

VALIDATION OF AVAILABILITY AND POLICY
BASED MANAGEMENT FOR PROGRAMMABLE

NETWORKS

Ferney A. Maldonado López

Per citar o enllaçar aquest document:
Para citar o enlazar este documento:
Use this url to cite or link to this publication:

http://hdl.handle.net/10803/666198

http://creativecommons.org/licenses/by/4.0/deed.ca

Aquesta obra està subjecta a una llicència Creative Commons Reconeixement

Esta obra está bajo una licencia Creative Commons Reconocimiento

This work is licensed under a Creative Commons Attribution licence

http://hdl.handle.net/10803/666198
http://creativecommons.org/licenses/by/4.0/deed.ca

DOCTORAL THESIS

Validation of Availability and Policy Based Management for
Programmable Networks

Ferney A. Maldonado Lopez

2017

DOCTORAL THESIS

Validation of Availability and Policy Based Management for
Programmable Networks

Ferney A. Maldonado Lopez

2017

maldofer
Stamp

maldofer
Stamp

DOCTORAL THESIS

Validation of Availability and Policy Based Management for
Programmable Networks

Ferney A. Maldonado Lopez

2017

Doctoral Programme in Technology, University of Girona
School of Engineering, Universidad de los Andes

Supervisors:
Ph.D. Eusebi Calle and Ph.D. Yezid Donoso

This thesis is presented in fulfillment of the requirement for the conferral of the degree of
Doctor of Philosophy by the University of Girona and Doctor of Engineering by the

Universidad de los Andes

i

Girona, May 29th, 2017

We approve the submission of this thesis entitled “Validation of Availability and Policy

Based Management for Programmable Networks” to the School of Doctoral studies of the

University of Girona.

Ferney Alonso Maldonado Lopez

Thesis Candidate

Dr. Eusebi Calle Ortega

Adviser

Dr. Yezid Donoso Meisel

Co–adviser Universidad de los Andes

maldofer
Stamp

maldofer
Stamp

iii

Jury Tribunal

Dr.

President

Dr.

Secretary

Dr.

Vocal

Dr.

Vocal

Dr.

Vocal

Date of presentation

Qualification

Acknowledgments

First of all, the credit of this thesis is to my family who have accompanied and encouraged

me to the completion of this thesis.

I would like to thank my advisors, Dr. Yezid Donoso and Dr. Eusebi Calle for their

guidance throughout this research project.

I want to thank the team; Jaime Chavarriaga, Andrés Marentes, Carlos Lozano, Andrés

Moreno, Germán Montoya, Carlos Velásquez, Diego Castiblanco and many other with whom

we discussed about the project for long hours. Your comments and criticisms were highly

valuable.

I am grateful to Dr. Harold Castro, and the Systems and Computer Engineering

Department at Universidad de los Andes for their support.

Especially grateful to Dr. Jorge Cuellar, Dr. Radha Poovendran, Andrew Clark,

Chou–Chang Yang, Phillip Lee and all the people who shared their time and experiences with

me in the University of Washington. My best memories on that visit.

This work was partially supported by the Department of Science, Technology and

Innovation – Colciencias with grant 528 of 2011; the project Redes interdependientes y

con restricciones geográficas: Indicadores de robustez (GIROS) TEC2015-66412-R; and the

Alianza CAOBA–Centro de Excelencia y Apropiación en Big Data y Data Analytics.

iv

v

List of Publications

• Maldonado-Lopez, F.; Calle, E. and Donoso, Y. Checking Multi-domain Policies in SDN,

Int. J. of Computers, Communication and Control, 2016, 11, 393-405, 2016, 11, 393-405

[MLCD16].

• Maldonado-Lopez, F. A. and Donoso, Y. Reliable Critical Infrastructure: Multiple

Failures for Multicast using Multi-Objective Approach, Int. J. of Computers,

Communication and Control, 2013, 8, 79-86 [MLD13].

• D. F. Rueda, E. Calle, F. A. Maldonado-Lopez and Y. Donoso, Reducing the impact of

targeted attacks in interdependent telecommunication networks, 2016 23rd International

Conference on Telecommunications (ICT), Thessaloniki, Greece, 2016, pp. 1-5. [RCM16].

• Maldonado-Lopez, F. A.; Calle, E. and Donoso, Y. Detection and prevention of

firewall-rule conflicts on software-defined networking Reliable Networks Design and

Modeling (RNDM), 2015 7th International Workshop on, 2015, 259-265 [MLCD15].

• Maldonado-Lopez, F.; Chavarriaga, J. and Donoso, Detecting Network Policy Conflicts

Using Alloy Abstract State Machines, Alloy, B, TLA, VDM, and Z, Springer Berlin

Heidelberg, 2014, 8477, 314-317 [MLCD14]

• Maldonado-Lopez, F. A. and Donoso, Y. Multicast Session Protection Planner - Tool

to plan and deploy protection infrastructure: a SPEA approach CCIA, 2012, 191-200

[MLD12]

• Maldonado-Lopez, F. A.; Corchuelo, J. and Donoso, Y. Unavailability and cost

minimization in a parallel-series system using multi-objective evolutionary algorithms,

International Conference on Applied, Numerical and Computational Mathematics, and

Proceedings of the 2011 international conference on Computers, digital communications

and computing, World Scientific and Engineering Academy and Society (WSEAS), 2011,

33-38 [MLCD11]

vi

List of Acronyms

AAA Authentication, Authorization and Accounting

ACL Access Control List

API Application Program Interface

BCP Boolean Constraint Propagation

BDD Binary Decision Diagram

CTL Computation Tree Logic

CNF Conjunctive Normal Form

DL Description Logic

DPLL David, Putman, Logemann and Loveman algorithm

FDD Firewall Decision Diagram

FIB Forwarding Information Base

HSA Header Space Analysis

KAT Kleene algebra with test

LTL Linear temporary logic

NAT Network Address Translation

NETAD Network Traffic Anomaly Detector

NOS Network Operating System

OF OpenFlow protocol

PBM Policy–Based Management

PBNM Policy Based Network Management

PDP Policy Decision Points

PEP Policy Enforcement Points

QBF Quantified Boolean formula

QFF Quantifier Free Form

QSAT Quantified SAT

RBAC Role-based Access Control

vii

viii

RCP Routing Control Platform

SANE Secure Architecture Network Enterprise

SMT Satisfiability Module Theories

SAT Boolean Satisfiability problem

SDN Software–Defined Networking

TLA Temporal Logic of Actions

ToS Type of Service field

TRW-CB Credit based Threshold Random Walk

WOL Web Ontology Language

Glossary of Terms

Access control System that determines whether a request of resource is granted or denied.

By–Passing Mechanism that describes how a packet tricks the policy and by a set of genuine
rules.

Checking Inspecting or testing a feature.

Correctness Assertion that a function is valid regarding to its specification. The function’s
output corresponds to the expected behavior.

Datapath Network device. e.g. Router, switch, proxy are examples of datapaths.

Declarative Programming Programming paradigm that describes the computational logic
instead of describing the control of flow.

DPLL David–Putman–Logemann–Loveland algorithm for a search that decides satisfiability.

Elasticity Measure of robustness. It is the area under the curve of throughput versus the
percentage of nodes removed.

Flowtable or forwarding–table is a table stored in a datapath that lists the output port for
a specific packet header.

Formal Specification mathematical based technique to describe systems, behavior, domains,
and outputs. It defines design properties that later will be verified.

Order Denotes the number of nodes of a graph.

KodKod SAT–based constraint solver for first order logic with relations, transitive closure,
bit–vector arithmetic, and partial models.

Kripke Structure Transition system used for model checking to represent the behavior of a
system.

Model–checking Given a model of a system, exhaustively and automatically check whether
the model meets a given specification.

Quantifier Free Form Boolean combination of simple arithmetic constraints on integers.

Rule Mapping of a set of actions to a set of conditions.

SAT solver Solves satisfiability problem.

Skolem function Function f (x1, x2, . . . , xn) that replaces the existential quantifier in a logic
statement at the Skolem reduction.

Skolem reduction Reduction from formal logic statement to a Skolem normal form (SNF)
that removes existential quantifiers (∀ and ∃).

ix

x

Stateful analysis Network analysis that evaluates flows, packets, flow–tables, and multiple
variables from the whole network.

Stateless analysis Network analysis of flows or packets without consider other flows or
packets or network variables.

Validation Testing if an application meets functional and non–functional requirements.

Verification Verify that an instance is correct. It consists of determining if a program
accomplish the specification.

List of Figures

1.1 SDN layered architecture. 2

1.2 Multiple configuration of paths between A and E datapaths. 5

1.3 Proposal of general framework to validate policies, topologies and device

configurations. 6

1.4 Framework developed on this thesis. 7

1.5 Methodology followed in this thesis. 9

2.1 Control and forwarding tasks in current network architecture. 12

2.2 Control and forwarding tasks in SDN architecture. 13

2.3 Network architecture comparison: Current network vs. SDN. 14

2.4 Packet fields for header matching in OpenFlow version 1.0. 14

2.5 OpenFlow syntax. 15

2.6 Taxonomy of program analysis . 23

2.7 Binary decision diagram . 27

2.8 Policy-Based Management Architecture [Wes+01] 35

3.1 Model of network language for policy and flow. 49

3.2 Topology example to validate network invariants. 51

3.3 Topology invariant examples over nodes. 61

3.4 Examples of invariants for paths. 62

3.5 Topology examples used to test network invariants. 65

3.6 Time for CNF creation and model solving for node invariants. 66

3.7 Time for CNF creation and model solving for path invariants. 67

4.1 Taxonomy of failures adapted from [Seg11]. 71

4.2 Representation of interdependent networks. 79

4.3 Targeted attack in interdependent networks. 80

4.4 Cascading failures in interdependent networks. 82

4.5 Sequential targeted attack in interdependent networks. 83

4.8 ATTR for sequence and recalculated attacks in reverse order. 89

4.9 ATTR for sequence and recalculated attacks high–high. 90

4.10 ATTR for sequence and recalculated attacks high–low. 91

4.11 ATTR for sequence and recalculated attacks random. 92

xi

LIST OF FIGURES xii

5.1 Example scenario of firewalls for SDN paradigm. 98

5.2 FireWell architecture . 104

5.3 Tree of addresses created from the example of table 5.1. 106

5.4 Required time to parse firewall rules to Alloy model. 110

6.1 Multi–domain network scenario. 115

6.2 Flowtables for devices in domain A. 116

6.3 AudIt architecture . 120

6.4 Structure of an AudIt packet. 121

6.5 AudIt protocol execution. 122

6.6 Related flowtables entries from devices in domain B. 123

6.7 Network topology based on ports. 123

6.8 Solutions for AudIt implementation. 124

6.9 FatTree topology for test. 125

A.1 Example of policy description in XACML language. 147

B.1 Alloy representation of addresses. 153

List of Tables

2.1 Advantages and disadvantages of SDN regarding traditional networking

architecture. 21

2.2 Classification of errors in system programs. 28

2.3 Proposed network properties to be validated for this thesis. 29

2.4 Policy definitions [Ste+99] . 36

2.5 Example of policy language by Clark [Cla89] 36

2.6 Syntax of PDL policy [LBN99]. 37

2.7 Comparison of verification techniques for network invariants. 44

2.8 Comparison of verification techniques for security properties. 44

3.1 Example of topology abstraction and traffic flow. 50

3.2 Model components and their Alloy instructions. 60

4.1 Topological properties for simulated networks. 86

5.1 Example of firewall rules extracted from [ASH04a]. 98

5.2 Relations for packet headers fields. 99

5.3 Example of firewall rules for the first three rules. 109

5.4 Analysis of time using the Alloy API. 109

5.5 Conflicts detected in the example firewall-rule set. 110

7.1 Summary of contributions of this doctoral thesis. 128

A.1 Syntax and example of Ponder policy [DDLS01]. 146

A.2 Syntax and example of Pol–ETH policy [Cas+07]. 147

A.3 Syntax and example of policy in FSL [Hin+09a], later FML [Hin+09b] language.148

A.4 Syntax and example of ALARM policy [Hin+09b]. 148

A.5 Syntax and example of SIMPLE policy [Qaz+13]. 148

xiii

List of Listings

2.1 Syntax of firewall policy advisor [ASH03]. 39

2.2 Example of firewall rules [ASH03]. 40

3.1 Syntax of policy in PPL language [SLX01]. 53

3.2 Definition of topology example in PLL language. 53

3.3 Policy example denies video traffic. 54

3.4 Policy example permits video. 54

3.5 Summary of Alloy’s syntax. 55

3.6 Definition of topology, nodes and links in Alloy. 56

3.7 Signature and instance definitions of a path in Alloy. 57

3.8 Path example modeled in Alloy . 57

3.9 Example of flow specification. 58

3.10 Policy instance with path, flow type, and action. 58

3.11 Policy example: a contradicting policy. 59

3.12 Alloy representation of isolated test. 60

3.13 Alloy representation of self–loop test. 60

3.14 Alloy representation of reachabilility test. 61

3.15 Alloy representation test of a path with cycles. 62

3.16 Alloy representation test of a path with a mandatory node. 63

3.17 Alloy representation test of a path with node avoidance. 63

5.1 Abstract definition of the addresses tree for the example. 107

5.2 Abstract definition of a firewall rule. 107

5.3 Abstract definition of first rule for the example. 107

5.4 Shadowing conflict definition. 108

A.1 Syntax of policies in Flowexp language. 148

A.2 Syntax of policies in Frenetic language. 149

xiv

Contents

List of Publications vi

List of Acronyms vii

Glossary ix

List of Figures xi

List of Tables xiii

List of Listings xiv

Abstract xix

Resumen xx

Resum xxi

1 Introduction 1

1.1 Motivation . 1

1.1.1 SDN: a flexible networking paradigm 1

1.1.2 Network failures and availability . 3

1.2 Problem Overview . 4

1.3 Proposed Solution . 5

1.4 Research Objectives . 7

1.5 Contributions . 8

1.6 Methodology . 8

1.7 Outline of the Thesis . 9

2 SDN and Policy Management 11

2.1 Software–Defined Networking . 11

2.1.1 SDN architecture . 13

2.1.2 Software for Software–Defined Networking 16

2.1.3 Network applications . 18

2.1.4 Challenges for Software-Defined Networking 20

2.2 Verification and Model Checking for Networking 22

xv

CONTENTS xvi

2.2.1 Logical Systems . 23

2.2.2 Verification by Satisfiability: the SAT 25

2.2.3 Solvers for satisfiability and verification 26

2.3 Verification meets Networking . 28

2.3.1 Verification of Network Topology and its Invariants 29

2.3.2 Verification of Network Security Properties 32

2.3.3 Issues and Limitations of Verification 34

2.4 Network Policies and Device Configurations to SDN 34

2.4.1 Policy Specification Language . 35

2.4.2 Policy Analysis and Verification . 38

2.4.3 Network Security and Firewall policies 39

2.4.4 Policies for Software-Defined Networking 40

2.5 Summary . 42

3 Topology and Path Verification 46

3.1 Abstractions for Topologies, Flows and Policies 46

3.1.1 Network topology . 47

3.1.2 Transitive Closure and Reachability 47

3.1.3 Categories and Sequences . 48

3.1.4 Traffic flow . 49

3.1.5 Network policy . 50

3.1.6 Policy conflicts and semantics . 52

3.2 The Path–Based Policy Language . 53

3.2.1 Network topology . 53

3.2.2 Path specification . 54

3.2.3 Policy representation . 54

3.3 Modeling Policies and Reasoning about Conflicts 54

3.3.1 Alloy in a nutshell . 55

3.3.2 Network Topology Model . 55

3.3.3 Path Model . 56

3.3.4 Flow Model . 57

3.3.5 Policy Model . 58

3.3.6 Policy conflict Model . 58

3.4 Path, Policy and Conflict Detection with Alloy 59

3.4.1 Checking topology invariants . 59

3.4.2 Checking invariants and policies with Alloy 63

3.5 Summary and Conclusions . 68

4 Targeted Attacks on Interdependent Networks 70

4.1 Network failures . 71

4.1.1 Multiple Failure Models . 72

4.1.2 Robustness . 73

4.1.3 Survivability and Resiliency for Communication Networks 74

CONTENTS xvii

4.2 Targeted Attacks on Interdependent Networks 78

4.2.1 Interdependent Network Model . 78

4.2.2 Targeted attacks . 80

4.2.3 Targeted Attacks and Robustness in Interdependent Networks 81

4.2.4 Sequential targeted attacks in Interdependent Networks 82

4.3 Targeted Attacks on ER networks: Case Study and Results 84

4.3.1 Models of Random Network . 84

4.3.2 Backbone Telecommunication Networks: Case Study 85

4.4 Summary and Conclusions . 93

5 Verification of Security Policies 94

5.1 From Middlebox to Network Application . 95

5.1.1 Firewall functionality . 95

5.1.2 Firewall and Security rules in SDN . 95

5.1.3 FireWell Proposal . 96

5.2 Firewall model, rules and conflicts . 97

5.2.1 Filters and headers . 97

5.2.2 Filter fields and relations . 99

5.2.3 Filter relations . 99

5.2.4 Conflicts in firewall rules . 99

5.3 FireWell: Firewall-rules Well-formed . 100

5.3.1 Model in Predicate Relational Language 101

5.3.2 Finding conflicting rules . 102

5.3.3 FireWell implementation . 103

5.3.4 Mapping firewall rules into Alloy model 106

5.4 Experiment and Results . 108

5.4.1 Advantages of translating to Alloy . 111

5.5 Summary and Conclusion . 111

6 Verification of Policies in Multiple Domains 113

6.1 Auditing Policies in Multi–Domain Networks 114

6.1.1 Policies in Multi-domain Networks . 115

6.1.2 Challenges in multi-domain networks 116

6.1.3 Policies in Programmable Networks 116

6.2 Topology and Policy Models . 117

6.2.1 Network topology and paths . 117

6.2.2 Traffic flows . 118

6.2.3 Policy conflicts and semantics . 118

6.3 Checking multi-domain policies with AudIt 120

6.3.1 AudIt: the protocol extension . 121

6.3.2 AudIt protocol . 121

6.3.3 Multi-domain Policy Checking . 122

6.3.4 Inference Engine based on SAT . 123

xviii

6.4 Experimental results . 124

6.5 Summary and Conclusions . 125

7 Conclusion and Future Work 126

7.1 Conclusions . 126

7.2 Discussion . 127

7.3 Contributions . 128

7.4 Future work . 128

Bibliography 130

A PPL interpreter for Alloy 146

A.1 Checking Network Invariants . 146

A.2 Specification Languages for Policies . 146

B Conflict detection 150

B.1 Detecting other types of conflicts . 150

C Alloy Syntax 154

D Parsing topology 155

Abstract

In recent years the network architecture is transform from a monolithic to a network with

multi–component and flexible systems, where the software plays the important role of

facilitating such flexibility. Software-Defined Networking (SDN) is a network technology

that separates control functions, network intelligence by software, and the data plane, packet

forwarding in hardware. This change is important being that the architecture of the current

network technology maintains these two functionalities in the same device: the router.

The separation of the data and control layers allows flexibility in the management and

use of network resources because the software is specialized in controlling the traffic and

simple and economic hardware is in charge of forwarding. Like other x–Defined by Software,

developments that may arise from this technology are only limited by the imagination of the

network application developer. Developers can build applications that control the detail of

network and packet processing, from the autonomous configuration to complex operations

which involve the context. It opens a myriad of opportunities to develop new functionalities

that today are partially made with specialized equipment.

However, one of the most frequent problems in networks is the availability. The

countermeasure is to develop mechanisms and strategies to deal with failure incidents and

to recover functionality, prevent failures, and mitigate the impact of failures in network

operation. SDN availability is an interesting issue that the academic and industrial communities

are beginning to address, since the technology is still on development and the efforts are

focused on build applications for administration to face the virtualization and dynamic

configuration.

One of the challenges is undoubtedly the configuration and the programming of the

network. The human factor represents between 50% and 80% of network failures due to

errors and bugs in the programming of applications and the implementation of algorithms

and protocols.

This doctoral thesis proposes 1) to use formal specification and verification of network

functionalities in the context of SDN to reduce the impact of network failures. 2) It also

presents the guide of network administration through policy implementation for security and

auditing, and 3) shows the impact of failures on a representation of SDN architecture as an

interdependent network model.

xix

Resumen

En los últimos años se ha transformado la arquitectura de red desde un sistema monoĺıtico

hacia uno de múltiples componentes flexibles, donde el software desempeña el importante rol

de facilitar dicha flexibilidad. Las Redes Definidas por Software (SDN) permite la separación

de las funciones de control, inteligencia de la red por software de control, y de la capa de datos,

el reenv́ıo de paquetes en el hardware. Este cambio es importante dado que la arquitectura

actual mantiene estas dos funcionalidades en el mismo dispositivo: el enrutador.

La separación de las capas de control y de datos permite mayor flexibilidad de

administración y utilización de los recursos de red. Los desarrollos surgen de esta tecnoloǵıa

están únicamente limitados por la imaginación del desarrollador de aplicaciones. Este último

puede diseñar aplicaciones que controlen el detalle de las operaciones de la red, desde la

configuración automática de equipos, hasta el desarrollo de complejas operaciones lógicas.

Existe entonces un sinnúmero de oportunidades para desarrollar funcionalidades que hoy en

d́ıa se realizan con equipo especializado.

Sin embargo, uno de los problemas más frecuentes en redes es la disponibilidad. Su objetivo

es desarrollar mecanismos y estrategias para actuar ante incidentes de fallo y recuperar la

funcionalidad, evitar los fallos, y mitigar el impacto en la operación de la red. En SDN este

es un problema interesante que la comunidad académica está trabajando, pero dado que

la tecnoloǵıa es reciente, los esfuerzos se han enfocando en desarrollar aplicaciones para la

administración de la infraestructura ante la virtualización y la configuración dinámica.

Uno de los retos es sin duda la configuración y programación de la red. Ya que el

factor humano representa entre el 50% y el 80% de los fallos de red son producidos por

errores de configuración y bugs en la programación de aplicaciones y la implementación de

algoritmos.

Esta tesis de doctorado propone 1) la utilización mecanismos formales de especificación

y verificación de aplicaciones de red en el contexto de las SDN con el objetivo de reducir el

impacto de las fallas de red. 2) también orienta la administración de las redes por medio

de implementación de poĺıticas para la seguridad y la auditoŕıa en redes, y 3) describe el

comportamiento de las fallas en una representación de la arquitectura SDN como una red

interdependiente y el presenta el impacto fallas en la red.

xx

Resum

En els darrers anys s’ha transformat la arquitectura de xarxa des d’un sistema monoĺıtic

fins cap a un de múltiples components flexibles, on el software juga el paper important de

facilitar aquesta flexibilitat. Les Xarxes Definides per Software (SDN) permeten la separació

de les funcions de control, intelligència de xarxa, y de capa de dades, reenviant paquets en

el hardware. Aquest canvi es important perquè l’arquitectura de la tecnologia actual manté

aquestes dues funcionalitats en el mateix dispositiu: l’enrutador.

La separació de les capes de control y dades permet major flexibilitat d’admistració

y utilització dels recursos de la xarxa. Els avenćos tecnològics d’aquesta tecnologia estan

únicament limitats per la imaginació del desenvolupador d’aplicacions per xarxa que pot

disseny aplicacions que controlin el detall de les operacions de la xarxa, des de la configuració

automàtica d’equipaments, fins al desenvolupament d’operacions lògiques complexes. S’obre

d’aquesta manera un ventall per desenvolupar funcionalitats que avui en dia es realitzen amb

un equipament especialitzat.

No obstant, uns dels problemes mes freqüents en les xarxes es la disponibilitat. L’objectiu

és desenvolupar mecanismes i estratègies per actuar davant incidents de fallada i recuperar la

funcionalitat, evitar que les fallades apareguin, i mitigar l’impacte de les fallades en l’operació

de la xarxa. En SDN aquest és un problema interesant que la comunitat acadèmica està a

traballant, però com que la tecnologia ès recent, els esforc̃os s’han enfocat en desenvolupar

aplicacions per l’administració de la virtualització i la configuració automàtica.

Un dels reptes, sens dubte, és el de la configuració i programació de la xarxa. El factor

humà representa entre el 50% i el 80% de les fallades de la xarxa entre errors de configuració i

bugs en la programació de les aplicacions i implementació d’algorismes i protocols.

Aquesta tesis de doctorat proposa 1) la utilització de mecanismes de especificació i

verificació d’aplicacions de la xarxa en el context SDN amb l’objectiu de reduir l’impacte de

les fallades de la xarxa. 2) també es proposa orientar l’administració de les xarxes per mitjà

de poĺıtiques per la seguretat i la auditoria de xarxes, i 3) se descriu el comportament de les

fallades en una representació de l’arquitectura SDN com una xarxa independent i s’estudia

l’impacte de les fallades en aquest model de xarxa.

xxi

Chapter 1

Introduction

If I had an hour to save the World, I

would spend fifty-five minutes defining

the problem, and only five minutes

finding the solutions.

Albert Einstein

This chapter describes the motivation for this thesis, defines the research problem, and

lists the objectives and contributions achieved along the research project. At the end, this

chapter describes the structure and content of this document.

1.1 Motivation

Since the mid–1970s, network functionalities, as routing and forwarding, and thus router

architecture, have largely remain the same. The router is a fundamental device for networking,

with specialized software that implements specific algorithms for routing, management,

security and quality of service; but also, it has specialized hardware to perform the forwarding

function. This device combines control and forwarding tasks (control and data planes), and

embedded them into the same middlebox. However, the router architecture remains as a

monolithic structure with its own operating system and protocol implementations. Unlike

router architecture, Internet changes due to the development of new protocols, applications,

and services. Recently, new requirements such as cloud computing, massive information

services, and growing data–center infrastructure, demand changes on network architecture

and therefore modifications in the router.

1.1.1 SDN: a flexible networking paradigm

Software–Defined Networking (SDN) is a networking approach that separates the control

plane from the data plane. Figure 1.1 shows layered separation of control, the network

operating system, communications protocols, and the data plane. The control plane is a

software layer responsible for addressing, routing and managing protocols. Meanwhile, the data

plane oversees data forwarding, that is sending packets through a specific port or interface. The

1

CHAPTER 1. INTRODUCTION 2

 Control plane

Communications Protocol

Policy
interperter

Network Operating System
Resource

admin
Packet
process

Routing

Topology
admin

Signaling

Data
Interface

Firewalling

Wireless
Control

MPLS

Circuit
Pusher

Users Admin

 Data plane

A

B

C

D

E

Controller/
Datapath com

Add, Modify,
remove rules

Datapath
administration

Figure 1.1: SDN layered architecture.

SDN network is governed by a centralized controller on a server. On top of the controller, the

layer of management executes software routines, customized protocols and network applications.

The controller sends and installs traffic rules on network devices by a communications protocol

which accesses the data plane. OpenFlow [McK+08b] is a communications protocol that

installs entries into the forwarding table of a network device (datapath). Forwarding tables

store 〈match, action〉 pairs which determine the action performed over the packet if a packet

header matches an entry on the table. In contrast to traditional routing–tables that store

addresses and routes to particular destinations, route metrics, information related to topology,

forwarding tables store the set of actions to be apply on a specific packet. SDN actions

are wide and diverse, they include sending the package to the controller to be analyzed and

processed by a network application, forward the packet to a specific port, modify the packet,

or even discard it. SDN facilitates processing data packets in a granular way in contrast to the

present network architecture. SDN allows the transition from a dated monolithic network with

specialized hardware and software, to a layered and flexible architecture with open interfaces

over commodity hardware. The important change is that protocols and functions are now

network applications which now run on the controller.

