polarity.
The variable selection heuristic is considered decisive for finding as
quick as possible a solution. A bad heuristic can lead to explore the
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Algorithm 5 A typical CDCL algorithm

Input: φ : CNF clause
Output: unsatisfiable or a model of φ

1: φ,U ′ ← Unit-Propagation(φ)
2: U ← U ∪ U ′
3: if � ∈ φ then
4: return unsatisfiable
5: end if
6: dl← 0
7: while not AllVariablesAssigned(φ,U) do
8: x← PickBranchingVariable(φ,U)
9: dl← dl + 1

10: φ,U ′ ← UnitPropagation(φ)
11: U ← U ∪ U ′ ∪ {x}
12: if � ∈ φ then
13: β ← ConflictAnalysisAndLearning(φ,U)
14: if β < 0 then
15: return unstatisfiable
16: else
17: NonChronologicalBacktrack(φ,U ,β)
18: dl← β
19: end if
20: end if
21: end while
22: return U

whole search space, whereas a good heuristic allows us to cut several
regions. There are a lot of heuristic methods for selecting the variable
to assign, but the most used are the ones based in the Variable State
Independent Decaying Sum (VSIDS) heuristic [MMZ+01].

• ConflictAnalysisAndLearning consists in analyzing the most re-
cent conflict, and learning a new clause from the conflict, as explained
in Section 3. It returns the decision level from where the conflict orig-
inates.

• NonChronologicalBacktrack has three parameters: the formula φ,
the trail of decisions U , and the decision level β. The function back-
tracks to the decision level computed by ConflictAnalysisAndLearning,
as explained in section 3.
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• AllVariablesAssigned tests if all variables have been assigned, in
which case the algorithm terminates indicating a satisfiable result.

The Two-Watched Literals Scheme

In [GKSS08] many of the more recent techniques of modern SAT solvers are
explained. Especially noticeable is the two-watched literals scheme, intro-
duced initially in the Chaff SAT solver [MMZ+01]. Now it is a standard
method used by most SAT solvers for efficient constraint propagation. The
key idea behind the watched literals scheme, as the name suggests, is to
maintain and watch two special literals, for each not yet satisfied clause,
which are not false under the current partial assignment (could still be ei-
ther true or unassigned). Recall that empty clauses halt the DPLL process
and unit clauses are immediately satisfied. Hence, one can always find such
watched literals in all active clauses. It works as follows. Suppose a literal
l is set to false. For each clause that had l as a watched literal, we examine
it and find another candidate to watch (that is already true or unassigned),
as we are not longer interested in the literal l, because it is already false. If
the clause has no other candidate to watch, the remaining literal can still
be true or unassigned. If its already true, nothing happens, as the clause is
already satisfied. If it is unassigned, the clause is implied, as it has now be-
come a unit clause. With this setup, the solver can test clause satisfiability
by checking if at least one of its two watched literals is true. An interesting
property is that when the solver unassigns l because of a backtracking, it
does not have to do anything.

The two-watched literals scheme has played an important role in the
efficiency of clause-learning SAT solvers, as it helps to cope with the length of
the constantly learned clauses added to the database, allowing propagation
to become very efficient.

3.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is a decision problem for logical formu-
las where some predicates have predefined interpretations from background
theories.

For example, if we consider the theory of linear integer arithmetic, a
SMT problem could be the following formula: p ∨ 2x+ y ≤ 3z ∧ q.

SMT is interesting, not only for his many applications in model check-
ing [CFM12], static analysis [JHFK12], scheduling [ABP+11] or general CSP



3.1. SATISFIABILITY MODULO THEORIES 31

solving [BSV10, MBL09], but because planning problems that integrate non-
propositional reasoning can commonly be directly reformulated to SMT. We
now introduce the main definitions and explain the solving approach.

Definition 3.1.1. A theory is a set of first-order formulas closed under
logical consequence. A theory T is said to be decidable if there is an effective
method for determining whether arbitrary formulas are included in T .

Definition 3.1.2. A formula φ is T -satisfiable or T -consistent if T ∪ {φ}
is satisfiable in the first-order sense. Otherwise, it is called T -unsatisfiable
or T -inconsistent.

Definition 3.1.3. A (partial) truth assignment M of a propositional for-
mula can be seen either as a set or as a conjunction of literals, and hence
as a formula. If M is a T -consistent partial truth assignment and φ is a
formula such that M |= φ, i.e., M is a (propositional) model of φ, then we
say that M is a T -model of φ.

Definition 3.1.4. The SMT problem for a theory T is the problem of de-
termining, given a formula φ, whether φ is T -satisfiable.

There are two types of procedures for solving SMT, the so-called eager
and the lazy approaches. In the eager approach, the input formula is fully
translated into a propositional CNF formula, preserving satisfiability, which
is then checked whether is satisfiable or not by a SAT solver. Sophisticated
ad-hoc translations have been developed for several theories, but still on
many practical problems either the translation process or the SAT solver
run out of time or memory [dMR04]. In this thesis we focus on the lazy
approach, since it has been shown to be the most efficient in many cases.

3.1.1 The Lazy SMT Approach

Currently most successful SMT solvers are based on a lazy approach. It
consists of an efficient SAT solver integrated with a T -solver, which is a
decision procedure for the given theory T . In this approach, while the SAT
solver is in charge of the Boolean component of reasoning, the T -solver
deals with sets of literals that belong to T . It is named lazy because the
theory information is only used when checking the consistency of the truth
assignment against the theory T .

The basic idea is to let the T -solver analyze the partial truth assignment
that the SAT solver is building, and warn about conflicts with the theory T
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(T -inconsistency). This idea combines the efficiency of the SAT solver and
special-purpose algorithms inside the T -solver for non-Boolean reasoning.

Algorithm 6 shows an enumeration-based T -satisfiability procedure sim-
plified (from [BCF+06]), where the T -consistency is only checked for total
Boolean assignments. The reader is referred to [Seb07] for a survey on the
lazy SMT approach. The algorithm enumerates the Boolean models of the

Algorithm 6 Bool+T Algorithm

Input: φ : SMT formula
Output: Satisfiability of φ

1: Ap ← T2B(Atoms(φ));
2: φp ← T2B(φ);
3: while Bool -satisfiable(φp) do
4: µp ← pick total assignment(Ap, φp);
5: µ← B2T (µp);
6: (ρ, π)← T -satisfiable(µ);
7: if ρ = sat then
8: return sat;
9: else

10: φp ← φp ∧ ¬T2B(π);
11: end if ;
12: end while
13: return unsat;

propositional abstraction of the SMT formula φ and checks for their satisfi-
ability in the theory T .

• The function Atoms takes a quantifier-free SMT formula φ and re-
turns the set of atoms which occur in φ, where an atom is either a
propositional variable or an expression of theory T .

• The function T2B maps propositional variables to themselves, and
ground atoms into fresh propositional variables, and is homomorphic
with respect to Boolean operators and set inclusion.

• φp is initialized to be the propositional abstraction of φ using T2B.

• The function B2T is the inverse of T2B.

• µp denotes a propositional assignment as a set (conjunction) of propo-
sitional literals.
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• The function pick total assignment returns a total assignment to the
propositional variables in φp. In particular, it assigns a truth value to
all variables in Ap.

• The function T -satisfiable checks if a set of conjuncts µ is T -satisfiable,
i.e., if there is a model for T ∪µ, returning (sat,∅) in the positive case
and (unsat,π) otherwise, being π ⊆ µ a T -unsatisfiable set (the theory
conflict set). Note that the negation of the propositional abstraction
of π is added to φp in case of unsat (learning).

Algorithm 6 is illustrated with Example 10.

Example 10. Consider the following SMT formula, expressed as a set of
clauses, where T is assumed to be the theory of linear integer arithmetic:

φ = {¬(x > 0) ∨ a ∨ b,
¬a ∨ ¬b,
¬(x+ 1 < 0) ∨ a,
¬b ∨ ¬(y = 1)}

Then {x > 0, a, b, x+ 1 < 0, y = 1} is its set of atoms and

Ap = {p(x>0), a, b, p(x+1<0), p(y=1)}

is the Booleanization of this set, where p(x>0), p(x+1<0) and p(y=1) are three
fresh propositional variables corresponding to the arithmetic atoms x > 0, x+
1 < 0 and y = 1, respectively. The propositional abstraction of φ is then the
following Boolean formula:

φp = {¬p(x>0) ∨ a ∨ b,
¬a ∨ ¬b,
¬p(x+1<0) ∨ a,
¬b ∨ ¬p(y=1)}

Note that φp is satisfiable. Suppose that pick total assignment(Ap, φp) re-
turns us the following Boolean model for φp:

µp = {p(x>0), a,¬b, p(x+1<0),¬p(y=1)}

Now we need to check the T -satisfiability of B2T (µp). Since we are interested
in checking the consistency of the current Boolean assignment with theory T ,
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here we only need to take into account the literals corresponding to the theory,
i.e., we have to check the T -satisfiability of {x > 0, x + 1 < 0,¬(y = 1)}.
This is obviously T -unsatisfiable, so we get a subset of T -inconsistent literals
from the T -solver, e.g., π = {x > 0, x + 1 < 0}, and we extend φp with the
learned clause, namely ¬p(x>0) ∨ ¬p(x+1<0). Then the search starts again.

In practice, the enumeration of Boolean models is carried out by means
of efficient implementations of the CDCL algorithm [ZM02], where the par-
tial assignments µp are incrementally built. These systems benefit of the
spectacular progress in performance from SAT solvers in the last decade,
achieved thanks to better implementation techniques and conceptual en-
hancements.

In the approach presented so far, the T -solver provides information only
after a T -inconsistent partial assignment has been generated. In this sense,
the T -solver is used only to validate the search a posteriori, not to guide
it a priori. In order to overcome this limitation, the T -solver could also be
used to detect literals l occurring in φ such that M |=T l, where M is a
partial assignment of φ. This is called theory propagation. The propagation
capability is a very important aspect of theory solvers, since getting more
general explanations (conflict sets) from the theory solver is essential in
order to keep the learned lemmas as short as possible and will allow for
more pruning in general.

Finally, as it happens in SAT solving, most SMT solvers do restart pe-
riodically in order to try to explore easier successful branches.

3.1.2 Theories and Logics

The Satisfiability Modulo Theories Library (SMT-LIB) [BST10] has the goal
of establishing a common standard for the specification of benchmarks and
of background theories, as well as to establish a library of benchmarks for
SMT. The Satisfiability Modulo Theories Competition (SMT-COMP) is an
associated yearly competition for SMT solvers. Among the logics considered
in the SMT-LIB there are:

• The theory of Equality and Uninterpreted Functions (QF EUF, or sim-
ply QF UF) is the quantifier-free fragment of first order logic with
equality and no restrictions on the signature (hence the name UF for
Uninterpreted Functions). It is also known as the empty theory, as far
as we are concerned with first order logic with equality (i.e., with equal-
ity built-in). It is a theory that is often integrated with other theories,
like linear integer or real arithmetic. Uninterpreted functions have no
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other property than its name and arity, and are only subject to the fol-
lowing axiom: x1 = x′1∧· · ·∧xn = x′n → f(x1, . . . , xn) = f(x′1, . . . , x

′
n).

It is possible (and sometimes preferable) to eliminate all uninterpreted
function symbols by means of Ackermann’s reduction [Ack54]. In Ack-
ermann’s reduction, each application f(a) is replaced by a variable fa,
and for each pair of applications f(a), f(b) the formula a = b →
fa = fb is added, i.e., the single theory axiom x = y → f(x) = f(y)
of the theory becomes instantiated as necessary. Some modern SMT
solvers determine when doing this reduction is advantageous and do
it dynamically by means of a technique called dynamic Ackermaniza-
tion [dMB08a].

• Linear Arithmetic over the integers (QF LIA) or the reals (QF LRA).
Closed quantifier-free formulas with Boolean combinations of inequa-
tions between linear polynomials over integer (real) variables, e.g.,
(3x+ 4y ≥ 7)→ (z = 3) where x, y and z are integer variables. These
inequalities can be placed in a normal form c0+

∑n
i=1 ci∗xi ≤ 0, where

each ci is a rational constant and the variables xi are integer (real)
variables. The most common approaches to solve linear arithmetic
(real and integer variables) are based on the Simplex with Gomory
cuts method. A description of how a QF LIA and a QF LRA solver
is integrated into SMT can be found in [DdM06b].

• Difference Logic over the integers (QF IDL) or the reals (QF RDL).
It is a very efficiently solvable fragment of linear arithmetic in which
arithmetic atoms are restricted to have the form x−y ./ k, where x and
y are numeric (integer or real) variables, k is a numeric (integer or real)
constant and ./ ∈ {=, <,>,≤,≥}. In the usual solving method, first of
all, the atoms are rewritten in terms of ≤. Then, the resulting atoms
can be represented as a weighted directed graph with variables as
vertices and edges from x to y labeled with k for every atom x−y ≤ k.

A formula is unsatisfiable iff there exists a path x1
k1−→ x2 . . . xn

kn−→ x1
such that k1 + k2 + · · · + kn < 0. A description of a QF RDL solver
can be found in [NO05].

• Non-linear Arithmetic over the integers (QF NIA) or over the reals
(QF NRA). Quantifier free integer or real arithmetic with no linearity
restrictions, i.e., with clauses like (3xy > 2+z2)∨(3xy = 9) where x, y
and z are variables. The fragment this theory handles is not decidable.
A possible technique to check the satisfiability of these formulas is to
transform the problem into a linear approximation [BLO+12].
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• Arrays (QF AX). Closed quantifier-free formulas over the theory of
arrays with extensionality. The signature of this theory consists of two
interpreted function symbols: read, used to retrieve the element stored
at a certain index of the array, and write, used to modify an array by
updating the element stored at a certain index. A possible approach
to decide the satisfiability of ground literals in this theory is to transfer
the atoms to the Equality and Uninterpreted Functions theory. Other
approaches are based on a careful analysis of the problem that allows
to infer, for each array, which are the relevant indices and which values
are stored at these indices of the array [SBDL01, BNO+08].

• Bit vectors (QF BV). Closed quantifier-free formulas over the theory
of fixed-size bit vectors. Bit vectors are normally used for representing
memory contents. Common operations are: extraction of a sequence of
bits, concatenation, arithmetic operations (+, −, ∗, . . . ), bit-wise op-
erations (and, or, not, . . . ), etc. State-of-the-art methods for checking
the satisfiability of a given bit vector formula are based on reduction
to SAT (bit-blasting). Each bit vector is encoded into a set of Boolean
variables and the operators are encoded into logical circuits [BKO+07].

• Other theories. In the literature we can find some other theories of
interest not considered in the SMT-LIB. For example, the Alldiffer-
ent theory [BM10], the theory of costs [CFG+10] or the theory of
sets [BRBT16].

The expressivity of each of these logics has its corresponding computa-
tional price. For example, checking consistency of a set of IDL constraints
has polynomial time complexity while checking consistency of a set of LIA
constraints is NP-complete.

Combination of Theories

Many SMT problems contain atoms from multiple theories. When dealing
with two or more theories, a standard approach is to handle the integration
of the different theories by performing some sort of search on the equalities
between their shared (or interface) variables. First of all, formulas are puri-
fied by replacing terms with fresh variables, so that each literal only contains
symbols belonging to one theory. For example,

a(1) = x+ 2
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is translated into

a(v1) = v2

v1 = 1

v2 = x+ 2

where the first literal belongs to UF, and the last two to LIA. Variables
v1 and v2 are then called interface variables, as they appear in literals be-
longing to different theories. An interface equality is an equality between
two interface variables. All theory combination schemata, e.g., Nelson-
Oppen [NO79], Shostak [Sho84], or Delayed Theory Combination [BBC+06],
rely to some point on checking equality between interface variables, in order
to ensure mutual consistency between theories. This may imply to assign
a truth value to all the interface equalities. Since the number of interface
equalities is given by |V| · (|V| − 1)/2, where |V| is the number of interface
variables, the search space may be enlarged in a quadratic factor in the
number of interface variables.

In the case of combining UF with another theory T , an alternative ap-
proach is to eliminate the uninterpreted function symbols by means of Ack-
ermann’s reduction [Ack54], and then solving the resulting SMT problem
only with theory T . However, this has the same disadvantage as theory
combination since the number of additional literals is quadratic in the size
of the input and, in fact, as shown in [BCF+06], there is no clear winner
between DTC and Ackermannization.





Chapter 4

Planning as Propositional
Satisfiability

The problem of planning was born as a deduction problem, but around the
year 1969 the deduction methods were not considered to be efficient enough.
Therefore, the problem of planning started to be seen as a search problem.
This was the only approach to the problem of planning until 1992, where a
novel approach was presented: encoding it as a satisfiability problem [KS92].
The advances of SAT technology permitted to recover the interest in logic-
based methods. Kautz and Selman developed a formal model of planning
based on satisfiability, rather than deduction (at that time, the best-known
logical formalization of planning was the situation calculus [McC69]). They
devised how to create a set of axioms with the property that any model of the
axioms corresponded to a valid plan. The ad-hoc encoding they presented
was for the well-known blocksworld problem, where a set of wooden blocks
in a table has to be used to build a vertical stack of blocks. Their encoding
was a set of simple formulas, where they basically expressed:

• Rule out the possibility that an action executes despite the fact that
its preconditions are false.

• Only one action occurs at a time.

• An action occurs every time.

With this, they could devise linear plans for any blocksworld problem. Then,
we can describe the original SatPlan “system” [KS92] as a set of rules for en-
coding STRIPS-style linear planning problems (as explained in Section 2.2)
to SAT. A similar encoding has been roughly explained in Section 2.5.
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An efficient planning system emerged in 1995, by Blum and Furst [BF95,
BF97], named GraphPlan. It translated STRIPS-style planning problems
in a graph structure called a planning graph. It is an ordered graph, where
alternating layers of nodes correspond to ground facts and fully instantiated
actions, both indexed by time step. Arcs lead from each fact to the actions
that contain it as a precondition in the next layer, and similarly from each
action to its effects in the next layer. Then, a systematic search is made in
this graph for a solution. A solution is a subgraph that contains the initial
states and final states and no two actions in the same layer that conflict (i.e.
one action deletes a precondition or an effect of the other).

In fact, the planning graph could be seen as a propositional repre-
sentation of the problem. It was after the formalization of parallelism in
plans [Kno94] that a key technical advance for planning as satisfiability was
achieved. In 1996, Kautz et al. [KMS96] incorporated the notion of parallel
plans in their planning as satisfiability approach. The main motivation for
using parallel plans was that it could compactly represent all intermediate
states of a sequential plan. The reduced number of explicitly represented
states lead to smaller formulas and sometimes to a more easily solvable prob-
lem. Their approach also had to restrict what actions could appear at the
same time step, using a notion of non-interference. This condition guaran-
teed that any total ordering on the actions executed at the same time step
is a valid serial plan and it leads to the same state in all cases.

Shortly afterwards, the MEDIC [EMW97] planner appeared, which was
the first complete implementation of SatPlan that took a STRIPS-style input
and translated it into SAT. In the next year, the BlackBox [KS98, KS99]
planner appeared, which performed a set of local computations called mutex
propagation to infer mutexes (i.e. a negative binary clause). These mutexes
were used to control interferences between actions. This process was based
on an idea introduced by GraphPlan [BF95].

Solvers like MEDIC also implemented a lifted representation of actions,
with the objective to lessen the size blowup of the formulas of big problems.
But in that case the encoding was limited to linear plans, rendering the idea
of parallel plans obsolete.

The biggest drawbacks to all the BlackBox successors is the enormously
sized conjunctive normal form (CNF) formulas derived from encoding the
plan graph. The encodings of some planning problems could become in-
tractable due to their size blowup. This blowup is mitigated by some solvers
by performing reachability and neededness analysis, but still those solvers are
unable to tackle problems that planners with other approaches like forward-
search guided by good heuristics routinely solved.
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A new implementation of the idea, SatPlan04, entered in the 2004 Inter-
national Planning Competition (IPC-4), on the optimal propositional track.
Satplan04 worked similarly to Blackbox, by using a planning graph and
translating the constraints implied by it to a set of clauses. It included
four different encodings and a postprocessing step to remove redundant ac-
tions, but the main difference between them was the SAT solver used. In
fact, it came up first in the IPC-4, thanks to two factors: the improvement
in SAT solvers at the time [MMZ+01, Rya04], and that the new problems
were intrinsically hard. While general STRIPS-like planning is PSPACE-
complete [Byl91, ENS92], some domains can be solved optimally with a
polynomial number of backtracks [Hof02]. SatPlan06 [KSH06] improved
over SatPlan04 and also won (tied with MaxPlan [CXZ07]) the IPC-5 com-
petition. The 2004 version of SatPlan did not perform mutex propagation
during the step where the plan graph was generated because the resulting
formulas were so large due to mutex clauses that they were unsolvable due
to memory constraints. For SatPlan06, mutex propagation was enabled,
but only generated clauses for inferred mutexes for fluents, not for actions.
This strategy allowed SatPlan06 to solve harder instances while avoiding the
worst memory problems.

Nabeshima et al. proposed searching for plans in parallel [NII02], by
having n SAT solvers simultaneously, by trying to solve the planning prob-
lem for horizons 1 . . . n. If a formula is found satisfiable then a plan is found,
and if its not satisfiable, start a new solver with horizon n+ 1. Later, Rin-
tanen et al. improved the idea in [RHN06]. The proposed algorithm tries
to solve the planning problem with horizons lengths 1, 2, 3 . . . in parallel,
assigning to the SAT solver with horizon length t CPU time g times that of
horizon length t − 1, for some constant g < 1. That is, the rate at which
SAT problems are solved form a decreasing geometric sequence. Some finite
bound is used for the number of SAT solvers run at any given moment (as
determined by available memory). Note that a prerequisite for the use of the
efficient parallel search strategies is the compactness of the SAT encodings,
as many instances will have to fit in memory.

Another approach that followed was the reduction on the number of
queries to the SAT solver by relaxing constraints on action parallelism. This
was proposed also by Rintanen et al. [RHN06], where they formalized a
generalization of the notion of parallelism of [KMS96], calling it the ∀-step
semantics. The ∀-step semantics considers that a set of actions can be
executed simultaneously (i.e. in any order) if they are pairwise independent.
Definition 4.0.1 expresses this idea more formally.

Rintanen et al. also proposed a linear-size encoding for the mutexes
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derived from the parallelism semantics.

Definition 4.0.1 (∀-Step Plan). Given a set of actions A and an initial
state I, for a state space S, a ∀-step plan for A and I is a sequence P =
〈A0, . . . , Al−1〉 of sets of actions for some l ≥ 0, such that there is a sequence
of states s0, . . . , sl (the execution of P ) such that

1. s0 = I, and

2. for all i ∈ {0, . . . , l − 1} and every total ordering a1 < · · · < an of Ai,
appa1;...;an(si) is defined and equals si+1.

Where appa1;...;an(si) is appan(· · · appa2(appa1(s)) · · · ), and appa(s) is the
unique state resulting from applying action a to state s, assuming a is ap-
plicable in s.

Rintanen states in [Rin18] that it is sometimes believed that ∀-step plans
represent “real” parallelism, and this is used as a justification when focus-
ing on “optimal” (minimal horizon length) ∀-step plans. Minimal horizon
length ∀-step plans do not in general have anything to do with any practi-
cally interesting optimality criterion (i.e. minimum cost or minimum real
makespan). In particular, the definition of ∀-step plans does not guarantee
that two actions that take place in the same step can actually be taken in
parallel, or that two actions that interfere could not in reality be taken in
parallel. Further, in those cases in which the problem modeling has guar-
anteed that the parallelism reflects reality, action durations also have to be
taken into account. Durations of actions in the real world can vary so much
between them that the minimal number of steps does not have much to do
with minimal real makespan. All the actions in the real world would need
to have exactly the same duration for this to really represent parallelism (a
rare condition). So, we remark that the main purpose of the parallelism in
planning as satisfiability is to reduce the size of the search space.