SDN empowers programmers to develop applications to support network functionality

and other complex requirements such as network assistance for computer virtualization,

slicing of infrastructure for multi–tenant, and reconfiguration of network devices for dynamic

demand. SDN offers a programming framework for the underlying infrastructure and allows the

network management by software abstractions. Networking goals such as traffic engineering,

protection, survivability and security, are designed and implemented as software applications

CHAPTER 1. INTRODUCTION 3

that run on the centralized controller. Furthermore, SDN allows the virtualization of network

functionalities (NFV) due to they are also applications running on the controller [Mar+14].

Firewalls, load balancers, or intrusion detection systems are functionalities, software, that

process traffic packets. Network appliances are substituted by software instances that build

virtual networks. We expect that SDN facilitates new developments and solutions to network

problems that today are complex to solve.

1.1.2 Network failures and availability

Failures in computer systems, applications, and network components will produce expensive

outages. The service disruption is classified into one or more of the following categories:

nature, hardware, human error, software, system overload, or vandalism [OM08]. Nevertheless,

human error is considered the largest single source of failure and outages [BP01], and causes

62% of network downtime [Ker04], and according to Juniper, human error is culpable for

50 to 80% of network outages [Jun]. For example, a common failure occurs due to firewall

misconfiguration, it can block important traffic if its configuration is inaccurate. Moreover,

finding configuration errors is difficult and depends on the amount and complexity of the rules

[Woo10].

Techniques for mitigating these failures vary from the testing of correctness, which

evaluates the behavior before the production deployment [Abr96], to tools which check

low–level configuration files accomplish behavior constraints [MWA02]. In order to detect

conflicts, inconsistencies or bugs, network administrators can test the configuration of each

device, rely on monitors to observe the traffic to confirm correctness; or use formal methods

to specify a model of the intended behavior of a network, and run an automatic configuration

of each middlebox for de SDN case.

Formal methods in networking are mathematical techniques for specification, development

and verification of network functionality. This mathematical analysis contributes to increasing

network reliability. In recent years, formal verification of software has gained importance due to

new advances in search algorithms, machine learning, and hardware power. The verification by

formal methods helps to reduce the gap between requirements and configuration, through the

validation of congruence of the model of requirements and the model of configurations.

The core of formal methods is the Boolean satisfiability problem (SAT), that consists

of, given a formula, finding a satisfying assignment or proving that none exists. For that,

SAT solvers are effective tools for solving constraint satisfaction problems [MZ09] even if

it is an NP–complete problem [PW10]. Over the course of this thesis, we use lightweight

formal methods to find topology and policy inconsistencies and validate configurations. We

focus on network invariant checking, firewall rule validation and configuration–implementation

accomplishment for SDN networks.

SDN approach faces different challenges and opportunities, especially those related with

programming and configuration errors. SDN is vulnerable to failures, error and configuration

faults, as any other software or application. In 2003 Oppenheimer et.al. [OGP03] studied

CHAPTER 1. INTRODUCTION 4

over a hundred of reports of failures in the Internet services and found that operator error

is the leading cause of failure, also it is the largest contributor to time to repair, and the

configuration error is the largest category of operator errors.

This research studies network availability for SDN, the failure propagation between

control and data planes, then it presents a framework to check applications to enhance

network availability under this new SDN paradigm. This thesis also focuses on network

misconfiguration by human errors, due to it is a common phenomenon and the principal cause

of network outage. Finally, this thesis proposes to identify inconsistencies by lightweight

formal models. We evaluate network scripts and configurations and validate that network

behavior model against a specification.

1.2 Problem Overview

Communications protocols, like OpenFlow, facilitate the interaction between components

from different vendors and offer a standard API. Thus multi–vendor network–control

applications can be developed. Furthermore, the SDN community develops programming

languages, network operating systems, and tools for simplifying administration tasks. The

complete network behavior can be specified by a set of high–level policies instead of low–level

configurations on devices. SDN also provides flexibility and scalability, because the policy

specification can be mapped into regular instructions for each equipment. The main advantage

of SDN is allowing top–down management, from policies to packet forwarding.

However, network applications are written by humans and therefore they are not exempt

from logical or syntax errors. These errors can generate availability issues, network failures

and misbehavior such as forwarding address errors, blocking or interruption of connections,

oscillation, black–holes, false failure advertisement, disconnection, or forwarding inconsistencies

which trigger packet loss which results in availability issues. Even, the ordering is highly

important. Rules in the datapath should be ordered and that arrangement influences the

decision taken by the datapath.

Consider the network example depicted in figure 1.2 and suppose that the network

administrator configures a path between nodes A and E. The administrator may define a

high–level policy thereby: IT members in the subnetwork A can access the video database in

subnetwork E.

The policy by itself does not guarantee the correct network behavior nor the underlying

topology can implement the policy. We can model the topology and the path as constraints for

the implementation. Figure 1.2a shows a topology example that implements the policy. In the

SDN environment, the network administrator can write policies on the control plane. Then, the

controller automatically translates policies into rules and installs forwarding rules according

to the network application. The controller also decides the distribution of rules into datapaths.

For example, figures 1.2b and 1.2c are two paths between nodes A and E that accomplish the

policy. The controller implements one of the possible configurations according to physical

topology and other requirements —such as mandatory datapaths, included/excluded nodes

CHAPTER 1. INTRODUCTION 5

A

B

C

D

E

(a) Physical topology.

A

B

C

D

E

(b) A – C – E path.

A

B

C

D

E

(c) A – B – C – E path.

A

B

C

D

E

(d) No path satisfies the policy.

Figure 1.2: Multiple configuration of paths between A and E datapaths.

for the path, available network resources, permissions, etc.—. The controller implements the

path that satisfies the policy and the restrictions. For example, the figure 1.2c is the resulting

path if we add a new restriction that avoids the node D. Finally, sometimes no policies can be

implemented. Suppose a new policy that avoids nodes C and D. Figure 1.2d shows that no

path can satisfy this policy. Int this way, the reader can note that bad–defined policies may

generate erratic behavior in the network.

We show that important amount of infrastructure downtime is caused by human

misconfiguration because it is a error prone task. Also, policy definition is a high–level

abstraction of the expected behavior and its definition not always can be implemented by the

infrastructure. On the other hand, because of the number of network devices, users, flows and

rules, the validation and correction of rules could generate other policy violations. Even worse,

human rule construction without verification could introduce security vulnerabilities.

For the reasons given, an automatic mechanism becomes necessary to validate the

conformity between the high–level policy and the low–level implementation. In order to

achieve this goal, we expose three issues to the discussion: 1. Description of high–level

policies and logical topology specification in SDN to build a model that can be comparable.

2. Description of device implementation from datapaths. 3. A mechanism to validate if the

specification, given by the policy, agrees the datapath implementation and report a list of

inconsistencies.

1.3 Proposed Solution

The proposed solution in this thesis comprises three modules: a model of topologies, failures

and policies; a model of implementations from datapaths; and a mechanism of validation.

Figure 1.3 depicts the proposed framework which has two interpreters, one for policy and

topology, and another for device configurations. After these two inputs are interpreted, we

CHAPTER 1. INTRODUCTION 6

build two predicate–relational models and then they are evaluated to identify coherence or

conflicts.

Verification
SATsolver

Policy
Interpreter

ModelTopology

Policy

Device
Config

Implementation
Interpreter

Model

Conflicts
Report

Figure 1.3: Proposal of general framework to validate policies, topologies and device
configurations.

Diverse verification tools based on tests have been proposed to validate policies and

restrictions for regular networks. Off–line validation programs specifies unitary and integrated

tests, runs experiments, and identifies if the implementation fulfills the requirements. On–line

validation programs are based on performance experiments which consist in configuring

datapaths, verifying data transmission, and measuring and comparing with the expected

result. These mechanisms can check if the configuration fulfills the policy but they cannot

identify if instructions in the datapath contradict the policy, or if there are conflicts within

the set of instructions. A policy implementation is said to be closed if the set of network

policies are implemented by the set of configurations on datapaths, and procedures outside

the policy cannot be executed by the datapath configuration. For example, consider a network

policy that Allows IT department members to access the database server. The configuration

on datapaths must allow connections from IT members to the database server, but also,

the configuration must not allow connections form members outside IT department to the

database server.

We propose to validate network misbehaviors on three domains: 1. wrong or neglected

specification of infrastructure or applications, e. g. the topology described by the

documentation does not coincide with the infrastructure; 2. errors in policy design, at

the controller (procedure errors at control plane), e. g. a policy can apply restrictions for

null or impossible traffic, visitor user can access and modify private records; 3. unsorted

instructions on datapaths (errors at data plane implementation), e. g. if the administrator

allows connections to 192.168.10.* should be instructed as 1) allow 192.168.10.0/24 and 2)

deny *.*.*.*, not the other way.

We propose to use lightweight formal methods for checking network policies against a set

of restrictions of a SDN environment. Specifically, we rewrite network policy validation as a

SAT problem, and then use predicate logic transformation to find inconsistencies, conflicts

and examples of configurations. Besides, we use a predicate solver to represent formulas and

CHAPTER 1. INTRODUCTION 7

Verification
SATsolver

Data plane

 Control plane

OpenFlow

Network Operating System

Resource
admin

Packet
process

Topology
admin

Signaling

Circuit
Pusher

Application
Interface

Policy
Interpreter

Topology
Specification

Policy
Specification

Paths
(Circuits)

Policy
Interpreter

ModelTopology

Policy

Config

Implementation
Interpreter

Model

Conflicts
Report

Figure 1.4: Framework developed on this thesis.

restrictions in Conjunctive Normal Form (CNF). To assist this work, we employ Alloy as

the modeling language based on first–order and relational logic [Jac03]. Figure 1.4 presents

the framework developed on this thesis. In short, we model network topology, policies

and configurations on Alloy, use the solver to find conflicts, and map findings to specific

anomalies.

In this research project, we process high–level network policies that later are interpreted

by SDN instructions and OpenFlow commands. Then, we validate forwarding configurations

on datapaths against a policy set. Thus, we explore the verification of closed–policy

implementations. We consider that this work contributes to facilitate network availability on

SDN.

1.4 Research Objectives

The objective of this thesis is to study network availability by the validation of network

policies in Software–Defined Networking. For this purpose, we develop a strategy for mapping

network constrains to logical–relational predicates and operate them.

The specific objectives for this thesis are:

• To represent the network infrastructure as a formal model that allows being evaluated

(verifiable) under the specification of functional requirements in predicate–relational

logic.

• To model SDN as an interdependent graph and analyze the impact of failures on this

architecture that attempt the availability.

• To represent three network functionalities (network invariants, firewall, auditing) as

formal representations that are tested using a model finder tool.

CHAPTER 1. INTRODUCTION 8

• To design a lightweight formal model for network policies that can be adopted under

SDN paradigm.

• To implement a validation process using Alloy modeling language to test our approach.

• To analyze the validity of solutions through a case–verification.

1.5 Contributions

This thesis presents a series of works oriented to Policy–Based Management (PBM) which

is a framework that aims to simplify and automatize network administration. SDN is suitable

for PBM, given that the controller has a complete view of the network; therefore, it is able to

apply network–wide policies.

In this manner, the contributions of this thesis are:

• A diagnosis of research in programmable–network management, and the identification

of error reduction using formal validation of policies for SDN.

• A model to check network invariants and SDN topology features.

• A representation of SDN network as an interdependent graph and the analysis of its

robustness after a sequential targeted failures.

• A set of modeling expression with which a network administrator could write high–level

policies which are translated into forwarding rules regardless of devices, vendors, or

operating systems.

• A model to check firewall rules and conflicts, and another to check if a policy is begin

enforced by a foreign network domain.

1.6 Methodology

The methodology followed in this research thesis is in two ways, from the specification

at control plane, and from the data plane to the validation. Figure 1.5 describes

these two processes. In the first process, we model topologies, failures and policies in

a predicate–relational language. Then, we develop an interpreter that transforms the

specification into logical circuits. The data plane of SDN receives the logical circuits and

installs them into the SDN datapaths In the second process, we grab the configuration from

datapaths and use another interpreter to build the configuration model. Then, we use a solver

of satisfiability (SAT) to compare these two models and report the congruency.

In the practice, we use this methodology for each contribution of this thesis. Specifically,

we follow this list of tasks:

1. Architecture definition of Software-defined Networking. The documentation process,

collecting the specification on SDN, focused on OpenFlow.

2. Identification of network properties to be verified under topology failures.

CHAPTER 1. INTRODUCTION 9

Verification
SATsolver

Data plane

Control
plane

OpenFlow

Network
Operating
System

Policy
Interpreter

Topology
Specification

Policy
Specification

Paths
(Circuits)

Policy
Interpreter

ModelTopology

Policy

Config

Implementation
Interpreter

Model

Conflicts
Report

3

1

2

3

2
1

Figure 1.5: Methodology followed in this thesis.

3. Construction of a lightweight formal model, in Alloy language, that describes the network

properties and a set of tests (violations).

4. Execution of experiments to find inconsistencies in the model (instances and

counterexamples) using the modeling tool. Report the cases where the verification

was positive, there were no inconsistencies between the model and the case, and negative,

the case has induced false tests.

5. Simulation scenarios are implemented to collect data and evaluate the model, cases and

instances.

6. Write reports and develop a plan to release them in proceedings and articles.

1.7 Outline of the Thesis

This document comprises six chapters. Chapter 2 has three parts. The first one offers

a compact review on SDN and highlights the fundamental issues regarding this thesis. The

second part presents essential background on logical systems used by verification. Finally, the

third part includes the state of the art on verification techniques for networking and how they

have influenced this thesis regarding to topology, firewalls and policy enforcement.

Once we present the fundamental concepts and related work, chapter 3 shows the initial

model to verify network topology, paths, and traffic flows. Also, this chapter presents the basis

of network modeling used along the document, the semantic function used to find conflicts

and the case of network invariants from a path–definition language.

Chapter 4 offers a wider view of network availability applied to SDN environments. In this

CHAPTER 1. INTRODUCTION 10

chapter, we model a SDN network as an interdependent network and analyze the robustness

of its topology under the sequential targeted attack. This chapter finalizes with tests of three

link patterns as result of a simulation.

Since it is necessary to apply this verification technique to a networking case, chapter 5

is dedicated to a firewall case on SDN networks. We tackle inconsistencies and conflicting

configurations in an application of firewall for SDN that can generate availability issues. This

chapter shows work on security, policies of filtering, firewalls and access control verified using

a model finder based on Alloy. Moreover, it presents a strategy to reduce the number of

variables, and hence the scope complexity in seeking solutions and counter examples.

While previous chapters show how to validate if the configuration corresponds to the

policy, chapter 6 demonstrates if a policy is achieved from the forwarding information allocated

on datapaths. This chapter describes a mechanism to monitor and audit network policies in a

foreign domain. It is a challenging approach that verifies configuration and policies in the

opposite direction, from the data plane to the verification.

Chapter 7 exhibits comprehensive framework for network policy management developed

throughout this thesis. We summarize the results of our work and conclude this report, present

findings and limitations, and describe some objectives that may addressed in future research

on validation for networking.

Finally, appendix A presents the proposed mapping of policies that translated paths and

topologies to predicate–relational logic. Appendix B describes in detail the schema to find

conflicts and inconsistencies from the semantic function. Appendix C shows the grammar

used in Alloy to model the complete system presented on this document, and appendix D

presents the grammar structure to parse the topologies.

Chapter 2

Software–Defined Networking and

Policy Management

If I have seen further it is by standing

on the shoulders of Giants.

Isaac Newton

This chapter presents a review of Policy Based Management (PBM) for networks and

its applicability to Software–Defined Networking (SDN). Since all network information is

centralized in a unique logical location, the controller, there is an opportunity to create more

efficient ways to manage and administrate the network by policies. PBM is the bridge between

the logical management and SDN. The goal for PBM is to provide trustworthy configuration,

and promotes the validation and design of robust architectures.

2.1 Software–Defined Networking

Modern computer networks are large and complex, manage a variety of applications,

and execute diverse protocols. The current network architecture is vertical integrated, see

figure 2.1 to appreciate that the same device performs control and forwarding tasks. Each

vendor’s network device includes hardware, the operating system, its applications and protocol

implementations. Vendors control all technical details of their products and sometimes have

proprietary and non–standard interfaces which may reduce the flexibility and compatibility of

the device. Besides, current network management is supported on distributed algorithms and

protocols which are not as efficient as they would be if a centralized controller had a complete

view.

Moreover, due to the accelerated growth of new services and Internet traffic, providers,

private networks, users and applications demand more capabilities from the infrastructure.

For example, virtualization, data centers and cloud computing require dynamic and fast

network technology to fulfill their requirements of elasticity [VN11]. Network operation will

be software applications that control packets, monitor the network and administrate the

11

CHAPTER 2. SDN AND POLICY MANAGEMENT 12

Data plane

Control plane

Device

Routing

Algorithm

Signaling

Resource

admin

Routing

table

Hardware

Forwarding

Figure 2.1: Control and forwarding tasks in current network architecture.

infrastructure.

During the last decade, this requirement is a concern for the computer networking

community, and the development of programmable infrastructures is needed to support

dynamic network requirements. That programmable approach must facilitate interoperability

of devices from multiple vendors, facilitate the creation and management of dynamic topologies,

and offer acceptable performance levels. The programmable network also has to guarantee

security, reliability and failure resistance. That is why programmable networks like SDN have

become more attractive for the community.

The process towards Programmable Networks is tightly related with computer virtualization

because the concept behind is similar: software is used to emulate hardware interfaces. The

Click Modular Router was designed as an architecture to build and configure routers by

software [Koh+00]. Later, the idea of separating forwarding and routing was proposed as a

Routing Control Platform (RCP) [Fea+04; Cae+05] which calculated and selected paths over

a network without the complexity of a complete distributed system. Here, the concept of

a software platform able to control network functionality, in addition to routing, began to

take shape. Then, the project 4D [Gre+05] proposed the simplification of the architecture

and managing the network in four dimensions: decision, dissemination, discovery and data.

Decision involved all decision of the control, including reachability, load balancing, security and

configuration of interfaces. Dissemination dimension is provided by an isolated communication

channel between decision entities and datapaths. Discovery dimension detects new physical

devices and establishes their governance. Finally, the Data dimension processes each packet

according to the network state as the output of decision dimension.

A centralized server that makes interdiction decisions was proposed as Secure Architecture

Network Enterprise (SANE)[Cas+06]. Here, the Domain Controller (DC) acts as a protection

layer at link level, and decides how to dispatch the traffic instead of distributed devices

like firewalls or routers. Posteriorly, Ethane [Cas+07; Cas+09] extended that SANE for

corporate networks which had two components: the controller which decides how a packet

CHAPTER 2. SDN AND POLICY MANAGEMENT 13

Data plane

Control plane

Controller Server

Routing

Algorithm

Signaling

Device

Resource

admin

Routing

table

Hardware

Forwarding

MPLS
Firewall

Load
balancer

Keys
Admon

Wireless
Admon

Users

Routing

Figure 2.2: Control and forwarding tasks in SDN architecture.

should be forwarded, and the datapaths —regular switches— which had a forwarding table

called Forwarding Information Base (FIB) to forward packets, and a secure channel to the

controller. This work was one of the earliest to propose clear separation of control and forward

tasks.

2.1.1 SDN architecture

In the current architecture, network devices are monolithic and operates the control

and the data planes. Figure 2.1 shows the common network architecture where the device

performs both tasks, and dotted lines represent the communication channels between control

decisions and hardware instructions. The control plane manages addresses, routing and logic

resources between network and link layers. The forwarding plane manipulates the packet and

administrates device’s ports and interfaces. Each device deals only with partial information

and constitutes a portion of the distributed system to perform fundamental tasks such as

addressing or routing.

SDN separates the control plane from the data plane, also called forwarding plane. SDN

comprises three layers, upper layer corresponds to protocol logic and applications for network

administration, the second layer is the Network Operating System (NOS) as support of the

control plane, and lower layer is the data plane and forwarding. Figure 2.2 shows the SDN

architecture and its layer division by purpose. The logical channel between controller and

forwarding, dotted lines in the figure, operates the OpenFlow protocol [McK+08a]. The

controller is responsible for running network functionality. In addition, it can execute other

high–level applications to control the traffic. Figure 2.3 shows architectural differences between

the current network and the SDN paradigm. In SDN, each layer is executed on different

hardware, they are physically decoupled. The controller runs on a server, and the forwarding

is performed on simple datapaths (switches).

CHAPTER 2. SDN AND POLICY MANAGEMENT 14

Device

Routing

table

Hardware

Forwarding

ServerDevice

Routing

Algorithm

Signaling
Resource

admin

Routing

table

Hardware

Forwarding

Embedded operating system

ApplicationsPacket

process

Signaling
Resource

admin

Network operating system

Forwarding

Control

Figure 2.3: Network architecture comparison: Current network vs. SDN.

OpenFlow

OpenFlow protocol (OF) is an open implementation of a protocol that communicates

the controller and the datapath. It allows to program the datapath and modify the

forwarding table, commonly called flowtable. [McK+08a]. A secure channel is established

to connect the controller and the datapath through the OF protocol, so the controller can

install/delete/modify rules into datapath’s flowtable. Datapaths store the flowtable with

forwarding actions for each match entry with current-protocols and regular Ethernet fields.

OF defines three atomic actions: SEND, DROP, and SEND TO CONTROLLER to perform

over a packet when it reaches the datapath. Figure 2.4 shows the header fields used by OF

to manage traffic. The forwarding table stores is a list of packet–headers matchers and the

correspondent action to be executed to a packet.

In Port VLAN ID
Ethernet IP TCP

Src Dst Type Src Dst Proto ToS Src Dst

Figure 2.4: Packet fields for header matching in OpenFlow version 1.0.

The controller can modify entries from the flowtable, independently of the user and

operation. Then, OF allows the creation of new flow rules that does not interrupt other users

network utilization. Using the OF syntax shown in figure 2.5, the network administrator can

program the datapath behavior, and decide how the packets are processed by the device.

SDN can also offers isolation which allows independent network domain for each user,

and facilitates to create virtual networks. Other extensions for OF have been developed and

depend on the protocol version, [Ope11; Ope12; Ope13].

Initially, OF was created for research purposes, using Ethernet switches and standard

interfaces. Then, multiple vendors offered APIs and protocols based on OF to manipulate

the flowtable on their devices and called it OF enabled. Using this architecture, network

CHAPTER 2. SDN AND POLICY MANAGEMENT 15

Rules r ::= 〈pat, pri, t, [a1, . . . , an]〉
Patterns pat ::= {h1 : n1, . . . , hk : nk }
P r i o r i t y pri ::= n
Timeout t ::= n | None
Act ions a ::= output (op) | modify (h, n)
Header h ::= i n p o r t | vlan | d l s r c | d l d s t | d l type |

nw src | nw dst | nw proto | t p s r c | tp ds t
Ports op ::= n | f l o o d | c o n t r o l l e r

Figure 2.5: OpenFlow syntax.

administrators are able to share resources in a dynamic way because it allows creating virtual

networks, independent network domains for multiple groups of users, and have a fine–grain

control of the traffic.

Forwarding devices

A datapath is an OF enabled device, switch, router or any forwarding device, responsible

for storing the flowtable, also called forwarding table, with a set of actions for each entry.

This table stores a list of match-action pairs 〈match,action〉. If a received packet matches

any header–rule of the table, the device executes the associated action. On the other hand, if

the packet header does not match any entry, the device sends a request to the controller. A

request contains the header, destination and received ports, and in some cases, it includes

the singular packet. After receiving the request, the controller can create or modify a rule,

and update the forwarding table on the device. An OF device checks matching using current

protocols and Ethernet fields. Figure 2.4 shows possible header-fields used by OF. Controller

and network applications can process packets using these fields with OpenFlow. The registered

actions that a device can perform are: send to a specific device-port, drop the packet, or

send to controller request.

The network controller

The controller acts as an intermediate layer (2.5 layer) that manages data plane devices

and holds the network state. Normally, the controller is a centralized entity, has a database

with topological information, and it supports the intelligence behind the network. Under this

perspective, network layer devices do not have to calculate and handle routing tables, as the

traditional L3 devices did. Logical sets of rules, such as routing protocols, are applications

that run on the controller and set forwarding instructions on each device under the controller’s

domain. All routing information, such as addressing, spanning trees or path calculation,

comes from the controller. Moreover, the controller is the only authorized entity to add,

modify and delete flow rules on datapaths. For instance, the controller can also execute the

path computation element protocol (PCEP)a that computes paths over a topology. The

controller, and its NOS, has two interfaces: north and south. The northbound is an Application

aIETF RFC 4655 defines the path computation element (PCE), path computation client (PCC), and the
protocol.

CHAPTER 2. SDN AND POLICY MANAGEMENT 16

Program Interface (API) with network applications that provides controlling services. And

the southbound communicates the controller with datapaths.

In summary, OpenFlow facilitates the separation of control and forwarding functions.

Network equipment is reduced to devices that receive and forward packets according to its

flowtable. Regularly, network devices report unknown or new traffic to the controller, and

it updates its network information. Diverse implementations were developed to optimize

flowtables on datapaths. For example, DevoFlow [Cur+11] uses the ASIC hardware to separate

long flows from small ones, and central control has only to focus on significant flows and reduces

the amount of flowtable entries. In this way, it minimizes requests to optimize the interaction

with the control plane. Later, Nguyen et al. [NSBT14] proposed an optimization problem

of rule selection and placement on switches and solved it with Integer Linear Programming

which includes in and out points, and consider that routing policy can be ignored if those

points are respected. Therefore, its allocation procedure maximizes the rule-allocation that

satisfies the out points.

2.1.2 Software for Software–Defined Networking

One of the main advantages of SDN is that they are supported in programming languages

and frameworks. Declarative programming proved to be a suitable candidate to program

network functionality.

Network Operating Systems

Diverse controller platforms as NOS have been developed. This concept was originated

from the 4D project that aims at a new, more manageable, system that facilitates configuration

and control [Fea+04; Gre+05; Mal+04]. NOX [Gud+08] was a pioneer approach of a network

operating system; the first OpenFlow controller. NOX was designed as a centralized system

that maintains the network state, on a database, and would allow to program using high-level

abstractions. Multiple works followed NOX and new approaches were implemented for specific

features [Kim+12]. Beacon [Eri13] and Floodlight [Big12] are network controllers implemented

with Java, which support event–based and threaded operations. However, having a centralized

controller causes a scalability issue. Onix [Kop+10] and HyperFlow [TG10] distributed

the controller and defined methods to maintain consistency. On the other hand, Maestro

[CCN11] exploited parallelism on a single machine and reduced the overhead, thus reduced

the bottleneck, compared with NOX [Gud+08]. Maestro is also modular and allows to

programmer to build personalized views of the network state. Recently, other platforms have

gained popularity, for example IRIS [LPSY14] which offers a more scalable and available

controller.

As testing tools, software for network functionality had a significant rise with easy

prototype platforms such as Mininet [LHM10], which offers run, debug, and test software for

networks with limited resources.

CHAPTER 2. SDN AND POLICY MANAGEMENT 17

Programming languages and compilers for SDN

Programming languages for networking showed an important evolution in recent years.

After the advent of SDN, many programming languages for networks were created. All

new programming languages have the high-level abstraction in common instead of flow or

forwarding level. In this section, multiple programming languages are presented, and their

features are highlighted.

Declarative programming is a paradigm that allows building program elements and

structures in terms of computation logic, rather than describing how the algorithm is

implemented by the flow control. Under this programming paradigm, a program is a

deduction of a formal logic over a logical space. Some examples of declarative programming

are SQL, regex, logic and functional programming and configuration managers. Due to

SDN programming is focused on describe the behavior of packets in the network, declarative

programming fits this need, and helps to model the graph representation by the formalism. One

of the most representative languages is Frenetic [Fos+11], which is a declarative programming

based on NOX. The network administrator composes network policies in the Frenetic language,

then the compiler translates policies into stream queries and transformations. With Frenetic

it is possible to install low–level rules at datapaths and its performance is comparable with

NOX over OpenFlow implementations. Rule composition was one of the most important

advancements on network programming.

A packet is perceived as an input, whereas a network functionality, routing for example,

is a composition of functions of a datapath after another. NetCore offers foundations for

supporting parallel composition, uses predicates for filtering, and actions modify the packets

[MFHW12]. NetCore is a high-level declarative language that describes the desired behavior

of the network but does not detail the implementation of that behavior. With NetCore it

is possible to express packet forwarding policies for SDN. Pyretic [Mon+13] was a language

that developed parallel and sequential composition of network modules. Pyretic abstracted

high-level modules and operates in parallel where multiple policies can act over the same packet.

Merlin is another declarative language based on logical predicates and regular expressions

with which a network administrator can write network policies [Sou+13]. Merlin compiler

uses a constraint solver and heuristics to allocate network resources, find paths and assign

bandwidth. Regular expressions include union, concatenation, and Kleene star. NetKAT

[And+14] has axiomatic semantics and compiler based on Kleene algebra for reasoning about

networks, and Boolean algebra about predicates. Network is viewed as an automaton that

moves packets from a node to another within its topology. NetKAT defined a finite automaton,

and used regular expressions to represent network infrastructure and Boolean reasoning of

predicates with Kleene algebra with test (KAT). Other tools to simplify programming for

SDN is a language independent system called Maple [Voe+13]. With Maple, an administrator

writes general network forwarding as functions f in a general-purpose programming language;

those are called algorithmic policies. In theory, the function f is applicable to every packet,

but in praxis Maple identified reusable forwarding instructions, recorded the invocation of the

function f , and generalized outcomes and dependencies to other packets. Flowlog [NFSK14] is

CHAPTER 2. SDN AND POLICY MANAGEMENT 18

a tireless language for controllers and represents all three layers into a single abstraction. Its

syntax is a mixture of SQL and rule–based languages that describes forwarding tables. Flowlog

runs verification based on Alloy to check program correctness and topology properties.

Debugging the network

Debugging network applications is also a critical procedure for SDN. OFRewind [WLSF11]

is a network debugger that stores and replies network events to reproduce errors and failures,

and helps to identify root causes. NetSight [Han+12] is a network debugger, analog to gdb for

programming. OFf [DSB14] is a debugger for SDN, as a regular programming tool, moreover

it included packet tracing, replay, alerts and other visualizations of network behavior. More

information about languages, debuggers and tools for network programming can be found on

the survey of languages for SDN [Fos+13]. Handigol et al. proposes a debugger for SDN called

ndb that traces sequences of events, backtracks errant packets, and implements breakpoints

[Han+14]. The packet backtrack computes the forwarding sequence where a packet goes

through once it reaches the breakpoint line. In this way, the network programmer is able to

identify all forwarding details for each node, including flow-table states, flow matching, and

ports. Moreover, it can check the correctness of forwarding.

SDN architecture has three layers: control plane, data plane and controller state. Flowlog

is a language that abstracts all three layers into a unique abstraction. It is based on SQL and

rule-based languages. Flowlog programs are compiled to a lightweight formal modeling and

verification tool called Alloy.

2.1.3 Network applications

Network functionalities are implemented as protocols, or packet processing in middleboxes.

The first step on the road towards SDN was implementing switching and forwarding, which

was achieved by OpenFlow [McK+08b]. Later, multiple functions were brought as software

applications, taking advantage of the programmable network. Also, network configurations

that respond and adapt to application needs, facilitate network processes, or create additional

functionalities are now possible under the SDN paradigm. In this section, some network

applications are shown and discussed.

Application–aware networking

With SDN, the network programmer automatizes configurations to satisfy custom

requirements. From traffic engineering to network security, SDN applications have steadily

grown. Das et al. [Das+11] proposed to configure OpenFlow for multiple services over a regular

packet network. In this way, OF can have differential traffic operations and use multiple

metrics and applications. The traffic is processed in accordance with network resources, and

application requirements. For example, for BigData applications like Hadoop, SDN is used

to support scheduling jobs, integrate the topology and reconfigure routing [WNS12]. For

datacenter networks, SDN is a cornerstone element given that the multitenant environment

requires isolation by applications, users, even routing mechanisms over the fat–tree topology.

CHAPTER 2. SDN AND POLICY MANAGEMENT 19

Network topologies for data centers and its fat–tree architecture was designed to have optimal

routes from any-to-any node. SDN can change the topology configuration in contrast with the

one–size–fits–all architecture used on datacenters [WSY11]. For this reason, SDN has impacted

in the virtualization of network functionalities. FlowVisor [She+09] is the virtualization at

datapath level that allows to create logical networks using the same forwarding infrastructure.

FlowVisor acts between switches and multiple OF controllers which allows to isolate research

traffic along production traffic. According to Kop, network services for multitenant in

datacenters take advantage of SDN [Kop+14]. They work over non–virtualized networks by

encapsulation of packets and the delivery is not based on regular addresses. Then, security

policies are added to tenant’s traffic and the tenant information is hidden. Hence, this traffic

is isolated, even unable to be tracked for the datacenter hypervisor.

Network administration

Load balancing is the strategy for traffic distribution across multiple resources. However,

this practice is expensive and becomes a single point of failure, so it would be convenient to

divide traffic over shared resources as servers using OF. A naive approach installs microflows

on each datapath which will act as a load balance on each node; however, this strategy

will overload the controller. Wang et al. [WBR11] used OpenFlow wildcards and proposed

algorithms to compute them and automatize load-balancing policies. Hedera [AF+10] is

a dynamic-flow scheduler that acts as a centralized load balancer and aggregates network

resources on datacenters, especially on those with multi-rooted tress topology.

Route analytics and traffic management are also improved with SDN implementation.

Agarwal et al. [AKL13] showed reduction of packet–loss and delay in a network, even when

SDN is incrementally instituted. As complement of the routing control platform [Cae+05],

the route–flow control platform (RFCP) is a hybrid controller–centralized routing engine that

rules multi–vendor networks under the same dashboard [Rot+12].

Administration of mobile networks can also benefit from SDN. Odin [SSZMF12] is a

framework to control WLANs, it offers security services of Authentication, Authorization and

Accounting (AAA); managing of mobility, interference and channel configuration; and network

administration tools such as QoS constraints and load balancing. Odin agents run on APs, and

the master runs on the centralized sever which controls all WLAN related operations.

Security and Fault management

Network security is the network characteristic better served by having a centralized

administration. Security interests on SDN go from the centralized controller to secure

dataflows. The Secure Architecture Network Enterprise (SANE) [Cas+06] was one of the

earlier approaches to secure data flows by a centralized entity called domain controller (DC).

SANE is an architecture that acts as a protection layer, at link level, where all interdiction

decisions are made by a centralized server instead of distributed devices like firewalls or routers.

SANE is an access control architecture that involves decisions of ACLs, packet filters, NATs

and middleboxes. SANE was created to deal with network threats like worms or malware,

CHAPTER 2. SDN AND POLICY MANAGEMENT 20

and its principal advantage is to allow high-level policies and then translate into common

configuration scripts. Domain Controller (DC) is the server that takes all decisions; it has a

complete view of the network and grants access based on roles. SANE offers the authentication

service that secures communications and maintains the guarantee of authenticity. Moreover,

network services are published to be accessed through the DC instead of using a DNS. A

general overview of security for SDN can be studied at [FDFE14; AX15].

OF allows the implementation of more complex security applications like quarantine

procedures and malicious mitigation. FRESCO [Shi+13] is an application development

framework to design and compose security detection and mitigation modules. It has a monitor

and 16 modular libraries within an API. Each modular library includes the interfaces: input,

output, event, parameter and action. This API allows legacy application to trigger any of

its modules. For instance, PDI–based applications can execute detection scripts and trigger

responses which generate new flow rules. Network administrator can adapt the current security

solutions (applications) using FRESCO. Regarding to insider attack, FRESCO implements a

signature to identify who established the new rule to trace the adversary. Also, the signature

is used to apply authority and permission.

Anomaly traffic detection was also benefited from network functionalities implemented

by software. Mehdi et al. [MKK11] implemented the Credit based Threshold Random

Walk (TRW-CB), rate–limiting control, the maximum entropy detector, and Network Traffic

Anomaly Detector (NETAD), common algorithms for anomaly detection, and claimed

imperceptible delay in communications on low speed connections such as home or small

offices. OpenFlow uses the Link-Layer Discovery Protocol (LLDP) to discover link or node

failures and trigger restoration procedures. All failures are reported to the controller which

should handle the failure. However, this load can be large and adds more complexity for

the fault management and the recovery processed at the controller. Kempf et al. [Kem+12]

proposed to locate a monitoring function able to dispatch failure alert messages and handle

some failures without overloading the controller. Nevertheless, adding more functionality

to datapaths contradicts the function separation of control and forwarding planes. While it

is true that this kind of procedure increases the reliability, and reduces the downtime, also

increases the complexity at the simplistic datapath.

2.1.4 Challenges for Software-Defined Networking

Although SDN has been widely supported by the community, there are many open

challenges which require developing new tools and exploring other fields to capitalize on the

flexibility of the paradigm [Wic+15]. Dynamic service, QoS and application performance are

a must on these programmable networks. The control plane must be able to determine the

destination of each packet, no matter the granularity level of the policy or its specific flow.

Now, the network is flexible enough and new tools to measure performance and parameters of

quality are needed.

On the other hand, SDN is exposed not only to physical but to logical failures in the

design, development or implementation. Previous network paradigm had a totally distributed

CHAPTER 2. SDN AND POLICY MANAGEMENT 21

system, partial information and convergence issues; now, every control decision remains in

the centralized controller. Therefore, the controller can calculate and monitor new flows and

real–time switch performance. The problem is to have a reliable controller, or whether it should

be in only one place, or logically centralized but physically distributed remains undecidable

[Dix+13]. The controller placement problem tries to solve where to locate the controller to

achieve a trustworthy service level and the maximum performance [HSM12].

We present a comparative table, table 2.1, that denotes the advantages and disadvantages

of SDN compared to traditional architecture based on four network administration domains:

scalability, performance, interoperability, and security.

Table 2.1: Advantages and disadvantages of SDN regarding traditional networking
architecture.

Advantages Disadvantages

Scalability

• Centralized point of
configuration.
• Commodity hardware can be

automatically programmed.

• Large networks with
multiple controllers inherit
synchronization problems.
• Back–end databases for large

amount of flows may generate
consistency issues.

Performance
• Global network view,

algorithms are efficient and
avoid redundant overhead.
• SDN facilitates dynamic

configuration for large
infrastructures as Datacenter
networks.

• Information from all datapaths
is sent to unique controller can
generate bottlenecks.
• Software bugs and errors are

propagated to all network
devices.
• The first packet of a flow forces

the installation of new rules
from the controller.

Interoperability
• Old behavior con be

programmed, then full
compatibility with legacy
hardware.
• SDN benefits for one domain

networks.

• Traditional networks have
implemented multiple QoS
resources and solutions which
must be reprogrammed.
• Multi–domain requires

authorization and
authentication.

Security

• Statistics collection of traffic
rules allow identify attacks at
early stages.
• Flow–base forwarding

facilitates the access control.

• High exposure to new or
unknown vulnerabilities.
• Centralized control is hard to

replicate and diversify in case
of compromise it.

Moreover, SDN inherits all the problematics of software. Legacy tools and network security

mechanisms must be updated to SDN applications. Now, SDN is a huge software project with

its implications of versioning, debugging, large deployment, testing and verification. Aside

CHAPTER 2. SDN AND POLICY MANAGEMENT 22

from traditional security considerations, SDN paradigm also introduces new kinds of network

vulnerabilities such as application isolation and eavesdropping [WH13; Feh13].

The softwarization of telecommunications offers more flexibility and power because of

the programming nature. Multiple studies demonstrate that human errors are the most

frequent cause of incidents, even more critical than malicious acts [LSK09]. The goal of our

framework is to minimize automatic/human errors. This framework comprises four stages:

error avoidance, correction, interception, and correction. This thesis is focused on the use of

formal methods for the first stage, specifically it uses model checking to avoid and identify

failures in network functionality. We address the concept of anomaly, policy violation, and

inconsistency from the network environment to system’s conflict. Then, we check that network

properties are congruent in the system model. Finally, we verify network functionality on the

SDN scenario.

2.2 Verification and Model Checking for Networking

Program analysis is a set of mechanisms to prove program properties, like robustness, with

respect to a formal specification for a set of functions. It is used to describe complex systems

and reason about them. Recently they have been adopted to check software functionality, build

reliable systems, and model and test critical infrastructure. Nevertheless, formal verification is

gaining more attention by researchers and it is being applied to diverse areas of computation,

of course networking is not an exception. There are multiple verification techniques based on

formal methods for networking [QH15]. They consist in using computer techniques based on

mathematical logic to specify, analyze, and validate network functionality. It is a natural step

due to the clean state developed by SDN, and the opportunity to develop, debug, test, and

run network functionality in a soft environment.

Dynamic analysis is performed during execution time of a program and validates if the

execution fulfills the requirements. Common methods in this classification defines test cases

such as unity, integration, and system test, and then the tested program must run those

tests. Monitoring / profiling is a kind of analysis that measures program complexity and

use of resources. This analysis is focused on program optimization. For example, slicing

is the reduction of statements of a program and validates its behavior after a given set of

variables.

On the other hand, static analysis is executed about the code —or the model of it—

instead of the execution. This analysis verifies if a program satisfies the requirements.

Figure 2.6 shows the taxonomy of program analysis approaches [NNH99]. In networking,

this analysis means either checking the fixed configuration of a network or only its state.

Symbolic simulation, SAT, and model checking are types of static verification. Incremental

verification is based on static verification but it checks incrementally from previous solutions

or results. The model specification is focused on the system behavior. Therefore, the model

is defined by mathematical objects as sets, sequences, relations, functions and mappings.

The model may also include invariant properties, and pre/post conditions. Model checking

[CE82] is a formal verification technique that explores solutions over a model which represents

CHAPTER 2. SDN AND POLICY MANAGEMENT 23

Dynamic
Analysis

Static
Analysis

Program
Analysis

PropertiesRobustness

Correctness

Safety

Liveness

Data-Flow

Constraint based

Abstraction

Type & Effect systems

Model Checking

Monitoring

Testing

Program Slicing

Symbolic execution

Figure 2.6: Taxonomy of program analysis

the state of a system. M is said to model formulae φ, noted as M |= φ, if φ is true in the

representation of the model M [Cla08]. In a nutshell, in this thesis we build the formulae that

represents the system network behavior and check if it is true under its specification. This

software verification approach sets values to program arguments and explores the system’s

transitions. Model Checker is an instrument to verify the correctness of a program that relies

on the counterexample principle. To prove if a property P is held, it is enough to discover a

counterexample that states that P is not valid or possible.

2.2.1 Logical Systems

In this section, we present multiple logical frameworks used to verify and validate network

properties in this thesis. The propositional and first–order logic can represent behaviors in

the network, as graph. With HOL logic we can validate the specification of computational

programs in terms of pre and post conditions Temporal logic is mostly used for communication

protocols because it allows to represent reactive actions and timer events. And relational logic

to represent and calculate data structures.

Propositional logic is formed with propositional variablesb, and predicate logic that

includes propositional symbols, predicates, functions, quantifiers, equalities, and variables

into its formulae. This logic was devised by Hilbert and Skolem, it includes two common

quantifiers: (∃) exists and (∀) for all. First–order logic operates objects, relations, functions,

and quantifiers which are defined over individual elements. Multiple analyzer tools are based

bA variable that can be TRUE or FALSE.

CHAPTER 2. SDN AND POLICY MANAGEMENT 24

on first–order logic, for example, Vampire’s prover or Alloyc analyzer d. See § 2.2.3 for these

tools.

High-Order Logic (HOL) is more expressive and allows to express any mathematical

theory. However, the validity of high-order logic is not even semi-decidable. Hoare Logic is

another class of logic systems that is used to model computer programs. It defines the partial

correctness specification in terms of precondition-command-postcondition {P}C{Q}. If the

command C is executed in a state P, the state Q is satisfied. Hoare logic is specially situated

for checking sequences of commands.

Meanwhile, modal logic models a variety of modes of truth. Created by Leibniz and revived

by Kripke, it uses expressions such as possible and necessary worlds. The statement is true in

at least one world, under specific conditions, in the possible expression; on the other hand,

the expression necessary models a statement that always is true no matter the conditions. As

we will see later, the possible worlds and Kripke models are powerful groundwork for model

checking.

If it is necessary modeling reactive systems, temporal logic is the most suitable. For

example, this logic system is fitted for network protocols. It is also convenient for modeling

concurrent finite–state systems. Temporal logic combines transitory operators like G(globally)

for always true, F(eventually) a preposition will be true in the future, X for next and U for

until. There are two kinds of temporal logic: Linear temporary logic (LTL) describes the

time as a line and a sequence of events; and Computation Tree Logic (CTL) which models an

event and the branches of many possible futures. CTL has been used for checking network

systems. For example, ConfigChecker [ASA11], and network update [Rei+12] used CTL for

verification on networking.

Finally, relational logic is a formal semantic, created by Codd, and used to model data

structures as relational databases. It is relevant for this work because it combines first–order

operators with relational calculus.

For networking, diverse schemes have been proposed to formalize networks. For instance,

Karsten et al. [KKPB07] presented a functional abstraction of protocols, layers and middleboxes

which were presented as a set of axioms for forwarding mechanisms. This formulation

allowed to define fundamental concepts for networking such as naming and address, then

composing communication protocols was possible by a set of well–defined primitives. They

implemented the Universal Forwarding Engine able to interpret the algebraic model, translate

meta–compilation to Click router implementation, and validate its implementation. This

validation could be formal following the Hoare–logic prove for correctness.

In this thesis, we use the basis of prepositional and relational systems to build a model, a

specification, and a set of rules that describes the behavior of the network, and the network

state. We use Alloy model–finder to create, operate, and check relational structures. Moreover,

cDeclarative specification language to express constrains and behavior of a software, http://alloy.mit.
edu/alloy/.

dvprover http://www.vprover.org/.

http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/
http://www.vprover.org/

CHAPTER 2. SDN AND POLICY MANAGEMENT 25

the analyzer uses relational logic plus the transitive closure which adds expressiveness as

it describes the constraint propagation. Alloy is a model finder that uses first–order logic

and a domain, and finds an interpretation where the formula is satisfiable [Jac02]. It uses

diverse satisfiability solvers able to determine a vast number of constraints and variables.

Now, we describe the verification based on the satisfiability property as the basis for our

proposal.

2.2.2 Verification by Satisfiability: the SAT

Boolean Satisfiability problem (SAT) determines if the true or false variable assignment

will make the entire formula true. SAT problem is represented by S = 〈X, D,C〉, where X is an

n–tuple of variables X = (x1, x2, . . . , xn), D is an n-tuple of domains D = (D1, D2, . . . , Dn) such

that xi ∈ Di , and C is a t-tuple of constraints C = (C1,C2, . . . ,Cn). Constraints are translated

to CNF by:

i) simplification reduction, P → Q is rewritten as ¬P ∨ Q, and P ↔ Q is rewritten as

(P ∨ ¬Q) ∧ (¬P ∨Q);

ii) replace ¬∀xP with ∃x¬P, ¬∃xP with ∀x¬P, ¬(P ∧Q) with (¬P ∨ ¬Q), ¬(P ∨Q) with

(¬P ∧ ¬Q), and ¬¬P with P;

iii) quantifiers are moved replacing ∀xP ∧ Q with ∀x(P ∧ Q), ∃xP ∧ Q with ∃x(P ∧ Q),

Q ∧ ∀xP with ∀x(Q ∧ P), Q ∧ ∃xP with ∃x(Q ∧ P), ∀xP ∨ Q with ∀x(P ∨ Q), ∃xP ∨ Q

with ∃x(P ∨Q), Q ∨ ∀xP with ∀x(Q ∨ P), Q ∨ ∃xP with ∃x(Q ∨ P).

iv) Initialize the set γ = {}, the Skolemize the formula ∃x∀y∀zA with the Skolem constant

∀y∀zA[x(γ)/x], and ∀y∃zP(y, z) is replaced by ∀yP(y, f (y)) with Skolem function.

v) Disjunctions are distributed replacing P∨ (Q∧ R) with (P∨Q)∧ (P∨ R), and (Q∧ R)∨P

with (Q ∨ P) ∧ (R ∨ P).

The first operation simplifies the formula, then the resulting is a formula which contains

only ∀, ∃,∧,∨ and ¬ connectors. The second step applies Morgan’s laws to reduce negations

to atoms, the literal normal form. The third operation move quantifiers, the variables are

renamed to be applied to the scope of each formula, the prenex normal form. The fourth step

is to Skolemize the assertion, by removing existential quantifiers and adding Skolem constants

and functions, the Skolem normal form. Finally, disjunctions are distributed and the formula

is written as conjunctions and disjunctions, this is the conjunctive normal form.

For example the formula ∀Y (∀x(f (Y, X) ∨ g(X)) → g(Y)) is rewrite as:

i) ∀Y (¬∀X (f (Y, X) ∨ g(X)) ∨ g(Y))

ii) ∀Y (∃X (¬ f (Y, X) ∧ ¬g(X)) ∨ g(Y))

iii) ∀Y (∃X ((¬ f (Y, X) ∧ ¬g(X)) ∨ g(Y)))

iv) ∃X ((¬ f (Y, X) ∧ ¬g(X)) ∨ g(Y)γ = {Y }(¬ f (Y, x(Y)) ∧ ¬g(x(Y))) ∨ g(Y)

v) (¬ f (Y, x(Y)) ∨ g(Y)) ∧ (¬g(x(Y)) ∨ g(Y))

CHAPTER 2. SDN AND POLICY MANAGEMENT 26

A formula is said satisfiable if there is a variable assignation whose evaluation is true,

and unsatisfiable otherwise. In most of the cases, checking SAT is a NP-Complete problem,

depending of the scope [PW10]. SAT problem in propositional logic was proved to be

NP-complete. Thus, it is intractable but solved in practice. Quantified SAT (QSAT) is the

canonical base of the SAT problem whose variables are quantified, it means they have universal

or existence quantifiers. Quantifiers make the QSAT more expressive than SAT but it is

a PSPACE–complete problem [KT06]. Additionally, Satisfiability Module Theories (SMT)

are generalizations of SAT problems and included a combination of theories in first-order

logic.

The verification problem can be expressed as a model M |= φ, where φ is a specification.

The verification consists in determining whether φ is true on the world described by M.

Diverse problems in computation can be expressed as propositional satisfiability problems.

For example, detecting conflicts, or inconsistencies, at network-device configuration can be

re-formulated as a SAT problem where rules, flows and constraints are written as propositional

logic formulae. This thesis uses model verification in order to validate network configurations

and the specification achievement.

2.2.3 Solvers for satisfiability and verification

Traditional methods solve the SAT problem as a constraint decision problem. From the

original David, Putman, Logemann and Loveman algorithm (DPLL)e to the most recent

advances, have shown efficient strategies to solve SAT problems such as incremental solution

or variable resolution [GPFW96]. Numerous tools, called SAT solvers, can calculate solutions

of millions of variables in seconds. Verification was benefited by SAT solutions, as was shown

for VeriSol, a framework for verification based on SAT [Gan].

Rapidly, SAT solvers have increased efficiency using diverse data structures and heuristics.

For example, Chaff [Mos+01] improved performance due to the implementation of Boolean

Constraint Propagation (BCP). MiniSAT [SE05] reduces redundant literals which produce

conflicts, hence its lower memory consumption compared with the DPLL algorithm. Z3 is

a Microsoft SMT solver that combined multiple solvers for SATisfiability. Yices [DM06]

is another SMT that involves linear arithmetic and recently supports SMT-Lib notation.

Unfortunately, QSAT and SMT solvers do not scale properly. Most of them need specific-data

structures to improve the performance.

A Binary Decision Diagram (BDD) [Bry86] is a data structure that represents operations

over Boolean functions. In short, it is a rooted, directed, and acyclic graph, where each branch

means a decision over the formulation, see figure 2.7. Each leaf is the decision over a variable

—or set of variables on the assignation— and the path through the tree denotes the variable

assignation process. DPLL and other branching schemes use BDDs or reduced forms of the

structure to perform the search. Biere et al. [BCCZ99] showed how the DPLL procedure

can replace BDDs, and finding counterexamples was faster and reduce the space of BDD

eDavis–Putman–Logemann–Loveland algorithm is a backtracking search algorithm for deciding satisfiability
published in 1962.

CHAPTER 2. SDN AND POLICY MANAGEMENT 27

ⱻ

ⱻ ⱻ ⱻ ⱻ

Ɐ Ɐ

Φ=(0,0,0) Φ=(0,0,1) Φ=(0,1,0) Φ=(0,1,1) Φ=(1,0,0) Φ=(1,0,1) Φ=(1,1,0) Φ=(1,1,1)

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

Figure 2.7: Each branch represents a decision over a variable. Leaves show the evaluation
over the formula.

execution. Moreover, it presented how to apply SAT procedures to symbolic model checking.

They also introduced the bounded model checking, a procedure that uses LTL to reduce the

satisfiability problem. This bounded model, is an important solution that we will use later by

using the Alloy tool given that it allows us to analyze larger systems.

Symbolic execution [BEL75] is a technique to validate a system by introducing symbols as

inputs instead of data. Then, the program is executed, and the analysis determines which part

of the software is executed by the inputs, or the conditions over them. The most significant

issue is the path explosion, it means the program has to validate all the feasible paths for a

run. Symbolic execution can be used for testing sets of inputs, with related characteristics

instead of testing singular inputs. This technique was used by Cloud9, a platform based on

clusters, that performs parallel symbolic execution for real–software testing[BUZC11].

Recently SDN started to use verification mechanisms for its software. For example, McGeer

[McG12] modeled OF networks as high–level Boolean functions and demonstrated that the

verification problem is NP-complete. Moreover, he showed that verification of OpenFlow rules

is polynomial if the ruleset is restricted to prefixed rules. Older verification tools were used for

networking. For instance, SPIN [Hol97] is a verifier for distributed systems, that was designed

for detecting errors in distributed protocols and telephone exchanges. NuSMV [CCGR99]

is an extension of the symbolic model checker SMV that integrates BDD search and LTL

logic. Alloy is also another symbolic model checker that builds Boolean formulas, and has an

interface with solvers.

Now, we present the construction of a model for networking, and how the fundamentals

on this section are applicable to network specification and implementation.