Rintanen et al. [RHN06] also introduced the ∃-step semantics, which
exploits the concept of post-serializability, originally from Dimopoulos et
al. [DNK97]. A linear encoding of the mutexes in the size of actions effects
was also presented, based on a total ordering of the actions and requiring
that no action affects a later action.

Definition 4.0.2 (∃-Step Plan). Given a set of actions A and an initial
state I, for a state space S, a ∃-step plan for A and I is a sequence P =
〈A0, . . . , Al−1〉 of sets of actions together with a sequence of states s0, . . . , sl
(the execution of P ), for some l ≥ 0, such that
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1. s0 = I, and

2. for all i ∈ {0, . . . , l − 1} there is a total ordering a1 < · · · < an of Ai,
such that appa1;...;an(si) is defined and equals si+1.

The idea of ∃-step plans is to allow possibly conflicting actions to be
executed at the same time step if it can be guaranteed a priori that there
exists a valid linearization (that is, there exists at least one valid order).
Instead of requiring that each group Ai of actions can be ordered to any
total order, as in ∀-step semantics, in ∃-step semantics it is sufficient that
exists one order that maps state si to si+1. Note that under this semantics
the successor si+1 of si is not uniquely determined solely by Ai, as the
successor depends on the implicit ordering of Ai and, hence, the definition
has to make the execution s0, . . . , sl explicit.

Rintanen et al. proposed shortly afterwards the relaxed ∃-step seman-
tics [WR07]. This semantics is the same as the ∃-step semantics, but now an
action can be executed in a time step even if it is not applicable at the start
of the time step. Remember that the ∃-step semantics has to do the execu-
tion explicit. In this case, it is guaranteed that the action will be applicable
after the execution of the previous action in the same time step.

Robinson et al. [RGPS09, RGPS08] proposed a factored encoding of
∀-step plans and demonstrated substantial speed-ups over some of the en-
codings from the SatPlan06 solvers. This factored representation reduces
the size of the encoding by representing part of the grounding process as a
propositional formula. For example, an action move(x,y,z) that moves ob-
ject x from location y to a location z can be represented by the parameters
x ∈ X, y ∈ Y and z ∈ Y where X is the set of objects and Y the set of
locations [KMS96].

In the SAT solver community, VSIDS [MMZ+01] is the de-facto heuristic
for deciding about what variable will be chosen to evaluate next. With the
current encodings of planning to satisfiability, Rintanen [Rin12a, Rin12b]
modified a SAT solver to implement new heuristics to replace VSIDS for
planning problems. He also proposed a new way to represent clauses inter-
nally into the solver, exploiting the structure of planning problems. With
these improvements, planning as SAT became state of the art again.

In the relaxed relaxed ∃-step (R2∃-step) semantics presented by Balyo et
al. [Bal13] the relaxed ∃-step semantics is further relaxed. The application of
action effects is relaxed similarly to precondition requirements in the relaxed
∃-step semantics. Therefore the only requirement in the R2∃-step semantics
is that parallel actions can be ordered to form a valid sequential plan.
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Definition 4.0.3 (R2∃-Step Plan). Given a set of actions A and an initial
state I, for a state space S, a relaxed relaxed ∃-step (R2∃-step) plan for A
and I is a sequence P = 〈A0, . . . , Al−1〉 of sets of actions together with a
sequence of states s0, . . . , sl (the execution of P ), for some l ≥ 0, such that
s0 = I, and for all i ∈ {0, . . . , l − 1} there is a total ordering a1 < · · · < an
of Ai, such that appa1;...;aj−1(si) |= Preaj for all aj = 〈Preaj , Effaj 〉 ∈ Ai,
and appa1;...;an(si) = si+1.

Balyo et al. [BB15] tried to devise a rule to select the best encoding given
a problem, by comparing the performance of various of the best performant
recent encodings on the 2011 optimal track competition problems. The
encodings compared were the family of Rintanen’s encodings [RHN06], the
reinforced encoding [BBT15] and the R2∃-step encoding [Bal13].

In fact, we remark that the definitions of ∃-step plan and R2∃-step plan
are equivalent, because appa1;...;an(si) is defined iff appa1;...;aj−1(si) |= Preaj
for all aj = 〈Preaj ,Eff aj 〉 ∈ Ai. What really happens is that Rintanen uses
a notion of happening that requires that the preconditions of actions that
can be executed in parallel are able to be satisfied at the same time. But
the definition that he gives of the ∃-step plans does not include this and
therefore is sufficiently general to cover the R2∃-step plans.

4.1 Numeric Planning

In real-world logistic problems, reasoning about numeric variables is essen-
tial, as most problems include various magnitudes that cannot be avoided,
like weights, sizes, costs, . . . Taking into account these magnitudes brings
the abstract problem representation closer to the real world problem.

More formally, a numeric planning problem can be defined as a tuple
〈V, P,A, I,G〉 where V is a set of numeric variables, P is a set of propositions
(or Boolean variables), A is a set of actions, I is the initial state and G is
a formula over V ∪ P that any goal state must satisfy. A state is a total
assignment to the variables. Actions are formalized as pairs 〈p, e〉, where
p are the preconditions and e the effects. p is a set of Boolean expressions
over V ∪P , while e is a set of assignments. An assignment is a pair 〈v, exp〉,
where v is a variable and exp is an expression of the corresponding type. For
example, increasing a variable v by one is represented by the pair 〈v, v+ 1〉,
indicating that v + 1 is the value that v will hold in the next state.

An action a = 〈p, e〉 is executable in a given state s if s |= p and the
effects of a in state s are consistent, i.e., we do not have exp 6= exp′ for any
variable v ∈ V ∪ P and assignments 〈v, exp〉 and 〈v, exp′〉 in the effects.
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Example 11. We retake Example 1, where an airline has to transport some
passengers to their destinations. The objects of the problem where:

Cities = {Barcelona, London,Berlin}
Aircrafts = {Aircraft1}

Passengers = {Person1, P erson2}

The predicates were at and in, that represented where a plane or person
were, and if a passenger was inside a plane respectively. Now we add a state
variable, named fuel, that represents how much fuel does an aircraft have.
Each flight will decrease fuel by one, and we also have an action that refuels
a plane. The initial state can now be represented as:

s0 = {at(Aircraft1) = Barcelona, at(Person1) = c1,

at(Person2) = Berlin, in(Person1) = nil, in(Person2) = nil,

fuel(Aircraft1) = 10}

The fly and refuel action would be:

α1 = (fly(plane, from, to),

{at(plane) = from, fuel(plane) > 0},
{at(plane) = to, (fuel(plane), fuel(plane)− 1)})

α2 = (refuel(plane), {}, {(fuel(plane), 10)})

4.2 Numeric Planning as Satisfiability

The area of planning as satisfiability has seen few works that try to integrate
numeric reasoning in the planning problem. The first to obtain notable
results was LPSAT [WW99] by combining a SAT solver with a Simplex
solver. The interesting part of LPSAT is the use of conflict sets for guiding
the solvers, together with the learning and backjumping methods from the
SAT solver. It can be said in some sense that this article hinted some of
the ideas that gave birth to SMT. In parallel, Kautz and Walser presented
the ILP-PLAN framework [KW99b] to solve planning problems presented as
integer lineal problems, but few works followed [WW01, SD05] in the area.
Some efforts that used traditional forward-search heuristic planners with a
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module to reason about magnitudes [Hof03, GSS08] appeared, but the area
did not grow beyond.

Most of the works that dealt with numeric systems, shifted their interest
on the planning and control of hybrid systems [LEKN12, DIMM10],. . . It
wasn’t until in 2007, after SMT started to gain some traction [NOT06], that
the NumReach [HGSK07] planner appeared. Numreach translated classical
planning with resources problems to SMT. It also used a planning as SAT
approach, where it discretized the possible states of numerical variables.
Thanks to the expressiveness of SMT, the numeric planning problem could
be naturally translated. It also showed that at the time, the translation to
SMT was not competitive. Planning as SMT found some traction with tem-
poral planning [Rin15, RG15]. Although reductions of temporal or hybrid
systems to SAT or SMT have been known since at least 2005 [SD05], SMT
has not been normally viewed as a competitive approach.

Other approaches, related to SMT to some amount as well, have been
developed. In [BM12], a set of encoding rules is defined for spatio-temporal
planning, taking SMT as the target formalism. On the other hand, a mod-
ular framework named PMT [GLFB12], inspired in the architecture of lazy
SMT, is developed for planning with resources. PMT can be seen as an
abstraction of numeric planning. In fact, PMT can be seen as classical
planning modulo any theory that could be needed for solving, like integer
arithmetic or set theory.

Lately, some approaches to planning as SMT have been developed that
try to exploit the expressiveness of SMT, like Springroll [SRHT16], SMT-
Plan [CFLM16] or Rantanplan [BEV15, BEV16b]. Springroll uses the
planning as SMT approach, with a ∀-step semantics. The planner focuses
at producing more succinct encodings by “rolling up” an unbounded yet
finite number of instances of an action into a single plan step. In problems
where “foldable” actions occur, the planner is able to reduce the number of
time steps importantly. SMTPlan proposes an approach to PDDL+ [FL02]
planning through SMT, with an encoding that captures all the features of
the PDDL+ language. Its encoding focuses on domains with nonlinear and
continuous change. Rantanplan is the planner developed during this the-
sis, also focused on the planning as SMT approach. As far as we know, its
the first planner to support the ∀-step, ∃-step and R2∃-step semantics for
numerical planning problems, and it focuses its efforts on producing small
encodings by assigning as much actions as possible in the least number of
time steps. This reduction in formula sizes helps by reducing the search
space and therefore helping in solving the problem. Its approach will be
explained in detail in the following sections.
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Finally, regarding the heuristic approach, the most influential planners
that can handle numeric planning appeared in the third and fourth edition
of the International Planning Competition. Those are SGPlan, Metric-FF
and LPG-td. The SGPlan [CWH06] planner bootstraps heuristic search
planners by applying Lagrange optimization to combine the solution of the
planning subproblems. To split the problem, an ordering of the planning
goals is derived. The incremental local search strategy that is applied for
Lagrange optimization on top of the individual planners relies on the theory
of extended saddle points for mixed integer linear programming. Metric-
FF [Hof03] is based on the FF system by the same author. It uses forward
state-space search using relaxed plans to give heuristic guidance in its choice
between possible steps through the space. Metric-FF is an extension that in-
cludes delete-relaxation heuristics for numeric and Boolean theories. Other
authors refined or improved the Metric-FF heuristics [AN17, CFLS08].

LPG-td [GSS05] is a planner based on a local-search algorithm, applied
to plan graphs [BF95]. The approach has been generalised to support nu-
meric and temporal problems. The use of local search allows the planner to
be configured to trade-off time and plan quality.





Chapter 5

Encodings for Planning as
SMT

In this chapter, a formal definition of the framework of planning modulo
theories is given, together with two different encodings. The first encoding is
a planning as SMT encoding, generalizing Rintanen’s encodings of planning
as SAT, and supporting ∀ and ∃-step semantics. Experimental results are
presented on this encoding, together with a explanation of how interference
between actions is determined. Finally, a lifted encoding is also explained.
It takes advantage of the theory of uninterpreted functions that is normally
embedded in numeric theories in many SMT solvers.

5.1 Planning Modulo Theories

Reasoning about resources, distances and other magnitudes is necessary to
be able to solve many real world planning problems. Planning Modulo The-
ories (PMT) is an approximation inspired by Satisfiability Modulo Theories
(SMT) that generalizes the integration of arbitrary theories with proposi-
tional planning. We explore the planning as SMT approach, following the
concepts and notation defined in [GLFB12] for PMT.

A state is a valuation over a finite set of variables X, i.e., an assignment
function, mapping each variable x ∈ X to a value in its domain, Dx. The
expression s(x) denotes the value that state s assigns to variable x, and
s[x 7→ v] is the state identical to s except that it assigns the value v to
variable x. A state space for a set of variables X is the set of all valuations
over X. By var(S) we denote the state variables of a state space S.

A first order sentence over a state space S modulo T is a first order
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sentence over the variables of S, constant symbols, function symbols and
predicate symbols, where T is a theory defining the domains of the state
space variables and interpretations for the constants, functions and predi-
cates.1 A state space modulo T is a state space ranging over the domains
defined in T . A term over S modulo T is, similarly, an expression con-
structed using the symbols defined by S and T . A formula φ is T -satisfiable
if φ ∧ T is satisfiable in the first-order sense. By evalsT (φ) we denote the
value of φ under the assignment s, according to the interpretation defined
by theory T .

A substitution is a partial mapping from variables to terms. It can be
represented explicitly as a function by a set of bindings of variables to terms.
That is, if σ = {x1 7→ t1, . . . , xn 7→ tn} (assuming xi 6= xj , ∀i 6= j ∈ 1 . . . n),
then σ(xi) = ti for all i in 1..n, and σ(x) = x for every other variable. We
also define the domain of σ as Dom(σ) = {x1, . . . , xn}.

Substitutions are extended homomorphically to a total mapping from
terms to terms. We use the postfix notation tσ for the image of a term t
under a substitution σ. This is defined inductively on the structure of terms
as follows:

tσ =

{
σ(t) if t is a variable

f(t1σ, . . . , tmσ) if t is of the form f(t1, . . . , tm)

In the second case of this definition, m = 0 is allowed: in this case, f is a
constant symbol and fσ is f . Thus tσ is t with all variables replaced by
terms as specified by σ. The image of a formula under a substitution is
defined similarly.

The composition of two substitutions σ1 and σ2, denoted by juxtaposi-
tion, is defined as the composition of two functions, that is, tσ1σ2 = (tσ1)σ2.

Definition 5.1.1 (Action). An action a, for a state space S modulo T , is
a state transition function, comprising:

• A first-order sentence over S modulo T , Prea (the precondition of a).

• A set Eff a (the effects of a), of assignments to a subset of the state
variables in S, each assigning a distinct variable to a value defined by
a term over S modulo T .

1In some other contexts, such as mathematical logic, a theory is understood as being
just a set of sentences.
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An action a, for a state space S modulo T , is applicable (or executable) in
a state s ∈ S if T, s |= Prea (that is, the theory together with the valuation
s satisfies the precondition of a).

We represent actions a as pairs 〈Prea,Eff a〉, with the effects Eff a often
written as a substitution σa = {x1 7→ exp1, . . . , xn 7→ expn}, where expi is
an expression that defines the value of variable xi in the resulting state, for
each i in 1..n (e.g. x 7→ x + k, for increasing a numeric variable x by k).
We use > and ⊥ to denote the Boolean true and false values, respectively.
Making abuse of notation, we will talk of a substitution as an assignment.

Following the application of a, the state is updated by the assignments in
Eff a to the variables that they affect, leaving all other variables unchanged.
We denote the unique state resulting from applying action a, in a state s in
which is applicable, by appa(s). Formally, the resulting state s′ is the map-
ping where, for each variable x ∈ var(S), s′(x) = evalsT (xσa), where σa is the
substitution representing the effects of a. For any given sequence of actions
a1; a2; . . . ; an we define appa1;a2;...;an(s) as appan(· · · appa2(appa1(s)) · · · ).

Definition 5.1.2 (Planning modulo Theory). A Planning Modulo T prob-
lem, for a theory T , is a tuple π = 〈S,A, I,G〉 where:

• S is a state space in which all variable domains are defined in T ,

• A is a set of actions for S modulo T ,

• I is a valuation in S (the initial state), and

• G is a first order sentence over S modulo T (the goal).

A (sequential) plan for π is a sequence of actions a1; . . . ; an such that,
for all i in 1..n, ai is applicable in state si−1 and si is the result of applying
ai to si−1, where s0 = I and T, sn |= G.

As it is usual in SMT, we assume that T is a first-order theory with
equality, which means that the equality symbol = is a predefined predicate,
interpreted as the identity in the underlying domain. Sometimes we say
that a sequence of actions is a plan starting from an initial state I, without
specifying the goal. In this case we mean that the plan is executable starting
from I.

This approach can be seen as a generalization of some previous works
that use sub-solvers to work with theories. ILP-PLAN [KW99a] is a frame-
work based on integer optimization of linear integer programs that can be
seen as a particular case of this, taking linear inequalities as preconditions,
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and limiting effects to increasing, decreasing or setting the value of a vari-
able. Numeric planning, as defined in [Hel02] or in [GSS08] is also a par-
ticular case, using a very limited fragment of first-order logic in the pre-
conditions of actions, and taking T as the theory of rational functions, i.e.,
fractions between polynomials. The proposal in [RHN06] raises precondi-
tions to general Boolean formulae, but does not consider numeric variables.
In [GLFB12] the reader can find other examples of planners using subsolvers
to work with theories.

5.2 Generalized SMT Encoding

In this section we propose an encoding for PMT as planning as SMT, that
can adhere to the ∀-step and ∃-step semantics. The following encoding
is a generalization of Rintanen’s [Rin09] encoding of planning as SAT, to
include reasoning with a theory T . The encoding is valid for any theory
T under quantifier-free first-order logic with equality. In particular, for
numeric planning we could take T as the theory of the integers (or the reals)
and use quantifier free linear integer (or real) arithmetic formulae. This is
the case for the upcoming examples in this section, but we emphasize that
this encoding could be used for any theory T .

To fill a gap between the problem representation and the representation
used to solve the problem, it should be noted that languages like the Plan-
ning Domain Definition Language [FL03] (PDDL from now on) use a lifted
representation to express problem variables and actions.

Example 12. For example, a typical way to express the position of an ele-
ment is to define a Boolean predicate at(?o - object,?p - place). This
predicate states, given an object and place in the problem, if the object is in
the place.

These lifted representations are compact and practical to model the prob-
lem, but when solving, most approaches do not support these representations
and therefore ground them. That is, each predicate or function is expanded
so they lack any free variable.

Example 13. For instance, a Boolean predicate stating the position of an
aircraft such as at(?a - aircraft, ?c - city), with three cities c1, c2

and c3, and two planes plane1 and plane2, when grounded will result
into six ground instances at(plane1,c1), . . . , at(plane2,c3), that will
be mapped to six Boolean variables at tplane1 ,c1 , . . . , at tplane2 ,c3 for each time
step t.
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Example 14. Now let us consider the function (or object fluent2) at(?o

- aircraft) - city that, given an aircraft, says where it is. In this case,
the mapping would result into two numeric variables atplane1 , atplane2 with
the domains being the possible cities c1, c2 and c3 (conveniently mapped to
integers).

Note that in the example, if we map objects to numbers, we can get a
more compact encoding of states in the presence of object fluents than using
a plain SAT approach.

Therefore, in our approach, when a lifted representation like PDDL is
used to state the problem, every PDDL predicate is grounded and mapped
to a Boolean variable, and every PDDL function is grounded and mapped to
a numeric variable. Then, the Boolean and numeric variables resulting from
grounding the predicates and functions, respectively, constitute the state
variables.

Let π = 〈S,A, I,G〉 be a planning problem modulo T , for a theory T
under a quantifier-free first-order logic with equality. For each variable x in
var(S) and each time step t, a new variable xt of the corresponding type is
introduced, denoting the value of x at step t. Moreover, for each action a
and each time step t, a Boolean variable at is introduced, denoting whether
a is executed at step t.

Given a term s, by st we denote term s, where all variables x in var(S)
have been replaced by xt, and analogously for formulas. For example (x +
y)t = xt + yt, and (p ∧ x > 0)t = pt ∧ xt > 0. For the case of effects, we
define

{x 7→ >}t def
= xt+1

{x 7→ ⊥}t def
= ¬xt+1

{x 7→ s}t def
= (xt+1 = st)

where s is a non-Boolean term belonging to the theory T . For example, for
an assignment {x 7→ x+ k}, where k is a constant, we have {x 7→ x+ k}t =
(xt+1 = xt + k). For sets of assignments, i.e., action effects, we define

({x 7→ s} ∪ Eff )t
def
= {x 7→ s}t ∧ Eff t and ∅t def

= >

where s is a term (either Boolean or not) and Eff is a set of assignments.

2An object fluent is a mechanism adopted in PDDL 3.1 [Gef00] where a function can
refer to problem objects.
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The introduced constraints to represent the planning problem are the
following:

First, if an action is executed during time step t, it implies that its
preconditions are met.

at → Preta ∀a = 〈Prea,Eff a〉 ∈ A (5.1)

Also, each of its effects will hold at the next time step.

at → Eff t
a ∀a = 〈Prea,Eff a〉 ∈ A (5.2)

Second, we need explanatory axioms to express the reason of a change
in the value of Boolean state variables. For each variable x in var(S),

xt 6= xt+1 →
∨

∀a=〈Prea,Eff a〉∈A
such that ∃{x 7→s}∈Eff a

at

(5.3)

That is, a change in the value of x implies the execution of at least one
action that has an assignment to x among its effects.

Conditional Effects

In the PDDL language, there exists a modelling feature called conditional
effects. These conditional effects, as their name suggest, can add conditions
to any set of effects of an action. They can be used for expressing some
domains more compactly.

Example 15. For example, the following action in PDDL uses the when

construct to express different fuel consumptions for a ship, depending on if
it carries any load.

(:action sail

:parameters (?sh - ship ?from - location ?to - location)

:precondition (at ?sh ?from)

:effect (and

(at ?sh ?to)

(not (at ?sh ?from))

(when (= (load ?sh) 0)

(increase (fuel_used)

(/ (distance ?from ?to) 5)))

(when (not (= (load ?sh) 0))

(increase (fuel_used)

(/ (distance ?from ?to) 3)))))
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Note that, as the PDDL grammar does not contemplate an else branch, the
alternative condition has been added explicitly.

When solving, there are two ways of dealing with these conditional ef-
fects. The first one is the easiest, as they can be syntactically removed by
creating new auxiliar actions to consider all the possible branches of the
conditional effects. Those actions will need to incorporate on its general
preconditions the effect preconditions of the particular branch. In the case
of Example 15, the action is split in two, as shown in Example 16.

Example 16. Following the previous example, the sail action has been
split in two: sail empty and sail full, where the condition of each when
has been added to the precondition.

(:action sail_empty

:parameters (?sh - ship ?from - location ?to - location)

:precondition (and (at ?sh ?from)

(= (load ?sh) 0))

:effect (and (at ?sh ?to)

(not (at ?sh ?from))

(increase (fuel_used)

(/ (distance ?from ?to) 5))))

(:action sail_full

:parameters (?sh - ship ?from - location ?to - location)

:precondition (and (at ?sh ?from)

(not (= (load ?sh) 0)))

:effect (and (at ?sh ?to)

(not (at ?sh ?from))

(increase (fuel_used)

(/ (distance ?from ?to) 3))))

The second way of dealing with conditional effects, is encoding them
directly into the SMT formula. For achieving this, we should consider that
actions are now still defined as a = 〈Prea,Eff a〉, but where Eff a is now a set
of 〈f, d〉 pairs, and f being a Boolean expression representing the condition
of the effect, and d a set of assignments. Unconditional effects would have
f set to >.

The encoding previously presented would change, considerably. Equa-
tion 5.2 would have to consider f :

at ∧ f → dt+1 ∀〈f, d〉 ∈ Eff a,∀a = 〈Prea,Eff a〉 ∈ A (5.4)
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Equation 5.3, that refers to the explanatory frame axioms, would have
to also consider the preconditions:

xt 6= xt+1 →
∨

a=〈Prea,Eff a〉∈A

(
at ∧ (EPCx(a))t

)
(5.5)

where, given an action a = 〈Prea,Eff a〉 and a variable x,

EPCx(a) =
∨

f⇒d∈Eff a

{f | d contains an assignment for x}

that is, the effect precondition for the modification of x in action a, where the
empty disjunction is defined as false. For Boolean variables, the expression
xt 6= xt+1 can be written as (xt ∧ ¬xt+1) ∨ (¬xt ∧ xt+1).

To illustrate this encoding, let us expand Example 15 a bit. Lets say
we have one ship named S, and two locations: A and B. We also decide to
incorporate conditional effects directly into the encoding. If we only consider
the action sail, at time step 1 Constraint 5.1 would give the following SMT-
LIB [BST10] formulas:

(=> sail-S-A-B-1 at-S-A-1)

(=> sail-S-B-A-1 at-S-B-1)

where all the atoms appearing are Boolean. Atoms sail-S-A-B-1 and
sail-S-B-A-1 are used to decide if the action with the parameters is exe-
cuted or not at time step 1, and atoms at-S-A-1 and at-S-B-1 represent if
the ship S is physically at location A or B at time step 1. Note that “=>”
is the implication symbol in the SMT-LIB language. Now, Constraint 5.4
would be translated to SMT as:

(=> sail-S-A-B-1 (and at-S-B-2 (not at-S-A-2)))

(=> (and sail-S-A-B-1 (= load-S-1 0))

(= fuel-used-2 (+ fuel-used-1 (/ distance-A-B 5))))

(=> (and sail-S-A-B-1 (not (= load-S-1 0)))

(= fuel-used-2 (+ fuel-used-1 (/ distance-A-B 3))))

(=> sail-S-B-A-1 (and at-S-A-2 (not at-S-B-2)))

(=> (and sail-S-B-A-1 (= load-S-1 0))

(= fuel-used-2 (+ fuel-used-1 (/ distance-B-A 5))))

(=> (and sail-S-B-A-1 (not (= load-S-1 0)))

(= fuel-used-2 (+ fuel-used-1 (/ distance-B-A 3))))
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Note that in this translation terms distance-A-B and distance-B-A do
not have the time step in them. Our compiler is able to detect these static
atoms, and as they will not change over time, its useless to create a different
variable for them in each time step. Finally Constraint 5.5 would literally
translate to:

(=> (distinct at-S-A-1 at-S-A-2)

(or (and sail-S-A-B-1 true) (and sail-S-B-A-1 true)))

(=> (distinct at-S-B-1 at-S-B-2)

(or (and sail-S-A-B-1 true) (and sail-S-B-A-1 true)))

(=> (distinct fuel-used-1 fuel-used-2)

(or (and sail-S-A-B-1 (= load-S-1 0))

(and sail-S-A-B-1 (not (= load-S-1 0)))

(and sail-S-B-A-1 (= load-S-1 0))

(and sail-S-B-A-1 (not (= load-S-1 0)))))

Note that the true atoms can be simplified at compile time, but has been left
out in the example to help the reader match the result with the definition of
Constraint 5.5. Note that most conditional effects will end being tautologies
as most effects will be unconditional.

5.2.1 Sequential Plans

The encoding presented is still not complete, as we have not restricted what
actions can be executed in a time step. We have to specify to what semantics
we want to adhere.

The sequential encoding allows exactly one action per time step. This is
achieved by imposing an exactly-one constraint on the action variables at
each time step. We tested some well-known encodings such as the quadratic
or the commander encoding [KK07], but we settled with the binary encoding
(see [FG10]) as it gave us the best performance. The encoding introduces
new variables B1, . . . , Bdlog2 ne, where n = |A|, and associates each variable

ati with a unique bit string si ∈ {0, 1}dlog2 ne. The encoding is:

n∧
i=1

dlog2 ne∧
j=1

¬ati ∨ �(i, j) (5.6)
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n∨
i=1

ati (5.7)

where �(i, j) is Bj if the jth bit of the bit string of si is 1, and ¬Bj oth-
erwise. The binary encoding of the at-most-one constraint (5.6), intro-
duces dlog2 ne new variables and ndlog2 ne binary clauses. Together with
the at-least-one constraint (5.7), we obtain the desired exactly-one con-
straint. Note that this is the same restriction as the one expressed in Sec-
tion 2.5 but experimentally better, as it trades a good amount of formulas
for a small number of new variables.

5.2.2 Parallel Plans

Encodings for two types of parallel plan semantics are considered with this
encoding: ∀-step plans, and ∃-step plans. These semantics rely on a notion
of interference between actions. For now, consider that an action a1 can
interfere with action a2 if the execution of a1 can prevent the execution
of a2 or change its effects. This notion will be discussed with detail in
Section 5.4.

∀-step Plans

The notion of parallelism of a ∀-step plan is defined as the possibility of
ordering the actions of each time step to any total order. Therefore, at each
time step t we simply add a mutex between any pair of interfering actions
ai and aj :

¬(ati ∧ atj) if ai affects aj or aj affects ai (5.8)

∃-step Plans

In ∃-step plans, instead of requiring that actions in a time step can be
ordered to any total order (as in ∀-step semantics) it is sufficient that one
possible order exists.

The quadratic encoding consists on a fixed (arbitrary) total ordering on
the actions imposed beforehand, and the parallel execution of two actions
ai and aj such that ai affects aj is forbidden only if i < j:

¬(ati ∧ atj) if ai affects aj and i < j (5.9)
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Since ∃-step plans are less restrictive than ∀-step plans, as they do not
require that all orderings of parallel actions result in valid sequential plan,
they normally allow more parallelism.

Note that this encoding is based on a fixed ordering of the actions. It
is described in detail in [RHN06]. The selected order will determine which
actions are allowed to appear in the same time step, and therefore more or
less time steps will be needed to reach a valid plan.

5.3 Disabling graph

In [RHN04] Rintanen et al. defined a graph called the disabling graph.
Thanks to this graph, sets of actions that might not be possible to execute
in any total ordering can be identified.

Definition 5.3.1 (Disabling Graph). A graph 〈O,E〉 is a disabling graph
for a planning problem π = 〈S,A, I,G〉 when E ⊆ A×A is the set of directed
edges so that 〈a1, a2〉 ∈ E if a1 can interfere with a2

That is, a directed graph where nodes are the grounded actions from
the planning problem and an edge exists from action a1 to action a2 if the
execution of a1 can interfere with a2. Figure 5.1 depicts a disabling graph.
For a given set of actions there are normally many disabling graphs, as
adding an edge to a disabling graph makes it also a disabling graph. For
every set of actions and initial state, there is a minimal disabling graph, but
computing it is theoretically expensive, as the reachability tests are already
PSPACE-hard [RHN06].

a1 a2

a3 a4

Figure 5.1: An example of a disabling graph

Example 17. Imagine a logistics problem in PDDL where there are two kind
of objects: trucks and packages. The variables that represent properties of
the packages are the reason of all edges in the disabling graph. The minimal
disabling graph for a problem instance where there are no packages, only
trucks, would be an empty graph.
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The connectivity of the disabling graph is important, as it will determine
what actions will be allowed to execute in a same time step. In fact, the
application of all the actions pertaining to the same strongly connected
component of the disabling graph is not possible [RHN06]. Roughly speaking
this is because given all the possible total orders between actions, all of them
contain a cycle.

This entails that the simultaneous application of a subset of the actions
belonging to a strongly connected component can generate a valid plan if the
disabling graph made only with the actions of this subset does not contain
a cycle. Acyclicity is a sufficient but not a necessary condition for a set of
actions to be executable in some order, even for minimal disabling graphs.
This is because the edges are independent of the state.

Example 18. Suppose that action a2 in Figure 5.2 can never realistically
appear in a feasible plan, or that its preconditions makes it impossible to be
executed. The appearance of a2 in the disabling graph generates a strongly
connected component and, depending on the rest of the graph, possibly ren-
dering a1 and a3 impossible to be executed at the same time step.

a1 a2

a3

Figure 5.2: An unfeasible action in a disabling graph

The notion of interference is key to determine the density of the disabling
graph. If a graph has few edges, its less probable to have strongly connected
components and thus more actions will be allowed to appear in parallel.
This will imply that probably less steps will be needed to reach a valid plan.

5.3.1 Sort and Cut Order

As previously said, for the ∃-step encoding, the selected order will define
what actions can be set in the same time step, and therefore more or less
time steps will be needed to find a valid plan.

One preprocessing step that has been tested before establishing any or-
der is to “cut” all cycles made of only two vertices. This means that, if
vertex n affected vertex m, and vertex m affected vertex n, m and n are
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directly prohibited to be scheduled on the same time step, and the two edges
removed from the graph. The reason behind this preprocessing is that the
quadratic ∃-step encoding will always need to add a mutex between n and
m, and cutting these pairs of edges beforehand can potentially minimize
the number of strongly connected components afterwards. In practise, this
preprocessing only offered small marginal improvements in solving times on
the benchmarks used, and therefore it was discarded in the implementation.

A newly implemented order is what we defined as the Sort and Cut order,
a simple modification of the topological sort algorithm. The topological
sort [Kah62] of a directed graph like the disabling graph gives an ordering of
its vertices such that for every directed edge 〈u, v〉 from vertex u to vertex
v, u < v (that is, u comes before v in the ordering). Algorithm 7 depicts
the topological sort.

Algorithm 7 Topological Sort

Input: L : Empty list, E : The set of all edges, V : The set of all vertices
Output: L contains a topological order of V according to E

1: S ← {v |v ∈ V, 6 ∃ 〈x, v〉 ∈ E}
2: while S 6= ∅ do
3: n←pop(S)
4: push back(n,L)
5: for all vertex m such that 〈n,m〉 ∈ E do
6: E ← E \ 〈n,m〉
7: if 6 ∃〈x,m〉 ∈ E then
8: S ← S ∪ {m}
9: end if

10: end for
11: end while
12: if V 6= ∅ then
13: return error, there is a cycle
14: end if

In line 1 we define set S that contains all vertices with no incoming edges.
Function pop on line 3 removes and returns a vertex from the set S, and in
line 4 vertex n is added to the tail of list L. Line 6 removes all outgoing
edges from n and line 8 finally adds to S all vertices that have no incoming
edges.

Algorithm 7 depicts the classical topological sort. In our implementation,
we modified it to add a set of vertices that records what vertices have been
visited. Then, when visiting an edge, if it points to an already visited vertex,
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we remove it and prohibit concurrent execution of the actions represented
by the two vertices. This cuts all the cycles and therefore the order in L
adheres to the ∃-step semantics.

5.4 Interferences between actions

What we want is to be sure that the generated plans are always valid when
serialized. To accomplish this, we add constraints to the problem that guar-
antee that sets of actions applied simultaneously can be ordered to form an
executable plan.

In [Rin09], where conditional effects are considered, an action a1 is de-
fined to affect another action a2 if a1 may prevent the execution of a2 or
change its effects. Two actions a1 and a2 are considered to interfere if a1
affects a2 or a2 affects a1. In ∀-step plans, where all possible serializations
must be valid, no two interfering actions can occur in parallel. In the more
relaxed notion of parallelism of ∃-step plans, where it is only required that no
action affects a later one in some total ordering, often much more parallelism
is allowed in practice.

For efficiency reasons, typically syntactic (rather than semantic) restric-
tions are imposed on parallel actions. More precisely, in [Rin09], where only
Boolean variables and conditional effects are considered, a1 = 〈Pre1,Eff 1〉
is determined to affect a2 = 〈Pre2,Eff 2〉 if, for some variable x,

1. x is set to true in d1 for some f1 ⇒ d1 ∈ Eff 1, and x occurs in a
negative literal in p2 or occurs in f2 for some f2 ⇒ d2 ∈ Eff 2, or

2. x is set to false in d1 for some f1 ⇒ d1 ∈ Eff 1, and x occurs in a
positive literal in p2 or occurs in f2 for some f2 ⇒ d2 ∈ Eff 2.

That is, a1 affects a2 if a1 can impede the execution of a2, or change its
effects. Notice that this relation is not symmetric.

This is a fully syntactic check which can be used to establish sufficient
although not necessary conditions for finding serializable parallel plans. We
can observe that interference between effects is not considered. This is
because, in the case two actions have contradictory effects, any formula
encoding a plan with those two actions running in parallel will raise a con-
tradiction. We generalized the previous approach to the case of numeric
variables as follows:

Given an action a1 = 〈Pre1,Eff 1〉, it affects a2 = 〈Pre2,Eff 2〉 if, for
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some numeric variable x:

mod(x, exp) ∈ d1 for some 〈f1, d1〉 ∈ Eff 1

∧
(
x occurs in f2 for some 〈f2, d2〉 ∈ Eff 2 ∨ x occurs in p2

) (5.10)

where mod(x, exp) is an assignment to variable x.

5.4.1 Plan Serialization

Finally, to obtain a serial plan from the solution, for each time step where
there is more than one action, a subgraph of the disabling graph is extracted,
containing only the actions at that time step. A valid order between actions
can then be computed.

In all the implemented parallel encodings acyclicity is guaranteed be-
tween the executed actions. Therefore, the reverse of the order of the topo-
logical sort (depicted in Algorithm 7) of the subgraph can be used as a valid
serialization.

Example 19. Consider the disabling graph in Figure 5.1. In a plan with one
time step consisting of {a1, a2, a4} the disabling graph in Figure 5.1 would
be extracted.

a1 a2

a4

Figure 5.3: The extracted subgraph of the disabling graph

A trivial topological order would be a1 > a2 > a4, and reversing it would
give us the sequential valid plan a4, a2, a1.

5.5 Lifted Encoding

As the previously introduced encoding grows considerably with the time
horizon, to the point of getting unmanageable instances in large problems,
a more compact encoding is proposed, using the theory of uninterpreted
functions to express predicates, functions and actions in a compact man-
ner. This encoding is reminiscent of the lifted causal encodings in [KMS96].
In the SMT-LIB standard [BST10], the uninterpreted functions theory is
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often integrated with other theories, like linear integer or real arithmetic.
Uninterpreted functions have no other property than its name and arity,
and are only subject to the following axiom: x1 = x′1 ∧ · · · ∧ xn = x′n →
f(x1, . . . , xn) = f(x′1, . . . , x

′
n).

To represent a planning problem, now we will use functions of the form
ϕa(c

a
1, . . . , c

a
na) to represent actions in A. Now, for actions to be able to

talk about state variables, preconditions and effects will also use functions
instead of simple variables. Action effects will take the form ϕf (. . . ) 7→ s,
where s is an expression and ϕf (. . . ) is the state variable (with its possible
parameters) that is being assigned a new value. Boolean effects will omit
the s and be treated as literals.

Example 20. Following Example 16, the sail empty action could be ex-
pressed as

ϕsail empty(x, y, z) = 〈ϕat(x, y) ∧ ϕload(x) = 0,

ϕat(x, z) ∧ ¬ϕat(x, y) ∧ ϕfuel used() 7→ ϕfuel used() + ϕdistance(y, z) / 5〉

The encoding goes as follows. Every defined object in the problem is
mapped to a number. For each ungrounded fluent and action, an uninter-
preted function is declared. As each object has been mapped to a number,
each parameter of the uninterpreted functions is also being declared as a
numeric variable. Also, a new integer parameter is added to each of them,
representing a time step. Uninterpreted functions corresponding to Boolean
fluents and actions return a Boolean value, whilst the ones for numeric flu-
ents return a numeric value. Moreover, for each action, parameter and time
step, a new integer variable is defined, representing the value of that param-
eter in the action if executed at the corresponding time step.

For example, the Boolean function ϕa(x
t
a,1, . . . , x

t
a,n, t) is used to deter-

mine whether action a with parameters xta,1, . . . , x
t
a,n is executed at time

step t. The parameter t is a constant, which is shared between all unin-
terpreted functions for the actions, predicates and functions in the same
time step. Contrarily, xta,1, . . . , x

t
a,n are variables with finite domains, and

constraints are added to restrict their possible values, depending on the pa-
rameter types. Regarding Boolean and numeric fluents, no new variables are
defined, since their arguments will be either constants or variables occurring
in some action.

In this new setting, a state is defined by the value of the uninterpreted
functions corresponding to predicates and functions, for a given value of
their arguments. Equations (5.1) and (5.2) of the previous encoding are
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generalized here as:

ϕa(x
t
a,1, . . . , x

t
a,n, t)→ Preta ∀a = 〈Prea,Eff a〉 ∈ A (5.11)

ϕa(x
t
a,1, . . . , x

t
a,n, t)→ Eff t+1

a ∀a = 〈Prea,Eff a〉 ∈ A (5.12)

Note that this results in a much more compact encoding, since here we are
using variables as arguments of functions, and it is the SMT solver who is
in charge of guessing the concrete values of the parameters of the executed
actions. The considered set of actions A is now parametrized, and hence
similar to that of PDDL, with actions like fly(x , y , z ), instead of grounded
actions like flyp1 ,c1 ,c1 , flyp1 ,c1 ,c2 , etc. Equation (5.3) is generalized as:

ϕh(c1, . . . , cn, t) 6= ϕh(c1, . . . , cn, t+ 1)→∨
ϕa(d1,...,dm)∈A s.t.

ϕh(e1,...,en)7→s∈Eff ϕa(d1,...,dm)

(
ϕa(d

t
1, . . . , d

t
m, t) ∧ c1 = e1 ∧ . . . ∧ cn = en

)

(5.13)

Note that e1, . . . , en is a permutation of a subset of d1, . . . , dm and by
imposing equalities ci = ei we state that the action is executed with the val-
ues that explain the reason of change in ϕh. To help the reader understand
the formula, we provide an example. Suppose we have the following simple
PDDL problem:

• Objects: A,B - truck, L1,L2,L3 - loc

• Boolean fluent: at(?t - truck, ?l - loc)

• Numeric fluent: fuel(?t - truck) - number

• And the following two actions:

– travel(?t - truck, ?from ?to - loc)

– refuel(?x - truck, ?where - loc)

where travel has (decrease (fuel ?t) 10) among its effects, and
refuel has (increase (fuel ?x) 20) as its only effect. Constraint 5.13
for the fuel function would be encoded into SMT at time step 0 as follows:
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(=> (distinct (fuel A 0) (fuel A 1))

(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 A))

(and (refuel x4_0 x5_0 0) (= x4_0 A))))

(=> (distinct (fuel B 0) (fuel B 1))

(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 B))

(and (refuel x4_0 x5_0 0) (= x4_0 B))))

That is, we are saying that if the fuel of truck A (or B) has changed, this
should be because it has been the protagonist of some action implying a
modification in its fuel, namely traveling or refueling. Again, this is much
more compact than its grounded counterpart. With respect to the paral-
lelism, for now this encoding only supports the sequential plan semantics.

We do not report results for this encoding, as they are comparable to that
of the previous encoding without parallelism and, moreover, the extension of
the this encoding to parallel plans is a non trivial task, as the encoding of the
explanatory axioms relies on the premise that only one action is executed.
Consequently we leave it as future work.

As we said, this encoding is more compact, but what is most important
is that it retains most of the problem original structure. It remains to be
seen if a parallelized version of this encoding could lead to better results
than the encoding without functions. To the best of our knowledge, there
were no works using parallelized encodings with uninterpreted functions.

Conditional Effects

Similarly to the previously presented encoding, conditional effects can be
removed either by splitting actions, or by encoding the effects. If we choose
to encode them, we should consider (as previously proposed) that actions
are now still defined as a = 〈Prea,Eff a〉, but where Eff a is now a set of
〈f, d〉 pairs, and f being a Boolean expression representing the condition of
the effect, and d a set of assignments. Unconditional effects would have f
set to >.

Then, Equation (5.12) would be expressed as:

ϕa(x
t
a,1, . . . , x

t
a,n, t) ∧ f t → dt+1

∀a = 〈Prea,Eff a〉 ∈ A,∀〈f, d〉 ∈ Eff a (5.14)

where a condition for the effects is added in the premise, and Equation 5.13
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would be:

ϕh(c1, . . . , cn, t) 6= ϕh(c1, . . . , cn, t+ 1)→

∨
ϕa(d1,...,dm)∈A s.t.

ϕh(e1,...,en)7→s∈Eff ϕa(d1,...,dm)

( ϕa(d
t
1, . . . , d

t
m, t)

∧EPCϕh(c1,...,cn)(ϕa)

∧ c1 = e1 ∧ . . . ∧ cn = en

) (5.15)

where:

EPCϕh(c1,...,cn)(ϕa) =∨
f⇒d∈Eff a

{f | d contains an assignment for ϕh(c1, . . . , cn)}

5.6 Experimental Results

The Petrobras domain was posed as a challenge problem at the Interna-
tional Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS 2012). This domain3 is an interesting real-life problem, that lies
in the border between scheduling and planning.

Generically speaking, the problem is described as the need to transport
various cargos of goods and tools from two ports to various platforms located
in the ocean at various distances. The strips are divided in two parts: Rio
de Janeiro and Santos. The basic elements and agents of the problem are:
ports, platforms, waiting areas, cargo items and vessels. The actions that
can be performed are:

Sail Navigates a ship from one location to another.

Dock Docks a vessel in a port or platform.

Undock Undocks a vessel in a port or platform.

Load Loads a cargo item into the ship.

Unload Unloads a cargo item from the ship to a platform or port.

Refuel Refuels a ship at a refueling location (a port or any specified plat-
form).

3http://icaps12.icaps-conference.org/ickeps/petrobrasdomain.html
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Although the proposal gives various optimization criteria, we only consider
the satisfiability of the problem, minimizing the number of time steps.

We compared the performance of the presented approach to that of Num-
Reach [HGSK07], which approximates the reachable domains of the numeric
state variables. That is, it generates a set of values Dt(v) for every numeric
variable v, so that every value that v can have after t time steps is contained
in Dt(v). Then a SAT encoding is generated, by introducing a Boolean vari-
able av,c,t for every t, v and c ∈ Dt(v). As we will see, this method is very
sensitive to the size of Dk(v).

As NumReach [HGSK07] does not support conditional effects, we cre-
ated a second model from the original, removing all the conditional effects
by splitting actions, as explained in Section 5.5. From now on, those will
be referenced as the natural (with conditional effects) and unconditional
models (without conditional effects). This will allow to make a compari-
son between our encoding and NumReach. In order to make the minimum
changes from the natural model, we do not change any predicate or func-
tion. We only make the following changes: We split the sail action in two,
namely sail empty and sail full, with the (unconditional) effects corre-
sponding to the case where current load is zero or not, respectively. The
refueling at port and refueling at platform actions also make use of
conditional effects, so they also need to be split in two. Note that although
this apparently seems a minor change, it may cause many new variables to
appear in the final encoding, as more actions are present.

The input language of the NumReach solver is PDDL, and it has two
strategies for solving: NumReach/SAT and NumReach/SMT. The Num-
Reach/SMT approach is similar to NumReach/SAT, except for the encod-
ing of the numeric variables. NumReach uses a different backend solver for
each one. For the SAT approach, it uses MiniSAT or ZChaff, but we only
used the latest version of MiniSAT (2.2.0) [ES03] in the experiments, as we
couldn’t find any modern version of ZChaff. For the SMT backend, it was
not possible to use any modern version of a SMT solver, and we had to re-
strict MathSAT 3. This is because NumReach generates the SMT instances
in a file format which is different from SMT-LIB and not known by mod-
ern SMT solvers. We also could not find any documentation on the format
used. For these reasons and due to the poor observed performance, we do
not include the results for NumReach/SMT.

During the experiments with NumReach, we found out that MiniSAT
dedicated most of its solving time into simplifying the formula. So we de-
cided to execute the same experiments in two ways: instructing MiniSAT
not to simplify the input formula, and with the default options. In the ta-
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bles of results we refer to both solving options as SAT and SAT w/o pre,
respectively.

The nature of this problem involves linear integer arithmetic expres-
sions. Translated to the world of SMT, these expressions naturally fall into
the QF LIA logic. In the SMT-LIB standard [BST10], QF LIA stands for
the logic of Quantifier-Free Boolean formulas, with Linear Integer Arith-
metic constraints. This logic has a good compromise between expressivity
and performance, and is the natural choice for many planning problems,
like transportation style problems with limited resources or resource man-
agement problems using numeric variables.

To test our encoding (QF LIA encoding from now on), we created a very
similar set of benchmarks to the ones used in [TDT+12]. It consists of 4
groups of generated instances, with an increasing number of cargo items,
ranging from 1 to 15. Every cargo is assigned randomly to one of the two
ports, and each ship is randomly docked in one of them. The groups differ
in the number of ships and in the total fuel capacity of each ship:

• Group A: 3 ships with 600 liters of fuel capacity.

• Group B: 10 ships with 600 liters of fuel capacity.

• Group C: 10 ships with 800 liters of fuel capacity.

• Group D: 10 ships with 1000 liters of fuel capacity.

The experiments were run on a cluster of machines, running the CentOS
operating System, equipped with Intel R© Xeon R© E3-1220v2 Processors at
3.10 GHz with Turbo Boost disabled, and 8GB of main memory.