CHAPTER 2. SDN AND POLICY MANAGEMENT 28

Table 2.2: Classification of errors in system programs.

Error type Description

Group A The requirement or the algorithm that solves it is misunderstood. Machine
configuration and architecture is chosen but it is known. Dynamic behavior
is wrong, out of synchrony, incorrect resource allocation, functionality is
not activated in the sequence.

Group B The implementation of the algorithm is incorrect. Initialization fails, or the
buffer is not cleared after its use. Register does not contain the expected
value. Fields change their values but the size is not validated. Invalid
counting and calculations.

Group C The expected input is bad–formatted. Fuzzy instructions at operation.
Spelling error in messages.

2.3 Verification meets Networking

As any other system program, there are errors in networking software with different causes.

Table 2.2 shows a summary with the most common errors in system programs following the

Endres classification [End75]. There are three classes of errors. Group A errors are those

related to the problem understanding or the chosen algorithm is inadequate to solve the

problem. Group B errors are those related with incorrect implementation, the translation to

a program language is inaccurate. Group C errors are those related to the user interaction,

they are the result of unattended or malicious use.

Since today’s networks are more complex, their configuration is extremely large and more

error prone than ever. Then, validating the functionality of software for networking is an

imperative necessity. On the one hand, network administrators have tools based on tests.

Generally, they use monitors and tools based on ICMP, or traffic to test network functionality.

However, they also need to verify the coherence between policies and their configuration as a

complete system state. As shown in § 2.2, SAT and SMT solvers become important tools for

this kind of verification. Moreover, verifying network functionality for checking SDN software

could offer greater guarantees of its functionality. Although verification and model–checking

are large and mature areas, this thesis is focused on showing how SAT–based verification

can be exploited for SDN. Verifying a network configuration is comparable to verifying a

state machine because a datapath can be represented as a state machine that processes

packets. Moreover, the reachability problem in a finite state machine is a PSPACE-complete

problem.

This thesis aims to validate the specification to identify group A errors, and compare

the model against the implementation result, group B errors. After this exercise, we expect

to identify the match between specification and implementation, and observe lacks in the

problem understanding process or faults/neglects in the implementation. Network properties

studied on this thesis are described on table 2.3. Reachability basically denotes connectivity as

in graph theory. Way–point and avoidance properties force to have or exclude nodes in paths.

Loop–free and black holes are properties related to forwarding consistency, they advocate for

CHAPTER 2. SDN AND POLICY MANAGEMENT 29

Table 2.3: Proposed network properties to be validated for this thesis.

Property Description

Reachability denotes that there exists a physical path that connects the two
nodes. This property regards only topology —physical connectivity.

Loop–free Routing ability to avoid paths with loops.

Black holes Routing ability that prevents packets from getting lost. It is
forwarding consistency between datapaths whose routing policy
discard packets.

Way point Mandatory node, describes a node which must be part of a path.

Avoidance Exclusion of a node, describes a node that must not be part of a
path.

Fruitful rule All forwarding rules in a datapath are productive. Every forwarding
rule belongs to a flow. It avoids bogus rules.

Settled rule Every packet after reaching a datapath must match a forwarding
rule. It avoids unsettled rules and delay while a new forwarding
rule is set.

Non–Bypassing A set of rules accomplishes a policy even after a packet modification.
Policies can have overlapping rules which could be used to bypass
the datapath.

successful delivery of a packet. Bogus are spurious rules in contrast with the optimal use of

flowentries in a datapath; they denote those packet headers with no entries in the flowtable.

Finally, the non–bypassing property means that a network policy is always achievable. Other

properties that were not having into account: for example, NoForgottenPackets is a property

that clears all packets at each datapath, or DirectPaths that maintains a path for all packets

for a dataflow [Can+12].

2.3.1 Verification of Network Topology and its Invariants

The fundamental verification task is the topology validation. The main objective is to

guarantee the fundamental functionality of a network, commonly referred as network invariants

over the graph. Assuring these properties, the network could avoid severe failures such as

service oscillation, black–holes, false failure advertisement, disconnection, or reduction of

availability, and security vulnerabilities. Meanwhile, forwarding inconsistency can trigger

packet losing instead.

Network verification can also be done by dynamic analysis based on testing, monitoring,

and execution slicing. A common technique for dynamic analysis is to send test packages,

establishing network monitors, or forwarding synthetic traffic for test with tools such as the

automatic test packet generator (ATPG) [ZKVM14]. We divide the schemes to check network

invariants for the data plane and control plane. Data plane verification identifies correctness at

packet level, and determines forwarding coherence in the datapaths. Control plane verification

CHAPTER 2. SDN AND POLICY MANAGEMENT 30

assures the correctness of high–level protocols and accomplish the specification. Commonly,

both verifications are executed to guarantee that specification is correct and the datapath

implementation complies it.

Verification on networking has been done for some time. An important work on this field

was done by Feamster and Balakrishnan who found group A error at configuration faults in

BGP using a routing configuration checker called rcc [FB05]. And recently a work done by

Yin et al. [YCZ10] found errors in Internet routers. Specially, they focused their attention on

opensource implementation of routing, and documented the network behavior triggered by

these errors.

This thesis is focused on misconfigurations and errors produced by human factors; although,

other origins are considered as failure (malfunction) such as links failures, or shutdowns, see

chapter 4. This work addresses the verification of specification of procedures and functionality.

Additionally, we use static analysis to describe sets of packets and device configurations

—e.g. routing— as filters over a packet set. Diverse works used static analysis for checking

reachability. For example, Xie et al. [Xie+05] modeled packet filters and routing protocols by

static analysis to verify reachability on IP networks. They also applied packet transformations

to model Network Address Translation (NAT) and Type of Service field (ToS) modifications.

Subsequent works used the abstraction from the static analysis in addition of Boolean

satisfiability for error detection. Saturn [XA07], for example, used the advantages of SAT

solver to model control and data flow. Metarouting [GS05] was a project, from a previous

developed Routing Algebra framework (RAML), that defined routing protocols by a high–level

declarative language. Routers compile the routing metalanguage and run the specified protocol.

The protocol mechanism is separated from the routing policy —how routes are compared—.

Naraing [Nar05] verified the network configuration using model finder Alloy and modeled a

fault–tolerant VPN. It was one of the first to use model finders to solve configuration problems

for realistic scale and complexity.

Anteater [Mai+11] is the iconic tool that uses static analysis of invariants in the data plane.

It represented forwarding information as Boolean functions, and built multiple instances of

Boolean satisfiability problems from symbolic packets, network constraints and invariants

(§ 2.2.2). Then checks the network state, and reports counterexamples by using a SAT solver,

in § 2.2.3. However, Anteater assumes that the packet does not change while it is passing

through the network. Later, a technique called Header Space Analysis (HSA) [KVM12]

was created to statically verify network specification, and its implementation was called

Hassel. HSA could identify forwarding loops and traffic isolation. HSA took the complete

packet header and expressed it as bit-string of length L, used it as geometric space, and

defined operations –algebra– over the space. Network devices were modeled as functions that

transform L-dimensional spaces. Otherwise, network and topology functions were expressed

as header transformations.

Verification for SDN In recent years, research in formal verification for networking has

grown, especially with model checking. However, the main concern is the explosion of

CHAPTER 2. SDN AND POLICY MANAGEMENT 31

states, packets in transit, and network functions and protocols. Since OpenFlow does not

support hardware isolation, the flowtable is shared, and thus it could generate conflicts among

flows, hence network misbehavior. Natarajan et al. [NHW12] proposed a conflict detection

algorithm based on Description Logic (DL) and Web Ontology Language (WOL). It used a

multidimensional prefix–tree structure (called trie) to create a hybrid hash–trie arrangement

for the flowtable to identify conflicting flow entries.

Testing the correctness of network forwarding is a major issue in SDN networks. Data

plane is complex with multiple middleboxes, and network policies are high–level descriptions

of intended behavior. FlowTest [FS14] is a framework focused on testing stateful data plane

devices such as firewalls, proxies or IDS, and dynamic network policies. It explores the space

state of the data plane to verify the network behavior about the policy definition. FlowTest

uses Datalog, propositional and first order logics to model the network state and generate test

plans. Also, it uses machine states and CBMCf to find counterexamples.

Network Abstractions Sethi et al. [SNM13] created an abstraction of SDN controller

and modeled learning switch and firewall applications. They implemented these abstractions

that simulate the controller behavior using Murphi languageg. Guha et al. [GRF13] built a

verified controller that reasons the network behavior with Coqh and interprets the NetCore

[MFHW12] language and compiler. Inputs are recognized as instructions in NetCore, which

after being transformed into OpenFlow flowtables are analyzed in Coq by Featherweight, the

proposed formal–model for OpenFlow. Another abstraction, but this time in the forwarding

plane, was done by Mirzaei et al. [Mir+16] that modeled internal states of a network and OF

switches using Alloy. They analyze flowtable entries, receiving messages, pipe–lines, forwarding

processes, and transitions between states. Later, Frenetic [Fos+11] or Machine–verify [GRF13]

only verify that coding compilation succeeds, but they do not check program correctness.

ConfigAssure [Nar13] was a project that aimed to reduce errors by manual configuration,

and the ability of an adversary to gain information from the configuration file. ConfigAssure

is a specification language and a synthesis engine that specifies requirements for multiple

layers and allow composition, and reduces manual errors. The verification engine checks

if the specification is correct, and a moving–target agent modifies the configuration file to

increase the obfuscation. It also had a database with first order constrains in Quantifier Free

Form (QFF) arithmetic, and used powerful solvers such as Kodkodi as SAT solver and Prolog.

Finally, Kinetic [Kim+15] is a SDN controller and language based on Pyretic, that allows

expressing dynamic policies with verification. This language allowed to program the dynamic

behavior of a network and verify the reactive configuration to the changes. Kinetic verifies

the language by a model checking based on CTL (see § 2.2.1).

fCBMC is a bounded model checker for C and C++ to verify arrays, pointers and exceptions to find bugs
in programs.

gMurphi is a model checker based on explicit state enumeration. It is used on microprocessor industry for
verifying protocols. http://formalverification.cs.utah.edu/Murphi/.

hCoq is a formal language to describe mathematical definitions, algorithms, and theorems to facilitate
theorem proofs. https://coq.inria.fr/.

iKodkod is a SAT-based constraint solver for first–order logic. http://alloy.mit.edu/kodkod/

http://formalverification.cs.utah.edu/Murphi/
https://coq.inria.fr/
http://alloy.mit.edu/kodkod/

CHAPTER 2. SDN AND POLICY MANAGEMENT 32

Checking Invariants for Software-Defined Networking

After the SDN movement, all previous methods for verifying network invariants were

updated to the new requirements. OpenFlow was the trigger that changed the verification

of network functionality to more formal validation mechanisms. Early verification tested

OpenFlow switches and the compatibility of devices from different vendors. Later, SOFT

[Kuz+12] used symbolic execution for each switch in isolation and wanted to identify inputs

that produce different outputs which generated inconsistencies.

Incremental computation is a technique that adds new rules to previous results and

searches for potential violations only over the common rules. Veriflow [KZCG12; Khu+13]

used incremental computation to verify rules before they were inserted or modified. Veriflow is

located between the controller and datapaths, and verifies invariants while a forwarding rule is

processed. Another way to verify invariants was proposed in NetPlumber [Kaz+13], a tool that

used HSA [KVM12] to identify invariant violations such as paths with loops and reachability.

NetPlumber included Flowexp, a language based on regular expressions and FML [Hin+09b],

that can describe network policies. High–level network policies will be discussed on Section 2.4.

Afterwards, Lopes et al. [LBGV13] verified the reachability property, detection of cycles, and

forwarding loops on network configurations. They mixed and added incremental analysis to

Veriflow and NetPlumber and claimed faster results after the verification tool was optimized

for the network domain. Moreover, they create Datalogj network model and showed that is

possible to verify networking domain with a general tool such as Prolog. NICE [Can+12] also

applied model–check techniques to explore the complete space and used symbolic execution

to examine all possible paths, packets and network events. However, its path search creates

an extensive number of variables which add complexity on large scale applications. Recently,

new verification of network invariants such as Atomic Predicates (AP) claimed to be more

efficient because they reduce the set of predicates [YL16]. Any set of rules can be reduced to

a unique and minimal set of Atomic Predicates. Then, those predicates are represented into a

BDD (see Section 2.2.3), and process the diagram with well–known BDD algorithms.

We continue using this principle, using light–weight formal methods over a redesigned

structure which allows us to verify the network behavior, not only from the configuration but

also from the high–level management policy.

2.3.2 Verification of Network Security Properties

The security property is one of the most notable functions to be verifiable with formal

methods. In this area, the Firewall receives special attention because it is the keystone in

network security. Failures in firewall configurations are common and produce large losses in

corporate networks. Some studies suggest that those failures by configuration are the result

of bad–practices and follow a pattern [Woo04]. Their study is so important because they can

generate security flaws, blocking appropriated, allowing undesired (malicious) traffic or simply

contradict a security policy.

jDeclarative logic programming language similar to Prolog. Commonly, it was used as query language for
databases, data integration, networking and security.

CHAPTER 2. SDN AND POLICY MANAGEMENT 33

A varied representation of formal evaluation of firewall policies has been developed. A

model for firewall policies and their implementation of algorithms is presented by the Firewall

Policy Advisor [ASH04b], which used a BDDs for discovering policy anomalies. Later, this

work was extended to multiple firewalls [ASH04a], and those models were extensively used.

The classic Fireman [Yua+06] used static analysis to verify firewall policies. It verified

inconsistencies by a symbolic model checking for all packets along all possible valid paths

into a set of configurations; however, it did not verify against a high–level policy, only

checked if there were inconsistencies in the set. Another seminal model for analyzing firewall

configuration is the Firewall Decision Diagram (FDD) [GL07] that represents a security

policy in a directed and non–cycled graph, where edges represent constraints and final nodes

represent firewall decisions. Later, formal verification algorithms [Liu08] also used FDDs to

check misconfiguration, and validate firewall policies, but this time against the formal security

policy.

Other works have used model–checking techniques with SAT–solvers and compared them

with BDD approaches. Jeffrey et al. [JS09], for example, used data structures combined with

BDDs and compared them with SAT solvers; and found efficiency performing over BDDs.

Model–checking for firewall reasoning is a NP–complete problem instead of PSPACE–complete

problem because there is not cyclicity in the firewall configuration. So, translating it into a

SAT problem is appropriate to analyze this kind of problems. The same argumentation was

used by Zhang et al. [ZMMN12] who implemented SAT to create equivalences and discover

redundancies between two firewalls. Moreover, they used a Quantified Boolean formula (QBF)

solver to optimize the Access Control List (ACL) set of rules. FLOVER [Son+13], also used a

model–checking based on Yicesk, to find if flow-policies violate the security policy. It focuses

on identifying by–passing violations, see figure 2.6, to avoid a policy with a set of genuine

rules.

If verifying the complete network behavior is the concern, ConfigChecker [ASMEAE09]

aimed to verify both properties: reachability and secure configuration for the entire network.

The network is represented by a state machine and its behavior, the end–to–end functionality

is represented by a BDD. Each state denotes location and the packet header, and transitions

are processes in the network. Another version of ConfigChecker [ASA11] used CTL to model

network properties in a time line and BDDs to perform firewall verification with symbolic

reachability analysis. FlowGuard [HHAZ14] is a framework to detect and resolve secure

policy violations that checks flow and identifies policy violations after a network update, and

proposed five strategies to solve them. FlowGuard creates and checks firewall authorization

spaces which represent a series of packets that are disjoint, allowed or denied. In this sense,

those spaces are equivalent and have the same functionality to header spaces described in

HSA [KVM12].

kYices is a SMT solver for satisfiability. http://yices.csl.sri.com/.

http://yices.csl.sri.com/

CHAPTER 2. SDN AND POLICY MANAGEMENT 34

2.3.3 Issues and Limitations of Verification

Software verification over applications or protocols is a hard issue. In the case of SDN

policies, the problem is not an easy one because the network state, albeit bounded, is too large.

Monitoring every variable of the network state is inconvenient and unreal, and the changes in

the network add complexity to the verification process. As was shown in § 2.1.1, the length

of the network state depends on three aspects: the topology size, the set of flow–entries per

datapath, and the granularity of each rule. Even when the topology is fixed, the scope in

dynamic analysis is related on the packet–header length instead of the number of packets

in the network. Although the header of each packet has a limited size, the explosion of

variables is huge, and the number, type, and content of a control message adds more states to

the problem formulation. This issue can be lessened with improved structures, solvers and

algorithms, as those developed by Pătraşcu and Williams [PW10] which identified reductions

that can lead into faster SAT algorithms. Additionally, the verification of larger topologies for

dynamic checking has been shown to not properly scale to practical data–center networks.

However, the model can be extended to larger networks, in some cases generalized, by network

patterns and abstractions.

Reviewed tools and mechanisms are focused on verifying only a plane, the control or the

forwarding plane, but they do not verify the specification, the control, neither confirm the

implementation in the forwarding plane. We declare the complete process is verifiable at

specification, control level, and datapath–level implementation. This thesis aims to reduce

configuration errors by the human factor which causes more than 62% of network downtime

[Ker04]. We think that programmable infrastructure, governed by well–defined policies,

dramatically reduces configuration errors and contribute to a reliable network systems. To do

this, next Section introduces policies for networking. There, we analyze several descriptions

of specification, security and SDN policies and languages. Then, we discuss three steps to

validate policies for SDN: topology, rule–sets, and finally, network policies.

2.4 Network Policies and Device Configurations to SDN

This Section describes the Policy–Base Network Management (PBM), languages for

specification, strategies for validation, and its application to SDN. A policy specifies an

abstraction, from the high–level like the natural language, to bitwise instructions at low–level.

A policy maps a previous system–state, an action that produces a state–transition, and the

resulting system–state. We focus on PBM paradigm because it allows to separate high–level

directives from functionality at low–level implementation. A network policy is a set of

conditions, constraints, and settings about how specific types of traffic must be managed in a

network, which users are authorized to access to network resources, and the circumstances

under which they can access.

The IETF [Ste+99] begun the standardization by a draft, best known as POLICY in

the RFC3198 [Wes+01], which describes network policies and services, and establishes the

policy terminology for PBM. The PBM system is composed of: a repository, a set of Policy

Decision Points (PDP), and a set of Policy Enforcement Points (PEP). The repository stores

CHAPTER 2. SDN AND POLICY MANAGEMENT 35

the policies; it can be a Directory Enabled Network (DEN)l which is a specification that

defines network entities and binds network services with clients. PEP is a network node or

datapath, and PDP is a node that takes decisions, for example the centralized server on the

SDN environment. Boutaba and Aib [BA07] presented a compact review of PBM frameworks,

languages and tools.

Policy Repository

PDP

Policy Management
Tool

PEP
PEP

PEP
Customer

Customer

Figure 2.8: Policy-Based Management Architecture [Wes+01]

We use the set of definitions for action, condition, event, rule, and policy taken from

[Str03]; and the terminology for Policy Based Network Management (PBNM) from the

RFC3198, see table 2.4. Policies are defined by an administrator who specifies how network

devices must handle traffic. An earlier policy system for networking was Inter-Organization

Networks (ION) developed by Deborah Estrin in 1985. ION proposed to have discretionary

and non–discretionary access–control based on the packet header, and implemented it in a

gateway, responsible for making decisions of control, but a gateway cannot properly scale and

hold all possible policies. The centralize access–control was implemented on a server that

controls the end–hosts. Another framework was the Common Open Policy Service (COPS),

by the RFC 2748 [Dur+00]; it is a protocol to exchange signaling defined between the policy

server (PDP) and client (PEP) for IP networks. The policy decision point (PDP) is also a

centralized controller that enforces policy statements and prioritizes traffic based on three

classes: delay–tolerant, bulk data, or real–time traffic.

2.4.1 Policy Specification Language

Specification is the unmistakable way to represent a policy by an expressible language.

The simplest manner to express a policy is the conditional–action, the AC structure. The

structure is: if condition then actions. A language that uses this structure was proposed by

Clark [Cla89]. It creates an Administrative Region (AR) which is a set of network devices and

links, and defines the term that comprises source (Hs) and destination(Hd), user class (UCI),

and global conditions(Cg). Source and destination specify host address and AR identification,

and entry / exit ARs. The syntax and the example of the policy are shown in table 2.5.

lDEN is a specification in object–oriented model of network elements and services into a repository,
independent of repository and access protocol, and a map of this biding information in LDAP or X.500 protocol.

CHAPTER 2. SDN AND POLICY MANAGEMENT 36

Table 2.4: Policy definitions [Ste+99]

Policy Set of rules to administer, manage, and control access to network
state.

Rule Map that relates a set of conditions to a set of actions. Those
actions are enable once conditions are satisfied. The rule also
contains information how actions are applied, the order that actions
should be executed, and exceptions during execution.

Condition Evaluation of a set of events and determines if a policy must
be executed. A condition is the necessary state that defines if
the policy-rule actions are executed; if this condition evaluates
to TRUE, the rule should be enforced. Policy-clause is a set of
policy-conditions.

Conflict A policy conflict occurs when the conditions of two rules are
satisfied, over the same object, but these actions contradict each
other.

PDP Policy Decision Point is a logical entity that makes decisions, for
itself and other network elements.

Target Target of a policy is the set of entities which are affected by a
policy. e. g. The target of a policy that configures the network are
the services running on the network.

Table 2.5: Example of policy language proposed by Clark [Cla89]. Hs is the source host
address, ARs is the source AR, ARent is the entry AR, UCI is the User Class Id, and Cg are
global conditions.

Syntax ((Hs,ARs,ARent),(Hd,ARd,ARexit),UCI,Cg)
Example ((a.b.c.d,1,-), (w.x.y.z,3,-), University, Unauthenticated UCI)

However, this policy representation did not describe low–level detail nor specify path

structure. Low-level policy languages involve path specification and the implementation of

traffic forwarding. At low–level, the policy abstracts the implementation on the device, it

basically models packet forwarding and transformations.

Another policy structure is the tuple event-condition-action (ECA), or event generates

action if condition, a declarative way common on database systems. This structure allows

to consider the environment and interaction into the policy. An example of this structure is

the Policy Description Language (PDL) [LBN99] which has a policy server able to provide

centralized control over a soft switch. It was essential to detail our work on network policy

validation for programmable networks. Table 2.6 shows the syntax of PDL, and an example.

Here the event ∼hour means a sequence that ends with the event hour, window5 event is

triggered after the second occurrence of hour and 5 hours later of the first event hour.

Ponder [DDLS01] is a declarative, object–oriented and strong typed language to specify

security policies which correspond to device implementations of access control for distributed

systems. Ponder included Obligation policies which follow the ECA paradigm, and describe

the set of mandatory actions when specific events occur and the set of conditions are satisfied.

Also, Ponder used the concept of role, similar to RBAC, to facilitate the implementation in

the industry. For Ponder, a policy is a rule that defines a choice in the behavior of a system,

CHAPTER 2. SDN AND POLICY MANAGEMENT 37

Table 2.6: Syntax of PDL policy [LBN99]. Events are considered sequences as list, conjunction
&, or disjunction |. Terms can be constants, functions or expressions like e[k].m where k is
the repetition, and m is an attribute of event e.

¡policy¿ := ¡event¿ triggers pde if ¡condition¿ causes ¡actions¿
¡events¿ := [e1, . . . , en]|[e1& . . .&en]|[e1 | . . . |en]

Syntax ¡condition¿ := p1, . . . , pn where pi is a predicate
¡predicate¿ := t1[= | , | < | ≤ | > | ≥]t2
¡term¿ := ¡constant¿ — f (t1, . . . , tn) — e[k].m
¡action¿ := a(t1, . . . , tn)
hour, ∼hour
triggers window5(Start = hour[1].Time)

Example if hour[3].Time - hour[1].Time = 5
causes reroute(trunk1)

in multiple domains. A domain is a group of objects to which policies apply and can be used

to partition the objects in a large system according to logical or geographical boundaries,

object type, responsibility and authority. Table A.1 shows the syntax and an example of

Ponder language.

XACML [GM03] is a language for specifying network–security policies for access–control. It

is an XML–based language that works by queries where the policy server responds to a request

and allows or denies a set of successive actions; in some cases, it returns indeterminate or

not applicable responses. A XACML policy contains: subjects, targets, resources and actions.

Target is the condition to satisfy by the subject, and resources and actions, it is the policy

output. Figure A.1 shows the basic syntax and a small example.This language is implemented

as the IETF Policy Framework [Ste+99] with PDP, PEPs and policy repositories.

Another language for networking specification that come from databases, is called Network

Datalog (NDlog) [Loo+06]. NDlog was a language for specification of networks that created

foundations for recursive querying to specify routing protocols, QoS constraints, and path

constraints. NDlog allows to write a specification as a set of rules and a query, and validates if

rules, expressed as conjunction of predicates, can generate an output that satisfies the query.

The query result is a set of paths that satisfies the constraint set. It is called a pathfinder

language because it operates based on queries over a graph. Ethane was another approach

that provides network-wide access-control by definition of policies and high-level principals

[Cas+07]. With Ethane, administrator defines fine–grained policies which are declared over

high–level names, include the path, and the network binds the packet and the source. Ethane

created a language called Pol-ETH which followed the AC paradigm.

Our primary work is influenced by the Path-Based Policy Language (PPL) [SLX01] which

is a language focused on paths and flows. It allows network administrators to specify a) the

network topology, nodes and links; b) flow paths, c) network traffic, and d) policy rules. Also,

there are PPL compilers [SLX01][Guv03] that a) verify the policies to detect some conflicts,

and b) transform them into configuration scripts for the involved network elements.

However, these PPL compilers precalculate all possible paths, symbolically at least, before

finding policy conflicts and verifying the validity of the configuration. This path explosion

CHAPTER 2. SDN AND POLICY MANAGEMENT 38

is an exhaustive one for the NP–complete search, and combines all possible node set and

policy paths. Chapter 3 illustrates the adaptation of PPL to SDN-based topology validation.

Moreover, it describes how to use the PPL language to specify network topologies, traffic and

policy rules, and presents the notion of policy conflict.

2.4.2 Policy Analysis and Verification

The elements to be checked in a policy are: a) syntax, b) consistency between rules

that compose a policy, c) the topology that implements the policy, and d) whether the

policy is congruent with the implementation. Modal conflicts are related to syntax conflicts.

Detecting this kind of conflicts is easier because they depend on the grammatic form. In

general, testing policy output and behavior could be a more complex process. The reasons

of unwanted behavior are difficult to identify, debug, or even diagnose. As seen in § 2.2,

there are two methods to test the policy behavior. First, the network manager can test the

implementation measuring the performance over the real network, sending testing traffic and

identifying whether the result satisfies the policy goals. Second, the policy reasoning validates

the expected behavior using logical tools, such as simulation, symbolic analysis or another

logical instrument. The main objective is to determine a useful policy set (rules at low–level)

that achieves the intention of a network policy in any of its dimensions like quality, security,

or access control.

Detecting policy conflicts

Testing a new configuration before it is put into action is a common practice. Using the

production infrastructure could be unsuitable, but having parallel infrastructure is expensive.

Shadow configuration [AWY08] allowed to have a pair of configuration files, which are executed

in the current infrastructure but isolated of production. Shadow configuration files of a set of

routers can be tested without launching them into operation. The shadow configuration only

carries testing packets while the production configuration delivers real traffic. However, this

is a practical test that involves the complete deployment, and network administrators can

only observe the measures and performance over testing traffic.