For each instance, we made executions for the encoding with the three
semantics: sequential, ∀-step and ∃-step, with two SMT solvers via API:
Yices-1.0.38 [DDM06a] and Z3-4.3.1 [dMB08c]. The results depicted are
from the Yices executions, as although it wasn’t always faster, it solved more
instances than Z3. The executions were made through the APIs, because
when we tried to use plain files we found that some of the generated files
for the biggest instances were too big for the solvers, spanning to some
gigabytes.

Tables 5.1 to 5.4 show the execution time in seconds and number of
time steps checked for each group of instances. TO denotes that the solver
could not find a plan in the given time of one hour, and the fastest solver
for each instance is highlighted. Between parenthesis there is the last time
step checked by the solver (which corresponds to the length of the shortest
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Inst
QF LIA encoding NumReach

Sequential ∀-step ∃-step SAT SAT w/o pre

A1 2.73 (5) 45.27 (5) 22.95 (5) 105.77 (6) 1.20 (6)
A2 45.67 (13) 76.37 (8) 40.51 (8) 780.93 (9) 13.65 (9)
A3 TO (17) 105.44 (10) 55.29 (9) 1231.98 (10) 26.28 (10)
A4 TO (17) 1727.77 (13) 2674.75 (12) 2067.24 (11) 137.47 (11)
A5 TO (19) TO (13) TO (13) 2992.79 (12) 243.45 (12)
A6 TO (19) TO (14) TO (13) TO (13) 933.22 (14)
A7 TO (19) TO (14) TO (13) TO (13) 431.90 (13)
A8 TO (20) TO (14) TO (14) TO (13) TO (14)
A9 TO (18) TO (14) TO (13) TO (12) TO (14)
A10 TO (19) TO (15) TO (14) TO (12) TO (12)
A11 TO (20) TO (14) TO (14) TO (12) TO (12)
A12 TO (20) TO (14) TO (15) TO (12) TO (12)
A13 TO (20) TO (15) TO (15) TO (12) TO (12)
A14 TO (19) TO (14) TO (14) TO (12) TO (12)
A15 TO (21) TO (15) TO (15) TO (12) TO (12)

Table 5.1: Execution times for group A in seconds, and number of time steps
checked.

step-wise plan found for the solved instances). Note that it is not clear
for us what notion of interference or parallelism is NumReach using, so the
plan lengths between correct solutions given by NumReach and our encoding
for the same instance may differ. Table 5.5 summarizes how many instances
each solving approach could finish in the given time, and among those in how
many it was the fastest. The natural model could not be directly compared
to the unconditional model using NumReach (recall that it does not support
conditional effects), so the NumReach results shown in Tables 5.1 to 5.5 are
from the unconditional model.

If we look at the NumReach/SAT executions, all the instances have a
better solving time without simplifying the input formula. But, although
we observe an speedup of more than one order of magnitude on most of the
solved instances, only a few more instances can be solved without prepro-
cessing, due to the combinatorial explosion. This indicates that the problem
is inherently hard.

After analyzing the computed interferences between actions, we could
see that the problem is highly parallel in the number of ships. Ships can
operate independently, with the only limitation of the docking space. This
can be seen for example in instance D7: in 4 time steps, 7 cargo items
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Inst
QF LIA encoding NumReach

Sequential ∀-step ∃-step SAT SAT w/o pre

B1 11.47 (5) 154.01 (5) 79.20 (5) 366.29 (6) 9.02 (6)
B2 154.53 (10) 158.88 (5) 82.80 (5) 544.15 (6) 12.76 (6)
B3 TO (12) 162.81 (5) 86.02 (5) 1344.00 (7) 35.97 (7)
B4 TO (13) 168.30 (5) 89.74 (5) 2761.95 (8) 151.22 (8)
B5 TO (13) 173.05 (5) 93.77 (5) 2864.55 (8) 167.65 (8)
B6 TO (14) 178.21 (5) 96.92 (5) 2952.88 (8) 173.83 (8)
B7 TO (14) 183.16 (5) 101.81 (5) TO (10) TO (10)
B8 TO (14) 300.96 (7) 189.73 (7) TO (9) TO (9)
B9 TO (14) TO (8) TO (7) TO (9) TO (9)
B10 TO (15) 748.626 (8) 358.57 (7) TO (9) TO (9)
B11 TO (14) TO (8) TO (8) TO (9) TO (9)
B12 TO (14) TO (8) TO (8) TO (9) TO (9)
B13 TO (14) TO (8) TO (8) TO (9) TO (9)
B14 TO (16) TO (9) TO (8) TO (9) TO (9)
B15 TO (14) TO (9) TO (8) TO (9) TO (9)

Table 5.2: Execution times for group B in seconds, and number of time steps
checked.

are transported from the port of origin to its destination. The difference
of 2 time steps between D7 and D8 is caused only by the docking space
capacities.

Note also that ∃-step plans are easier to find than ∀-step plans in this
domain. However, contrarily to what could be expected, in most of the
cases they are not shorter. This is due to the nature of the domain: as said,
ships can operate independently and hence, in many cases, requiring parallel
actions to result in a valid plan if putting them to any total order, is not
stronger than requiring this for some fixed order. On the other hand, under
our approach, with the natural model the solver found a solution for 7 more
instances than with the unconditional model.

Intuitively, a higher ship fuel capacity should make the problem easier, as
less actions will be necessary as ships will need to refuel less often. Instead,
it is interesting to note that for NumReach/SAT the groups C and D become
the hardest instances. This is because with the higher numbers, state-space
exploration seems to grow too large to be manageable, as we suspected.

Other works have provided efficient solutions to the Petrobras challenge
proposal. In [TDT+12, BZ13] various heuristic (incomplete) solvers are used
to solve the Petrobras challenge under different optimization criteria.
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Inst
QF LIA encoding NumReach

Sequential ∀-step ∃-step SAT SAT w/o pre

C1 11.58 (5) 154.46 (5) 79.05 (5) 510.45 (6) 14.78 (6)
C2 149.59 (10) 159.05 (5) 81.59 (5) 744.29 (6) 21.80 (6)
C3 TO (13) 163.17 (5) 86.21 (5) 1826.95 (7) 71.88 (7)
C4 TO (13) 168.05 (5) 89.76 (5) TO (9) TO (9)
C5 TO (13) 173.13 (5) 93.44 (5) TO (8) TO (9)
C6 TO (13) 178.25 (5) 97.28 (5) TO (8) TO (8)
C7 TO (14) 183.30 (5) 101.06 (5) TO (8) TO (8)
C8 TO (14) 298.40 (7) 168.80 (7) TO (8) TO (8)
C9 TO (14) TO (8) TO (7) TO (8) TO (8)
C10 TO (14) 758.50 (8) 351.54 (7) TO (8) TO (8)
C11 TO (14) TO (8) TO (8) TO (8) TO (8)
C12 TO (14) TO (8) TO (8) TO (8) TO (8)
C13 TO (14) TO (8) TO (8) TO (8) TO (8)
C14 TO (17) TO (9) TO (8) TO (8) TO (8)
C15 TO (14) TO (9) TO (8) TO (8) TO (8)

Table 5.3: Execution times for group C in seconds, and number of time steps
checked.

In Table 5.6 we can see that, with the unconditional model, only 3 in-
stances less are solved than with SGPlan [CWH06]. But if we consider the
natural model, 7 more instances are solved, outperforming SGPlan.

We can conclude that the proposed encoding makes use of SMT to tightly
integrate arithmetic into the problem, where other approximations rely into
making state-space exploration on the numerical variables, or loosely inte-
grate external solvers for evaluating arithmetic constraints (and therefore
not being able to infer anything from the numerical side). Our approxima-
tion seems to be competitive with other exact and complete methods for
planning with resources on this problem, and also with some incomplete
(heuristic) ones. In particular, we have obtained better results than Num-
Reach [HGSK07] and similar results to SGPlan [CWH06]. We have seen
that the method of [HGSK07], which is based on approximating the reach-
able domains of numeric variables, is very sensitive to the number of distinct
possible values, and it is not well-suited for this real real-life problem.

Although SAT and SMT solvers have generic preprocessing steps to sim-
plify the input formulas, we observed that for MiniSAT those were harmful
for this problem. Nevertheless, it would be interesting to consider some
more ad hoc preprocessing steps to help reduce the search space.
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Inst
QF LIA encoding NumReach

Sequential ∀-step ∃-step SAT SAT w/o pre

D1 11.58 (5) 154.47 (5) 78.80 (5) 1097.26 (6) 24.71 (6)
D2 139.56 (10) 158.66 (5) 81.80 (5) 1777.23 (6) 37.44 (6)
D3 TO (12) 163.36 (5) 85.86 (5) TO (7) 144.29 (7)
D4 TO (13) 168.01 (5) 89.39 (5) TO (7) TO (7)
D5 TO (13) 173.36 (5) 93.17 (5) TO (7) TO (7)
D6 TO (13) 177.89 (5) 97.26 (5) TO (7) TO (7)
D7 TO (14) 182.66 (5) 100.92 (5) TO (7) TO (7)
D8 TO (14) 302.91 (7) 240.33 (7) TO (7) TO (7)
D9 TO (14) TO (8) TO (8) TO (7) TO (7)
D10 TO (14) 762.78 (8) 333.21 (7) TO (7) TO (7)
D11 TO (15) TO (8) TO (8) TO (7) TO (7)
D12 TO (14) TO (8) TO (8) TO (7) TO (7)
D13 TO (14) TO (8) TO (8) TO (7) TO (7)
D14 TO (17) TO (9) TO (8) TO (7) TO (7)
D15 TO (15) TO (9) TO (8) TO (7) TO (7)

Table 5.4: Execution times for group D in seconds, and number of time
steps checked.

60 instances
QF LIA encoding NumReach

Sequential ∀-step ∃-step SAT SAT w/o pre

Total solved 8 31 31 16 19
Faster instances 1 0 19 0 14

Table 5.5: Summary of the results.

Instance set
Unconditional model Natural model

SGPlan
Sequential ∀-step ∃-step Sequential ∀-step ∃-step

Group A 2 4 4 3 5 5 6
Group B 2 9 9 2 11 11 6
Group C 2 9 9 2 11 11 10
Group D 2 9 9 2 11 11 12

Total 8 31 31 9 38 38 34

Table 5.6: Number of instances solved by each approximation.





Chapter 6

A Semantic Notion of
Interference for Planning
Modulo Theories

Performing only syntactic checks for detecting interferences between actions
like the previous approaches seems too restrictive for numeric variables.
Our assumption is that with less edges in the disabling graph, less strongly
connected components will form and thus more actions will be able to be
scheduled to execute at the same time step. At the same time, formula sizes
will lower, less time steps will be needed and thus more problems will be
able to be solved.

One could try to build a set of rules that brings the number of edges of
the disabling graph close to its minimal. To be effective, this set of rules
would need to reason about the theory, and therefore they would depend on
the theory considered. In addition, every combination of theories would also
need its own set of rules. For this reason, in this chapter we propose a new
idea, which is to use SMT technology to perform semantic checks of inter-
ference at compile time, in order to increase the amount of parallelization
of plans.

The method presented is independent of any test suite or theory and
does not require any special purpose algorithm, as it relies on encoding the
possible interference situations between pairs of actions as SMT formulas
and checking their satisfiability, by calling an SMT solver, at compile time.

A new and relaxed notion of interference for the parallel execution of
actions is introduced, suitable for both ∀-step and ∃-step semantics. We
prove its correctness and motivate its usefulness with some examples.

75
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Finally, an encoding that takes advantage of this semantic notion of
interference is presented, together with some experimental results that show
its usefulness.

6.1 A Semantic Notion of Interference

In the following, we consider plans as sequences of sets of actions. A set of
actions planned at the same time is commonly called a happening [FL03].
Two actions can be concurrently planned if, roughly, they do not interfere.
It is commonly accepted that two actions are non-interfering only if the
composition of their effects is commutative, and there is no interaction be-
tween effects and preconditions. In [FL03, GSS08] the state resulting from
executing a happening is defined as the one obtained after applying the
composition of effects of the actions in the happening.

Example 21. Let a = 〈>, {x 7→ x + y + z}〉 and b = 〈>, {x 7→ x + 1, y 7→
y + 1, z 7→ z − 1}〉. These actions do not interfere, as their preconditions
are true (and hence cannot interact with effects) and their effects commute:
executing first a and then b, as well as executing first b and then a, produces
the same effect, which is that of an action of the form 〈>, {x 7→ x+ y+ z+
1, y 7→ y + 1, z 7→ z − 1}〉,

Example 22. Let c = 〈>, {x 7→ x+y+z}〉 and d = 〈>, {x 7→ x+1, y 7→ y+
2, z 7→ z − 1}〉. These actions interfere, since their effects do not commute.
Executing first c and then d is equivalent to executing 〈>, {x 7→ x+ y + z +
1, y 7→ y + 2, z 7→ z − 1}, whereas executing first d and then c is equivalent
to executing 〈>, {x 7→ x+ y+ z+ 2, y 7→ y+ 2, z 7→ z− 1}. Then they would
not be allowed to be planned in parallel.

Thanks to the commutativity requirement, effects of non-interfering ac-
tions can be composed in any order, allowing parallel plans to be serialized
in any order, while preserving their semantics. This adheres to the ∀-step
semantics of [RHN06], but it does not lift to the ∃-step semantics (intro-
duced in the same work for the Boolean case), where it is only necessary
that actions can be executed it at least one order, making it possible to
increase the number of parallel actions.

The main contributions on this chapter are a new relaxed semantics of
happening execution, and a new notion of interference that are suitable for
both ∀-step and ∃-step semantics [RHN06], in the context of PMT.

As we show in Section 6.2, the proposed notion of interference can more-
over be fully checked at compile time by means of satisfiability checks. As
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far as we know, previous approaches used syntactic or limited semantic ap-
proaches [KW99a, FL03, GSS08]. Note that non-interference of actions such
those in Example 21 cannot be easily determined syntactically.

In the rest of this section we introduce the new semantics of happen-
ing execution, define the new notion of interference, and prove that their
combination is valid for both ∀-step and ∃-step semantics.

Definition 6.1.1 (Commuting Assignments). Assignments {x 7→ exp1} and
{x 7→ exp2} commute, for a variable x and two expressions (terms) exp1 and
exp2 over a state space S modulo T , if T |= (exp2{x 7→ exp1} = exp1{x 7→
exp2}).

Example 23. If T is the theory of real numbers, then {x 7→ x + 1} and
{x 7→ x− 2} commute, since T |= ((x− 2) + 1 = (x+ 1)− 2), whereas {x 7→
x+1} and {x 7→ x∗2} do not commute, since T 6|= ((x+1)∗2 = (x∗2)+1).

Definition 6.1.2 (Simply Commuting Actions). We will refer to a set A =
{a1, . . . , an} of actions as simply commuting, for a state space S modulo T ,
if for every variable x ∈ var(S) and every pair of assignments {x 7→ exp1}
and {x 7→ exp2} in the effects of actions in A, {x 7→ exp1} and {x 7→ exp2}
commute.

Definition 6.1.3 (Happening Action). Let A = {a1, . . . , an} be a set of
simply commuting actions. We define the happening action for A as an
action h(A) = 〈Preh(A), σh(A)〉 with

Preh(A) =
∧
a∈A

Prea

and
σh(A) =

⋃
x∈var(S)

{σx,1 ◦ · · · ◦ σx,n}

where σx,i, for i in 1..n, is the mapping of variable x in the effects of action
ai, and ◦ denotes the composition of functions.

Note that the effects on each variable can be composed in any order,
because of the commutation requirement. Therefore, h(A) is well-defined.

Definition 6.1.4 (Happening Execution). Let A = {a1, . . . , an} be a set of
simply commuting actions. Then, the state resulting from the execution of
the happening A in state s, denoted appA(s), is defined as apph(A)(s), where
h(A) is the happening action corresponding to A.

Note that if some action in A is not applicable in state s then appA(s)
is undefined.
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Example 24. Let a = 〈>, {x 7→ x+1, y 7→ y+1}〉 and b = 〈>, {y 7→ y+x}〉.
Then app{a,b}(s), for a state s, is apph({a,b})(s), with h({a, b}) = 〈>, {x 7→
x+ 1, y 7→ (y + x) + 1}〉.

A key difference with the transition functions for happenings defined
in [FL03] and [GSS08] is that , instead of considering the composition of
functions (i.e., the composition of effects of actions, seen as functions on all
variables), we are considering the function of compositions (i.e., the function
defined by the composition of assignments to each single variable across
all actions). We consider the possibility of composing the effects on each
variable in any order, as a minimal requirement to be able to serialize plans
in some order (see definitions and proofs below). Our aim is to show that
the proposed semantics for happenings allows us to increase the number
of parallel actions in the context of ∃-step plans, where parallel semantics
and interference notions of existing approaches to numeric planning are too
restrictive.

Definition 6.1.5 (Affecting Action). Given two actions a = 〈Prea, σa〉 and
b = 〈Preb, σb〉, for a state space S modulo T , we consider a to affect b if

1. Prea ∧ Preb ∧ ¬(Prebσa) is T -satisfiable, or

2. either a and b are not simply commuting, or Prea∧Preb∧¬(xσh({a,b}) =
xσbσa) is T -satisfiable for some variable x ∈ var(S), where h({a, b})
denotes the happening action for a and b,

that is, a can impede the execution of b, or they are not simply commuting,
or they are simply commuting but executing first a and then b has a different
effect than that of the happening {a, b}.

Recall that h({a, b}) is defined only for simply commuting actions.

Example 25. Following Example 24, where actions a and b are simply
commuting, we have that a affects b since yσh({a,b}) = (y + x) + 1, while
yσbσa = (y+x)σa = (y+ 1) + (x+ 1), and thus Prea ∧Preb ∧¬(yσh({a,b}) =
yσbσa) is T -satisfiable. On the contrary, b does not affect a, since the
preconditions of both actions are true, xσh({a,b}) = x + 1 = xσbσa, and
yσaσb = (y + 1)σb = (y + x) + 1. This is to say that the effect of the hap-
pening {a, b} is the same as executing first b and then a, but not first a and
then b. In fact, in this example we have app{a,b}(s) = appb;a(s) 6= appa;b(s)
for all s.

Definition 6.1.6 (Interference). Given two actions a and b, we consider a
and b to interfere if a affects b or b affects a.
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6.1.1 ∀-Step Plans

Lack of interference guarantees that actions in a happening can be exe-
cuted sequentially in any total order and that the final state is independent
of the ordering (see Theorem 6.1.15). The notion of ∀-step plan, defined
in [RHN06], can be generalized to the setting of PMT as follows.

Definition 6.1.7 (∀-Step Plan). Given a set of actions A and an initial
state I, for a state space S modulo T , a ∀-step plan for A and I is a
sequence P = 〈A0, . . . , Al−1〉 of sets of actions for some l ≥ 0, such that
there is a sequence of states s0, . . . , sl (the execution of P ) such that

1. s0 = I, and

2. for all i ∈ {0, . . . , l − 1} and every total ordering a1 < · · · < an of Ai,
appa1;...;an(si) is defined and equals si+1.

Lemma 6.1.8. Let A be a set of actions, for a state space S modulo T ,
and let s ∈ S be a state such that all actions in A are applicable in s. Then
appa1;...;an(s) is defined for every ordering a1 < · · · < an of A such that if
ai < aj then ai does not affect aj.

Proof. By induction on the number of actions n in A. If n = 1 we are
trivially done. If n ≥ 2, consider any ordering a1 < · · · < an of A such
that if ai < aj then ai does not affect aj . Let a1 = 〈Prea1 , σa1〉. First
of all we show, by contradiction, that appai(appa1(s)) is defined for every
ai = 〈Preai , σai〉 such that a1 < ai. Suppose that T, appa1(s) 6|= Preai , i.e.,
that ai is not applicable after applying a1 in state s. This is equivalent to say
that T, s 6|= Preaiσa1 and, since s is an assignment, to evalsT (Preaiσa1) = ⊥.
Now, by assumption, we have T, s |= Prea1 and T, s |= Preai , since all actions
are applicable in state s. Therefore, T, s |= Prea1 ∧Preai ∧¬(Preaiσa1), i.e.,
Prea1 ∧ Preai ∧ ¬(Preaiσa1) is T -satisfiable, contradicting that a1 does not
affect ai. Finally, since all actions ai such that a1 < ai are applicable in state
appa1(s), by the induction hypothesis we have that appa2;...;an(appa1(s)) is
defined for any ordering a2 < · · · < an of A \ {a1} such that if ai < aj then
ai does not affect aj , and hence so is appa1;a2;...;an(s) for the ordering we
have considered.

Lemma 6.1.9. Let a and b be two simply commuting actions, for a state
space S modulo T , such that a does not affect b, and let s ∈ S be a state
such that a and b are applicable in s. Then app{a,b}(s) = appa;b(s).
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Proof. Let a = 〈Prea, σa〉 and b = 〈Preb, σb〉. Since a and b are applicable
in s, we have that app{a,b}(s) is defined. Moreover, since a does not affect
b, by Lemma 6.1.8 we have that appa;b(s) is defined.

We conclude by showing that app{a,b}(s)[x] = appa;b(s)[x] for every vari-
able x. Recall that app{a,b}(s) = apph({a,b})(s), where h({a, b}) denotes
the happening action for a and b. Now, by definition of application, we
have apph({a,b})(s)[x] = evalsT (xσh({a,b})) and appa;b(s)[x] = evalsT (xσbσa),
for every variable x. On the other hand, since a does not affect b, Prea ∧
Preb ∧ ¬(xσh({a,b}) = xσbσa) is T-unsatisfiable. And, since a and b are
both applicable in state s, we have T, s |= Prea and T, s |= Preb. There-
fore T, s |= Prea ∧ Preb ∧ (xσh({a,b}) = xσbσa), and thus evalsT (xσh({a,b})) =
evalsT (xσbσa), which lets us conclude.

Lemma 6.1.10. Let a and b be two non-interfering actions, for a state
space S modulo T , and let s ∈ S be a state such that a and b are applicable
in s. Then appa;b(s) = appb;a(s).

Proof. Since a and b are non-interfering, then they are simply commuting,
and neither a affects b nor b affects a. Then, by Lemma 6.1.9, we have
app{a,b}(s) = appa;b(s), and app{a,b}(s) = appb;a(s).

Lemma 6.1.11. Let A be a set of non-interfering actions, for a state space
S modulo T , and let s ∈ S be a state such that all actions in A are applicable
in s. Then appa1;...;an(s) is the same state for every total ordering a1 < · · · <
an of A.

Proof. Since actions in A are non-interfering, and applicable in state s, by
Lemma 6.1.8 we have that appa1;...;an(s) is defined for any total ordering
a1 < · · · < an of A. We conclude by showing that any two consecutive ac-
tions in the sequence a1; . . . ; an can be permuted, preserving the final state.
Consider any two consecutive actions ai and ai+1 in the sequence a1; . . . ; an.
Since appa1;...;an(s) is defined, so is appa1;...;ai(s), and ai is applicable in
state appa1;...;ai−1(s) (in case that i = 1, let appa1;...;ai−1(s) denote the state
s). Now, since actions in A are non-interfering, by Lemma 6.1.8 we have
that appa1;...;ai−1;ai+1(s) is also defined, so ai+1 is also applicable in state
appa1;...;ai−1(s). Finally, by the Lemma 6.1.10, it follows that

appai;ai+1(appa1;...;ai−1(s)) = appai+1;ai(appa1;...;ai−1(s))

which, by definition of application, is equivalent to

appa1;...;ai−1;ai;ai+1;...;an(s) = appa1;...;ai−1;ai+1;ai;...;an(s)

.
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Lemma 6.1.12. Let A be a set of simply commuting actions, for a state
space S modulo T , such that |A| ≥ 2. Then, for every action a ∈ A, we have
that a and h(A\{a}) are simply commuting, and h({a, h(A\{a})}) = h(A).

Proof. Let A = {a1, a2, . . . , an}, a = a1 and A′ = A \ {a} = {a2, . . . , an}.
According to the definition of happening action, we have that σh(A′) =
∪x∈var(S){σx,2◦· · ·◦σx,n}, where σx,i, for i in 2..n, is the mapping of variable x
in the effects of action ai. Now, since composition of functions is associative,
we have that σx,1 ◦ (σx,2 ◦ · · · ◦σx,n) = σx,1 ◦σx,2 ◦ · · · ◦σx,n for every variable
x, being σx,1 the mapping of variable x in the effects of action a1. And, since
actions in A are simply commuting, we have that σx,1 ◦ σx,2 ◦ · · · ◦ σx,n =
(σx,2 ◦ · · · ◦ σx,n) ◦ σx1 , which lets us conclude that a and h(A′) are simply
commuting.

Now, provided that a and h(A′) are simply commuting, in order to prove
that the happening actions h({a, h(A′)}) and h(A) are equivalent, we need to
show that they have equivalent preconditions and effects. For preconditions,
we have Preh({a,h(A′)}) = Prea∧Preh(A′) = ∧a∈APrea = Preh(A). For effects,
we have σh({a,h(A′)}) = ∪x∈var(S){σx,1◦(σx,2◦· · ·◦σx,n)} which, as seen before,
is equivalent to ∪x∈var(S){σx,1 ◦ σx,2 ◦ · · · ◦ σx,n}.

Lemma 6.1.13. Let a, b and c be three simply commuting actions, for a
state space S modulo T . If a affects neither b nor c, then a does not affect
the happening action h({b, c}).

Proof. Let a = 〈Prea, σa〉, b = 〈Preb, σb〉 and c = 〈Prec, σc〉. We need to
prove that

1. Prea ∧ Preh({b,c}) ∧ ¬(Preh({b,c})σa) is T -unsatisfiable,

2. a and h({b, c}) are simply commuting, and

3. Prea ∧ Preh({b,c}) ∧ ¬(xσh({a,h({b,c})}) = xσh({b,c})σa) is T -unsatisfiable
for every variable x ∈ var(S).

For condition 1, since Preh({b,c}) = Preb ∧ Prec, we have that Prea ∧
Preh({b,c}) ∧ ¬(Preh({b,c})σa) = Prea ∧ Preb ∧ Prec ∧ ¬((Preb ∧ Prec)σa) =
(Prea ∧ Preb ∧ Prec ∧ ¬(Prebσa)) ∨ (Prea ∧ Preb ∧ Prec ∧ ¬(Precσa)). Now
assume that Prea ∧ Preb ∧ Prec ∧ ¬(Prebσa) is T -satisfiable (the other case
is analogous). Then Prea ∧ Preb ∧ ¬(Prebσa) would also be T -satisfiable,
contradicting that a does not affect b.

Condition 2 follows directly from Lemma 6.1.12.
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For condition 3, we proceed by contradiction. Let us assume that Prea∧
Preh({b,c}) ∧ ¬(xσh({a,h({b,c})}) = xσh({b,c})σa) is T -satisfiable for some vari-
able x ∈ var(S). Then, by definition of happening action, we have Prea ∧
Preb ∧ Prec ∧ ¬(x(σx,b ◦ σx,c ◦ σx,a) = x(σx,b ◦ σx,c)σa) is T -satisfiable,
where σx,a, σx,b and σx,c are the mappings of variable x in the effects of
actions a, b and c, respectively. So there exists some assignment s such
that T, s |= Prea, T, s |= Preb, T, s |= Prec, and evalsT (xσx,bσx,cσx,a) 6=
evalsT (xσx,bσx,cσa). This implies the existence of some variable y different
from x such that σa[y] 6= y. Moreover, since σx,b and σx,c are substitu-
tions replacing only variable x, y must be a variable in xσx,b or in xσx,c
and, necessarily, evalsT (xσx,bσx,a) 6= evalsT (xσx,bσa) or evalsT (xσx,cσx,a) 6=
evalsT (xσx,cσa). But this, together with T, s |= Prea, T, s |= Preb and
T, s |= Prec, contradicts a affecting neither b nor c.

Lemma 6.1.14. Let A be a set of actions, and a an action, for a state
space S modulo T , such that the actions in A ∪ {a} are simply commuting.
If a affects none of the actions in A, then a does not affect the happening
action h(A).

Proof. Let A = {a1, . . . , an}. We proceed by induction on the number of
actions n in A. If n = 1 then we are trivially done, since h(A) = a1 and, by
assumption, a does not affect a1. If n ≥ 2, let A′ = A\{a1}. Then a neither
affects a1 nor the happening action h(A′) (by the induction hypothesis).
Moreover, since actions in A ∪ {a} are simply commuting, so are a, a′ and
h(A′). Then, by Lemma 6.1.13, we have that a does not affect h({a′, h(A′)})
and, by Lemma 6.1.12, h({a′, h(A′)}) = h(A).

Theorem 6.1.15. Let A be a set of non-interfering actions, for a state
space S modulo T , and s ∈ S a state such that appA(s) is defined. Then
appA(s) = appa1;...;an(s) for any total ordering a1 < · · · < an of A.

Proof. By induction on the number of actions n in A. If n = 1 then we
are trivially done. If n ≥ 2, then let A = {a} ∪ A′. Since actions in A
are non-interfering, then they are simply commuting and a affects none of
the actions in A′. Then, by Lemma 6.1.14, we have that a does not affect
the happening action h(A′). Now observe that, since appA(s) is defined and
Preh(A) =

∧
a∈A Prea, both a and h(A′) are applicable in state s. Then, by

Lemma 6.1.9, we have that app{a,h(A′)}(s) = appa;h(A′)(s). We conclude by
showing that appA(s) = app{a,h(A′)}(s) and appa;h(A′)(s) = appa1;...;an(s) for
any total ordering a1 < · · · < an of A.

Equality appA(s) = app{a,h(A′)}(s) holds by Lemma 6.1.12. For equality
appa;h(A′)(s) = appa1;...;an(s), observe that appa;h(A′)(s) = appA′(appa(s)).
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Since actions in A′ are non-interfering and appA′(appa(s)) is defined, by the
induction hypothesis we have appA′(appa(s)) = appa1;...;an−1(appa(s)) for any
total ordering a1 < · · · < an−1 of A′, i.e., appa;h(A′)(s) = appa;a1;...;an−1(s)
for any total ordering a1 < · · · < an−1 of A′. Finally, since actions in A are
non-interfering and all of them are applicable in state s, by Lemma 6.1.11 we
have that appa;h(A′)(s) = appa1;...;an(s) for any total ordering a1 < · · · < an
of A

6.1.2 ∃-Step Plans

Here we generalize the notion of ∃-step plan, proposed in [DNK97] and
further developed in [RHN06], to the setting of Planning modulo Theories.
Under the ∃-step semantics, it is not necessary that all actions are non-
interfering as long as they can be executed it at least one order, which
makes it possible increase the number of parallel actions still further.

Definition 6.1.16 (∃-Step Plan). Given a set of actions A and an initial
state I, for a state space S modulo T , a ∃-step plan for A and I is a
sequence P = 〈A0, . . . , Al−1〉 of sets of actions together with a sequence of
states s0, . . . , sl (the execution of P ), for some l ≥ 0, such that

1. s0 = I, and

2. for all i ∈ {0, . . . , l − 1} there is a total ordering a1 < · · · < an of Ai,
such that appa1;...;an(si) is defined and equals si+1.

Instead of requiring that each group Ai of actions can be ordered to
any total order, as in ∀-step semantics, in ∃-step semantics it is sufficient
that there is one order that maps state si to si+1. Note that under this
semantics the successor si+1 of si is not uniquely determined solely by Ai,
as the successor depends on the implicit ordering of Ai and, hence, the
definition has to make the execution s0, . . . , sl explicit.

Theorem 6.1.17. Let A be a set of simply commuting actions, for a state
space S modulo T , such that, for some total ordering a1 < · · · < an of A, if
ai < aj then ai does not affect aj, and let s ∈ S be a state such that appA(s)
is defined. Then appA(s) = appa1;...;an(s).

Proof. The proof is analogous to the proof of Theorem 6.1.15, but without
using Lemma 6.1.11. We proceed by induction on the number of actions n in
A. If n = 1 then we are trivially done. If n ≥ 2, then let A′ = {a2, . . . , an}.
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We have that actions in A are simply commuting and a1 affects none of
the actions in A′. Then, by Lemma 6.1.14, we have that a1 does not affect
the happening action h(A′). Now observe that, since appA(s) is defined and
Preh(A) =

∧
a∈A Prea, both a1 and h(A′) are applicable in state s. Then, by

Lemma 6.1.9, we have that app{a1,h(A′)}(s) = appa1;h(A′)(s). We conclude by
showing that appA(s) = app{a1,h(A′)}(s) and appa1;h(A′)(s) = appa1;...;an(s).

Equality appA(s) = app{a1,h(A′)}(s) holds by Lemma 6.1.12. For equality
appa1;h(A′)(s) = appa1;...;an(s), observe that appa1;h(A′)(s) = appA′(appa1(s)).
Since actions in A′ are simply commuting and appA′(appa1(s)) is defined, by
the induction we have that appA′(appa1(s)) = appa2;...;an(appa1(s)) according
to the given ordering, and hence appa1;h(A′)(s) = appa1;...;an(s).

6.2 Checking Interference with SMT

We can check the proposed notion of interference, according to Defini-
tions 6.1.1, 6.1.2 and 6.1.5, by means of checking the satisfiability of some
SMT formulas at compile time. The following simplified example, extracted
from the Planes domain, demonstrates how this can be achieved. The Planes
problem consists in transporting people between several cities using planes,
with a limited number of seats. The considered actions are board and fly.
Boarding is limited by seat availability, and a plane can only fly if it is
transporting somebody. If we consider action a as:

board person1 plane1 city1 = 〈
seats plane1 > onboard plane1∧ at person1 city1 ∧ at plane1 city1,

{at person1 city1 = ⊥, in person1 plane1 = >,
onboard plane1 = onboard plane1 + 1}〉

and action b as:

fly plane1 city1 city2 = 〈
onboard plane1 > 0 ∧ at plane1 city1,

{at plane1 city1 = ⊥, at plane1 city2 = >}〉

then most planners, checking interference syntactically, would determine
interference, since action a modifies the onboard plane1 variable and action
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b uses this variable in its precondition. If we consider

Prea = {seats plane1 > onboard plane1∧
at person1 city1 ∧ at plane1 city1}

Preb = {onboard plane1 > 0 ∧ at plane1 city1}
Eff a = {at person1 city1 = ⊥, in person1 plane1 = >,

onboard plane1 = onboard plane1 + 1}
Eff b = {at plane1 city1 = ⊥, at plane1 city2 = >}

according to Definition 6.1.5 it can be seen that a does not affect b, since:

1. Prea ∧ Preb ∧ ¬(Prebσa) is T -unsatisfiable. In this case Preb can-
not be falsified by Eff a because, if we consider Preb, there is no
effect that modify at plane city1 and the effect onboard plane1 =
onboard plane1 + 1 will never be able to falsify onboard plane1 > 0
on Preb

2. a and b are simply commuting because there is no common variable in
Eff a and Eff b, and

3. Prea ∧ Preb ∧ ¬(xσh({a,b}) = xσbσa) is T -unsatisfiable for all variables
x, because Eff a and Eff b do not share any variable and therefore there
cannot be any problem derived from the ordering of effects

The first check of Definition 6.1.5 can be modelled in the SMT-LIB
language [BST10] as follows:

;; declaration of problem variables.

(declare-fun at_person1_city1 () Bool)

(declare-fun at_plane1_city1 () Bool)

(declare-fun seats_plane1 () Int)

(declare-fun onboard_plane1 () Int)

;; preconditions of actions "board" and "fly"

(assert (and (> seats_plane1 onboard_plane1)

at_person1_city1

at_plane1_city1))

(assert (and (> onboard_plane1 0)

at_plane1_city1))
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;; negated precondition of fly after board

(assert (not (and (> (+ onboard_plane1 1) 0)

at_plane1_city1)))

(check-sat)

Note that in the negated precondition of fly, we are replacing each vari-
able by the term which represents its value after the execution of board,
i.e., we replace onboard plane1 by onboard plane1 + 1. A negative answer
should be obtained from the SMT solver.

The check of simply commutativity would consist in checking for all
variables commonly modified by the two actions, if the effects can be com-
muted. In the example, there are no common variables modified by both
actions. Hence, suppose we are checking whether two arbitrary assignments
{x 7→ exp1} and {x 7→ exp2} commute. According to Definition 6.1.1, this
would consist in checking whether ¬(exp2{x 7→ exp1} = exp1{x 7→ exp2})
is T -satisfiable. A negative answer would imply T -unsatisfiability of this
negation and, hence, commutativity of the assignments.

The third check can be implemented analogously by means of satisfia-
bility checks.

An important difference with the purely syntactic definition of interfer-
ence of [Rin09] is that we include preconditions of the checked actions in
our checks. More precisely, the reason for adding the preconditions in all
satisfiability checks is that we require that the two actions for which we
check potential interference can occur in parallel. This way, we are able
to avoid many “false positive” interference relationships, which would make
the final formula grow unnecessarily. It can also be seen as a combination
of a interference and reachability check, all in one. All in all, we obtain
a much more fine-grained notion of interference, that will help to increase
the parallelization of actions. Note that the interference relationships deter-
mined semantically will always be a subset of the interference relationships
determined syntactically. Interestingly, we will be using an SMT solver both
at compile time, as an oracle to predict interference relationships, and at
solving time.

Ungrounded checking

Although these checks using a modern SMT solver are negligible in terms
of time, with big planning problems the number of checks can grow consid-
erably. Here we propose an optimization to be able to check interferences
between actions without the need of grounding them first.
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The main idea is to model the interference queries as before, but substi-
tuting the action parameters appearing in the preconditions and effects not
with concrete values, but with variables. Then, incorporate to the formula
the disequality relationships between variables of different types and ask the
solver for a model. If the first action can affect the second, a query to the
SMT solver would give a concrete set of values that explain why the first
action can interfere with the second. But note that what we would really
need is not one but all models of the formula, because to finally add the
mutexes to the encoding we need the concrete grounded actions.

The #SMT problem is the problem of counting the number of satisfying
assignments of a given SMT formula. In our case, we do not need to count
them, but to enumerate them. Unfortunately no efficient implementation of
an SMT solver that enumerate models has been found. The alternative is
using a SMT solver, encode the problem as before, get a model, and then
iteratively add a clause prohibiting the model given and ask the solver again.
This approximation would need at least as many queries to the SMT solver
as concrete interferences exist, so at first hand it seemed very inefficient.
This is the reason why we propose an alternative.

Lets consider the original lifted actions in the PDDL model of the pre-
vious example:

(:action board

:parameters (?p - person ?a1 - aircraft ?c1 - city)

:precondition (and (at ?p ?c1)

(at ?a1 ?c1)

(> (seats ?a1) (onboard ?a1)))

:effect (and (not (at ?p ?c1))

(in ?p ?a1)

(increase (onboard ?a1) 1)))

(:action fly

:parameters (?a2 - aircraft ?c2 ?c3 - city)

:precondition (and (at ?a2 ?c2)

(> (onboard ?a2) 0))

:effect (and (not (at ?a2 ?c2))

(at ?a ?c3)))
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We have three planes in the problem: A320-1, A320-2 and A320-3. If
we assign A320-1 to parameters ?a1 and ?a2, one should find the same
interferences than if we assign A320-2 to parameters ?a1 and ?a2. The same
should happen if we assign A320-1 and A320-2 or A320-2 and A320-3 to ?a1
and ?a2 respectively. So, to reason about interference between actions board
and fly, we will need to determine, for example, if the actions interfere in
the case that ?a1 and ?a2 are the same aircraft. Or in the case that cities
?c1 and ?c2 are the same, etc. That is, interference is determined depending
on the equality relationship between parameters.

Since equality or disequality between parameters of different types has
no sense, the first thing we need is to group the parameters of the same type
in sets, by its most general declared type.

Then, one should need to consider all different possible equality and
disequality relationships between the parameters of the same type, to find
out in which cases one action can interfere with another action.

Following the previous example, in total we have three parameters c1,
c2 and c3 of the type city, two parameters a1 and a2 of the type aircraft
and one parameter p of the type person. Therefore, to enumerate all inter-
ferences we have to check the following situations:

c1 = c2 = c3, a1 = a2

c1 = c2, c2 6= c3, a1 = a2

c1 = c3, c2 6= c3, a1 = a2

c1 6= c2, c2 6= c3, a1 = a2

. . .

If we consider all the possible partitions of the set, they map directly to all
the possible equalities and disequalities between elements of the set.

Example 26. Consider set {A,B,C}. All the partitions of this set are:

• {{A}, {B}, {C}}

• {{A,B}, {C}}

• {{A,C}, {B}}

• {{A}, {B,C}}

• {{A,B,C}}

When two elements appear in the same set, we consider them to be equal, and
when they appear on different sets, we consider them to be different. So, on
partition {{A,C}, {B}} we should consider that A = C,A 6= B and C 6= B.
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Once the set partitions have been generated for each set of parameters,
the Cartesian product between all the sets has to be done to obtain the
combination of equality and disequality relations between the parameters of
the two actions.

We propose to model interference as shown in Section 6.2, and do one
query for each possible combination of equality and disequality between
parameters of the two actions. Instead of using variables or constant values,
for convenience when we intent for two parameters to be equal we substitute
them for the same integer, and by different integers when we want them to
be different.

This approach results in much fewer queries to the SMT solver. Having
the same example, with a total of 2 planes, 4 persons and 6 cities, a grounded
checking would result in 4×2×6 = 48 grounded fly actions and 2×6×6 = 72
grounded board actions. This would result in 48 × 72 = 3456 grounded
checks.

The total number of partitions of an n-element set is the Bell number Bn.
If we now consider the proposed ungrounded checking method, the sets of
parameters will be the following: for planes Splanes = {a1, a2} and for cities
Scities = {c1, c2, c3}. Bell numbers for these sets are B2 = 2 and B3 = 5, so
we will have a total of 2× 5 = 10 ungrounded checks. As it can be seen, the
number of checks needed using this technique is much lower than using the
grounded checking, and thus scales much better with large problems.

Algorithm 8 Mutex Generation

Input: A : A set of PDDL actions
Output: M : A set of actions pairs 〈a, b〉 where a interferes with b

1: Ap ←GeneratePairs(A)
2: M ← ∅
3: for all {a1, a2} ∈ Ap do
4: M ←M ∪ InterferenceChecking(a1,a2)
5: end for
6: return M

Algorithm 8 discovers, for a given set of ungrounded actions, the min-
imum set of interferences between them. It starts by generating all the
possible pairs of actions. Then, for each generated pair, it calls Algorithm 9
to discover the minimum set of grounded interferences between the two ac-
tions.

Algorithm 9 receives two ungrounded actions and returns the minimum
set of grounded interferences between them. It uses the following functions:



90 CHAPTER 6. SEMANTIC INTERFERENCE FOR PMT

Algorithm 9 Interference Checking

Input: a1 : first action, a2 : second action
Output: M : The set of ground interferences between a1 and a2

1: [p1, p2, . . . , pn]← groupByType(parameters(a1) ∪ parameters(a2))
2: L← setPartitions(p1) × setPartitions(p2) × · · ·× setPartitions(pn)
3: for l ∈ L do
4: com←pairWithIntegers(l)
5: if check1(com,a1,a2) ∨ check2(com,a1,a2) then
6: M ← generateInterferences(a1,a2,com)
7: end if
8: end for
9: return M

parameters given an action, it returns a set with all the parameters of
that action.

groupByType receives a set of parameters, and returns a list of sets. Each
set groups the original parameters by its most general type.

setPartitions receives a set, and efficiently [KN05] generates all the possi-
ble partitions of the original set.

pairWithIntegers receives a n-tuple of sets of sets of parameters (i.e., one
of the possible partitions above), where each component corresponds
to a type, whose elements (sets) denote parameters with the same value
(and different to the parameters in the other sets). Then, it returns
the same n-tuple but with each parameter paired to an integer. This
integer will be equal to integers on the same set and different to others.

For example, given the n-tuple ({{A,B}, {C}}, {{D}, {E}}) , as A and
B belong to the same set, they will have the same integer. The other
elements belong to different sets, so they will have different integers.
Given this example, a possible return value would be:

{{{〈A, 1〉, 〈B, 1〉}, {〈C, 2〉}}, {{〈D, 3〉}, {〈E, 4〉}}}

check1 This function encodes the first condition of interference explained
in Definition 6.1.5 to SMT: substitutes each parameter of the action
by the integer paired with it and finally checks and returns the satis-
fiability of the resulting formula.

check2 Does the same as the former, but with the second condition in
Definition 6.1.5.
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generateInterferences generates all the ground instances of the pair of
actions (a1, a2) that correspond to the equalities and disequalities in-
duced by com.

For example, consider a problem with persons p1 and p2 and cities
Barcelona and London. The two considered actions are: a1 = board

with parameters (?p - person ?c - city) and action a2 = fly with
parameters (?c1 -city ?c2 - city). If we consider the n-tuple com
to be {{〈c, 1〉, 〈c1, 1〉, 〈c2, 1〉}, {〈p, 2〉}} (all city parameters need to be
equal), the generated interferences would be:

〈board p1 barcelona,fly barcelona barcelona〉
〈board p1 london,fly london london〉
〈board p2 barcelona,fly barcelona barcelona〉
〈board p2 london,fly london london〉

6.3 Chained SMT Encoding

It is not difficult to see that the encoding described in Section 5.2 would
be correct for sequential plans, but it does not adhere to the parallel plan
semantics of Definition 6.1.4. If two actions planned at the same time modify
a same variable, two different situations can arise. On the one hand, if the
assignments are not equivalent, then the SMT formula encoding the planning
problem will become unsatisfiable. Although this is right for the Boolean
case, it is more subtle for other theories, where effects can be cumulative.
For example, two assignments {x 7→ x + 1} and {x 7→ x + 2} would result
into subformulas xt+1 = xt + 1 and xt+1 = xt + 2 which, together, are
unsatisfiable. This, in practice, would rule out many parallel plans.

On the other hand, if assignments were equivalent, then all but one would
become redundant in the SMT formula. Then, the formula would possibly
be satisfiable but, in this case, solutions would not adhere to the semantics
given in Definition 6.1.4, where effects of actions planned at the same time
are composed. A simple way of overcoming this problem could be to forbid
the parallel execution of actions modifying a same non-Boolean variable, but
this would rule out the parallelization of actions with cumulative effects.

For this reason, in this section we propose a finer encoding for planning
as SMT as a particular case of PMT (Chained SMT Encoding from now
on). It is valid for any theory T under a quantifier-free first-order logic with
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equality. This encoding is an extension to the planning as SMT encoding
presented in Section 5.2. It builds onto the former in order to add support
for cumulative effects in parallel plans.

Let π = 〈S,A, I,G〉 be a planning problem modulo T , for a theory T
under a quantifier-free first-order logic with equality. For each variable x in
var(S) and each time step t, a new variable xt of the corresponding type is
introduced, denoting the value of x at step t. Moreover, for each action a
and each time step t, a Boolean variable at is introduced, denoting whether
a is executed at step t.

Given a term s, by st we denote same term s, where all variables x in
var(S) have been replaced by xt, and analogously for formulas. For example
(x+ y)t = xt + yt, and (p ∧ x > 0)t = pt ∧ xt > 0.

For the case of effects, we define

{x 7→ >}t def
= xt+1

{x 7→ ⊥}t def
= ¬xt+1

{x 7→ s}t def
= (xt+1 = st)

where s is a non-Boolean term belonging to theory T . For example, for an
assignment {x 7→ x + k}, where k is a constant, we have {x 7→ x + k}t =
(xt+1 = xt + k).

For sets of assignments, i.e., action effects, we define

({x 7→ s} ∪ Eff )t
def
= {x 7→ s}t ∧ Eff t

∅t def
= >

where s is a term (either Boolean or not) and Eff is a set of assignments.
Let N be the set of non-Boolean variables from var(S). For each action

a = 〈Prea,Eff a〉 and each variable n ∈ N , let Eff a,n be the assignment
{n 7→ exp} ∈ Eff a, or the empty set if there is no such assignment. For each
n ∈ N , let An = {a | a ∈ A∧Eff a,n 6= ∅}, i.e., the set of actions that modify
variable n.