Chomicki et al. [CLN03] proposed a formal framework which used logic programming for

conflict resolution on ECA rules. Rules, conflict detection and solutions are defined by axioms,

and applied logic programs to identify constraint violations. This framework finds the system

states that cannot execute specific actions by monitors which filter policies and cancel some

actions to meet the constraints. Some conflicts occur because resources are insufficient and

the assignation of individual capability cannot satisfy the complete set of policies. Corybantic

[Mog+13] is a framework to design SDN controllers to avoid resource competition on networks

with multiple controllers. It allows composition of controller modules and aims to optimize

network–wide objectives. Corybantic decides which policy has priority over other to maximize

a global benefit. In the background this is a multi–objective optimization problem that is

transformed into a single–objective by normalizing the function output.

CHAPTER 2. SDN AND POLICY MANAGEMENT 39

Statesman [Sun+14] is a service that administrates multiple network applications while

maintaining network safety and invariants. It has three network states: observed, proposal and

target. The observed is the actual network state, then applications present their proposal state,

and finally Statesman decides the secure and safe target state. Statesman uses a dependency

model to denote domain–specific dependencies between states. Finally, it evaluates the network

invariants and accepts the network change. A controller can be seen as a complex system

composed of various modules and each of them decides if it applies a specific policy. In

synthesis, the controller solves an optimization problem to allocate resources which achieve the

network–wide objectives. Athens [AuY+14] is a mechanism to solve the allocation problem by

a democratic —voting— procedure. Each module has a policy evaluator based on the change

of the network state before and after a decision is applied. Then, Athens compares the set

of multiple decisions and their combinations, and selects the optimal one after each module

evaluates their allocation options (precision), and the normalization of those metrics with

other modules (parity).

Model checkers also have been used for verifying SDN policies. Kuai [MDTW14] is a

distributed enumerative model–checker for SDN that takes as input the implementation of the

controller, in a command language similar to Murphi [Dil96]; a network topology, a finite set

of switches and links; and the safety property. Then, it uses a finite–state model checker, as

seen in § 2.2.2, and applies a partial order reduction technique to reduce the state space. Then,

Kuai performs automatic abstraction to identify unbounded packets by its counter abstraction

which records the instances of a packet flow. Kuai distributes the solver over a cluster to

execute the solver and has an interface with the POX controller. NetPlumber [KCZ13] verifies

network policies on real time based on Header Space Analysis (HSA) [KVM12]. It creates the

plumbing graph which consist of all possible paths for flows. Nodes in this graph are rules in

the network, and edges denote dependency between rules. A path shows the connection —or

dependency— of diverse rules. The graph can establish filters between two nodes, and deduct

the packet header that intersects both rules.

2.4.3 Network Security and Firewall policies

Security policies are focused on definition of rules for access control and bind users

and conditions to resource access. A security policy can be a formal representation of its

entities and functions. At low level, security mechanisms implement the controls described

by the policy within a context specified in the model. ACL is an early expression of security

policies, which can be described as matrices of resources and attributes. For example, the

Bell–LaPadula model defines policies as a state machine and transitions between states are

the policy outline. On the other hand, Role-based Access Control (RBAC) model specifies

resource access based on the roles within the company instead of independent users.

Listing 2.1: Syntax of firewall policy advisor [ASH03].

<order> <prot> <s r c i p > <s r c p r t> <ds t ip> <ds t pr t> <act ion>

A security policy is a set of rules, written with the syntax shown in listing 2.2, which incorporate

CHAPTER 2. SDN AND POLICY MANAGEMENT 40

order, protocol, source ip and port, destination ip and port, and action. The action is accept

or deny, and order is a priority mechanism, where the first rules have precedence over the

following. The example shown in listing 2.1 is a set of rules that are congruent to a security

policy.

Listing 2.2: Example of firewall rules [ASH03].

1 tcp 1 4 0 . 1 9 2 . 3 7 . 2 0 any ∗ . ∗ . ∗ . ∗ 80 deny

2 tcp 1 4 0 . 1 9 2 . 3 7 .∗ any ∗ . ∗ . ∗ . ∗ 80 accept

3 tcp ∗ . ∗ . ∗ . ∗ any 1 6 1 . 1 2 0 . 3 3 . 4 0 80 accept

4 tcp 1 4 0 . 1 9 2 . 3 7 .∗ any 1 6 1 . 1 2 0 . 3 3 . 4 0 80 deny

5 tcp 1 4 0 . 1 9 2 . 3 7 . 3 0 any ∗ . ∗ . ∗ . ∗ 21 deny

6 tcp 1 4 0 . 1 9 2 . 3 7 .∗ any ∗ . ∗ . ∗ . ∗ 21 accept

7 tcp 1 4 0 . 1 9 2 . 3 7 .∗ any 1 6 1 . 1 2 0 . 3 3 . 4 0 21 accept

8 tcp ∗ . ∗ . ∗ . ∗ any ∗ . ∗ . ∗ . ∗ any deny

9 udp 1 4 0 . 1 9 2 . 3 7 .∗ any 1 6 1 . 1 2 0 . 3 3 . 4 0 53 accept

10 udp ∗ . ∗ . ∗ . ∗ any 1 6 1 . 1 2 0 . 3 3 . 4 0 53 accept

11 udp 1 4 0 . 1 9 2 . 3 7 .∗ any 1 6 1 . 1 2 0 . 3 5 .∗ any accept

12 udp ∗ . ∗ . ∗ . ∗ any ∗ . ∗ . ∗ . ∗ any deny

According to Al-Shaer and Hamed [ASH03], there are five kinds of conflicts or anomalies:

shadowing, correlation, generalization, redundancy, and irrelevance. Shadowing is the rule that

is never reached because another rule with higher relevance is applied first but their actions

are different. Correlation occurs when two rules have conflicting packet filters. Generalization

arises when a high-priority rule filter is a subset of another, it is a kind of shadowing but

with the same action. Redundancy are two rules whose result is practically the same over the

same rule filter. And irrelevance occurs if the elimination of a rule does not change the whole

policy effect.

Firewall Policy Advisor [ASH03] is a tool to analyze firewall rule relationships and discover

policy anomalies by a state–diagram algorithm. Also, it has a policy editor to create, insert,

modify, and delete free–of–conflict rules. Besides finding conflicts on one firewall configuration,

other algorithms were developed to analyze intra-firewalls [ASH04a]. These conflicts were

defined as a distributed system where previous conflicts were redefined as an ordered sequence

of multiple rule sets over a flow path. Inter–firewall anomalies are shadowing, spuriousness,

redundancy, and correlation. Shadowing and redundancy maintain the same concepts for

intra–firewall analysis. Spuriousness occurs if a firewall allows traffic that later another

firewall rejects. Correlation is the mismatch of rules in predecessor and successor set of rules

—upstream and downstream firewalls.

2.4.4 Policies for Software-Defined Networking

SDN is built under policy abstraction which describes the high–level behavior is disengaged

from the data plane. For example, the policies VoIP calls cannot be terminated in mobile

devices, and access to database server is only possible from IT department desktop computers

CHAPTER 2. SDN AND POLICY MANAGEMENT 41

describe the high–level behavior, not the detailed implementation. Data plane has a set of

rules in the datapath with header and port abstractions. For example: if (packet header

matches tcp 140.192.37.20 161.120.33.40 80) then send to port 4 identifies a set

of packets and forwards them through an interface. Then, a low–policy is a set of atomic

operations or primitives over packet–header attributes and performed by switches. A policy is

equivalent to a set of pairs 〈key, primitive〉 where the key can match with the packet header

and primitive is the action: SEND, DROP, SEND TO CONTROLLER, or OVERWRITE. Hence,

this set of primitives conforms a policy implemented as a map into the forwarding table.

Moreover, controller can specify QoS and the datapath can control the flow rate, the queue

management and preferences.

One of the first policy languages for SDN was the Flow–based Security Language (FSL)

[Hin+09b] for wireless networks and designed for NOX [Gud+08]. With FSL it is possible

to specify policies of access controls, isolation, and communication paths. FSL focused on

end–to–end reachability and path selection, without specific thought to network monitoring.

Its syntax is shown on table A.3. A flow is specified as a tuple of: source and destination

users (Us,Ut), hosts (Hs,Ht), access points (As,At), protocol (Prot), and the communication

direction is a request or response (Req). Since FSL was designed for SDN, the policy in FSL is

mapped to a rule in NOX; it means a matching of packet–headers. The evolution of FSL is the

Flow-based Management Language (FML) [Hin+09a]; it is a high–level declarative language

able to express common configurations and network–wide polices into a single framework.

FML was designed to normalize policy configurations of diverse devices such as ACLs, VLANs,

NATs, or routing. Software languages such as FML and Merlin [Sou+13] allow network

administrators to define these policies in a declarative way. Listings in table A.3 show the

syntax and an example of a policy that denies all flows from unknown users. OpenSAFE

[BRA10] is an administration framework that monitors traffic to collect statistics, detect

anomalies, or obtain forensic evidence. The monitor uses span ports to duplicate traffic at

a point of observation, and forward that traffic to a collector, generally an IDS or a sink.

OpenSAFE expresses routing policies for monitoring using the ALARMS language which

describes a path as inputs, selections, filters and sinks. ALARM syntax and policy example

are shown in table A.4.

Another fundamental problem on SDN is the deployment of rule–flows on datapaths.

The solution identifies the part of the policy to be implement on a flow–table of a given

datapath and install the segment of rules that accomplish the general goal. This automatic

transformation maps policies to rules over multiple switches. After the network application

produces a configuration, the configuration is deployed into forwarding-tables on switches

and other datapaths. The newer policy on a few datapaths can generate inconsistencies with

previous implementations. Those inconsistencies during updating deployment can generate

failures such as hiccups, loss of connection, or forwarding loops.

Reitblatt et al. [Rei+12; RFRW11] proposed a set of update operations to guarantee that

a single policy —the older or the newer— applies over a packet. They created the abstraction

for packets and flows, and designed mechanisms to maintain the consistency. A formal model

CHAPTER 2. SDN AND POLICY MANAGEMENT 42

of OpenFlow network validates the update consistency and checks the network correctness.

Later, Kang et al. [KRRW12] proposed an axiom set for policy transformations. A policy

and a topology are the inputs, then the policy is described as simple forwarding rules and are

implemented in a chain of switches. The transformations must hold along the switch path,

consider the consistency of flow-rules, avoid redundancies, and guarantee the implementation

of the policy.

Other authors suggested a third layer over the controller. For example, Yageneh [YTG13]

proposed a third plane called behavioral abstraction. SIMPLE [Qaz+13] is a policy–enforcement

layer for middleboxes with higher–layer functionality like firewalls, IDSs or proxies. SIMPLE

expressed traffic as dataflows and allowed the integration with legacy middleboxes. The traffic

is the result of function composition, and the management is presented an Integer Linear

Problem (ILP) formulation with datapath constraints, sequences of datapaths, and load

balancing. An example and the syntax for the SIMPLE language is shown on table A.5.

Procera [VKF12] is a functional reactive language that processes high–level policies based

on reactive programming which interacts with the environment. With this language embedded

as domain–specific in Haskell it is possible to declare and compose network policies in reactive

and temporal manners that includes time, usage, authentication status, and traffic flow.

Although performance and scalability of Procera is not clear, it is a valuable achievement

for developing a language able to express powerful policies. Procera allowed to respond to

continuous changes of the network, and this programming reacts to low–level events [KF13].

Flowexp is a language that symbolizes the set of conditions on the path and header flows

with regular expression. Listing A.1 shows the grammar for Flowexp. Invariant checking is

accomplished by probe nodes which have filters and tests for those filters. Probe nodes display

an alarm if none of the probes satisfy the test expression.

Resonance and Pedigree [NRFC09; Fea+10] were two approaches that suggested the

separation of network control and forwarding by a high–level policy definition for the control

of access and traffic flow. Lithium [Kim+12] is an event-driven network controller based

on NOX [Gud+08] that defines policies in terms of events in four domains: time, users,

history and traffic. Then, the network dynamic generates those action conditions and trigger

predefined reconfigurations. Nevertheless, this approach enriched the expressiveness of a

policy but added more variables for verification. One of the most representative languages

based on NOX is Frenetic [Fos+11]. With it, the network administrator composes policies

and the compiler translates policies into stream queries and transformations.

2.5 Summary

This chapter presents fundamental concepts and related works to this research thesis.

Concepts introduced in this chapter formulate the Software–Defined Networking context, its

architecture, network–operating systems and frameworks to develop network applications. We

introduce other fundamental concepts related to verification strategies, logical systems, and

the keystone of this thesis: the satisfiability problem, which allows us to model networks and

rules as predicates that later will be solved to validate network–wide policies. Then, we present

CHAPTER 2. SDN AND POLICY MANAGEMENT 43

related works on the issue of verification of network functionality, and finally, we describe

the Policy–Based Management architecture and show related work on policy specification,

languages, and validation to SDN.

Now we present a summary taxonomy which clarifies the problem associated with validation

of policies on SDN networks, other approaches and its more relevant characteristics. We

divide our research project into three steps: network invariant analysis, rules/policies for

security, and general policy validation.

For the network invariant analysis, we propose a taxonomy that shows multiple solutions

and their techniques to verify network invariants, shown in table 2.7. VeryFlow [Khu+13] is a

layer between the SDN controller and datapaths that checks network invariant violations in

real time that a rule is updated (insertion, modification and deletion). FlowChecker [ASAH10]

proposed a verification mechanism to find misconfigurations on OpenFlow flow–tables. It

works as an independent application and uses Binary Decision Diagram (BDD) (see BDD

in Section 2.2.3) and a computation tree logic language (see CTL in Section 2.2.1) to write

queries or properties that the administrator requires verifying. Anteater [Mai+11] (2.3.1) was

the start point for this thesis, because it used static analysis of invariants in the data plane,

it represented forwarding information as Boolean functions, and it built multiple instances

of Boolean satisfiability problems from symbolic packets, network constraints and invariants.

NICE [Can+12] also applied model–check techniques to explore the complete space and used

symbolic execution to examine all possible paths, packets and network events. However, its

path search creates an extensive number of variables which add complexity on large scale

applications. Other solutions, as the proposed by Kang et al. [KRRW12], present an axiom set

for policy transformations. The verification consists of checking the consistency of flow rules,

avoid redundancies, and guarantee the policy implementation in datapaths. Kuai [MDTW14]

is a distributed enumerative model–checker for SDN that uses the controller implementation,

the topology specification, and a security property in Murphi language. Then, the model of

switches, firewalls and routers are verified on a cluster, and the result of bugs or inconsistencies

is reported. SymNet is a tool that uses Symbolic Execution to check network properties by

tracking possible values in a header field as the packet goes through the network. SymNet

also modeled middleboxes as transformation constraints over header fields. Recently, Atomic

Predicates [YL16] used predicates, as we did on this thesis, to check network properties and

showed time and space efficiency.

Table 2.7 summarizes the related work on network–invariants. First, we identify the plane

where other solutions are applied. Data plane is verified by [Mai+11], and [Kan+13]. The

control plane is analyzed by [ASAH10], [Kaz+13], [Khu+13], [SPNR13] and [MDTW14]. And

both are studied by [Can+12] and our solution [MLCD14]. The next criterion is the formal

logic used on the solution. We classify the solution using model–checkers which are applied by

[ASAH10], [Can+12], [Kan+13], and [MDTW14] as opposed to [SPNR13] who created a live

execution with symbols to verify the model. The flexibility and universality of predicates is a

natural descriptor of network invariants; however, the predicate representation is used only

for documentation in [Kan+13] but is the main part of the descriptor language in [ASAH10],

CHAPTER 2. SDN AND POLICY MANAGEMENT 44

Table 2.7: Comparison of verification techniques for network invariants.

Logic Network Properties

Reference C
o
n
tr

o
l

/
D

a
ta

M
o
d

e
l–

C
h

e
ck

in
g

S
y
m

b
o
li
c

E
x
e
c
u

ti
o
n

P
re

d
ic

a
te

s

A
lg

e
b

ra

B
D

D

S
A

T

G
ra

p
h

T
e
m

p
o
ra

l
lo

g
ic

R
e
a
ch

a
b

il
it

y

N
o
–
L

o
o
p

s

B
la

ck
H

o
le

s

W
a
y
p

o
in

t

N
o

D
e
la

y
/

D
ir

e
c
t

A
v
o
id

a
n

c
e

S
li
c
in

g

C
o
n

si
st

e
n

c
y

Tools

FlowChecker [ASAH10] C • • • • • BuDDy

Anteater [Mai+11] D • • • • • • Boolector,
PicoSAT,
PrecoSAT

NICE [Can+12] C/D • • • • • • STP
constraint
solver

Formal modeling & verification[Kan+13] D • • • • • ACSR,
VERSA,
UPPAAL-TA

NetPlumber HSA [Kaz+13] C • • • • • • Python,
Hassel

Veriflow [Khu+13] C • • • •

SymNet [SPNR13] C • • • • • Haskell,
Scala, Antlr

Network conflict detection [MLCD14] C/D • • • • • • • • Alloy

Kuai [MDTW14] C • • • • Murphi,
PReach

Atomic Predicates [YL16] • • • • • • •

[YL16], and our work [MLCD14]. Regarding checking invariants, reachability and loop–free

are essential properties which are verified for almost all the related works; blackholes and

waypoints are invariants focused on routing consistency. Avoidance invariant, as complement

of waypoint, is only considered in our work [MLCD14] and compared with Anteater which

used a similar structure, we checked more invariants and operate in both planes. In summary,

with the Network Conflict Detector [MLCD14] we can check multiples invariants in both

planes using predicates and relational algebra in the control and data planes. This work and

its results are presented in chapter 3.

Table 2.8: Comparison of verification techniques for security properties.

Logic Firewall Policy

Reference M
o
d

e
l

C
h

e
ck

in
g

S
y
m

b
o
li

c

x
D

D

S
A

T
/
S

M
T

S
h

a
d

o
w

in
g

R
e
d

u
n

d
a
n

c
y

C
o
rr

e
la

ti
o
n

G
e
n

e
ra

li
z
a
ti

o
n

S
p

u
ri

u
sn

e
ss

N
o
n

–
B

y
p

a
ss

C
o
n

si
st

e
n

c
y

C
o
m

p
a
c
tn

e
ss

E
q
u

iv
a
le

n
c
e

Tools

Firewall Policy Advisor [ASH04b] • • • • • •

Fireman [Yua+06] • • • • • • • • BuDDy

Firewall Decision Diagram [GL07] • • •

Formal Verification [Liu08] •

FW configuration model [JS09] • • • Minisat,
BuDDy

ConfigChecker [ASA11] • • • •

Verification and Synthesis [ZMMN12] • • • • Minisat,
DBepQBF

FLOVER [Son+13] • • • • • Yices

Flowguard [HHAZ14] • • • • •

FireWell [MLCD15] • • • • • • • Alloy

The second contribution of this thesis is related to identification of conflicting rules in

CHAPTER 2. SDN AND POLICY MANAGEMENT 45

firewall, and security policy violations. The first work included in our analysis is the Firewall

Policy Advisor [ASH04b], which used a BDDs for discovering policy anomalies. Fireman

[Yua+06] used static analysis to verify firewall policies by a symbolic model checking for all

packets along all possible paths valid into a set of configurations. Later, the FDD [GL07]

represented a security policy in a directed and non–cycled graph, where edges represent

constraints and final nodes denote firewall decisions. Liu [Liu08] wrote formal verification

algorithms which also used FDDs to check misconfiguration, and validate firewall policies, but

this time against the formal security policy. The policy included rule consistency in firewalls

and the compactness of the set of rules. Jeffrey and Samak [JS09] modeled firewalls and

verified policy consistency, including cyclicity, when a firewall enters in a loop or a rule is

never reached. They compared the efficiency of BDDs structures in contrast to SAT solvers,

and found that SAT outperforms BDDs. ConfigChecker [ASA11] used BDDs to verify firewall

configuration by symbolic reachability analysis. Zhang et al. [ZMMN12] implemented SAT to

create equivalences and discover redundant rules between two firewalls, and they used a QBF

solver to optimize the ACL set of rules. FLOVER [Son+13] used a model–checker based on

Yices to find rules which violate the security policy, especially by–passing violations to avoid

a policy with a set of genuine rules. FlowGuard [HHAZ14] detects and solves secure policy

violations by checking flows after a network update, and proposed five strategies to solve them.

FlowGuard creates and checks firewall authorization spaces which represent series of packets

that are disjoint, allowed or denied. In this sense, those spaces are equivalent and have the

same functionality to header spaces described in HSA [KVM12]. Our work, called FireWell

[MLCD15], creates a model from a set of firewall rules and translates it into a SAT model.

Then the model is processed by a SAT–solver to find inconsistencies. Finally, the model is

tested for a set of policy constraints that includes the by–passing violation. Some of this

related work did not verify against a high–level policy, only checked if there are inconsistencies

in the set of rules. We use the model of policies and check it against the model or firewall

rules to find inconsistencies.

In the next chapter, we present the model and verification of topology invariants based

on paths. Later, in chapter 5 we show policy verification for firewall rules, and in chapter 6

we present a more general verification that models three elements: i) a network policy, ii) a

network topology, and , and iii) the set of configurations which are essential to identify

congruence and policy enforcement.

Chapter 3

Topology and Path Verification

Testing can only prove the presence of

bugs, not their absence.

Edsger W. Dijkstra

This chapter presents the process of verification that validates network invariants and

policies according to their path definition. Formal definitions of topology, path, flow, and

policy are used to model network policies which later will be analyzed through a model

finder. This mechanism allows us to check the SDN implementation of policies on nodes and

paths, instead of developing external implementations to the specification language [Mai+11].

Moreover, we present a compiler for Path–Based Policy Language (PPL) [MLCD14] based on

Alloy that finds policy–topology conflicts.

Policy–based Network Management (PBNM) aims to reduce complexity and errors in

network configuration. There are two approaches for using PBNM to validate network

configurations. One detects conflicts, inconsistencies and bugs in each device configuration. It is

called the post–configuration checking. Other focus on avoiding errors by automatic generation

of configurations. The automatic configuration is created according to the specification of the

expected behavior of a network. The result of the pre–configuration checking is, for example,

a set of configuration scripts [Ste+99].

Topology checking is one of the essential analysis in networking. It helps us to check if at

topology level the SDN application is consistent without resorting to higher layers. Essential

network capabilities, called network invariants, respond to fundamental operations over the

graph. For example, vertex reachability resolves packet loss and forwarding inconsistency;

verification over paths identifies and avoids loops and black–holes; and verification of

path–policy checks if a path goes through a specific node or avoids it.

3.1 Abstractions for Topologies, Flows and Policies

This section shows the formalism used as basis for checking network invariants. For

the purpose of this thesis, four invariants are considered: 1) node isolation, 2) reachability,

46

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 47

3) loop–free, and 4) node avoidance and waypoints paths. Assuring these properties, could

avoid severe networking errors such as disconnection, service oscillation, black–holes, false

failure advertisement, or availability and security vulnerabilities.

3.1.1 Network topology

We use regular graph theory definitions to describe the policy language for computer

networks [Lew09; Die10].

Definition 3.1 (Network). A network or graph is a duple G = (N, L) such that: N is the set

of nodes (vertices) in the network, and L ⊆ N × N is the set of links (edges) between nodes in

the network.

The node set of a graph is denoted as N (G), and the link set as L(G). The set of all links

in L with the node n is denoted by L(n) = {(x, y) |(n,m) ∪ (m, n) ∈ L}, links that contain the

node n. Two nodes m, n of G are adjacent if (m, n) or (n,m) are links of G. The set neighbor(n)

is the set of nodes connected to n such that {m |(n,m) ∪ (m, n) ∈ L}. We sometimes write

n → m instead of (n,m). The number of vertices of a graph |G | is its order, and the number

of links is denoted as ‖G‖. The degree dG (n) of a node n is the number |L(n) | of links at n,

this is equal to the number of neighbors of n.

A well-formed network G satisfies the following properties:

i) connected graph: ∀n ∈ N | links(n) , ∅, i.e. there are not nodes without links to other

nodes;

ii) self–loop: @n ∈ N |(n, n) ∈ L, i.e. there are not links from a node to itself.

These constraints are later verified as part of network invariants in § 3.4.1.

Definition 3.2 (Path). A path is a graph P = (N, L). Where the set N = {n0, n1, . . . , nk } is a

sequence of nodes; L is the set of links L = {(n0, n1), (n1, n2), . . . , (nk−1, nk)} that connects the

sequence from n0 to nk .

A network path can be described as a list of nodes that maintains a sequence P =

n0n1 . . . nk ,, where n0 is the source node and nk is the target node. The number of links of a

path is called its length, and a path of length k is denoted as Pk .

3.1.2 Transitive Closure and Reachability

Given a path P, its link set L = {(n0, n1), (n1, n2), · · · , (nk−1, nk)}, and link a binary relation

on the set of nodes N . If a, b ∈ N and (a, b) ∈ L then (a, b) ∈ link. The transitive closure

link+ is the transitive relation on the set N such that link ⊂ link+, and link+ is minimal. In

other words, if a, b, c ∈ N |(a, b), (b, c) ∈ link then (a, c) ∈ link+. Thus, the binary relation link+

contains all possible pair of end–points of subpaths from P = (N, L).

Given n a node of the graph, links(n) = {m |(n,m) ∈ link+} denotes the set of end–points

(paths and subpaths) from n. Therefore, the following properties hold:

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 48

i) node n j is reachable from ni if and only if n j ∈ links(ni), i.e. there is a path from ni to

n j ;

ii) a node ni is not in the path if links(ni), i.e. the path does not have loops;

iii) all nodes in the path are also nodes in the topology, ∀ni : ni ∈ links(ni), and ni ∈ N (G).

A path P = n0, . . . , nk−1 forms a cycle if the link (nk, n0) is added. Therefore C = P + nkn0
is a cycle.

Definition 3.3 (PDP). A partially defined path p′ is an incomplete definition of path. It

could even be a subset of links, intermediate, sources or destination nodes.

Definition 3.4 (P+). Given p′ a PDP, the function P+(p′) extracts the set of paths that

match a partially defined path p′.

Given P the set of all paths in G, a PDP p′ = (ni, n j) the superset P+(p′) is the set of

paths that have the link (ni, n j), i.e. fulfills the partial definition. P+(p′) = {p ∈ P : (ni, n j) ∈

LP ∧ ni, n j ∈ NP }. This notion completely generalizes network and path definitions in the base

case proposed by Stone [SLX01].

3.1.3 Categories and Sequences

The administrator needs to define patterns to classify network traffic. For this work we use

categories and sequences to group traffic characteristics. Categories act as traffic labels. For

example: traffic can be categorized as interactive, streaming or bulk data. Basic set operations

apply to categories and their elements. We define sequences to model ordered sets and their

elements with a precedence function and asymmetric relation. With these ordered structures,

the network administrator can operate policies and describe actions where a traffic value is

lower than a constraint.

We also define categories as set of elements. In our model, elements from the same

category are disjoint, for all C,C ′ |C ∩C ′ = ∅. However, we can declare super categories or sets

of categories which can be aggregated to achieve more complex structures. For example, the

network administrator of a campus requires classifying users and profiles; namely: faculty,

staff, and students. The label for this category usergroup. See figure 3.1 as an example of

traffic classification and the model for a network policy.