The constraints of the proposed encoding are as follows. As on the
previous encoding, for each time step t, execution of an action implies that
its precondition is met:

at → Preta ∀a = 〈Prea,Eff a〉 ∈ A (6.1)

On the previous encoding, constraint 5.2 stated that, if the action is
executed, each of its effects will hold at the next time step. It was encoded
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as follows:

at → Eff t
a ∀a = 〈Prea,Eff a〉 ∈ A

Now, this constraint has to be split and rewritten as follows, in order
to take into account a possible arbitrary number of consecutive assignments
(or “chain of assignments”) on each variable n ∈ N . First of all, we state
the constraints for variables n ∈ N such that |An| = 1, i.e., those that are
modified only by one action:

at → (Eff a \ ∪n∈N,|An|>1{Eff a,n})t

∀a = 〈Prea,Eff a〉 ∈ A (6.2)

Then, for each variable n ∈ N such that |An| > 1, and for each time
step t, the following constraints are introduced, using additional variables
nt0, . . . , n

t
|An| of the type of n, and considering an enumeration a1, . . . , a|An|

of the actions in An:

nt = nt0

ati → Eff t
ai,n{n

t+1 7→ nti, n
t 7→ nti−1} ∀ai ∈ a1, . . . , a|An|

¬ati → nti = nti−1 ∀ai ∈ a1, . . . , a|An| (6.3)

nt+1 = nt|An|

Finally, as before, we need explanatory axioms to express the reason of
a change in state variables. For each variable x in var(S):

xt 6= xt+1 →
∨

∀a=〈Prea,Eff a〉∈A
such that ∃{x 7→s}∈Eff a

at

(6.4)

That is, a change in the value of x implies the execution of at least one
action that has an assignment to x among its effects.

Example 27. Lets suppose we have actions A = {a1, a2}, being a1 =
〈>, {x 7→ x + 1, y 7→ 0}〉 and a2 = 〈>, {x 7→ x + 2, z 7→ >}〉. The set
of actions that modify variable x is Ax = {a1, a2}, and the one for variable
y is Ay = {a1}. Given the encoding and a time step t, Constraint 6.1 would
give:

at1 → > at2 → >
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as both actions have > as its preconditions. Constraint 6.2 gives:

at1 → yt+1 = 0 at2 → zt+1 = >

Note that all effects that modify variable x are not expressed, as |Ax| >
1. For expressing the possible chain of assignments on variable x, Con-
straint 6.3 is used instead. We would need the extra variables xt0, xt1, xt2
together with constraints:

xt = xt0

at1 → xt1 = xt0 + 1 ¬at1 → xt1 = xt0

at2 → xt2 = xt1 + 2 ¬at2 → xt2 = xt1

xt+1 = xt2

Finally, Constraint 6.4 encodes the frame axioms:

xt 6= xt+1 → at1 ∨ at2
yt 6= yt+1 → a1

zt 6= zt+1 → a2

6.3.1 Sequential and Parallel Plans

The previous constraints have to be complemented, depending on the type
of parallelism we wish. Sequential plans with this encoding would not make
sense, as it is basically an extension of the previous encoding in Section 5.2,
expanded to support more parallelism. ∀-step and ∃-step plans can be im-
plemented the same way as described in Section 5.2.2.

6.3.2 Path-based strong Components Order

If we choose to consider ∃-step plans, an order between actions is needed
to decide what mutexes should be added. In this section we propose a
new algorithm to obtain an order, based on an algorithm [Gab00] that uses
depth-first search to compute the strongly connected components of a given
graph.

Note that, with the considered notion of interference, and only with
respect to effects, the order between actions is not important. This is because
the second point of the interference notion presented in Definition 6.1.5
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requires that effects are commutative. Therefore, an interference detected
between a1 and a2 due to the non-commutativity of its effects will generate
two edges in the disabling graph: one from a1 to a2 and the second from a2
to a1. Therefore, the order that is later used to traverse the disabling graph
to add the mutexes is irrelevant.

When order is important is when preconditions are considered. Consider
the first part of Definition 6.1.5. For example, action a1 potentially disabling
the precondition of action a2 does not mean that a2 has to disable the
precondition of a1. So, interferences found using this part generate only one
vertex in the disabling graph.

As previously said, for the ∃-step encoding, the selected order will affect
which actions can be set in the same time step, and therefore more or less
time steps will be needed to find a valid plan.

Algorithm 10 detects the strongly connected components in the disabling
graph and labels each vertex with the order in which is visited. The algo-
rithm maintains two stacks, S and P . Stack S contains all the vertices that
have not yet been assigned to a strongly connected component, in the or-
der in which the depth-first search reaches the vertices. Stack P contains
vertices that have not yet been determined to belong to different strongly
connected components from each other. C is an integer that counts the
number of vertices reached, which is used to assign a number (the order) to
each vertex. L is a list which will contain the order the vertexes are visited,
and N is also a list that will state to which SCC a node belongs. For exam-
ple, N [1] = 3 will state that vertex 1 belongs to the third SCC. Finally, CC
is an integer that will count the strongly connected components.

The overall algorithm consists of a loop through the vertices of the graph,
calling this recursive search on each vertex that does not yet have a number
assigned to it. L and N are initialized to -1 on all positions.

The advantage of using this order is that, for the quadratic ∃-step en-
coding, the mutexes added to the problem are not global, but local for each
SCC. That is, a mutex is generated only if the two actions belong to the
same SCC.

The condition for the quadratic encoding for the ∃-step semantics is that
a mutex is added if i < j and ai affects aj . But this is over restrictive, as if
ai and aj does not belong to the same SCC, it is guaranteed [RHN06] that
it exists a valid order between them.

Example 28. Suppose that given two actions a and b, a affects b because it
modifies some variable in the precondition of b, but b does not affect a.

If we consider the quadratic encoding of the ∃-step semantics, depending
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Algorithm 10 PBSCC

1: C ← 1
2: CC ← 1

Input: v : vertex, E : set of edges of the graph
Output: L contains an order, and N will have each vertex assigned to a

SCC.
3: L[v]← C
4: C ← C + 1
5: push(v, P )
6: push(v, S)
7: for all 〈v, w〉 ∈ E do
8: if L[w] = −1 then
9: PBSCC(w)

10: else
11: if N [w] = −1 then
12: while L[top(P )] > L[w] do
13: pop(P )
14: end while
15: end if
16: end if
17: end for
18: if v == top(P ) then
19: repeat
20: w ← pop(S)
21: N [w]← CC
22: until w 6= v
23: CC ← CC + 1
24: pop(P )
25: end if

on the order we pick (a < b or b < a), a mutex should be added or not.
But it does not matter what order we pick, because either way the mutex
is unnecessary. This is because those two actions do not form a cycle, and
thus we can guarantee that there will be a valid order to serialize them when
a plan is given with them in the same time step.

Therefore, less mutexes can be added if we consider to what SCC each
action belongs. To do this, the condition for the quadratic encoding for the
∃-step semantics should be: A mutex is added if i < j, ai affects aj and ai
belongs to the same SCC as aj . This order gave the best results, and will
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be the one used on the following section.

6.4 Experimental Results

In this section we evaluate the impact of the proposed notion of interference
on the length of parallel plans, using ∃-step semantics. Experiments have
been performed using both syntactic an semantic checks of interference at
compile time. For the case of semantic checks, we have additionally consid-
ered the chained SMT encoding. These executions are noted as SYN, SEM,
and SEM+C, respectively, in Tables 6.1 and 6.2. In syntactic checking we
forbid concurrent assignment or assignment and inspection to the same nu-
meric variable. Semantic checks are the ones we have introduced, by means
of calls to a SMT solver in Section 6.2.

Experiments have been run on 8GB Intel R© Xeon R© E3-1220v2 machines
at 3.10 GHz, using Yices [DDM06a] v2.3.0 as back-end SMT solver, with the
QF LIA logic [BST10] and a two hours timeout. For the sake of complete-
ness, we compare the performance of our implementation with the numeric
planner NumReach/SAT [HGSK07] using MiniSAT 2.2.0 (column NR1),
and NumReach/SMT using Yices v2.3.0 (column NR2).

Five domains are considered: the numeric versions of ZenoTravel, Driver-
Log and Depots, the real-life challenging Petrobras domain, and a crafted
domain called Planes.

ZenoTravel and DriverLog are some of the domains in the literature
with a higher numeric interaction between actions. Domains like Rovers or
Settlers have been excluded because they are too big to show meaningful
results with the encoding at hand and the chosen timeout. The Petrobras
domain is the same explained on the previous chapter. In this chapter we
used only instances of the group A, as they were the most challenging.

Due to the limited numeric interactions between actions in the domains
found in the literature, we additionally propose a new domain called Planes
which is created from ZenoTravel, by adding some plausible numeric con-
straints, in order to help us demonstrate the benefits from checking interfer-
ence between actions semantically. Figure 2 depicts the full PDDL model
of the Planes domain.

Table 6.1 shows the number of instances solved by each approach. Check-
ing interference semantically and using the chained SMT encoding is best in
Petrobras, ZenoTravel and Planes, while NumReach/SAT is best in Depots
and DriverLog. The big gap in the number of solved instances in Depots
is twofold: lack of intrinsic parallelism in the domain, and being the per-
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Domain NR1 NR2 SYN SEM SEM+C

Depots 13 13 5 5 5
Petrobras A 3 3 5 6 7

Planes 5 8 8 8 8
ZenoTravel 13 14 13 13 15
DriverLog 18 12 14 14 15

Total 52 50 45 46 50

Table 6.1: Total number of instances of each domain solved by each ap-
proach. For each domain, the approach solving more instances is marked in
bold. In case of draw, the faster is marked.

Domain NR SYN SEM SEM+C

Depots (5) 54 52 52 51
Petrobras A (3) 19 12 12 11

Planes (4) 90 82 62 45
Zenotravel (13) 97 69 69 42
DriverLog (12) 104 85 84 63

Total (37) 364 300 279 212

Table 6.2: Sum of the number of time steps of the plans found, restricted to
commonly solved instances. First column shows, in parenthesis, the number
of instances solved by all approaches. NumReach uses the same parallelism
approach when using different background solvers, so only one column is
included. The winning approach is shown in bold.

fect scenario for the reachability approach of NumReach (small numeric
domains).

Table 6.2 shows the sum of the number of time steps of the plans found,
for commonly solved instances. Note that the domains where our imple-
mentation solves more instances are also the ones that exhibit more gains in
parallelism. Note also the significant reduction in time steps from the syn-
tactic approach to the semantic approach with the chained SMT encoding,
especially in the Planes domain.

The importance of the semantic notion of interference and its checking
using the SMT solver, is that it generates the minimum set of a-priori inter-
ferences between actions. At the same time, this reduction of interferences
reduces the number of strongly connected components of the graph and
therefore also reduces the number of mutexes added.

Table 6.3 compares the SYN and SEM+C approaches on the commonly
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Domain SYN SEM+C Difference % Removed

Depots (5) 5.35e6 1.09e6 4.26e6 79%
Petrobras A (5) 1.90e7 3.10e5 1.87e7 96%

Planes (8) 8.60e4 7.92e3 7.80e4 98%
Zenotravel (13) 1.17e6 5.26e4 1.12e6 95%
DriverLog (14) 2.95e6 6.34e5 2.26e6 78%

Table 6.3: Reduction of interferences thanks to the semantic notion of in-
terference.

solved instances. For each family, it shows the sum of interferences, the
difference between the two approaches, and the percentage of interferences
that could be avoided thanks to the semantic notion of interference.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 0.00 6 1.45 6 3.96 6 5e4 1.74 6 2e4 1.70 6 1e4
2 0.49 9 8.39 9 32.44 9 3e5 13.27 9 1e5 14.99 8 7e4
3 5.52 13 42.99 13 165.36 13 1e6 82.15 13 3e5 307.01 13 2e5
4 9.75 15 134.36 15 484.81 14 2e6 288.75 14 8e5 4292.05 14 5e5
5 TO - 5187.96 21 TO - - TO - - TO - -
7 2.48 11 37.45 11 241.37 10 2e6 117.99 10 6e5 1142.86 10 3e5
8 15.25 15 403.05 15 MO - - TO - - TO - -
10 4.42 11 101.53 11 TO - - MO - - TO - -
11 43.30 18 TO - TO - - TO - - MO - -
13 2.68 10 84.33 10 TO - - TO - - TO - -
14 12.40 13 1314.04 13 TO - - TO - - TO - -
16 2.03 9 142.49 9 TO - - TO - - TO - -
17 6.82 8 395.62 8 TO - - TO - - TO - -
19 17.58 11 853.63 11 TO - - TO - - TO - -

Table 6.4: Detailed results on the execution of the Depots domain.

Tables 6.4, 6.5, 6.6, 6.7 and 6.8 show the full results on the solved in-
stances of each domain. NumReach columns show the results of the Num-
Reach reachability approach, with the SAT and the SMT solvers. Syntactic
shows the SMT Encoding with a syntactic notion of interference. Semantic
shows the presented parallelism approach with the SMT Encoding, while
Sem + chain replaces the SMT encoding with the Chained SMT Encoding.
Column sec. show time in seconds, with TO denoting a time out, and MO
a memory out. ts denote the number of time steps of the plan, and aff.
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n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 9.00 6 329.76 6 153.75 3 3e6 151.23 3 3e6 1209.26 3 4e4
2 17.53 6 357.70 6 197.94 4 4e6 193.47 4 3e6 1590.52 4 5e4
3 98.62 7 958.90 7 282.54 5 4e6 260.59 5 3e6 1335.50 4 6e4
4 TO - TO - 467.61 6 4e6 391.40 6 3e6 1911.95 4 7e4
5 TO - TO - 1435.65 7 4e6 1398.75 7 3e6 2667.87 4 8e4
6 TO - TO - TO - - 3373.09 8 3e6 1939.70 4 9e4
7 TO - TO - TO - - TO - - 2666.77 4 1e5

Table 6.5: Detailed results on the execution of the Petrobras domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 TO - 36.44 15 0.99 13 4e3 0.29 10 6e2 1.90 9 4e2
2 3.30 18 37.79 18 6.54 16 4e3 1.17 12 6e2 3.93 10 4e2
3 TO - 228.05 20 42.21 18 1e4 6.37 13 1e3 78.74 10 1e3
4 4.45 23 633.29 23 401.32 21 1e4 78.89 15 1e3 307.94 11 1e3
5 TO - 763.96 22 179.97 20 1e4 47.52 15 2e3 46.51 11 1e3
6 5.39 25 1153.02 25 1971.53 23 1e4 585.63 18 2e3 331.89 13 1e3
7 TO - 1238.43 23 374.51 21 1e4 54.48 16 2e3 41.85 11 1e3
8 5.00 24 1247.73 24 1508.65 22 1e4 119.42 17 2e3 66.51 11 1e3
12 15.54 21 TO - TO - - TO - - TO - -

Table 6.6: Detailed results on the execution of the Planes domain.

the number of resulting computed affecting relations between the problem
actions.

Is specially noticeable in these tables the reduction of one or two orders
of magnitude on the number of computed affecting relations between actions
when using the Semantic + chain encoding with respect to other encodings.
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n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 0.00 2 0.15 2 0.05 1 5e2 0.05 1 1e2 0.01 1 1e2
2 0.00 7 1.59 7 0.09 3 8e2 0.09 3 2e2 0.04 3 1e2
3 0.00 6 3.69 6 0.15 3 3e3 0.14 3 1e3 0.11 3 6e2
4 0.00 6 2.38 6 0.27 4 4e3 0.17 4 1e3 0.12 3 7e2
5 0.08 7 6.86 7 0.40 4 7e3 0.26 4 3e3 0.18 3 1e3
6 0.03 7 4.12 7 0.81 6 9e3 0.45 6 3e3 0.20 3 1e3
7 0.07 8 9.01 8 0.79 5 1e4 0.43 5 4e3 0.26 3 2e3
8 0.38 7 7.78 7 2.58 5 4e4 1.65 5 2e4 0.55 3 5e3
9 0.34 9 18.13 9 24.82 8 5e4 20.98 8 2e4 1.36 4 6e3
10 0.65 9 24.42 9 70.02 8 5e4 42.16 8 2e4 1.83 4 6e3
11 3.38 8 18.40 8 8.13 6 8e4 5.72 6 3e4 3.24 4 8e3
12 3.67 10 99.04 10 73.60 7 9e4 76.81 7 3e4 4.47 4 1e4
13 22.07 11 565.39 11 1324.96 9 1e5 1270.29 9 4e4 3.33 4 1e4
14 TO - 540.10 9 TO - - TO - - 779.78 4 8e4
15 TO - TO - TO - - TO - - 2850.68 4 2e5

Table 6.7: Detailed results on the execution of the Zenotravel domain.
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n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 0.00 7 0.49 7 0.42 5 5e3 0.37 5 2e3 0.24 5 1e3
2 0.00 10 5.53 10 1.19 8 9e3 0.66 8 3e3 0.60 7 2e3
3 0.00 8 3.10 8 0.81 6 8e3 0.47 6 3e3 0.41 4 2e3
4 0.00 8 4.07 8 1.34 6 1e4 0.72 6 4e3 0.57 4 3e3
5 0.01 9 5.59 9 1.52 7 1e4 0.70 6 5e3 0.43 4 4e3
6 0.00 6 2.42 6 1.23 4 2e4 0.66 4 7e3 0.61 4 6e3
7 0.00 7 3.66 7 2.08 5 3e4 1.09 5 1e4 0.82 4 8e3
8 0.01 8 5.10 8 3.40 7 3e4 2.09 7 1e4 1.14 5 9e3
9 0.00 11 10.36 11 12.10 10 8e4 5.48 10 2e4 5.16 8 2e4
10 0.01 8 6.48 8 18.06 7 2e5 7.62 7 5e4 4.41 4 4e4
11 0.04 10 12.01 10 36.65 9 2e5 18.95 9 7e4 6.62 6 5e4
12 TO - TO - 620.88 16 6e5 495.77 16 2e5 296.06 12 1e5
13 TO - TO - 159.63 11 1e6 87.63 11 3e5 47.94 7 2e5
14 0.07 12 208.94 12 271.94 11 8e5 453.58 11 2e5 167.80 8 1e5
15 0.26 12 TO - MO - - TO - - 5459.28 8 6e5
16 0.83 12 TO - TO - - MO - - TO - -
17 1.19 12 TO - MO - - TO - - TO - -
18 2.46 13 TO - TO - - TO - - TO - -
19 2.51 12 TO - TO - - TO - - TO - -
20 4.62 10 TO - TO - - TO - - TO - -

Table 6.8: Detailed results on the execution of the Driverlog domain.



Chapter 7

More Relaxed Semantics for
Planning as SMT

Previous chapters showed that in the setting of parallel plans, before en-
coding a planning problem to SAT or SMT, interferences between pairs of
actions have to be determined. Then, mutex clauses are commonly added to
the problem, to forbid those actions to be executed in parallel at any time
step. Especially in hard planning problems, mutex clauses are a big part of
the resulting formula. This reaches the point that many times they become
unsolvable due to memory constraints. For this reason, some SAT based
planners implement dedicated algorithms to speed up the evaluation of this
kind of binary clauses [Rin12a, Kau06].

On the previous chapter, a semantic notion of interference was intro-
duced. This notion allows the presented encoding to be more parallel by
reducing the number of unnecessary mutexes. In this chapter, we go a step
further in the pursuit of parallelism in planning as SMT.

Inspired by the highly relaxed semantics of [Bal13] for planning as SAT,
in this Section we avoid the need to add any mutex clause to avoid the
parallel execution of (potentially) interfering actions.

The avoidance of mutexes is accomplished by a non-trivial encoding to
SMT, which is presented later in this chapter. Broadly speaking, this encod-
ing makes a trade-off between the mutexes and extra variables and clauses,
with the idea to allow more actions to be executed at the same time step.
Experiments show that using the presented encoding less time steps are
needed to reach a valid plan compared to other similar planners, resulting
in more instances solved.

Sometimes a more parallel encoding can result in a worse plan in terms

103
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of makespan. This happens because normally encodings do not guarantee
that every action that is true in the solution is actually needed in order to
achieve the goals of the original plan.

The makespan of a plan is a common measure for its quality. In the
setting of classical planning as SAT, works like [RGPS10] use a MaxSAT
solver to be able to extract makespan-optimal solutions. In this chapter, an
approach that uses a MaxSMT solver to prune valid plans from redundant
actions is also presented, similarly as in [BCK14]. With the proposed prun-
ing approach, the quality of plans obtained with the new encoding become
similar or even better than with other ∃-step encodings.

7.1 A further relaxation of ∃-step semantics

As we explained in Definition 4.0.2, under the ∃-step semantics, it is not
necessary that all actions are non-interfering as long as they can be executed
in at least one order. It is sufficient that there is one order that maps state
si to si+1.

The notion of R2∃-step plan in the context of PMT is the following.

Definition 7.1.1 (R2∃-Step Plan). Given a set of actions A and an initial
state I, for a state space S modulo T , a relaxed-relaxed ∃-step (R2∃-step)
plan for A and I is a sequence P = [A0, . . . , Al−1] of sets of actions together
with a sequence of states s0, . . . , sl (the execution of P ), for some l ≥ 0,
such that s0 = I, and for all i ∈ {0, . . . , l − 1} there is a total ordering
a1 < · · · < an of Ai, such that T, appa1;...;aj−1(si) |= Preaj for all aj =
〈Preaj ,Eff aj 〉 ∈ Ai, and appa1;...;an(si) = si+1.

This is a weakening of the definition of relaxed ∃-plan in [WR07], where
the consistency requirement between effects of actions occurring at the same
time step has been removed and, hence, the only requirement left is that
those actions can be ordered to form a valid sequential plan. The definition
also generalizes to the setting of PMT. Notice that no formal definition of
R2∃-step plan is given in [Bal13]. Definition 7.1.1 is in fact equivalent to
the definition of ∃-step plan in [BEV16a], as well as to the definition of
∃-step plan in [RHN06] for the propositional case, which already capture
R2∃-step plans. In those works, however, the encodings given for ∃-step
plans are restricted to happenings which require, among other things, that
preconditions of actions in each parallel step hold at the same time. Here no
notion of happening is used and, hence, we are properly considering R2∃-step
plans in the sense of [Bal13]. Let us introduce a motivating example.
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Example 29. A merchant is looking to maximize his benefits in the fastest
way. We will use variable x to represent his gains. Suppose the merchant
starts with no money (x = 0) and can do two actions. Work carrying boxes
of tulips and gaining 10 coins a month, or investing some of his money in
the tulip industry, doubling his earnings. His objective is reaching the sum
of 20 coins. Actions can be modeled as follows:

work: a1 = 〈>, x 7→ x+ 10〉
invest: a2 = 〈x > 5, x 7→ x ∗ 2〉

If we consider the ∃-step semantics in [RHN06], one of the requirements is
that the preconditions of actions must be satisfiable at the start of the same
time step to be applicable. Therefore there is no ordering between actions
that allows a1 and a2 to occur in one time step, since precondition of a2
is not satisfied at the start. This would make the shortest ∃-step plan the
following:

∏
= [{a1}, {a2}].

With the Relaxed ∃-step semantics of [WR07], there is no requirement
that forces preconditions of actions in the same time step to be satisfied
at the start of the time step. Still, there is a requirement of consistency
between the set of effects applied at the same time step. The concept of
consistency with numerical variables could be generalized as that all effects
should be commutative. Since the effects x 7→ x+ 10 and x 7→ x ∗ 2 are not
commutative, the shortest plan would also be

∏
= [{a1}, {a2}].