A sequence arranges elements under the ordering function, most of the time the precedence

relation (≺). Given a sequence T , as an ordered set, such that two elements t, t ′ ∈ T hold an

ordering relation t ≺ t ′. The zero element is part of the ordered sequence such that ∀t ∈ T, 0 ≺ t.

We also use the functions higher and lower; ∀t, t ′ ∈ T, higher(t, t ′) = true ⇐⇒ t ′ ≺ t. We model

sequences of elements to provide ordering and preference abstraction. Thereby, we can compare

and define customized ordering functions. For instance, priority on traffic can be defined using

low, medium and high, and solve the preference function higher(a.priority, b.priority).

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 49

3.1.4 Traffic flow

The keystone of Policy–Based Network Management is the traffic flow concept. A traffic

flow models an end-to-end connection in a data network. We define characteristics of data

which are carried through the network topology and define metrics to apply to the flow.

Definition 3.5 (Traffic Flow). A flow f is a tuple (P+, k, t) such that:

i) P+(PPD) is the set of paths that match a partially–defined path PPD,

ii) k ⊂ K is a traffic category,

iii) t ⊂ T is a sequence.

As seen in the previous definition, a flow uses categories and sequences to represent the

traffic classification by the administrator. The network administrator writes sets to classify

traffic: T for sequences and K for categories. As a result, sequences, categories, paths, and

super set of paths, are descriptors of the traffic flow.

So far, a network administrator can detail the topology: nodes, links, and paths. Then

she specifies the traffic using sequences and categories; thereby, she may model network

characteristics and constrains such as delay, jitter or bandwidth. For example, a network

administrator specifies a traffic flow for video transmission, which uses the UDP protocol.

Figure 3.1 shows the model of this flow specification. Note that a flow specification may

include specific IP or ranges of addresses to define origin and destination hosts or subnetworks.

Moreover, profiles, permissions, users, groups or subnetworks and IP–address ranges may

be modeled using categories. Table 3.1 presents an example of flow structure. This model

comprises topology, traffic flow, and categories and sequences for the management. See § 5.3.3

for IP addresses and other partial order sets, to realize how network addresses are represented

as categories.

topology

node

links[node]

path

flow

paths

nodes

links

typeclass

university

research

entretainment

interactive

streaming

bulk data

policy

usergroup

conditionstarget

action

actions

permit denyprioritize

faculty

student

staff

Ana

Beto

Carlos

target
source

Figure 3.1: Model of network language for policy and flow.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 50

Table 3.1: Example of topology abstraction and traffic flow. Management is an extra category
for the flow example. Language is flexible enough to add more categories and sequences as
necessary.

Topology

Nodes
Alpha, Bravo,
Charlie, Delta,
Echo

Links

Alpha → Bravo,
Alpha → Delta,
Bravo → Charlie,
Charlie → Delta,
Bravo → Echo,
Delta→ Echo, · · ·

Paths
〈 *,Charlie,* 〉
Origin: Alpha
Destination: Echo

Flow

Protocol UDP
Origin 192.168.5.*
Destination 192.168.7.*
Class Video
Type Research
Delay 50ms

Management
Profile faculty
User Professor X
Priority Low

3.1.5 Network policy

Policy is the relation map between conditions, paths and traffic flows, and the resulting

action. The topology abstraction represents the low–level network in terms of nodes, links,

and paths. At high–level, the network administrator establishes categories and sequences

for traffic flows. Furthermore, she classifies the flows by profile, user, service or permission.

Finally, the traffic flow characteristics are included into the model. Figure 3.1 shows the

complete model and the relations within the elements to compose the policy.

Definition 3.6 (Policy). A network policy π is a tuple π = (P+, f ,C, α) such that:

i) P+ is a super set of paths from a PDP,

ii) f is the target flow composed of customized categories and sequences,

iii) C is a set of conditions over the flow f , and

iv) a is an action, commonly from A = {permit, deny}, that resolves whether allow the flow

f over the set p.

Action a is decisive and produces a network configuration that allows or denies the traffic

flow. Assume the topology comprises five nodes and six links as shown in figure 3.2. For

example, the network administrator wants to apply the policy:

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 51

User Ana with profile IT member, who is in the subnetwork Alpha

(192.168.5.*), is allowed to access the video database in subnetwork Echo

(192.168.7.*), and it must go through the router Charlie, exclusively from

Monday to Friday.

Echo

Delta

Bravo

CharlieAlpha

Figure 3.2: Topology example to validate network invariants.

Now the administrator details the policy. She defines the path, constraints, categories,

sequences and actions. To do that she follows the steps:

1. path A E := <Alpha,*,Charlie,*,Echo>, and the super set P+(A E) is calculated;

2. the traffic flow: traffic class = video, protocol = UDP;

3. the conditions Mon ≤ day ≤ Fri, user = Ana, and Ana ∈ IT member;

4. finally the policy decision permit

Implementation function

Now that the topology, the flow and the policy is specified, an implementation function is

needed. This function maps the set of possible paths, denoted by ω, which can implement

the policy π. Another interpretation for the implementation function ω is: it maps a set of

constraints into a configuration script. The definition of this function is described in more

detail in § 3.1.6. For now, the implementation function generates a configuration from the

policy, and the policy is represented as the conjunction of constraints 3.1.

ω = impl (p : path ∈ p+(a e) ∧ (3.1)

traffic class == video ∧

protocol = UDP ∧

day ≥ Mon ∧ day ≤ Fri ∧

Ana : user ∈ IT member)

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 52

Note that IP addresses, user groups, traffic class and protocols should be modeled as

categories and use set operators. On the other hand, the day type should be modeled as a

sequence to compare them using ≤ and ≥ operators. As a consequence, this representation of

a policy allows us to logically solve this predicate and prove a formal solution using a model

finder [MLCD14].

3.1.6 Policy conflicts and semantics

To define the set of paths that implements a policy and then identify policy conflicts and

violations we follow the guidelines of Harel and Rumpe [HR04] to specify a modeling language

 L describing the syntactic domain LL , the semantic domain SL , and the semantic function

ML : LL → SL , also traditionally written J·KL .

Definition 3.7 (Policy Semantic). The semantic of a policy Jπ,GK is the set of paths that

implements the flow over a path on G and achieves the policy.

JΠ K = Ω is the semantic of all network policies and produces the set of all paths

implemented on the network. The complete network configuration is denoted by Ω, and

following:

i) The semantic function Jπ,GK is the set of tuples (path, traffic, conditions) in the network

G that satisfies the policy π.

ii) A policy π is valid in a network G, if Jπ,GK is not empty

The semantic of a policy is equivalent to the implementation function described above.

The implementation describes the set of actions a node (datapath) should execute to comply

with the policy.

Definition 3.8 (Policy Conflict). A policy conflict occurs when a set of policies are not

implemented by any path.

• JΠ K = ∅ i.e. when ∃π ∈ Π |implements(f) | = 0.

• Given two valid policies π1 and π2, they are not conflicting in the network G if Jπ1∪π2,GK
is not empty. That is, two policies are not conflicting if there is a set of tuples

(path, traffic, priority) in the network G that satisfies both policies.

• In contrast, two valid policies π1 and π2 are conflicting in G if |Jπ1 ∪ π2,GK| = 0

Definition 3.9 (Minimal diagnosis). Given a set of policies π ⊆ Π such that JΠ \ πK , ∅, the

minimal set π is the minimal diagnosis.

The next step is to create a verifier able to calculate the semantic function Jπ,GK and

verify if that set is empty and the minimal diagnosis of that set. Next section describes a

policy language used in our research project. Then, we use a model–finder to calculate the

semantic function that satisfies the policy set. If the model–finder does not find any instance

for the model (the set is empty), the policy set is considered invalid or conflicting.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 53

3.2 The Path–Based Policy Language

Since a more formal characterization of topologies, flows, policies and semantics, this

section describes a language focused on network paths and data flows called PPL[SLX01].

Path–Based Policy Language (PPL) is a language for Policy-based network management.

With PPL, a network administrator can specify the set of rules about how the network must

deal with specific categories and sequences of traffic. With it, network administrators are able

to specify a) the network topology, nodes and links; b) flow paths, c) network traffic, and

d) policy rules. Listing 3.1 shows the syntax of policy in PPL language. Class is a traffic

classification that uses conditional operators. Instead, Type is a traffic classification that uses

inequality relations to compare elements over an ordered set.

Listing 3.1: Syntax of policy in PPL language [SLX01].

define node [node_name]* ;

define link link_name < node_name,node_name >;

define path path_name { [node_name, | *,] };

define class class_name { [class_list | class_element] };

define sequence seq_name { [class_list | class_element] };

<condition> := { [<var> GTEQ|LSEQ|NTEQ|EQUAL <constant>]};

<target> := {[<var> ==|!= <constant>]};

<action> := DENY|[PRIORITY | PERMIT | HOPCOUNT := <constant>]

<policy> := <policyID> <User_ID> {<path_list>}

{<target_list} {<condition_list} {<action_list>};

The existing PPL [SLX01; Guv03] compiler performs some validations on the policy rules

and detects conflicts such as contradicting rules for the same network segment. However,

that compiler only detects conflicts using a subset of the language and cannot detect conflicts

related to contradicting rules with security controls on users and groups.

3.2.1 Network topology

PPL provides a set of define statements that can be used to define network nodes and

links. For instance, listing 3.2 is the PPL specification of the example network with five nodes

shown in Figure 3.2.

Listing 3.2: Definition of topology example in PLL language.

define node Alpha, Bravo, Charlie, Delta, Echo;

define link Alpha_Bravo <Alpha, Bravo>;

define link Alpha_Delta <Alpha, Delta>;

define link Bravo_Charlie <Bravo, Charlie>;

define link Charlie_Delta <Charlie, Delta>;

define link Bravo_Echo <Bravo, Echo>;

define link Echo_Delta <Echo, Delta>;

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 54

3.2.2 Path specification

In addition to nodes and links, PPL supports the definition of paths in order to define rules

over the traffic that goes through them. Network administrators can set a path specifying all

the nodes and links in the path, or by using wildcards. For instance, a path between Alpha and

Echo may be defined specifying all the nodes using the expression <Alpha,Bravo,Echo>.

In addition, a set of paths can be defined using placeholders that can be replaced by any set

of nodes. Following the example, the complete set of paths between Alpha and Echo can be

defined as <Alpha,*, Echo>, i.e. denoting all the paths that start in one node and ends in

the other.

3.2.3 Policy representation

PPL supports the definition of constraints over the traffic going through nodes, links

or paths in a network. A PPL rule comprises: a unique identifier (policyID), the ID of

the policy creator (userID), the set of paths affected by the policy (paths), the type of

traffic that the rule affects (target), the environment that determines when the policy must

be applied (conditions), and the description of intended behavior (action items). For

instance, a network administrator, called Smith, defines the policy the video traffic cannot be

transmitted through Charlie, using the the PPL statement shown in listing 3.10.

Listing 3.3: Policy example denies video traffic.

policy1 smith {<*,Charlie,*>} {traffic_class=video} {*} {deny}

Policy conflicts

A policy conflict occurs when two or more policies, in some of its rules, cannot be satisfied

at the same time. For instance, there is a conflict if another administrator, let say Neo,

defines a policy Video traffic can be transmitted from Alpha through Charlie to Echo using the

statement in listing 3.4.

Listing 3.4: Policy example permits video.

policy2 neo {<Alpha,*,Charlie,*,Echo>} {traffic_class=video}

{*} {permit}

Considering the above mentioned policies, there is a contradiction, hence a policy conflict.

Basically, the first policy denies the video traffic that goes through Charlie, and the second

policy permits that traffic in the same node.

3.3 Modeling Policies and Reasoning about Conflicts

To overcome the limitations of the existing PPL compiler, we propose a compiler that

uses Alloy to reason about the network policies and detect conflicts. This section introduces

Alloy and describes how it is used to specify the network elements and policies, and how we

detect conflicts. Additionally, we show how to translate PPL statements into an Alloy model,

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 55

and use the Alloy Analyzer to determine conflicts. First, the syntax of Alloy is depicted on

listing 3.5. A complete definition of grammar for Alloy is presented in appendix A. Then, a

network (graph) is modeled in Alloy, following the definition created on § 3.1.1. Additionally,

a relational model is used to describe traffic classification and paths § 3.1.3, and shows policy

creating and conflict identification by its semantics § 3.1.6.

3.3.1 Alloy in a nutshell

This section introduces basic concepts about Alloy and the satisfiability problem. Also, it

shows how the network is modeled, and how the network model and policies are written in

Alloy language.

Alloy is a model–checker with a specific declarative language based on first–order and

relational logic. It is used to describe a system, called a model, in terms of signatures and

relationships; and constraints over the signatures with facts and evaluations over the model

with predicates. Alloy is also used to find examples, called instances, or counterexamples of

the model using a bounded exhaustive search. Internally, Alloy translates the model into a

set of CNF expressions and evaluates it using a SAT solver.

A solution is an instance or counterexample found by the solver. It denotes an instance

where the model is satisfiable, or points those restrictions which cannot accomplish the system

definition as a counterexample.

Since Alloy uses relational language, each declaration is a set noted by sig name

{relations} {conditions}. Moreover, Alloy allows data multiplicity such as all and

some for universal and existential quantifiers, in addition to no for none, lone to define at

most one, one for exactly one, and set for any number. Relations on Alloy are declared by

using the colon (:) operator. The signature A { f : B } denotes that there is a relation

f : A → B. A brief language syntax is shown in listing 3.5 and a complete reference and

examples are in appendix A.

Listing 3.5: Summary of Alloy’s syntax.

sigDecl ::= [abstract] [mult] sig name,+ { decl,* }

decl ::= [disj] name,+ : [disj] expr

mult ::= lone | some | one

block ::= { expr* }

factDecl ::= fact [name] block

predDecl ::= pred [qualName] name [paraDecls] block

funDecl ::= fun [qualName] name [paraDecls] : expr

paraDecls ::= (decl,*) | [decl,*]

3.3.2 Network Topology Model

Network nodes and links can be modeled in Alloy using signatures and relations. Node set

is declared using the reserved word abstract because concrete elements are defined later.

We instantiate the set of nodes and links from the topology as shown in listing 3.6. Consider

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 56

the network example depicted on figure 3.2 and the example shown in PPL definition [SLX01].

Note that the network topology is also declared as an abstract element with two relations:

nodes and links. nodes is a relation that contains some elements of type node, and links is

another relation (node → node) map. This kind of relation is useful because it helps to define

network invariants in a straight way.

Listing 3.6: Definition of topology, nodes and links in Alloy.

abstract sig node{}

abstract sig topology{

nodes : some node,

links : node -> node

}

/ / d e c l a r a t i o n o f ins tances f o r nodes and l i n k s
one sig Alpha, Bravo, Charlie, Delta, Echo

extends node{}

one sig topologyOne extends topology {}

{

nodes = Alpha + Bravo + Charlie + Delta + Echo

links = Alpha->Bravo + Alpha->Delta + . . .

}

3.3.3 Path Model

Network paths are also modeled in Alloy by signatures and predicates. In short, a path

is a tuple of a set of nodes and links. Two of these nodes are the source and the target. In

addition, we specify path restrictions: each path is acyclic, loops are not allowed, the target

node must be reachable from the source, and all nodes in the path from the source must be

included in the set of nodes. The network model used on this thesis exploits that property to

represent the reachability on a graph; see § 3.1.2. Nevertheless, network policy languages can

describe parts of a path, even sets of paths.

This model follows the definition that utilizes the transitive closure shown in § 3.1.1.

Note that links represents a binary relation from node to node. Alloy denotes the transitive

closure with the hat symbol (ˆ) over the relation. Line 7 in listing 3.7 shows the abstraction

that forces the no–loops invariant, line 8 shows reachability for the source node, and line 9

guarantees that all nodes in the path are defined in the topology. A predicate is a reusable

constraint [Jac06], and evaluates the conditions over the instances and the parameter. The

following listing 3.7 shows the specification of the example. Note that paths and the predicate

that evaluates the validity of the path <Alpha,*,Charlie,*,Echo>.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 57

Listing 3.7: Signature and instance definitions of a path in Alloy.

1 abstract sig path {

2 nodes : some node,

3 links : node -> node,

4 source : one nodes,

5 target : one nodes

6 } {

7 no n : nodes | n in n.ˆ(links)

8 target in source.ˆ(links)

9 source.ˆ(links) in nodes

10 }

11

12 pred isValid [p : path, t : topology] {

13 p.nodes in t.nodes

14 p.links in t.links

15 }

We create an example path using a more complex expression like all routes that contain the

link between ALPHA and BRAVO, and node CHARLIE as target. It means a path represented

by {*,A,B,*,C} that is defined in listing 3.8.

Listing 3.8: Path example modeled in Alloy

/ / Path <Alpha , ∗ , Char l ie , ∗ , Echo>
pred isAlphaCharlieEcho (p : path) {

isValid[p, topologyOne]

p.source = Alpha

p.target = Echo

Charlie in p.nodes

Charlie in p.source.ˆ(p.links)

}

sig _AB_C_path extends path { } {

isValid[this, t1]

source = Alpha

target = Charlie

Alpha + Bravo + Charlie in nodes

Alpha -> Bravo in links

}

3.3.4 Flow Model

As policies are not only declared in terms of infrastructure —nodes or paths—, we model

a network connection as a data flow. A flow describes data and topology characteristics for a

communication session. For our design, the network flow consists of a path or set of paths,

traffic sequences and categories, and other constraints, like times (days or hours) in which the

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 58

flow is allowed, or grouping other characteristics such as users for whom the policy applies.

Note in listing 3.9 that a path is a feature of a flow, and other features, time or user alike,

should be defined as multiple domains on different sets —signatures.

Listing 3.9: Example of flow specification.

sig network_flow {

paths : some path,

traffic_seq : one traffic_seq,

traffic_category : one traffic_category

}

3.3.5 Policy Model

According to our abstraction § 3.1.5, a policy is the aggregation of a flow, conditions, and

an action, for a simple case: deny or permit. Policy rules are modeled as facts. A fact, in Alloy

language, is a constraint that must be hold on the entire system. Hence, facts describe the

mandatory set of rules to consider the model as valid. For our example, consider a network

policy that denies traffic through Charlie–node and carries video, as seen in listing 3.10. This

policy has three attributes: 1) the path that includes the node Charlie is defined as shown in

listing 3.10, 2) there is not a flow where Charlie is in the path, and 3) the traffic type defined

for this flow is video.

Listing 3.10: Policy instance with path, flow type, and action.

1 / / smith <∗,C,∗> { video } {deny}
2 fact policy1 {

3 no f: network_flow{

4 all p: f.paths {

5 is_C_path [p]

6 }

7 f.flow_type = traffic_type_video

8 }

9 }

The policy states that there is not a flow such that there is a path with the node Charlie

on it and has video as flow type. Note the lines 3 and 4 of example listing 3.10; they

state that there is not a network flow with paths that go through the node Charlie using a

predicate.

3.3.6 Policy conflict Model

The purpose of this approach is to identify network policy conflicts; the fact description

available in Alloy is used to model network policies. In addition to the fact definition, Alloy

uses multiple satisfiability solvers to identify the set of policies that invalidates the model.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 59

For this work, we use kodkoda as constraint solver and its Unsat–Core module which finds

an instance for the formula if the model is satisfiable —a possible implementation— or a

counterexample of unsatisfiability, in case a conflict exists, with the minimal unsatisfiable core

extractor [TCJ08].

Recall the policy that permits video traffic over a path which starts in Alpha, ends in

Echo, and goes through the node Charlie, see Neo policy in listing 3.4. The model for this

policy is depicted in listing 3.11 with the path 〈A − ∗ − C − ∗ − E〉, and contradicts with the

policy in listing 3.10. Compared with the previous policy shown in listing 3.10, a conflict

arises because one of the policies cannot be applied without contradicting the other. Here,

both policies apply over video traffic; the first policy denies traffic from any source to any

destination that goes through Charlie; the second one specifically allows video traffic over

Charlie. Hence, these two policies cannot be applied at the same time.

Listing 3.11: Policy example: a contradicting policy.

/ / neo <A,∗ ,C,∗ ,E> { video } { permi t }
fact policy2 {

some f: network_flow {

some p : f.paths {

isAlphaCharlieEcho [p]

}

f.flow_type = traffic_type_video

}

}

3.4 Path, Policy and Conflict Detection with Alloy

In summary, the model written in Alloy comprises: 1) network topology abstraction

with nodes and links; 2) detailed paths with complete or partial description of nodes, links,

source or destination; 3) high–level communication constraints represented as flows which

include paths, sequences, and categories for traffic; and 4) policies described as facts. A

policy uses previous definitions to limit the communication description. Model components

are summarized in table 3.2.

We verify topologies, paths, and flows, at low–level infrastructure because in the SDN

environment there are forwarding tables in datapaths that we check against the high–level

policy. At this point, we need to model paths and flows to identify inconsistencies at datapath

configuration analysis.

3.4.1 Checking topology invariants

This section shows topology invariants checked by our implementation in Alloy. We

present here a constructionist schema, from topological basis to more complex structures of

aKodkod is a constraint solver for first order logic. It allows set relations, transitive closure, bit–vector
arithmetic, and partial models. http://alloy.mit.edu/kodkod/

http://alloy.mit.edu/kodkod/

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 60

Table 3.2: Model components and Alloy instructions.

Model
component

Alloy definition

Node Node signature, abstract and specific.

Network
Topology

Abstract and specific signature that includes nodes, links and
invariants. Links are node relations, and no–loop and reachability
are invariants.

Path Abstract and specific signatures. It includes nodes and links; is
the physical support of communication. Invariants include source
and destination reachability, and nodes and links that are part of
the valid topology.

Flow Abstract and specific signatures. It includes sequences, categories,
and other communication attributes.

Policy A fact is used to describe a policy. It describes if the policy denies
(no f: flow such as ...) or allows (exists f: flow such as) a flow. Also
it can include path and flow attributes on its constraints.

policies. Then correctness and performance tests are evaluated with artificial topologies and

other tests.

Isolation

Recall that node degree dG (n) is the number |L(n) | of links at n, equivalent to the

neighbors of n. A node of degree 0 is called isolated. This invariant validates if there exits

an isolated node in the topology; see figure 3.3b. In Alloy, this verification ensures that

∀n ∈ N : |L(n) | > 0. The verification of non–isolation is shown in listing 3.12.

Listing 3.12: Alloy representation of isolated test.

fact NonIsolation{

all t:Topology, n: Node |

n in t.nodes implies some n.(t.links) + t.links.n

}

Self–loop

Self–loop is an edge that connects a node to itself, see figure 3.3c. The objective is to

guarantee that there are not links from a node to itself and holds the condition @n ∈ N :

(n, n) ∈ L. The verification of self–loop is shown in listing 3.13.

Listing 3.13: Alloy representation of self–loop test.

fact SelfLoop{

all t:Topology, n: Node | no n in n.(t.links)

}

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 61

(a) Topology base. (b) Isolation of a node. (c) Self–loop over a node.

Figure 3.3: Topology invariant examples over nodes.

Reachability

The reachability property consists in the existence of a path that links a node n to any

other node m within the graph G. Note that every node is reachable from any node in the

topology base, figure 3.3a. In short, ∀m ∈ N (G) exits a path P ⊆ G |P = (n, . . . ,m). The

verification of reachability uses the expression of reachability relation over a graph G and

the transitive closure R+ over L, defined in § 3.1.2. Hence, m is reachable from n if and only

if m ∈ links(n). Alloy implementation of this property is shown in listing 3.14. Note that

transitive closure is denoted by the hat (ˆ) operator.

Listing 3.14: Alloy representation of reachabilility test.

fact Reachability{

all t:Topology, n,m: Node |

n in t.nodes and m in t.nodes and m in n.ˆ(t.links)

}

Now we define invariants over paths instead of tests over nodes. Recall that paths are

defined by facts in the Alloy representation. Those facts may include start and target nodes,

intermediary nodes, and partial paths as those described in definition 3.3.

Cycle–Path

Recall that a path forms a cycle if given a path P = n0, . . . , nk−1 a new link nk → n0 is

added. C = P+nkn0 denotes the sequence of nodes of a cycle. We identify path cycles by using

the transitive closure. For this invariant, we want to identify if a node n is included into the set

of nodes reachable from n. A path with no cycles is said to be acyclic. In other words, we say

that a path P is acyclic if a node n ∈ P is not reachable from itself @n ∈ P |n ∈ links(n).

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 62

(a) Cycle over a path. (b) Waypoint over a path. (c) Avoidance over a path.

Figure 3.4: Examples of invariants for paths.

Listing 3.15: Alloy representation test of a path with cycles.

fact NoCycle{

all t:Topology, p: Path | let n in p.nodes

no n in n.ˆ(p.links)

}

/ / Path from node A to C.
one sig p1 extends Path{} {

source = a

target = c

nodes = a + c + b + d + x

links = b->d + b->x + x->d

}

The example in figure 3.4a shows a path from A to C, and listing 3.15 shows a path

definition with the links (B, D), (B, X) and (X, D). This path conflicts with the invariant

because there is no way to have a path that both: a) contains those links, and b) does not have

cycles. Also note that the set is defined by the addition operator (+) between elements.

Waypoint

A waypoint obliges a path to go through a specific node. Being w a node in the graph, the

path P complies with the waypoint if w ∈ N (P), belongs to the nodes in the path. Waypoint

can also force to include sets of nodes or links. Listing 3.16 shows the implementation of a

policy that coerces node B in the path. In the same way, figure 3.4b shows the path which

accomplishes the policy restriction.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 63

Listing 3.16: Alloy representation test of a path with a mandatory node.

/ / Po l i cy w i th a waypoint over B
fact WaypointB{

b in p1.nodes

}

one sig p1 extends Path{} {

source = a

target = c

}

Avoidance

As opposed to Waypoint, avoidance rejects topological elements from a path. Here the

model finder is important because it can find a path description that satisfies the restrictions.

Being n a node in the graph, the path P complies the avoidance if @n ∈ N (P). The model

finder will detect a path without the node in mention. Listing 3.17 shows the implementation

for the path from C to A without going through B.

Listing 3.17: Alloy representation test of a path with node avoidance.

/ / Po l i cy avoids ing over B i n the path from C to A
fact Avoidance{

no b in p1.nodes

}

one sig p1 extends Path{} {

source = c

target = a

}

3.4.2 Checking invariants and policies with Alloy

Testing Topologies

We test our implementation over well–known topologies to verify effectiveness and the

time to find instances. The test is composed of several network topologies. Some tests are done

with synthetic topologies, such as rings, other with well–known topologies such as AboveNet,

a topology from the Topology–Zoob; AN1755, a topology from the Rockefuel projectc; and

ta2, from the SNDlibd. Figure 3.5 shows the networks used for testing.

bhttp//:www.topology-zoo.org/dataset.html
chttp://research.cs.washington.edu/networking/rocketfuel/
dhttp://sndlib.zib.de/

http//:www.topology-zoo.org/dataset.html
http://research.cs.washington.edu/networking/rocketfuel/
http://sndlib.zib.de/

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 64

Invariant measures

Model–checker creates a CNF from the model and invokes the SAT solver to find instances,

see § 2.2.2. Generally, we can obtain some information from the solver, such as the number

of variables of the model and execution time. The number of variables gives information

about the model complexity. It denotes the number of variables after model transformation,

skolemizations, and implication reductions. Also, we obtain the time spent for the CNF and

the time to find an instance or counterexamples that contradict the model specification.