With the R2∃-step semantics, these requirements are lifted, so, consid-
ering the ordering between actions a1 < a2, our merchant can reach its goal
with the one step plan

∏
= [{a1, a2}]. The same ordering can be used to

model the application of non-commutative effects. This small problem could
be encoded as follows, where xt (resp. at) denotes the value of variable x
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(resp. execution of action a) at time step t:

x0 = 0 initial state

a01 → > precondition of a1

a01 → x01 = x00 + 10
¬a01 → x01 = x00

}
effect of a1

a02 → x01 > 5 precondition of a2

a02 → x02 = x01 ∗ 2
¬a02 → x02 = x01

}
effect of a2

x0 = x00 ∧ x02 = x1 tying constraints

x1 = 20 goal

Additional variables x0, x1 and x2 (conveniently superindexed with the time
step) permit us to accumulate effects over variable x. Variable x0 denotes
the initial value of x. Variable x1 embodies the value of variable x after the
possible execution of action a1. Note that x1 gets an updated value if action
a1 is executed, or keeps the previous value x0 otherwise. Therefore, the
precondition of action a2 has to check x1 instead of x. The effects of action
a2 are applied on x1 and captured on x2. Finally, the tying constraints link
these additional variables to the initial and final values of x.

This encoding of chained effects will be the key to increase parallelism.

7.2 Relaxed Chained Encoding

We propose an encoding for planning as SMT, as a particular case of PMT,
that adhere to the R2∃-step semantics. The given encoding is valid for any
theory T under quantifier-free first-order logic with equality. In particular,
for numeric planning we could take T as the theory of the integers (or
the reals) and use quantifier free linear integer (or real) arithmetic formulae.
This is the case for the upcoming examples in this section, but we emphasize
that this encoding could be used for any theory T .

Let π = 〈S,A, I,G〉 be a planning problem modulo T , for a theory T
under a quantifier-free first-order logic with equality. For each variable x in
var(S) and each time step t, a new variable xt of the corresponding type is
introduced, denoting the value of x at step t. Moreover, for each action a
and each time step t, a Boolean variable at is introduced, denoting whether
a is executed at step t.
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Given a term s, by st we denote term s, where all variables x in var(S)
have been replaced by xt, and analogously for formulas. For example (x+y)t

means xt + yt, and (p ∧ x > 0)t means pt ∧ xt > 0. For the case of effects,
we define

{x 7→ >}t def
= xt+1

{x 7→ ⊥}t def
= ¬xt+1

{x 7→ s}t def
= (xt+1 = st)

where s is a non-Boolean term belonging to theory T . For example, for an
assignment {x 7→ x+ k}, where k is a constant, we have that {x 7→ x+ k}t
is (xt+1 = xt + k). For sets of assignments, i.e., action effects, we define

({x 7→ s} ∪ Eff )t
def
= {x 7→ s}t ∧ Eff t and ∅t def

= >

where s is a term (either Boolean or not) and Eff is a set of assignments.
For each action a = 〈Prea,Eff a〉 and each variable x ∈ var(S), let Eff a,x

denote the assignment {x 7→ exp} in Eff a if any, or the empty set if there is
no such assignment. For each x ∈ var(S), let Ax = {a | a ∈ A∧Eff a,x 6= ∅},
i.e., the set of actions that modify x.

As it has already been said, the only requirement in the R2∃-step se-
mantics is that actions in each parallel step can be ordered to form a valid
sequential plan. Then, let L = a1, a2, . . . , a|A| be a list enumerating all ac-
tions. The relative position of each action in L will give us the total ordering
<L to serialize the actions in each parallel step.

It is important to remark that the definition of R2∃-step allows a dif-
ferent ordering to be used in each parallel step. Here we will use the same
ordering on all time steps. It is worth noting that the chosen ordering will be
governing the amount of possible parallelism. Therefore the optimal order
in terms of parallelism for any given time step t it is not necessarily the same
for time step t + 1. In any case, completeness of the method is guaranteed
by the fact that the possibility of choosing exactly one action per time step
is retained.

The encoding will need to refer to the i-th action (according to <L) in
each set Ax. To this purpose, a mapping ρx is defined, such that ρx(i) = j if
the i-th action in Ax, according to <L, is aj . Formally: for each x ∈ var(S),
let ρ−0x : {1, . . . , |Ax|} → {1, . . . , |A|} be a mapping such that aρ−0

x (i) ∈ Ax
for all i in 1..|Ax| and aρ−0

x (i) <L aρ−0
x (i+1) for all i in 1..|Ax| − 1. Let

ρx : {0, . . . , |Ax|} → {0, . . . , |A|} be ρ−0x ∪ {0 7→ 0}. The mapping {0 7→ 0}
is added for notational convenience (see below).
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Example 30. Consider a set of actions A = {a1, a2, a3, a4} and L =
[a3, a2, a1, a4], i.e., a3 <L a2 <L a1 <L a4. Suppose that variable x is
modified by actions a1 and a3, so Ax = {a1, a3} and |Ax| = 2. Then we
have ρx(1) = 3 and ρx(2) = 1, because a3 <L a1. Semantically, ρx(1) could
be read as “What is the first action that modifies x, given the ordering <L?”.

For each time step t and variable x, we introduce xtρx(0), . . . , x
t
ρx(|Ax|)

new “chaining” variables of the same type of x. Variable xtρx(0) (i.e. xt0)

will denote the value of x at time step t and, for all i in 1..|Ax|, xtρx(i) will

denote the value of x after the sequential application (or not) of actions
aρx(1), . . . , aρx(i). These variables allow us to encode a possible “chain of
assignments” in effects of a parallel step. The formulation here is pretty
much involved than in [Bal13], where only Boolean variables are considered
and so serialization of actions is very simple.

To represent “chains of assignments”, in the encoding we need to refer,
for a given action ai and variable x, to the last action before ai (according to
<L) that may have modified x. Therefore, we define prevx : {1, . . . , |A|} →
{0, . . . , |A|} to be the mapping satisfying prevx(i) = ρx(max({0} ∪ {k ∈
1..|Ax| | aρx(k) <L ai})). Notice that, if there is no previous action that may
modify x, it returns 0.

Example 31. Continuing with Example 30, we would have prevx(1) = 3,
prevx(2) = 3, prevx(3) = 0 and prevx(4) = 1. Semantically, prevx(1) = 3
could be read as “Given the ordering <L, what action that modifies x comes
before a1?”. Note that prevx(3) = 0 because no action before a3 modifies x,
given the ordering <L.

The constraints of the encoding are the following (Example 33 illustrates
a particular case):

The execution of an action implies its preconditions, with the variables
conveniently renamed in order to consider the effects of the execution of
previous (according to <L) actions in the same time step t:

ati → Pretaiσ
t
prev(i) ∀ai ∈ A (7.1)

where

σtprev(i) = ∪x∈var(S){xt 7→ xtprevx(i)}

This substitution is in charge of renaming all variables in Pretai that may
have been modified previously in the same time step.
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The execution of an action implies its effects (again, with the variables
conveniently renamed):

ati → Eff t
aiσ

t
modi

σtprev(i) ∀ai ∈ A (7.2)

where

σtmodi = ∪x∈Dom(Eff ai
){xt+1 7→ xti}

Recall that each effect in Eff ai is translated as an equality. Substitution
σtmodi only renames the left hand side of the equality xt+1 by xti, while
σtprev(i) renames all variables occurring in the right hand side that could have
been possibly modified by previous actions according to <L. See Example 32
for a particular case of this renaming.

If an action is not executed, the previous value of each variable it would
have modified is carried forward:

¬ati →
∧

x∈Dom(Eff ai
)

xti = xtprevx(i) ∀ai ∈ A (7.3)

Moreover, initial and final auxiliary variables are linked with the original
variables xt and xt+1:

xt = xt0 and xt+1 = xtρx(|Ax|) ∀x ∈ var(S) (7.4)

Finally, explanatory axioms express the reason of a change in state vari-
ables:

xt 6= xt+1 →
∨
a∈Ax

at ∀x ∈ var(S) (7.5)

That is, a change in the value of x implies the execution of at least one
action that has an assignment to x among its effects.

Remark 7.2.1. Explanatory axioms (7.5) are redundant in our setting,
since they follow from Equation (7.4) and the inductive application of Equa-
tion (7.3).

The following example shows the behavior of the two substitutions in
Equation 7.2.

Example 32. Let {a1, a2} be a set of actions such that a1 <L a2 . If actions
are defined as

a1 = 〈>, y 7→ y + 1〉
a2 = 〈>, x 7→ x+ y〉
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then the effect of a1 at time step t will be encoded as

at1 → yt1 = yt0 + 1

while the effect of a2 will be encoded as

at2 → xt1 = xt0 + yt1.

The following example provides a full picture of the presented encoding.

Example 33. Let A = {a1, a2, a3}, with

a1 = 〈>, {y 7→ y + 1}〉
a2 = 〈{x > 0}, {y 7→ y + 2}〉
a3 = 〈{y > x}, {x 7→ x+ y}〉

Then Ax = {a3} and Ay = {a1, a2}. Let L = [a1, a2, a3]. For time step t,
we would add variables xt0, xt3, yt0, yt1, yt2 and the following constraints (we
make the substitutions explicit):

at1 → >{xt 7→ xt0, y
t 7→ yt0} cf. (1)

at2 → (xt > 0){xt 7→ xt0, y
t 7→ yt1}

at3 → (yt > xt){xt 7→ xt0, y
t 7→ yt2}

at1 → (yt+1 = yt + 1){yt+1 7→ yt1}{xt 7→ xt0, y
t 7→ yt0} cf. (2)

at2 → (yt+1 = yt + 2){yt+1 7→ yt2}{xt 7→ xt0, y
t 7→ yt1}

at3 → (xt+1 = xt + yt){xt+1 7→ xt3}{xt 7→ xt0, y
t 7→ yt2}

¬at1 → yt1 = yt0 cf. (3)

¬at2 → yt2 = yt1

¬at3 → xt3 = xt0

xt = xt0 xt+1 = xt3 cf. (4)

yt = yt0 yt+1 = yt2
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With all substitutions applied we get:

at1 → > at1 → yt1 = yt0 + 1

at2 → xt0 > 0 at2 → yt2 = yt1 + 2

at3 → yt2 > xt0 at3 → xt3 = xt0 + yt2

cf. (1) cf. (2)

¬at1 → yt1 = yt0 xt = xt0

¬at2 → yt2 = yt1 xt+1 = xt3

¬at3 → xt3 = xt0 yt = yt0

yt+1 = yt2

cf. (3) cf. (4)

As an example of the parallelism achieved, note that the precondition
yt2 > xt0 of a3 could be possibly satisfied thanks to the execution of a1 or a2
in the same step, by making the variable y bigger. This is possible because
a1 and a2 come before a3 in the given ordering <L.

If we think in terms of what differentiates the presented encoding from
the previous ones, the difference can be explained as a trade-off between
the original mutexes between actions for an additional set of variables and
constraints. If we consider the previous encoding presented in Section 6.3
and compare it with the encoding in Section 5.2, it reduces the number
of mutexes using semantic checks and then adds variables and clauses for
creating chains of assignments for some effects. The encoding introduced
in this section tries to add even more actions per time step by trading not
some, but all mutexes between actions and adding additional constraints
and variables. A graphical representation of these differences is represented
in Figure 7.1. If we consider the generalized encoding (Section 5.2), most of
the resulting formula is composed of the needed mutexes. As we have seen,
mutexes are small binary clauses, but still there are lots of them. In the
Chained encoding (Section 6.3), some of these mutexes are replaced by the
chains of assignments to variables belonging to the theory T . The mutexes
caused by effects on Boolean variables are still left in the formula. Finally,
in the Relaxed Chained encoding (Section 7.2), all effects are chained, and
therefore mutexes disappear completely from the formula. Section 7.3 goes
into a bit more detail on the sizes of each part.
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mutexes

constraints

T vars Bool vars T vars Bool vars

constraints

mutexes

aux T vars

aux constraints aux constraints

aux Bool vars

aux T vars

constraints

T vars Bool vars

Generalized Semantic Chained Relaxed Chained

Figure 7.1: A graphical representation of the differences between the Gen-
eralized, Semantic Chained and Relaxed Chained encodings (Sections 5.2,
6.3 and 7.2 respectively)

7.2.1 Proofs

Here we present proofs of completeness and correctness of the encoding
presented in this Chapter.

Definition 7.2.2. Let π = 〈S,A, I,G〉 be a PMT problem, <L a total order
on the actions in A and n a number of steps greater than 0. We denote by
E(π, n,<L), the SMT formula resulting from the encoding of π described in
Section 3.1 using order <L, for n consecutive time steps.

For each t ∈ {0..n}, we define Xt = {xt|x ∈ var(S)}.
We define I0 as the formula describing the initial state I with variables

superscripted by time point 0.

We define Gn as the formula describing the goal G with variables super-
scripted by time point n.

Theorem 7.2.3 (Soundness). Given a PMT problem π = 〈S,A, I,G〉, a
number of steps n and a total order <L between actions in A, if M is a
model of the SMT formula ϕ = E(π, n,<L) ∧ I0 ∧Gn, then we can infer a
valid sequential plan for π from M .

Proof. We first prove that theorem is true for n = 1 and then argue why
this can be generalized to n > 1.

Let n = 1. Let a10, . . . , a
k
0 be the, according to <L, ordered action vari-

ables set to true in the model of ϕ. Then, the corresponding sequence of
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actions a10; . . . ; a
k
0 is a sequential plan of π: if k = 0 we are done since this

means that G is already satisfied from X0 without executing any action.
Notice that if no action is executed, Constraints 7.3 and 7.4 enforce equality
between chained variables in X0 and X1. If k > 0 we need to prove that
each action ai0 is applicable after applying a10; . . . ; a

i−1
0 . This is guaranteed

by Constraint 7.1 and 7.2. Constraint 7.2 force the effects of previous actions
to be applied resulting in a “temporal state” and constraints 7.1 ensure that
precondition of ai0 is satisfied by this temporal state. Roughly, this temporal
state consists of the valuation assigning, to each x ∈ S, its updated value
due to effects of actions a10; . . . ; a

i−1
0 . This value is captured by the “closest”

previous chaining variable x0prev(i), thanks to Constraint 7.2 and 7.3.

For n > 1, Constraint 7.4 properly links, for each m ∈ {1..n}, vari-
ables Xm−1 to the first temporal state of step m and the last “temporal
state” of step m to Xm. Hence, if a10, . . . , a

k0
0 , . . . , a

1
n, . . . , a

kn
n are the ac-

tion variables set to true in the model of E(π, n,<L), where each subset
a1i , . . . , a

k0
i is ordered according to <L, the corresponding sequence of ac-

tions a10; . . . ; a
k0
0 ; . . . ; a1n; . . . ; aknn is a valid sequential plan of π.

Completeness is guaranteed since the possibility of executing exactly one
action per time step is retained.

Theorem 7.2.4 (Completeness). Given a PMT problem π = 〈S,A, I,G〉, if
there exists a valid sequential plan a1; . . . ; an for π then, for any total order
<L on the actions of A, the SMT formula ϕ = E(π, n,<L) ∧ I0 ∧ Gn is
satisfiable.

Proof. Let <L be an arbitrary order on the actions in A. Mimicking the
valid sequential plan a1; . . . ; an, we build an assignment M to the variables
of ϕ such that I0 holds, and for all i in 1..n,

1. aii is true in M , and aij is false in M for all j 6= i,

2. Eff i
aiσ

i
modi

σiprev(i) holds under M , and

3.
∧
x∈Dom(Eff aj

) x
i
j = xiprevx(j) holds under M for all j 6= i.

4. xi = xi0 and xi+1 = xiρx(|Ax|) hold under M for all x ∈ var(S).

Now let us consider any particular step number i. According to 3, and
by transitivity of equality, we have that xiprevx(i), which corresponds to xij
for some aj <L ai, has the same value as xi0 under M , for every variable x.
Moreover, we have that xi = xi0 holds by 4. Therefore, (the succedent of)



114 CHAPTER 7. RELAXED SEMANTICS FOR PLANNING AS SMT

Constraint 7.1 will hold if ai can be executed in step i of the sequential plan,
which is the case, since by assumption the sequential plan is valid, and I0

holds by construction.
Analogously to before, by 3 and 4, we have that xi+1 has the same value

as xii under M , for every variable x modified by ai, i.e., the new value of x is
carried forward to the next step. By induction, and validity of the sequential
plan, this implies that Gn holds under M .

Note that Constraint 7.2 holds by 1 and 2, Constraint 7.3 holds by 1
and 3, and Constraint 7.4 by 4. Consistency of M follows from the validity
of the sequential plan at hand.

7.2.2 Removal of Redundant Actions

Roughly speaking, redundant actions are those that can be removed from a
plan, resulting in a still valid plan. For example, in a logistics domain the
objective normally specifies where the packets should end, but not the trans-
ports. Therefore, a transport could bring a packet to its destination, fulfilling
part of the goal, but moving afterwards without any purpose. Hence, this
last movement could be a redundant action.

The SAT and SMT translations of planning problems does not guarantee
that every action that is true in the solution is actually needed in order to
achieve the goals of the original plan. That is because during the search,
there is the possibility that some variables denoting execution of actions
that may be not relevant for achieving the goal are set to true by the SMT
solver. Moreover, when a SAT or SMT solver reaches the point that it
has a partial assignment that satisfies the goal condition of the problem
and is asked for a model, it normally keeps giving values to the rest of the
variables until it has a total assignment. These two factors, when paired
with very parallel encodings, make that plans given by the SMT solver
tend to contain some redundant actions. This effect is strictly needed to
achieve the goal condition. The highly parallel encoding proposed makes
the aforementioned issues more noticeable than with other encodings, so
here an idea for optimizing plans given by the SMT solver is presented. For
this approach, a MaxSMT solver will be used, as the idea is to add soft
clauses that penalize the optimum when Boolean variables that represent
the execution of actions are assigned to true by the solver.

Given a plan
∏

for the PMT problem, two new sets of clauses are added.
The first is a set of soft clauses

¬at a ∈
∏

(7.6)
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that will (softly) ask the solver to set to false all actions included in the plan.
This will force the MaxSMT solver to set to true the minimum number of
actions already included in the plan.

The second is a set of hard clauses to force the solver to not consider
any action that was outside of the original plan

¬at a /∈
∏

(7.7)

These last clauses will cause cheap unit propagation.
After solving the new problem, resulting plans will not be necessarily

makespan-optimal, but the optimization cost with respect to solving time
will almost always be negligible, while the quantity of actions pruned will
be usually notable, as shown in the next section.

7.3 Empirical Evaluation

In this section we evaluate the impact of the presented encoding under the
R2∃-step plan semantics and the proposed strategy for eliminating redun-
dant actions. The proposed encoding, implemented in the Rantanplan sys-
tem [BEV17] (R2Chained onwards), is compared with the Semantic Chained
encoding from Section 6.3, which uses the ∃-step semantics (from now on
noted as SEM+C ), and the two planners Springroll [SRHT16] and SMT-
Plan [CFLM16]. These two systems are the most recent non-heuristic nu-
meric planners available. Springroll uses the planning as SMT approach, but
with a ∀-step semantics. The planner focuses on producing more succinct
encodings by “rolling up” an unbounded yet finite number of instances of an
action into a single plan step. In problems where “foldable” actions occur,
the planner is able to greatly reduce the number of time steps. SMTPlan
proposes an approach to PDDL+ planning through SMT, with an encoding
that captures all the features of the PDDL+ language. Its encoding focuses
on domains with nonlinear and continuous change.

In [BB15] it was found experimentally that none of the considered order-
ings between actions could be clearly defined as the best, for the considered
encoding under the R2∃-Step semantics for planning as SAT. In the first ex-
periments, the ordering considered for the R2Chained encoding is the order
from which actions are read from the input files, which we refer as dec.

Some insights and results on more clever orderings, other than dec, are
given in Section 7.4. It is also worth noticing that, although we choose the
same order for each time step, the encoding is general enough to allow for a
different order in each time step.
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Solved Springroll SMTPlan SEM+C R2C

Depots (22) 7 1 4 7
Driverlog (20) 12 7 11 12
Petrobras (60) 0 3 15 51
Planes (12) 3 5 7 8
Rovers (20) 12 4 6 16
Zenotravel (20) * 6 16 15

Total 34 26 59 109

Table 7.1: Number of instances solved by each planner in each domain
(total number of instances between parentheses), with a timeout of 1 hour.
Boldface indicates the best results, with ties broken by total solving time.
“*” denotes an execution problem.

We consider the domains of the third IPC [LF03] with integer numeric
fluents and without quantified preconditions, as the rest of the domains con-
tain features that are not commonly supported by the considered planners.
These domains are: Zenotravel, Driverlog, Depots and Rovers. The previous
Petrobras and Planes domains are also considered since they have a higher
numerical component.

Experiments have been run on 8GB Intel R© Xeon R© E3-1220v2 machines
at 3.10 GHz, using Yices [DDM06a] v2.5.1 as the back-end SMT solver, un-
der the quantifier-free linear integer arithmetic logic [BST10]. Z3 [dMB08b]
v4.5.1 is used as the MaxSMT solver to remove redundant actions. The
total timeout is set to 1 hour.

Table 7.1 shows that with the R2Chained (R2C) encoding we are able to
solve notably more instances than the rest of the approaches. Springroll is
unable to process the Zenotravel domain.1 The R2Chained encoding dom-
inates in most of the families. Thanks to the increased number of actions
selected at each step, it generally needs fewer steps to find a valid plan than
the rest of the planners. The number of Petrobras instances solved by this
approach is noticeable. This domain is notably bigger in terms of formula
size and more constrained in terms of resources than the rest. If this domain
is set aside, the R2Chained encoding still solves a few more instances than
the other approaches.

1After reading the instance, it reports “Error in the encoding”.
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Springroll SMTPlan SEM+C R2C R2O

depots1 13/6 13/6 13/6 13/2 13/2
depots7 29/10 - 25/10 30/4 25/4
depots16 34/8 - - 59/3 33/3

driverlog5 30/8 25/8 18/4 30/4 20/4
driverlog6 26/5 17/5 21/4 22/3 22/3

petro-A2 - 9/3 11/4 11/2 10/2
petro-A6 - - 33/9 38/5 34/5
petro-B15 - - - 82/2 57/2
petro-C1 - - 14/3 34/2 5/2

planes2 17/16 18/11 17/11 19/7 19/7
planes3 19/17 27/13 19/10 23/7 23/7
planes8 - - 24/12 27/7 25/7

rovers1 11/9 11/8 11/8 13/3 9/3
rovers4 31/6 10/6 8/5 8/1 8/1
rovers14 50/11 - - 41/3 32/3

zeno7 * 16/6 19/3 18/2 16/2
zeno8 * - 22/3 37/2 22/2

Table 7.2: Number of actions / number of steps, per instance and planner.
“-” denotes a timeout. R2O denotes the R2C approach plus the redundant
action removal presented in the previous section. “*” denotes an execution
problem.
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7.3.1 Plan Quality

Next we evaluate the plan quality in terms of makespan. As it has already
been stated, the R2Chained approach allows many more actions per time
step. This increases the number of instances solved, since the number of
time steps is in general smaller and, hence, so is the resulting formula. But
unfortunately, this is bad in terms of plan quality, since it may add some
redundant actions in the plan.

Table 7.2 shows the number of actions and time steps of the plans found
in a selected number of instances. Comparing the R2C and the R2O columns
we can see that the reduction is notable in all domains, except for Planes.
We remark that the time spent on the process of removing redundant actions
is negligible (typically less than two seconds).

In general, in instances where the reduction is small, the plan was already
reasonably good, in terms of number of actions, compared to the rest of the
planners. See for example instances driverlog6, petro-A2, planes2 or rovers4.
In instances where the reduction is significant, the original plan was too long
and the optimized one turns to be reasonably good compared to the others.
See for instance depots7, depots16, driverlog5 or zeno8.

In particular, (see petro-C1 for example) there can be many agents
(namely, the ships) that are not relevant for the plan objective, so the pro-
cedure can remove many actions. In contrast, the Planes domain is very
tight, as there are very few agents that need to act, and thus all planners
produce similar plans in terms of makespan.

7.3.2 Comparison of the R2C against the SEM+C encoding

Since the R2Chained encoding relaxes the SEM+C encoding, we provide
some insights on why, in general, it behaves better. The relaxation is done
by applying the idea of creating chains of assignments to all variables, while
in the SEM+C encoding only a subset of them are eligible to be chained,
due to the interference notion considered. In contrast to R2Chained, there
is no possible chain for Boolean variables in SEM+C. In fact, the difference
between the two encodings can be seen as a trade-off between the need
for mutex clauses and the extra number of chaining variables and linking
constraints.

Moreover, the relaxation by the R2∃-step semantics of actions’ applica-
bility at the beginning of a time step, as well as that of the consistency of
effects, not only allows us to solve more instances, but also to use many less
time steps on the commonly solved ones.
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R2C w.r.t. clauses/ variables/ final num. final num.
SEM+C time step time step variables clauses

Depots(4) +24.1% +39.3% -48.1% -54.1%
Driver.(11) -1.7% +18.1% -12.5% -28.2%
Petrobras(15) -54.9% +27.7% -27.1% -74.2%
Planes(7) +2.1% +14.3% -26.2% -29.7%
Rovers(6) +65.5% +52.4% -48.2% -52.0%
Zeno.(15) -0.6% +17.2% -10.0% -23.2%

Table 7.3: Average problem size difference between the R2Chained encoding
and the SEM+C encoding for each domain. The number of commonly solved
instances is between parentheses. The first two columns show the average
size difference in a single time step, and the second pair similarly but at the
step where the solution is found.

Table 7.3 essentially shows that although R2C uses more clauses and
variables in each formula tested for satisfiability, it is able to solve the prob-
lem at an earlier step than SEM+C. This reduction in steps is especially
noticeable in Depots and Rovers, where although the formula size per time
step is bigger, the size of the last checked formula (i.e., the first satisfiable
formula) is nearly cut in half. In the Petrobras domain, even using a seman-
tic notion of interference, the SEM+C approach generates many mutexes,
as there are many incompatibilities between actions. The removal of mu-
texes lets the R2Chained encoding state the problem more compactly at
each time step. This decrease in size per step, combined with the decrease
in the number of needed time steps, lets the planner find a feasible solu-
tion with a reduction of nearly 75% of the problem clauses. The gains of
these reductions are also reflected in Table 7.1, where the difference in the
number of problems solved on the Depots, Rovers and Petrobras domains is
noticeable.

To better illustrate the size of the final formulas shown on the second
pair of columns of Table 7.3, in Table 7.4 the results on the number of steps
are shown. Note that Depots and Rovers instances with the R2Chained
encoding need nearly a third of the steps needed by the SEM+C approach,
and in the Petrobras domain this is nearly the half.

7.4 Orderings

In this section we try to reason about the effect of the selected ordering
between actions on the efficiency of the encoding. Imagine a planning task



120 CHAPTER 7. RELAXED SEMANTICS FOR PLANNING AS SMT

Time steps SEM+C R2C

t. steps avg. steps t. steps avg. steps

Depots (4) 37 9.25 14 3.50
Driverlog (11) 51 4.64 38 3.45
Petrobras (15) 72 4.80 34 2.26
Planes (7) 76 10.86 49 7.00
Rovers (6) 41 6.83 13 2.17
Zenotravel (15) 49 3.27 37 2.47

Table 7.4: Results on the number of time steps needed for the commonly
solved instances between the R2Chained and the SEM+C approaches.
The number of commonly solved instances is shown between parentheses.
Columns t. steps show the sum of all the steps of the commonly solved in-
stances of each family, and columns avg. steps show the average steps per
instance commonly solved.

with three actions a1, a2, a3, applicable in the initial state and with a goal
state that can be reached by the execution of the three tasks. Consider that
a1 disables a2, a2 disables a3, and there are no further disabling relations.
The disabling graph based encodings for ∃-step semantics of [RHN06] will
not produce any constraints with respect to parallelism, because there are no
cyclic disabling relations. Supposing that all actions are initially applicable
and have consistent effects, it will find the plan a3, a2, a1 with only one time
step. However, bad orderings like a1 < a2 < a3 would force the R2Chained
encoding to make three time steps.

Example 34. To avoid this, consider the rdfs ordering, being the reverse of
a depth-first search on the disabling graph. The rationale for this ordering is
to try to minimize the number of possible interferences on actions appearing
later in the ordering, and thus maximizing the number of actions potentially
executed at the same time step.

If we consider the previously presented task, the depth-first search would
start on the node with least incoming edges (o1) and continue then to o2
and o3. If we reverse the order in which nodes are explored, it would give
o3 < o2 < o1. The R2C would then also be able to find a plan in one time
step.

Note that with the R2∃-step semantics the one time step plan can some-
times become valid even if not all actions are applicable at the start or effects
are not consistent. This could be because one action can enable the next one
on the plan and non-commutative effects can now be sequentially applied.
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R2C dec R2C informed dec

t. time t. steps t. time t. steps ∆i

Depots(7) 7994.7 34 116.6 29 +2
Driverlog(11) 1734.3 49 2049.3 42 +2
Petrobras(49) 9546.3 150 57.1 57 -2
Planes(8) 1196.2 65 67.0 48 +2
Rovers(16) 375.5 72 257.4 58 +1
Zenotravel(15) 3735.6 52 631.6 42 +1

Total (96) 24582.6 422 3179.0 276 +6

Table 7.5: Total time and steps needed to solve the commonly solved in-
stances with R2Chained and the dec ordering, with and without informing.
The number of commonly solved instances is shown between parentheses.
Column ∆i shows the difference in total instances solved.

Surprisingly, the rdfs ordering solved globally three fewer instances.
Probably, this happens because the a-priori computed interferences are not
a good indicator on how the actions should be ordered.

7.4.1 Informed Orders

Intuitively, a good ordering for the encoding at hand would be one inferred
from a valid sequential plan, because the sequence of actions needed for a
valid plan is strongly influenced by the objective and the initial state. Thus,
finding an optimal ordering should be as hard as finding a plan itself.

To experimentally validate the previous assumption, we propose to in-
form a given total ordering using a sequential plan obtained from a relaxed
version of the planning problem. This plan is obtained by using delete relax-
ation heuristics [BG01] on the original problem and removing the predicates
belonging to the considered theory T . Once a plan is obtained by solving
the relaxed problem, we extract an ordering by serializing this plan and re-
moving duplicate occurrences of each action. Then, given a total ordering
on the actions, we can inform it by only reordering the subset of actions
appearing in the relaxed plan, according to the order in which they occur
in the relaxed plan.

Table 7.5 shows that informing the previously used dec ordering, re-
sults in needing 146 steps fewer to solve the same number of instances than
without informing it. This increase in parallelism is followed by a dramatic
reduction on solving times (of about two orders of magnitude) in most of
the families, resulting in 6 more instances solved.
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R2C dec R2C informed dec

time steps actions time step actions

depots4 3434,1 6 49/41 23,7 6 36/31
depots10 2379,1 4 39/39 7,9 3 37/27

driverlog11 146,0 4 32/26 2,2 3 29/27
driverlog14 - - - 178,2 4 51/48

petro-C15 372,9 3 78/57 0,9 1 62/62
petro-D15 428,8 3 80/58 0,9 1 62/62

planes6 690,7 9 28/28 37,6 8 38/32
planes11 - - - 871,8 8 42/41

rovers9 58,6 9 61/36 35,4 7 70/36
rovers11 7,0 5 56/35 4,7 3 62/42

zeno15 831,6 4 71/60 585,4 3 66/56
zeno16 - - - 3113,7 3 72/61

Table 7.6: Solving time in seconds, time steps and actions on a sample of
instances, with and without informing.

Additionally to the dec ordering, we also informed the rdfs ordering and
its inverted versions. Table 7.7 depicts how many instances each order solved
in the given timeout and the difference without informing it. None of the
orderings was clearly better. However, the total gains on the number of
solved instances by informing them was always positive, ranging from 4 to
9 extra instances, experimentally supporting the intuition. For example in
the Petrobras domain, informing the order allows it to capture in the right
order the pattern [load, undock, sail, dock, unload], reducing even more the
needed time steps and reducing solving times by more than one order of
magnitude.

Regarding plan quality, with respect to the number of actions, experi-
ments with informed orderings show that no significant change can be seen.
Note that fewer time steps imply less space for possible redundant actions,
but more parallelism can also mean more selected actions per time step.

7.5 Relation with Macro-Actions

One could say that the Relaxed Chained Encoding has some similarities
with some techniques regarding macro-actions. The main idea of a macro-
action [Kor85b, Min85] is to express the combination of one or more ac-
tions. Some methods for automatically learning macro-actions have been
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∆i inf. dec inf. rdec inf. dfs inf. rdfs

Depots 9/+2 7/+3 5/+1 6/+1
Driverlog 14/+2 14/0 12/+2 14/+1
Petrobras 49/-2 59/+4 55/+2 59/+2
Planes 10/+2 8/+1 8/0 9/0
Rovers 17/+1 17/+1 7/0 7/0
Zenotravel 16/+1 14/0 14/-1 15/0

Total 115/+6 119/+9 105/+4 110/+4

Table 7.7: Total number of instances solved for each domain and each in-
formed order. After the slash the difference without informing the order is
shown.

developed [BEMS05]. Also, macro-actions have been extended for numeric
planning problems [Sca14].

The way actions are sequenced in a time step is de-facto a combination
of regression and progression of precondition and action effects. This can be
achieved via substitution, and it amounts to computing weakest precondition
and cumulative effects, which is how numeric macro-actions can be built.
However, a difference with macro-actions is that, in the presented encoding,
the actions that are going to be sequenced are not fixed. In other words, the
Relaxed Chained Encoding encoding benefits from letting the solver decide
which subsequence is necessary to use.





Chapter 8

Conclusions and Future
Work

8.1 Conclusions

The Planning as SAT approach has suffered from the beginning with formula
sizes. In fact, Kautz et al. [KMS96] transported the notion of parallel plans
to the planning as SAT approach to overcome this problem. The main
motivation for using parallel plans was that it could compactly represent all
intermediate states of a sequential plan. The reduced number of explicitly
represented states translated to smaller formulas and sometimes to a more
easily solvable problem. Therefore, a compact encoding was proven to be
essential. This idea has been present during all the thesis. The presented
encodings help in generating formulas with smaller search spaces. This
reduction of the search space (i.e. the increase of parallelism) has shown to
be effective at solving more planning problems.

The Direct Approximation

The first approach in this thesis has been to generalize the ideas of Plan-
ning as SAT to the SMT setting. The Generalized SMT Encoding proposed
in Section 5.2 tightly integrates arithmetic into the problem, generalizing
Rintanen’s approach to Planning as SAT [RHN06]. The other considered
approximations rely into making state-space exploration on the numerical
variables, or loosely integrate external solvers for evaluating arithmetic con-
straints (and therefore not being able to infer anything from the numerical
side). The Generalized SMT Encoding proved to be competitive with other
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exact and complete methods for planning with resources on the Petrobras
problem, and also with some incomplete (heuristic) ones. In particular, we
have obtained better results than NumReach [HGSK07] and similar results
to the heuristic planner SGPlan [CWH06]. We have seen that the method
of [HGSK07], which is based on approximating the reachable domains of
numeric variables, is very sensitive to the number of distinct possible values,
and it is not well-suited for this real real-life problem.

A Semantic Notion of Interference and its application

From here onwards, our main goal in this thesis has been to work in the
direction of increasing the parallelism in the Planning as SMT approach.
As we said, if we can increase the number of actions in a single time step,
this generally leads to smaller formulas and easier problems.

Our objective was then to reduce the incompatibilities to a minimum. In
this direction, the first contribution is the formalization of an elegant solu-
tion to the problem of determining interference between actions in Planning
Modulo Theories. This notion can moreover be implemented as a set of sat-
isfiability checks of SMT formulas. We introduced a new relaxed semantics
for the parallel execution of actions, and formalized a semantic notion of in-
terference, that are suitable for both ∀-step and ∃-step plans in the context
of Planning Modulo Theories.

We also showed how this notion can be applied by proposing the Chained
SMT Encoding in Section 6.3. This encoding resulted to be generally bet-
ter than encodings with purely syntactic approaches to interference. We
provided empirical evidence of its usefulness by showing a significant im-
provement in parallelism in some domains. The gains in parallelism were
due to the semantic checks, as they notably reduced the number of useless
interferences as a pre-processing step. It should be noted that the presented
checks are not only useful, but can also be done independently of the under-
lying planning system. Therefore, any other planner could implement them
as a preprocessing step. In fact, a recent work [IM17] has already benefited
from this approach since presenting this idea to the community [BEV16a].

Relaxed Semantics for Planning as SMT

As we said, our main goal in this thesis has been to work in the direction of
increasing the parallelism in the Planning as SMT approach. Based on the
Relaxed Relaxed Exists-step semantics, our second effort has been able to
change the paradigm by devising an encoding that does not need any mutex.
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We proved its correctness and completeness and shown experimentally that
it generally pays off.

We generalized the idea of a “chain of assignments” introduced with
the previous Chained SMT Encoding to all kinds of variables. We later
introduced in Section 7.2 the Relaxed Chained Encoding, which makes use
of these chains. The experimental section empirically proves that this en-
coding allows for more parallelism than that of the rest of the considered
planners. The approach lets the planner put more actions per time step,
but it also makes the search space wider at each time step considered, and
hence infeasible (too short) plans are more difficult to refute. However, in
general a shorter time horizon pays off in terms of formula size and solving
time, as it can be seen from the empirical results.

As we have seen, making encodings more parallel can also introduce
redundant actions in the final plans. A post-processing step for eliminating
redundant actions from resulting plans has also been proposed. It has proven
to be cheap in terms of solving time, and useful for maintaining plan quality
when considering highly parallel encodings. However, further work in the
direction of finding good orderings for the Relaxed Chained Encoding is
needed. In fact, finding an optimal ordering could be as hard as finding a
plan itself.

Closing Remarks

In our contributions, we were able to gradually make encodings more paral-
lel, reducing total formula size. We also enabled more actions per time step
and therefore solved notably more problems. Therefore, we consider that
the proposed objectives for the thesis have succeeded. All of our work has
been implemented in Rantanplan, a planner that reformulates numeric
planning problems into SMT instances and solve them using SMT solvers as
black boxes. Thanks to these implementations, we have proven repeatedly
to be competitive with the state of the art numeric exact planners.

Although our main efforts have been with numeric SMT theories, many
of our efforts are independent of what theory the user may need, and there-
fore our ideas can be applied to other theories with little to no effort. We
also explored the use of various SMT Theories for solving numeric planning
problems, including the usage of QF UFLIA in Section 5.5.
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8.2 Future Work

Although good results have been obtained with the Relaxed Chained En-
coding, We believe that there is still much room of improvement on selecting
optimal orders for it. Many heuristic approaches explained in Section 2.3.1
simplify the problem beforehand to get useful information. As the main step
to obtain an order for the Relaxed Chained Encoding is to solve a relaxed
version of the problem, the aforementioned simplifications should be studied
to see if they can be useful in this setting.

One type of domains where all the presented encodings struggle are do-
mains where agents move in a given grid. This happens because when an
agent has to move repeatedly in one direction, the same action has to be
taken repeatedly. If the encoding only encodes each action once per time
step, it does not matter how much parallel the encoding is, because the
agent will only be able to take the move action once per step.

To solve this kind of problems, Springroll [SRHT16] implements a very
interesting concept of “rolling up” an unbounded yet finite number of in-
stances of an action into a single plan step. Some problems where “foldable”
actions occur, the planner is able to greatly reduce the number of time steps.
It should be studied how its concepts could be implemented in the Relaxed
Chained Encoding, as it could greatly help in grid-like domains.

In [Rin12a] Rintanen modified a SAT solver to implement new heuristics
specifically for solving planning problems. By doing this, this new heuristics
replaced VSIDS. He also greatly reduced memory needs by using the fact
that between time steps the structure of the problem does not change. A
similar approach should be evaluated, as most SMT solvers use SAT solvers
internally.

With the considered encodings, some problems are too large to be man-
aged by a SMT solver. Another and wider line of work could be to consider
incorporating more powerful inference capabilities to existing heuristic nu-
meric planners, by making calls to an external SMT solver.
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The Rantanplan Planner

Rantanplan is a planning system that implements the main ideas described
in the previous chapters. It has been developed to empirically test the ideas
presented in this thesis.

Rantanplan supports a fragment of PDDL which is close to general
numeric PDDL 2.1, excluding the temporal extensions and metric opti-
mizations. With respect to numeric effects, we consider assign(x, exp),
increase(x, exp) and decrease(x, exp), where exp is any expression over lin-
ear integer (or real) arithmetic. With respect to preconditions and condi-
tions of numeric effects, we assume that the restrictions imposed on numeric
fluents take the form of any SMT formula over linear integer (or real) arith-
metic.

The structure of the Rantanplan planning system is represented in
Figure 1. The first step is to parse and do some preprocessing on the PDDL
instance. For example, arithmetic operations that can be solved at compile
time are simplified and forall expressions are flattened.

Then, the PDDL instance is encoded to SMT. To encode the formulas φ0,
φ1, φ2, . . . , various encodings can be used, transforming the PDDL problem
to a pure SMT problem. Then the problem is iteratively solved, using the
chosen SMT Solver as a black box.

A key aspect of the planner is the detection of interferences between
parallel actions at compile time, by means of calls to a SMT Solver. In case
the user demands a parallel plan, a disabling graph is computed. Broadly
speaking, by disabling graph we refer to a directed graph, where nodes are
the grounded actions from the planning problem and an edge exists from
action a to action a′ if the execution of a can affect a′ (forbid its execution
or change its active effects). Section 5.3 covers the disabling graph in detail.
This graph is used, depending on the notion of parallelism chosen, to encode
the necessary constraints restricting which actions can be carried out at the
same time step.

The system supports solving via API or plain text file using the Yices
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Figure 1: Architecture and solving process of the Rantanplan solver

and Z3 SMT solvers. Once a solution has been found, then it is retrieved.
If there are redundant actions in the plan, they are removed as explained in
Section 7.2.2, and finally the plan is serialized as explained in Section 5.4.1.
In the following section, the relevant aspects for using the Rantanplan
solver are explained in more detail.

Usage and Command-Line Options

As the system has been used to test many hypothesis and approaches, it has
many command line switches, which enable different functionalities. This
section explains in detail what each switch do:

-v makes Rantanplan go verbose.

-d <domain.pddl> specifies the domain file in PDDL format.

-p <instance.pddl> specifies the instance file in PDDL format.

-s <output.pddl> specifies the output file, where the planner will write the
final serialized plan. The syntax is human-readable and compatible
with VAL [HLF04], a plan validator.

-z <order.txt> The Relaxed Chained Encoding from Section 7.2, needs
an order between actions. This switch lets Rantanplan read a given
order from a file.
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-e <y | f | g | z | c> This switch specifies what SMT solver should be
used as a black box to solve the problem. Solvers like Yices are imple-
mented via API and plain text file, as some solvers have a hardcoded
maximum file length and some problems can easily exceed those lim-
its. Most solvers also treat differently problems ingested via API or
via file.

y The Yices SMT solver, via API. As the namespaces collide, only
one version of Yices can be linked to the Rantanplan solver at
compile time.

f It generates SMTLIB files and calls yices to solve them. It supposes
that Yices v1 is in the path.

g The same as before, but generating files with the SMTLIB2 format
and expecting Yices v2 in the path.

z Z3 SMT solver via API.

c CVC4 solver via API (deprecated).

-m <l | f | e> For encodings that rely on a parallelism semantic, this
switch chooses what semantics should be used: sequential (l), ∀-step
(f) or ∃-step (e).

-i <o | s | c> For encodings that need an interference notion, this switch
chooses what notion should be used.

o Syntactic notion of interference, as in Section 5.4.

s Semantic notion of interference, presented in Chapter 6.

c Consider no interferences. It should be used with the Relaxed
Chained Encoding presented in Section 7.2.

-t <f | p | c | u | a> This switch defines the encoding that should be
used.

f The Generalized SMT Encoding from Chapter 5.

p The Relaxed Encoding from Chapter 6.

c The Relaxed Chained Encoding from Chapter 7.

u The UF SMT encoding from Chapter 5, hardcoding the Z3 solver
via files.

a The same as above, but via API. The Z3 solver accepts QF UFLIA
or QF UFLRA logics via file or API, but Yices do not.



154

-a <0 | 1> Activate a strategy where a NO-OP action is added, and each
time step is given a maximum time to be solved. The idea is that with
a high number of time steps, the problem should be easy to solve. In
practice it does not work as expected.

-o <dfs | lex | random | relaxed | comm | file> In encodings that
need an order, this switch defines what order should be used. All
orders can be prepended with an “r” character to reverse it.

dfs The Path-based SCC Order, from Section 6.3.2.

lex Lexicographical order of the grounded action names.

random A random order.

relaxed Generate a total order between actions using a relaxed ver-
sion of the problem. Write it to the file specified with the z

switch, according to the method explained in Section 7.4.1.

comm Generate an order using a SMT solver such that it minimizes
interferences to actions later in the ordering.

file Use the total order between actions that was read from the file
specified in the z switch.

-x <quadratic | lineal | dfscuts> This switch chooses, given a dis-
abling graph, how mutexes are added to the problem.

quadratic The simple quadratic encoding from Section 5.2.2.

lineal A lineal encoding by Rintanen [RHN06].

dfscuts The mutexes generated by Sort and Cut order from Sec-
tion 5.3.1.

-f <or | range | none> This switch governs how the domains of the nu-
meric variables should be explained to the SMT solver:

or If the domain is finite, a or clause determines its domain. i.e.
x = 3 ∨ x = 4 ∨ x = 5.

range The same as before, but expressed as a range: x > 2 ∧ x < 6.

none No explicit description of the domain.

-c Regardless of the order chosen, if any two actions in the disabling graph
form a cycle by themselves, before any preprocessing remove those
edges and add a mutex.
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-n <int> To help the SMT solver refute some hard time steps, add a sorting
network [Bat68] to limit how many actions can be used in any time
step.

-u Inspired by the ideas in Chapter 6 and using the SMT solver, every pair
of grounded actions are checked if their preconditions contradict (i.e.
its impossible that those two actions can be executed in the same time
step). If they contradict, a mutex is added in addition to any other
mutex generation steps.

-l The Yices variable selection heuristic was modified to be able to give
more priority to any given variable. This switch gives priority to vari-
ables that express if an action is executed or not. It requires a modified
Yices to be linked.

-k This switch is needed if the Relaxed Chained Encoding is used. It makes
the planner stop after generating an order to the file specified in the
z switch.
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Planes Domain PDDL Model

(define (domain planes)
(:requirements :typing :fluents)
(:types city locatable - object

aircraft person - locatable)
(:functions
(at ?x - locatable) - city
(in ?p - person) - aircraft
(fuel ?a - aircraft) - number
(seats ?a - aircraft) - number
(capacity ?a - aircraft) - number
(onboard ?a - aircraft) - number
(distance ?c1 - city ?c2 - city) - number)

(:action board
:parameters (?p - person

?a - aircraft
?c - city)

:precondition (and (= (at ?p) ?c)
(= (at ?a) ?c)
(> (seats ?a) (onboard ?a)))

:effect (and (assign (at ?p) undefined)
(assign (in ?p) ?a)
(increase (onboard ?a) 1)))

(:action debark
:parameters (?p - person

?a - aircraft
?c - city)

:precondition (and (= (in ?p) ?a)
(= (at ?a) ?c))

:effect (and (assign (in ?p) undefined)
(assign (at ?p) ?c)
(decrease (onboard ?a) 1)))

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (= (at ?a) ?c1)

(> (onboard ?a) 0)
(>= (fuel ?a)

(distance ?c1 ?c2)))
:effect (and (assign (at ?a) ?c2)

(decrease (fuel ?a)
(distance ?c1 ?c2)))

)

(:action refuel
:parameters (?a - aircraft)
:precondition (and

(< (* (fuel ?a) 2) (capacity ?a))
(= (onboard ?a) 0))

:effect (and (assign (fuel ?a) (capacity ?a)))))

Figure 2: PDDL model of the Planes domain
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