Figure 3.6 shows the time spent by the solver to create the CNF and finding an instance

that corroborates or contradicts the model. The non–isolation verification, figures 3.6a

and 3.6b, is built from the AN 1755 topology (figure 3.5c) and its counterexample after a

node isolation. The number of nodes as the independent axis is a variable from the same

topology.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 65

(a) AvobeNet with 23 nodes and 31 links.

(b) ta2 topology with 65 nodes and 128 links.

(c) Topology from AN 1755 with 300 nodes and 1097 links.

Figure 3.5: Topology examples used to test network invariants.

Reachability tests are reported in figures 3.6c and 3.6d. They are created from a Ring

topology to guarantee that we will always have a true validation, and after removing a node

the solver finds the counterexample. Blue line indicates the time to create a model for the

topology and the predicate to check invariants. Note that the time to create a mode is

consistent in all cases. It takes about a second to create a model which includes between 20 to

30 nodes, and 10 seconds to build a model with 50 nodes. Red line indicates the times spent

by the SATsolver to check the invariant. Note that the time of finding a counterexample

varies compared to the time of computing a valid case because of the way in which the assert

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 66

is written. For example, the time of finding a false invariant is lower that finding a true

invariant. This is because checking a false case is enough to declare a false invariant. On the

other hand, the solver must check every case to declare an invariant as true.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Solver

(a) Non–isolation invariant false.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105

106
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

1800

Solver

(b) Non–isolation invariant true.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Solver

(c) Reachability invariant false.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Solver

(d) Reachability invariant true.

Figure 3.6: Time for CNF creation and model solving for node invariants.

For path invariants, we present a similar graphic, see figure 3.7. Here the spent time to

create the model and the predicates for invariant checking is consistent in all cases and ranges

between 0.1s for 10 nodes and 10s for topologies with 70 nodes. However, the difference

between a model that checks the existence of a property compared to a model that guarantee

its non–existence is remarkable. For example, red lines in figures 3.7a and 3.7b show the time

of finding an instance and its invariant as true and false. Note that finding an instance with

true invariant takes more time than a false invariant. It means, checking a path that does not

have a cycle is more expensive than verifying if a path that has one, because the solution has

to evaluate all paths defined in the model.

Meanwhile, finding a counterexample is faster because the solution only needs a case

where the model is unsatisfiable to report the model is inconsistent with the policy. Note

that the validation time for the valid scenarios is greater that the validation time for false

scenarios, figures 3.7b, 3.7d and 3.7f, and are consistent for all experiments. However, the

complexity of creating a model remains the same, see the right axis, no matter if the model is

evaluated valid or invalid.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 67

Nodes
10 20 30 40 50 60 70 80

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

Solver

(a) NoCycle invariant false.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Solver

(b) NoCycle invariant true.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

Solver

(c) Avoidance invariant false.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Solver

(d) Avoidance invariant true.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

Solver

(e) Waypoint invariant false.

Nodes
10 20 30 40 50 60 70

T
im

e
(m

s.
)

101

102

103

104

105
CNF

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Solver

(f) Waypoint invariant true.

Figure 3.7: Time for CNF creation and model solving for path invariants.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 68

3.5 Summary and Conclusions

This chapter presents the implementation of a PPL verifier supported on Alloy that allows

the verification of paths and policies, and detects conflicts in policy rules. This verifier exploits

relational logic to explore the paths in the network, and reasons about constraints defined on

them in a simpler and more complete way than previous compilers. In detail, this chapter

shows how nodes, links, and network topology are described in relational logic. Then, the

description of policies using the fact definition as holds the model properties. Finally, this

chapter shows how the unsatisfiability solution is used to identify facts contradictions, and

hence conflicting and violation of policies.

Logic and relational language is used to describe topologies, paths, flows and policies in a

declarative way. Also, it helps to translate this model into multiple solvers of satisfiability,

especially Kodkod is used because it can calculate the minimal set of unsatisfiable arrange by

using the Unsat-Core solver. The solver can determine which signatures and facts produce the

unsatisfiability conflict, then our tool maps them and returns the specification inconsistencies.

The presented approach is able to detect a more diverse and wider number of policy conflicts

compared with previous PPL compilers [Guv03; Sto00].

The experimental PPL verifier is implemented and its details can be found in [MLCD14].

It takes a PPL specification, produces an Alloy model and uses the solvers to detect conflicts.

The compiler is evaluated using several example networks, including some used in seminal

work about PPL [Guv03; Sto00]. For instance, that work included an example set of policies

on a network of 10 nodes and another set on a network of 80 nodes. These sets are used to

compare the performance and completeness of the previous compilers [Guv03] and are part of

our evaluation.

Advantages of using a logical–relational language

This chapter shows the creation of a PPL verifier based on Alloy to transform these rules

into operational parameters for each entity in the corresponding network device, and overcome

the contradiction and security conflicts.

The existing compilers use algorithms that first expand all the path definitions in sets of

paths, then detect the segments where the paths overlap, and finally determine if there are

conflicting conditions in the common segments [Guv03]. In contrast, this approach translates

PPL into Alloy models. This translation offers some advantages over the previous work:

• Extended support for wildcards in paths. PPL is a language that uses wildcards (∗) to

denote unknown sets. In other approaches, those wildcards helped to describe complex

paths, multiplicity of nodes, or unbound restrictions. It allowed paths specifications

such as {A,*,E}, but not complex path declarations like {*,B,C,*,D,*} [Guv03].

The approach used on this chapter is able to interpret more complex paths. For this

reason, this approach can reason about a bigger set of policies.

• Extended support for user and group policies. Today’s compiler supports conditions over

network user profiles but it does not consider the relations among groups and users.

CHAPTER 3. TOPOLOGY AND PATH VERIFICATION 69

Existing compilers find a conflict if some rules permit and other deny the traffic from

the same user, but not if a rule permits the traffic from a user and another rule denies

the traffic of the user’s group [Guv03]. Our approach overcomes this issue including

relationships between groups and users. Other approaches for role–based access control

[PSS11] were the motivation to include it into our model.

• Extended support for action conflicts. Not only deny and allow are actions for network

policies. Network managers could create alarms which will be triggered after a condition.

Since actions set is defined into our model, other software actions can be included.

Moreover, previous compiler cannot find policy conflicts on more than two policies.

Finding the minimal unsatisfiability core, it is possible to identify if there are conflicts

that involve more than two policies.

The existing PPL compilers have limited support to detect when two rules try to set

different values to attributes such as the priority or the bandwidth assigned to a specific type

of traffic [Guv03]. This issue is overcome by adding additional constraints that check if two

rules do not include conflicting assignations on attributes.

Besides denying or permitting a type of traffic through a path, other policy languages

such as Flow-Based Management Language (FML) [Hin+09b] support policies to force that

specific types of traffic should go through or avoid a network node. This kind of policies are

included in our model and their translation to Alloy abstraction is done through aggregation

of constraints.

This chapter establishes the foundations of verification of topologies, paths and policies

based on paths. The next chapter elevates the abstraction level to security policies based

on firewall rules. Next chapter presents the model and verifier of firewall policies in a SDN

environment.

Chapter 4

Network Robustness: Targeted

Attacks on Interdependent

Networks

Things break and complex things break in

complex ways.

Steve Bellovin

This thesis is focused on providing a novel mechanism to enhance network availability.

Chapter one presents lightweight formal methods to find network inconsistencies between the

specification and the topology, and how the inconsistency may produce erratic functionality.

This chapter analyses network availability from a complementary point of view: the topology

robustness. We model the control and data planes as an interdependent network, and

demonstrate how failures in the data or control plane are propagated in the interdependent

network. It also presents an interrelating work oriented to increasing the robustness of

interdependent networks and its application to SDN.

This representation includes the set of links which connect control plane with data plane,

for the case of SDN networks [SH15]. We describe network attacks to model a pattern of

failures. In this chapter, we focus on two types of multiple attacks: sequential and recalculated,

and show the propagation scheme and its impact. We model the set of interconnection links,

that connect the interdependent networks, following three patterns: high–high, high–low, and

random; according to the betweenness centrality in the control plane (network A) and the

data plane (network B). Later, we expose those three models to sequential targeted attacks

and the measure the robustness of the network with the ATTR metric. Results show the

interconnection pattern that is more and least affected to this type of attacks, and shows the

critical spots that should be addressed in case of having targeted failures.

70

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 71

Cause
Natural Disaster
Human-made

Creation phase
Development
Operational

Intention Deliberate
Non-deliberate

Frequency Permanent
Transient

Severity Minor
Catastrophic

Multiplicity Single
Multiple

Target
Element selection

Random

Propagation
Static
Dynamic

Scope
System Partitioning
Path failure

Epidemic behaviour
Cascading

Dependency Independent
Dependient

Interdependent network

Figure 4.1: Taxonomy of failures adapted from [Seg11].

4.1 Network failures

A failure is an event that deviates the network performance from the normal operation, it

is the transition from a correct to an incorrect state. The period of incorrect (failed) state is

called service outage. The transition between incorrect to correct state is a service restoration.

A fault can be internal or external, and cause errors if there is not a mechanism for detecting

and isolating the fault, a fault tolerance mechanism. An error is a system state that can

conduce to a failure; it is the manifestation of a failure. Then, after a failure occurs, network

can start a recovery process and later the restoration. Robustness is the ability to continue

normal operation even under attacks or failures [EK13].

Failures in a network can be single or multiple. Single failures are mainly related to

network components e.g. cable cuts, equipment breakout, which can disrupt their normal

operation. There are several methods and techniques for dealing with single failures so that

service continuity is not compromised or quickly restored. On the other hand, networks can

suffer due to multiple failures, disruption of multiple network elements simultaneously, which

occur due to a wide variety of causes. Failures could be physical or logical. Physical failures

are related to edge or vertex failures, principally hardware, in contrast, software failures

affect the node logic (behavior) e.g. routing algorithms or controllers in SDN environment.

Software failures are more complex and there are many variables that can lead to errors and

malfunction.

Failures are classified based on the characteristic that affects the normal operation.

Figure 4.1 presents a taxonomy of failures, according to intention, non–deliberate failures are

accidents, such as misconfiguration or operational mistakes; and deliberate failures are attacks.

According to source, failures can be natural disasters, human–caused or produced by a system,

module or piece of software which can trigger security or availability issues. For example,

Wool et. al studied firewall configuration errors [Woo04], and [LSK09] shows how human

failures could affect the information privacy. Moreover, The Yankee Group found that 62% of

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 72

network downtime is caused by human error and 80% of IT budget is spent in maintenance

tasks [Ker04]. Also, there are failures due to unusual but legitimate operation. Overload

traffic is a non–malicious request for a service higher than the normal operation can supply.

This exceptional traffic is commonly caused by a flash crowd when the service experiments

huge volume of demand. Other kind of failures are those present for interdependent networks;

they experience a cascading effect from the interaction with other networks. Those failures

occur because of intense network interconnectivity. The taxonomy of failures presented in

figure 4.1 will be used to classify network vulnerabilities and their correspondent failure.

4.1.1 Multiple Failure Models

Network infrastructure is susceptible to multiple failures, and over a communication path

they cause significant service disruption. Consequently, multiple failures can be modeled

as patterns and can be grouped according to their characteristics. In Data Centers for

example, 41% of link failures between two and four devices, but 10% involve more than four

devices [LHKA12]. Reliability and security constraints denote challenges for management, and

business productivity depends on network infrastructure working properly. However, networks

suffer disruptions due to planned maintenance, failures, or misconfigurations. Multiple failure

propagation schemes, most of the times, are complex and difficult to address, continue being

an active research field [Cal+10]. Better understanding of failure propagation is the way to

discover how many phenomena occur in the network.

Failure propagation in cascade is also a well–studied topic, and it is widely used in

communication and transport networks. Those models have physical descriptions, and for

complex networks the interaction between individuals is also modeled [CLM04]. Additionally,

the model includes the degradation process after the failures, and describes how an action can

affect other nodes in the network.

Like immune and biological systems, epidemic failure behavior is a recent approach to

modeling multiple failures in networks. Recently, epidemic models were developed to explain

how those failures follow susceptible-infected (SI) and susceptible-infected-disabled (SID)

models [Cal+10].

However, these studies were focused on individual networks only. They do not consider

the interaction with other networks and how a functional system may alter the other. Modern

networks depend in depth from each other, and those vulnerabilities were exposed and modeled,

as information cascade and cascading failure [SQZ14].

One of the model for multiple failure is the sequential attack. This model of failure

consists of a sequence of node disconnection. Node disconnection is calculated once a priori,

or recomputed after each disconnection. Sterbenz et al. used betweenness centrality (bc)

for a planned network attack. They calculate the bc value for all nodes, order nodes by its

value and remove nodes in that order [Ste+11a]. They showed that removing a few nodes

reduced the packet–delivery ratio to less than 60%, thus the damage is greater than random

attacks, link–centrality or node degree. Meanwhile Sydney et al. recalculate the betweenness

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 73

centrality after each node is removed [SSYS10]. Schneider [Sch+11] proposed an onion–like

structure to increase the robustness and mitigate malicious attacks based on recalculation of

node degree after a removal. Disconnecting nodes based on Miuz measure generated more

damage than other centrality measures [BRSBJ15]. A variation of sequential attack consists

in recalculating the centrality measure of the network. Then, the attack eliminates the node

with the highest centrality measure. The remaining nodes are sorted again as a new attack

sequence, and it restarts the attack again.

4.1.2 Robustness

Robustness measures the impact of a vertex or edge removal in the integrity of the

network[EK13]. In other words, it is the network’s ability to continue performing well after

failures or attacks. Robustness can be measured as the fraction of nodes removed before a

complete collapse [HKYH02].

Centrality is a measure of importance for a vertex or edge in a network. Centrality

measures can be adapted to measure robustness because if a node (or edge) is important

for the network, removing it will affect the network integrity and functioning. One of the

robustness metrics is the degree centrality (dc), which ranks the nodes according to their

degree. A node with higher degree is more influential and removing this node may considerably

affect the network robustness. Closeness centrality (cc) ranks the average distance from a

node to any other node in the network. Meanwhile betweenness centrality (bv) measures the

importance of a node in the set of shortest paths of the network. It counts the number of

shortest paths that go through a specific node. There is also the edge betweenness (be) with

edges as parameter, and the average of both values.

In physics, network robustness is related to percolation and the study of the largest

connected component P∞. If P∞ ∼ 0 means the network is ruined, and if P∞ ∼ 1 means the

network is completely functional. P∞(p) denotes the giant connected component after the

fraction 1 − p of nodes is eliminated from the network. The value pc denotes the point after

which the graph disconnects, it is the phase transition. The Schneider robustness metric

considers the size of the biggest component after a node removal, and proposed a model for

designing networks to improve robustness according with this measure [Sch+11]. Miuz index

shows the impact of disconnecting a node and comparing the sizes of remaining connected

components [BRSBJ15].

The average two–terminal reliability (ATTR or A2TR) represents the probability of

connectivity between two randomly chosen nodes. It calculates the number of nodes per

network component over the number of nodes of the complete graph. If the network is

connected, then the ATT R = 1 because it divides the number of node pairs for each component

over the total number of pairs in the network.

Average node degree (〈k〉) denotes how well connected a network is. It is said that a

network with high 〈k〉 has greater strength. The Assortativity coefficient (r) is the correlation

between the degree of connected nodes. It measures the tendency of a node to connect other

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 74

nodes with similar degree.

Starting from a connected network, vertex connectivity (κv) is the minimal number of

nodes to be removed in order to disconnect a network. Likewise edge connectivity (κe) is the

minimal number of links to disconnect the network. Other metrics are based on distances

such as the average shortest path length (〈l〉), and the network diameter (d̄) that is the length

of the largest shortest path. Efficiency (E) is a metric of dispersion that includes the distance

between two nodes di j . The number of disjoint paths between two nodes measures the amount

of spare paths for one–to–one traffic. The clustering coefficient (C) measures the number of

triangles over the portion of vertices. In other words, it measures if two nodes shared the same

neighbor. High cluster coefficient means high robustness because there are more alternative

paths between two nodes.

Some other metrics are based on operations over their matrix representation or spectrum.

For example, operating the adjacency matrix, it is possible to obtain the largest eigenvalue

(λn) to estimate its robustness. This measure is related with the vertex centrality. Graphs

with small diameter and high λn have multiple paths between two vertices. The Symmetry

Ratio denotes the rate of eigenvalues of the adjacency matrix over the network diameter; the

lower the symmetry the more robust the network is. Another measurement that arises from

matrix operations is the Laplacian matrix L = ∆− A, where ∆ is the degree matrix and A is the

adjacency matrix. The algebraic connectivity (λ2) is the second smallest Laplacian eigenvalue

and quantifies how difficult it is for a network to break into parts after node elimination.

Also, natural connectivity (λ̄) uses the average of adjacency eigenvalues to estimate the

redundancy of alternative paths between two nodes. Finally, the number of spanning trees (ξ)

is also another measurement of robustness which can be written as a function of Laplacian

eigenvalues.

Other metric of robustness are composed of multiple network measurements and consider

topology features. The R–value is a model that includes a vector of multiple metrics and a

service vector of components (weights) which emphasizes a metric over the other. R–value is

typically normalized between 0 (no robustness at all) and 1 (perfect robustness). Elasticity is

a robustness measure as the area under the curve of throughput vs percentage of remaining

nodes in the network under attack [SSSK08]. Viral conductance (VC) measures the network

robustness as the ability of a network to spread a virus under a specific epidemic model

[YKS11; Mie12].

However, these metrics are focused on measuring the robustness in single networks. They

do not consider how the network is affected when it interacts with another network.

4.1.3 Survivability and Resiliency for Communication Networks

Survivability denotes the capability of a system to fulfill its mission in a timely manner,

in the presence of threads such as attacks or natural disasters. Ideally, the network aims to

maintain an operational state. To keep the functional state, a component such as hardware

or software monitors network performance. The monitor tests network health and produces

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 75

alarms when the performance is under an acceptable level. After a failure that degrades the

service, the system triggers recovery procedures. The recovery enables the system to support

critical or gradated services as the situation allows them.

The process of failure recovery comes from self-healing systems, which are autonomous

systems able to adapt themselves from failures and errors. The recovery process has two phases:

fault management, and reversion. Fault management comprises detection, localization, and

notification of a failure; and the reversion phase is in charge of recovery and restoration. For a

success process, both protections and restoration actions are needed. Protection actions take

place before a failure occurs, and restoration is the process launched once the failure has been

detected to recover a previous functional state. Resilience is the ability of a communications

network to provide and maintain an acceptable level of service in presence of faults and

challenges to normal operation [Ste+11b].

Failure detection is a daemon process that monitors the network for anomalies, these can

be degradation of a service, or even interruption. After that, the system should be able to

identify the failure and its localization. Subsequently, it notifies the information necessary to

begin the recovery procedure. After knowing the details of the problem, the recovery process

is initialized. It provides an alternative service associated to a failure scenario. Finally, the

process of normalization or reversion restores the functional state.

Fault tolerance is the ability of a system to tolerate faults such that service will not fail.

For that reason, it is considered a subset of survivability processes. Fault tolerance relies on

redundancy to compensate for random uncorrelated failure of components. Although it is not

sufficient to provide coverage in the face of correlated failures.

Disruption Tolerance is the ability to tolerate disruptions in connectivity, mobility, delay

and tolerance of energy. Due to changes in the communication environment, it is difficult to

maintain stable connections between users. The study of dynamic network behavior started

with MANETs with dynamic routing mechanisms for nomadic members. Another interesting

field is Delay-tolerance networks like satellite communications. A recently, energy-constrained

networks, e.g. wireless sensor networks. Nowadays the techniques for disruption tolerance in

networks have reaches other field, including VANET vehicular networks.

Traffic Tolerance is the ability of handling unpredictable demands of traffic without

blocking or degrading significantly the service, even when there is congestion. The main topic

in resilience, due to its variability and demand of resources, is traffic. Also, traffic tolerance

includes isolating the effects from high traffic demand to other links and nodes. The traffic

can be generated from legitimate users or might be consequence of malicious attack such as

Distributed Deny of Service attack (DDoS). DDoS detection is a needed characteristic of the

system, since the network must differentiate DDoS from legal traffic. However, sophisticated

DDoS are indistinguishable from normal traffic.

Dependability quantifies the reliance on a service. It is composed by two aspects:

availability and reliability. The basic measures of dependability are: The Mean Time To

Failure (MTTF), the expected value from the failure density function, and the Mean Time To

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 76

Repair (MTTR), the expected value of the repair density function. The mean time between

failure is calculated as: MT BF = MTTF + MTT R. Availability is the probability that a

system will operate when it is required, and is calculated as A = MTTF/MT BF. Reliability

is the probability that a system remains operating for a period of time, and is calculated as

R(t) = P[noFailure[0, t]] = 1 −Q(t) where Q(t) is the failure cumulative distribution function.

Availability and reliability depend on application requirements. For transactional systems

it is important to have a low MTTR. Whereas for session and connection oriented systems,

where MTTF is important to have high MTTF values.

Protection Mechanisms

When we talk about protection, we refer to redundant resources used once a failure is

detected. There are spare resources used depending on the failed section: vertex, edge, path

or tree. Redundant resources are precalculated backup paths to switch to once a failure occurs

[Wu95]. Protection for single failures is also a well–studied problem; multiple failures were

also studied but their complexity arose; because of this, new approaches use more intelligent

techniques to deal with multiple failures in graphs.

Disjoint path is a common approach from graph theory that consists in finding alternative

paths which do not share nodes or links. The problem is to find a viable set of disjoint paths

for a graph with low complexity for large networks [Tor92]. Path protection is a disjoint path

used to protect a working path, a path is being used by the service. There are four schemes

using dedicated paths to protect working paths: 1+1, 1:1, 1:N, M:N [HH07]. First, in the 1+ 1

scenario there is a dedicated backup path, redundant, to protect a working path. In other

words, there are two paths, which can be disjoint, to carry data. 1 + 1 protection mechanism

sends data traffic in both, working and backup, paths. Once a failure is detected on a path,

the system continues using the available path. Similarly to the previous scenario, the 1 : 1

protection mechanism has a dedicated backup path, but just one is used as working path. The

backup path starts its operation and maintains the service when a failure is detected. The

1 : N scenario has a dedicate backup path to protect N working paths. If any of the working

paths fail, the data is switched to backup path. Then, the remaining N − 1 paths are left

without protection. Finally, the M : N scheme is similar to previous the previous one, there

are M dedicated backups, where 1 ≤ M ≤ N , to protect up to N working paths. Shared backup

path protection is a mechanism that protects several working paths reserving a shared backup

link. This mechanism is similar to the 1 : N protection strategy. However, there are several

approaches in literature that create protection mechanisms for multiple and simultaneous

failures [JOK03]. p-cycles is another mechanism that uses pre–configured protection cycles, a

path that forms a cycle [Sch03]. First, nodes or links to be protected are selected, then a set

of cycles is calculated to meet service restrictions, and the alternative path configuration is set.

Once a failure is detected, the pre–configured path is applied and the configuration changes.

This mechanism is principally applied to optical networking. Multiple algorithms that use

p-cycle have been developed and today diverse mechanisms are based on it [KAJ09].

Failures in multicast networks is a regular problem, and the solution is finding redundant

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 77

spanning trees to the multicast transmission [LCCM10]. A resource allocation mechanism

that protects the multicast transmission against link failures is called shared backup path

protection (SBPP). This mechanism is a set of multiple disjoint paths which can deal with

single or multiple failures [JOK03; Pat+02] For example, autonomic computing implements

multicast communication and has a set of shared resources, such as routers, in case of failures

[PSB11].

Nevertheless, natural disasters and terrorist attacks increase the possibility that, when a

networks failure occurs, multiple links that belong to the same shared risk link group (SRLG)

fail simultaneously . Shared Risk Link Groups (SRLGs) are sets of links that share common

resources. Multiple schemes have been developed to plan and deploy networks to avoid that

situation and recover from those failures [RSM03].

Resiliency in SDN

Recall that once a datapath receives a packet, confirms if its header matches an entry of

the FBI (Forwarding Information Base) and sends the packet to the indicated port; or send it

to the controller if the header does not match any entry. If a failure occurs, the SDN datapath

is recovered and installs fresh entries on its FBI. The time in which a FBI entry is renewed

depends on the timer expiration in the datapath or the controller logic. Failure recovery in

SDN is specific logic at the controller that install fresh forwarding rules in the datapath after a

failure. Those applications are in charge of responding to failures, and other disruption events

should have restoration and recovery logic. The important challenge is to identify if a failure

occurs and take the proper process to refresh the path and avoid the failure. Controllers

implement mechanisms to recover from a failure, for example, NOX implements L2–Learning

which has a map of MAC addresses and ports [Gud+08]. L2–Learning implements the aging

timer. When the datapath receives a packet, learns the source address and timestamps the

FBI entry. If there are not more packets from that source, the datapath deletes the entry once

its aging timer expires. Each controller has a mechanism to discover the topology, establish

paths and install entries along the datapaths. Failure detection depends on the process to

discover the topology.

When a link between the controller and a datapath fails, the following procedure

is performed: 1) The datapath detects the failure. 2) datapath notifies the controller,

3) controller program computes the repair actions, 4) sends (pushes) an update datapaths,

and 5) the datapath updates forwarding tables. As opposed to traditional network, where

notifications flooded the net, SDN transmits failure notifications straightforward to the

controller. Moreover, controllers are more powerful to calculate backup configuration and

can perform more calculations in contrast to small CPUs in the switches. However, this

assumption is not true when the failure is between the device and its controller. In this

case, the controller network needs to be re-established before the data network. Controller

uses an IGP (Internal Gateway Protocol) that converges first before switches communicate.

Therefore, the controller needs an out–of–band channel, hence, failure recovery process needs

to pre–calculate backups paths.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 78

The SPARCa project stated that network should recover from a failure within 50ms. Fast

recovery is possible if a new entry is installed once a failure is detected. A solution is to

detect the change in a link and identify all paths that use that link. Then recalculate a path

for the affected nodes, delete the entries that use the affected link and reinstall fresh routes

[Sha+11].

AFRO (Automatic Failure Recovery for OpenFlow) is a system that automatizes failure

recovery for OF [Ku13]. After a failure is detected, it monitors and records the controller state

before a failure occurs. Then a new instance of the controller is created without the network

element that notices the failure. Moreover, it replies the inputs before the failure, installs

forwarding rules to avoid the failed nodes, and its new state is consistent with the pre–failure.

After a network topology change, the network forwarding state is restarted. Later the network

state is recovered as the controller installs forwarding rules according to its control logic,

initial configuration, and external events.

The main objective is to separate the applications that run on the controller from the

failure recovery application; instead a runtime system recovers the network from failures.

Thus, reduces the inclusion of new bugs.

However, the centralized controller is the major exposure in performance and reliability.

The controller can be replicated or divide the network on multiple domains to segment it and

reduce the risk. Controller replication also allows load balancing to handle multiple datapaths

and end–to–end flows compromising the performance. Nonetheless, the replication adds more

complexity because both have to maintain a strict consistency after topology updates and

failures. Following this, datapath must be able to report the link status to the controller set

to maintain the actual state of the network.

4.2 Targeted Attacks on Interdependent Networks

Real world networks are interdependent; i.e. they interact with each other. For example,

the power grid network and Internet are coupled together. Two networks are said to be

interdependent if the behavior or reliability of one depends on the state of the other. This

system is composed by multiple networks, for example two networks A and B. When nodes

in one network fail, they produce failures in nodes from the other network [PBH10]. Also

Buldyrev showed that two networks A and B are coupled, and failures in nodes from A may

generate a process of cascade failures in nodes from network B [Bul+10]. In contrast to single

networks, interdependent networks have unique properties such as the first–order percolation

transition caused by cascading failures.

4.2.1 Interdependent Network Model

Interdependent models are used to represent multilayer networks, such as overlay networks.

Random graphs are a common tool to depict a backbone network because they properly

aSplit Architecture for Carrier–grade networks is a FP7 project that aims to implement a new split in the
architecture of Internet. http://www.fp7-sparc.eu/

http://www.fp7-sparc.eu/

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 79

describe its topological properties. We use the interdependent network model proposed by

Buldyrev [Bul+10] for describing our targeted attack model.

An interdependent network comprises two networks (or layers) A and B. Each is an

undirected network with its nodes and links A = (NA, LA) and B = (NB, LB). Nodes in

A and B following a pattern of connection with a degree distribution PA(k) and PB (k).

For example, they are randomly connected. We assume the number of nodes is the same

|NA | = |NB |. The interdependent network is the result of connecting those layers with a set

of interdependency links or inter–links L I which connects both networks (layers). Then the

complete graph is the set of nodes and links of both graphs plus the interdependency links

G = (NA ∪ NB, LA ∪ LB ∪ L I).

A

B

Inter-link

Intra-link

Figure 4.2: Illustration of interdependent network model. Squares represent nodes in network
A, circles represent nodes in the second network B. Continuous lines represent intra–links
(connectivity links), and doted lines denote inter–links (dependency links).

We may assume the interdependency links L I are one–to–one and bidirectional L I = {li :

(nAi, nBi)} thus the set has |L I | = |NA | = |NB | interdependent links.

Let AA and AB the adjacency matrices of A and B respectively. Then, the adjacency

matrix for the complete graph G is


AA 0

0 AB


(4.1)

Where 2|NA | is the dimension. After interactions are introduced, the interconnection matrix

AI represents the inter–links (nAi, nBi) between the networks A and B. The interdependency

matrix is included into the original adjacency matrix and the result is 4.2.



AA AI

AᵀI AB


(4.2)

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 80

Since inter–links are bidirectional, the connection from A to B is denoted by AI , while

connections from B to A are denoted by AᵀI .

4.2.2 Targeted attacks

Before a targeted attack is accomplished, graph’s elements (nodes or links) are ranked in

accordance with a centrality measure (e.g. degree, betweenness, closeness, eigenvector) and

labeled. cS1 ≥ cS2 ≥ · · · ≥ cSN , where cSi is the centrality value of node Si . The same ranking

process is performed with the graph G2, after the rank we have the list cT1 ≥ cT2 ≥ · · · ≥ cTN ,

where cTi is the centrality value of node Ti . Then graph elements are removed in accord with

the ordered list, from high to low centrality value with the purpose of maximizing the impact

of the attack in the network. Figure 4.3 shows a targeted attack in interdependent networks.

Each node in A depends on one node in B. Interdependent links are denoted as dashed lines.

One node in A is attacked by its centrality measure. Then the attack is propagated to its

correspondent node in B. Finally, the node in B suffers the attack and propagates it.

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

×

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

a b c

Figure 4.3: Targeted attack in interdependent networks.

For example, in backbone telecommunication networks, the most vulnerable routers can

be identified by the number of shortest paths that pass through a given router, or by the

number of physical links from one router to others. Moreover, other real world measures, such

as the number of users potentially affected and socio–political and economic considerations

can also be used to rank the nodes to be removed in telecommunication networks [MMCM12].

So, in order to identify the most relevant nodes, centrality metrics are considered to select the

nodes to be eliminated in the targeted attack.

It is possible to determine the node more sensitive where an attack may produce greatest

damage [SSYS10]. The network structure produces an effect of targeting nodes, after its

removal, and measures other metrics with potential importance beyond node degree or

betweenness [IKSW13]. However, when one network interacts with another, the critical

parts of a network may change due to failure spreading between them. Thus, identifying the

robustness change when two independent networks interact worth it, and it is shown in the

next section. Moreover, the model for interdependent networks is adopted from the ER model,

and is called ER–ER model.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 81

Interdependent Link Pattern and Matrix

In this section, we analyze the interdependent links, their representation in a matrix and

their pattern that connects the network A with B. Recently [CD15] showed that in order to

analyze the impact of a targeted attacks in the robustness of A when an attack occurs in B,

and vice versa, three link patterns are considered for the interdependency matrix D:

High centrality The interdependency matrix is based on high centrality, denoted by Dh ,

if the link dependency links is described by Si ↔ Ti . It means, the node with the highest

centrality measure in the graph A is linked to the node with the highest centrality measure in

the graph B. Due to the number of nodes is the same in both graphs, there is a one–to–one

correspondence between nodes of A and B.

Low centrality The interdependency matrix is based on low centrality, denoted by Dl , if

the link dependency is described by Si ↔ TN−i . It means, the node with the highest centrality

measure in the graph A is linked to the node with the lowest centrality measure in the graph

B, and vice versa. Due to the number of nodes is the same in both graphs, there is also a

one–to–one correspondence between nodes of A and B.

Random The interdependency matrix is based on random interdependency, denoted by Dr ,

if the link dependency Si ↔ Tj as a randomly one–to–one correspondence between nodes in A

and B. It means, nodes are connected randomly without considering their centrality measure.

Thus, a random pattern model is generated for the interdependency matrix.

Cascading failures in Interconnected networks

Cascading failures are the result of removing a fraction 1− p of nodes in a network. Under

the supposition of having an interconnection link for each node in A with only a node in

B. After removing a fraction 1 − p of nodes in network A, the edges associated to them are

also eliminated, and affects the dependent nodes in the network B. In the meanwhile, nodes

affected in B are eliminated and propagates the failure to nodes and links in the network B.

Figure 4.4 shows an example. Node A1 fails, by an attack or breakdown, and its attached

links in the network, with A2 and A3, are disabled. Moreover, the failure spreads the damage

to the node B1 in the interdependent network B. Node B1 fails afterwards and its links with

B2 and B3 are also affected.

4.2.3 Targeted Attacks and Robustness in Interdependent Networks

This section presents an analysis of the impact of targeted attacks in interdependent

networks. We model a targeted attack as a series of attacks over the most important nodes

according to a centrality metric. This work is different from the previous analysis of cascading

failures in interdependent networks caused by random failures [Bul+10]. Huang et al. studied

the effect of targeted attacks based on node degree in interdependent networks and they

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 82

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

× A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

a b c

Figure 4.4: Cascading failures in interdependent networks. a) A1 node is attacked or
removed. b) failure is propagated to its corresponding node B1. c) network B suffers a
cascading failure.

compare the robustness for interdependent and single networks [Hua+11]. Those important

nodes are identified using the centrality measure, betweenness in this case, and are removed

following the sequence [Ken+14].

Our interdependency model describes an attack over one node in A and its respective

damage only on the node that is directly connected in B, without spreading to others located

in B. We use ER random networks because they have shown high vulnerability to series of

targeted attacks based on nodal betweenness centrality bc [SSYS10] and [IKSW13].

The purpose of this work is twofold, first to analyze the impact of interconnecting two

ER telecommunication networks, which are highly vulnerable to targeted attacks based on

nodal betweenness centrality (bc); and also to minimize the impact of this kind of attack in

the robustness of this ER-ER interdependent network by selecting the best interdependency

matrix.

4.2.4 Sequential targeted attacks in Interdependent Networks

A sequential targeted attack can be generated using centrality measures as those shown in

§ 4.1.2. There are two modes of sequential targeted attacks, the first one consists in generating

a priori ordered list based on a centrality measure and systematically eliminating nodes

following the list. The second one consists in recalculating the centrality measures after a node

(or link) is eliminated and then restarting the attack. Also, attacks can be performed following

the ordered list or by assignation of probabilities for being removed. Huang et al. developed a

mathematical framework for robustness of interdependent networks. This framework assigns

probability of removing a node based on its degree. They also analyzed multiples cases where

the protection (they have less probability to be attacked) varies from low to high degree

nodes [Hua+11]. Others like Du et al. calculated the robustness for interdependent networks

by connectivity and dependency links under targeted attacks. They used three measures to

simulate sequential targeted attacks: internal degree only, external degree only, and both

internal and external degree [DDTL16].

Consider a sequential attack based on higher degree in figure 4.5. There are interdependent

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 83

two interdependent networks A and B with their respective nodes and links. Interdependent

links are the doted lines, and there is an interdependent connection per node. a) the node

with the highest centrality measure is selected for being attacked, in this case the node A3.

b) all links connected to the attacked node are removed, and the attack is propagated to its

corresponding node B3. c) node in B suffers the attack and propagates the damage. Links

related to B3 are also eliminated. d) next node is selected to be attacked according to the

highest measure, in this case A4. e) attack is propagated to its corresponding node B4. f) B4

suffers the attack and propagates the damage.

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

f
A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

e
A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

×

d

A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

×

a
A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

b
A1

A2

A4

A6

A3

A5

B1

B2

B4

B6

B3

B5

c

Figure 4.5: Sequential target attack in interdependent networks.

Consider nodes for each network NA = {nA1, . . . , nAk }, NB = {nB1, . . . , nBk }, their

corresponding set of links LA and LB, and the interdependency link set L I = {(nAi, nBi) |1 ≤

i ≤ k}. The complete graph G0 at initial point is in equation (4.3).

G0 = (NA ∪ NB, LA ∪ LB ∪ L I) (4.3)

Then, nodes from A are sorted and form the sequence of vulnerable nodes V :=

(v1, . . . , vk) |vi ∈ NA, δ(v1) ≥ δ(v2) ≥ . . . ≥ δ(vk) where the ordering function is the centrality

value δ(vi), in this case the highest degree. The attack is done by removing the node with highest

vulnerability (centrality value) vi along with its links. Fail propagation is the induced damage

on the interdependent nodes of vi in network B. The set inter(vi) = {x : x ∈ B, (vi, x) ∈ L I }

denotes the nodes in the network B which have interdependent links with the node vi . Recall

that link set of a node n in the network B is LB (n) according to § 3.1.1. Now the resulting

graph G1 after the first attack is described in equation 4.4. Nodes of the resulting graph are

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 84

in expression 4.4b, and links in 4.4c.

G1 = (N1, L1) (4.4a)

N1 = NA \ vi ∪ NB \ inter(vi) (4.4b)

L1 = LA \ LA(vi) ∪ LB \ LB (inter(vi)) ∪ L I \ (vi, inter(vi)) (4.4c)

This process of recalculating centrality measures and removing the highest ranked element

is repeated until the desired fraction of elements has been removed.

In summary, sequential targeted attacks are used to model some failure scenarios in

telecommunication networks. For example, the most vulnerable routers of a backbone network

can be identified to protect the network’s function. If a router fails, its functions can be

distributed to any one router in the network. Then, the failure of one router will affect the

importance of the remaining ones. So, the sequential targeted attack is appropriate to model

network vulnerability.

4.3 Targeted Attacks on ER networks: Case Study and

Results

We model the interdependent networks as two Erdös–Rényi random graphs (ER), because

it is the most common model for the physical topologies from the AS perspective, and allows

us to compare with a standard model. ER random model describes the existence of an edge

between any pair of nodes that is uniformly distributed at random. For a graph G = (V, E)

with n vertices and m edges, the maximum number of possible edges is n(n − 1)/2. Then, the

probability of having an edge if it is randomly distributed is p = 2m/(n(n − 1)) [Lew09].

4.3.1 Models of Random Network

In the ER model a graph is G(n, p) with n nodes and probability p of connection between

any two nodes. This is a discrete case where the probability of choosing d vertices from n is(
n
d

)
, and the probability that those vertices have edges is pd ; then

(
n
d

)
pd is the probability

that a vertex has edges to d other nodes. However, that vertex must not have edges to the

rest n − d nodes, it occurs with probability (1 − p)n−d . Therefore, the probability of a vertex

having d edges, or degree d is:

Pr(d) =
(
n
d

)
pd (1 − p)n−d (4.5)

And the probability of having a graph with m edges is

Pr(m) =
((n

2

)
m

)
pm (1 − p)(n2)−m (4.6)

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 85

The mean value for m edges is

〈m〉 =
(n2)∑
m=0

mPr(m) =
(
n
2

)
p (4.7)

The mean degree of a graph G(n, p) is

〈k〉 =
(n2)∑
m=0

2m
n

Pr(m) =
2

n

(
n
2

)
p = (n − 1)p (4.8)

The degree distribution is derived from Binomial distribution

Pr(k) =
(
n − 1

k

)
pk (1 − p)n−1−k . (4.9)

but if p is small, the binomial distribution is approximated to the Poisson distribution with

parameter 〈k〉

Pr(K = k) ≈
((n − 1)p)k

k!
e−(n−1)p

≈
〈k〉k

k!
e−〈k〉.

Small–world Networks with small average distance between nodes are called small–world.

The diameter of the network decreases as the logarithm of the network size. For example,

ER networks hold this small–world characteristic. The Watt–Strogatz model, uses a ring

topology where each node is connected to its closest n/2 neighbors, then edges are relocated

with probability pr to other vertices chosen at random. If pr = 1 then the resulting topology

is ER. The original topology is obtained if pr = 0.

Scale–free Network has a topology which follows a power–law distribution of its node

degree. This network model is used to describe large networks.

Exponential Networks Those are networks with a degree distribution that follows an

exponential expression where β is the parameter that defines the distribution as follows:

Pr(k) =
1

β
e

k
β . (4.10)

4.3.2 Backbone Telecommunication Networks: Case Study

In this case study, we model two interdependent backbone telecommunication networks

as two Erdös–Rényi (ER) graphs, and three interconnection patterns. We use the ER-ER

topology which has two single network topologies generated from an ER random graph model

with the same number of nodes (|N | = 500), and different probability of connection pc. The

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 86

variation of connection probability pc implies a variation in the number of edges in the

resulting graph, but holds the Poisson nodal degree distribution.

Single network analysis

We generate ER graphs with different pc values and measure graph properties such as

the number of nodes (|N |), number of links (|L |), average nodal degree (〈k〉), maximum

degree (kmax), average shortest path length (〈l〉), diameter (D) and assortativity coefficient

(r). Topological properties of the used networks for this case are in table 4.1. We generate a

set of graphs with pc as parameter, given that the probability of connection to have a Grand

Component (GC) is at least ln n/n; for N = 500 is 0.0125 and 0.5 is the reference value. We

observe that networks exhibit assortative values close to zero [−0.0069, 0.0028], the average

nodal varies from 6.24 to 19.96, which denotes a dependency of bc (0.0125 to 0.04) , and small

values for the average shortest path (3.59 to 2.38). The network diameter is also small, ranging

from D = 7 for the smallest connection probability to D = 44 with the highest pc = 0.04 used

in the test.

Table 4.1: Topological properties for simulated networks.

cp L N 〈k〉 kmax 〈l〉 D r

0.0125 1560 500 6.2409 14.6666 3.5923 6.9 -0.0018
0.0152 1912 500 7.648 16.9666 3.2735 5.9 -0.0029
0.0184 2293 500 9.1741 19.6 3.0362 5.2 -0.0026
0.0224 2802 500 11.2105 22.5666 2.8170 4.9 0.0028
0.0272 3397 500 13.5904 25.4333 2.6577 4.0 -0.0001
0.0330 4115 500 16.4616 29.7333 2.5257 4.0 -0.0085
0.0401 4992 500 19.9682 34.6 2.3870 3.9666 -0.0069

0.5 62340 500 249.3609 283.6 1.4972 2.0 -0.0043

For this case, we measure the robustness with the Average Two–Terminal Reliability

(ATTR) metric, as shown in equation (4.11), where c is the number of network components, ki
is the number of nodes in the component i, and N is the number of nodes in the network.

ATTR =

∑c
i=1 ki (ki − 1)
N (N − 1)

. (4.11)

Networks are created with a fixed number of nodes, n = 500, and the probability of two

node connection cp varies from 0.0125 to 0.5. The percentage of failures is the fraction of

nodes which are removed from the original network. ER networks are very vulnerable to

sequential targeted attacks based on centrality, for example the betweenness centrality (bc).

We generate multiple ER networks with the parameters showed in table 4.1, and face them to

sequential (figure 4.6) and recalculated targeted attacks (figure 4.7). Figure 4.6 shows the

robustness of a network (ATTR) of ER networks with different probability of connectivity

under sequential targeted attack based on the nodal betweenness.

On figure 4.6, we can observe that robustness of ER networks during a sequence attack

based on nodal betweenness depends on the connectivity probability (cp). Networks with

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 87

0 20 40 60 80 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

0.0125
0.0152
0.0184
0.0224
0.0272
0.0330
0.0401
0.5000

Figure 4.6: Robustness of ER–networks under sequential targeted attack.

higher cp are more reliable under sequence targeted attacks than those with lower cp. For

this case, a network with cp = 0.0125 and 40% of failures has an ATTR measure near to 0.25,

in contrast with ER–network with cp = 0.04 and the same 40% of failures has an ATTR of

almost 0.4. It means that the connection probability affects the performance under sequential

targeted attacks.

0 20 40 60 80 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

0.0125
0.0152
0.0184
0.0224
0.0272
0.0330
0.0401
0.5000

Figure 4.7: ATTR of ER networks against recalculated targeted attack.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 88

Next simulation is also conclusive. We use networks with the parameters of the previous

one, we face them to recalculated target attacks, and measure the robustness of the network.

Remember the recalculated attack, once a node is removed because of its score, recalculates

the centrality measurement, and sorts the vulnerable target again to identify the next node to

be attacked. Network robustness under recalculated targeted attacks is shown in figure 4.7.

In this figure, the reduction in terms of ATTR for fraction of failures from 30% − 40% is more

accentuated than sequential targeted attack. A network with cp = 0.0125 and 40% of failures

has a ATTR measure near to 0, instead an ER–network with cp = 0.04 and the same 40% of

failures has an ATTR near to 0.35. Therefore, the connection probability deeply affects the

performance under recalculated targeted attacks.

Targeted attacks in reverse order As interesting result, figure 4.10 shows the robustness

for networks after sequential and recalculated attacks. However, the order of attack is the

reverse to those shown in figures 4.6 and 4.7. In this case, the first attack is to the node with

lower centrality measure, it means from the least important vertex to the highest.

Those results show that network robustness in reverse attack is independent of the

connection probability for the generated random graphs, and it decreases equally for every

network as shown in figure 4.8a. Alternatively, in the case of recalculated attacks, the behavior

exhibits differentiation depending on the connection probability as figure 4.8b shows.

Interconnection link patterns

We analyze the impact of sequential and recalculated targeted attacks over two

interconnected networks. We follow the same strategy used above, and compare ATTR

measurements after sequential and recalculated attacks over networks with multiple connection

probability cp. We present three interconnection patterns: high–high, high–low, and random

connectivity.

For our case study, both networks are created with the same number of nodes |N | = 500,

and the connection probability varies from 0.0152 to 0.5. Then, we create three patterns

for interconnection and evaluate the robustness (ATTR) under sequential and recalculated

attack. For illustration, our examples are depicted for the network A, randomly created with

connected probability pA = 0.0125, and the network B with connection probability pB which

varies from 0.0152 to 0.5.

High–High Network nodes are scored and sorted after a centrality measurement. For this

case, nodal betweenness. Then, we wire high centrality nodes from one network to high

centrality nodes in the second network. The robustness of the interdependent networks,

linked using the high–high pattern, after sequential and recalculated attacks is shown in

figure 4.9.

We can observe how the robustness in terms of ATTR decreases under recalculated attack

for both networks. As it was expected, the robustness of A decreases faster if the network

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 89

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

0.0125
0.0152
0.0184
0.0224
0.0272
0.0330
0.5

(a) Robustness of ER–networks under sequential
targeted attack in reverse order.

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

0.0125
0.0152
0.0184
0.0224
0.0272
0.0330
0.5

(b) Robustness of ER–networks under recalculated
targeted attack in reverse order.

Figure 4.8: Average two–terminal reliability for sequence and recalculated attacks in reverse
order.

faces a recalculated attack rather than if it faces a sequential attack. Moreover, the robustness

of the interdependent network B also decreases in a similar way to an attack over a single

network. However, the robustness behavior in the network B decreases much faster if the

interdependent network faces a recalculated attack and its link pattern is high–high. For

example, the robustness after a sequential attack is close to 0.45 for the 30% of node failure

and close to 0.30 for 40% of node failure as shown in figure 4.9a. Instead, the robustness after

a recalculated attack is close to 0.40 for the 30% of node failure and almost zero for 40% as

shown in figure 4.9b. After 55% of failures the network is completely damaged, there are

practically no vertices in the network A and the attack is not spread to B, then the ATTR

remains the same.

High–Low In this pattern the nodes in graph A with high centrality measurement are

connected to nodes with low centrality measurement in the graph B. Also, nodes are scored

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 90

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(a) ATTR of ER networks against sequential
targeted attack.

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(b) ATTR of ER networks against recalculated
targeted attack.

Figure 4.9: Average two–terminal reliability for sequence and recalculated attacks with
high–low link pattern..

and sorted after a centrality measurement to interconnect both networks.

Like the results shown in figure 4.8a, there are not variations in robustness in the network

B related to the connection probability figure 4.10a. The robustness of the interdependent

network behaves in the same way as the single network under sequential targeted attack in

reverse order. In the case of recalculated targeted attack, see figure 4.10b, the robustness

in the network B follows the shape described in figure 4.9b but there are no variations after

using multiple connection probabilities for the network B.

Random interconnection Finally, the third pattern is a random interconnection between

two networks. This pattern holds the restriction of having at most one link per node on each

network to interconnect to the other.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 91

0 10 20 30 40 50 60 70 80 90 100
Porcentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AT

TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(a) ATTR of ER networks against sequential
targeted attack.

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(b) ATTR of ER networks against recalculated
targeted attack.

Figure 4.10: Average two–terminal reliability for sequence and recalculated attacks with
high–low link pattern.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 92

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AT

TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(a) ATTR of ER networks against sequential
targeted attack.

0 10 20 30 40 50 60 70 80 90 100
Percentage of failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT
TR

pA = 0.0125
pB = 0.0152
pB = 0.0184
pB = 0.0224
pB = 0.0272
pB = 0.0330
pB = 0.5

(b) ATTR of ER networks against recalculated
targeted attack.

Figure 4.11: Average two–terminal reliability for sequence and recalculated attacks with
random link pattern.

CHAPTER 4. TARGETED ATTACKS ON INTERDEPENDENT NETWORKS 93

4.4 Summary and Conclusions

In this chapter, we proposed to model the control and data planes of SDN as an

interdependent network. This representation includes the interaction links between two

planes. Also, we introduced the model of targeted attacks on interdependent networks to

simulate how this type of attack affects the network. Then we evaluate the robustness using

the ATTR measure over two–ER networks following the parameters shown in table 4.1. Then,

those networks are wired to test three patters: high–high, high–low, and random between those

two planes. The first network is attacked under sequential and recalculated targeted attack,

nodes with higher betweenness centrality measurement are attacked first. The analysis is done

over the robustness of the second network that is affected by the first network attack.

The pattern high–high shows the major dependency with the connection probability.

In this case, the robustness of the dependent network is affected directly by its centrality

measurement. On the other hand, if the pattern is high–low, the robustness in the dependent

network does not depend on the connection probability. This is the optimistic case, where

there is no dependency and this behavior occurs due to the pattern propagates the failures

to those nodes with lower risk in the network B, and coincides with the behavior of a single

network. If the network is attacked with a recalculated process, the robustness for the network

A dramatically decreases. Instead for the dependent network B, its robustness measurement

decreases with the same rate and it does not present too much variation compared with the

sequential attack. For random link pattern the robustness behavior is similar to high–low

pattern. It presents a small variation related to the connection probability pB.

Recent literature proposed a design of interconnection links to increase the robustness and

reduce the cascade effect of a random targeted attack [CD15], the next step on this direction

is to propose optimization mechanisms that reduce the impact, according to a robustness

measure. To achieve this goal, we require a mechanism that migrates network controllers,

changes the link pattern according to the robustness evaluation, and responds to deliberate

attacks. Moreover, we expect to reproduce and analyze multiple cases with different random

network models such as the Watt–Strogatz, Scale–free or exponential models.

Chapter 5

Verification of Security Policies

Each problem that I solved became a rule

which served afterwards to solve other

problems.

René Descartes

This chapter presents our framework to verify firewall rules, based on predicate logic and

satisfiability, called FireWell. FireWell is able to model firewall policies as formal predicates

to validate, detect and prevent conflicts for SDN environments. FireWell uses a satisfiability

solver based on Alloy[Jac03] which finds examples and counterexamples of implementations

within a relational model. In addition, we present the FireWell implementation and test it

using the Floodlight controller and a firewall application.

An advantage of SDN is that it allows us to use well–defined software expressions and

predicates to regulate network behavior. Current SDN controllers, such as Floodlight, offer a

framework to develop, test and run applications that control the network operation, including

the firewall function. However, they are not able to validate firewall policies, detect conflicts or

avoids contradictory configurations on network devices. Some compilers only detect conflicts

in a subset of policies: hence, it cannot detect conflicts among different sunsets of policies, for

example, it would not detect a conflict between a security policy and a permission policy.

In the heart of FireWell there is a verification engine that interprets firewall rules written

by the administrator for a SDN controller and helps to validate rules and identify conflicts.

FireWell interprets network topology as logical abstractions in Alloy. Then, SDN firewall

policies are translated into logical predicates in Alloy that establish a relational model. Later,

Alloy validates these rules using its satisfiability solver (SAT), and returns logical conflicts.

Later, FireWell uses these results to report the set of rules that conflict. In addition, we model

sets to overcome user-group relations, use strings of elements to detail priorities and verify

the list of predicates using Alloy. Finally, we implement this compiler and show how we face

these limitations.

The model of firewall rules, conflicts, and an example scenario are on § 5.2 The FireWell

description, design features, architecture and implementation details are in § 5.3. Section

94

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 95

§ 5.3.3 explains how FireWell translates firewall rules into Alloy, and illustrates the detection

and interpretation of policy conflicts. Finally, the discussion of advantages and limitations of

our approach and conclusions are in §§ 5.4 and 5.5.

5.1 From Middlebox to Network Application

The management of security in network infrastructure is a complex duty. Network security

involves applications, services and access control which mainly relies on firewall configuration

and operation. Recall that 50% to 80% of infrastructure failure is caused by misconfiguration

[AWY08; KD12]. Specifically, configuring network security policies such as firewall rules is

an error prone task. Automatic tools for management aim to reduce the time required to

configure network devices and the problems caused by configuration errors.

Configuration of firewalls is a well-known problem [Woo10]. Traditional firewall middlebox

suffers from several drawbacks such as 1) contradictory rules that define different actions for the

same packet (and must be arranged or prioritized to apply one over the rest); 2) inconsistent

rules affecting the same traffic but defined on different firewalls (and must be redefined

according to a global policy); 3) pointless and impractical rules could be included increasing

complexity but do not add functionality, on the contrary, they increase the processing time and

the complexity of detecting configuration errors; and 4) policies in several middle–boxes lack

of consistency, it means, all firewalls must process the same packet with the same policy.

5.1.1 Firewall functionality

Firewall is a middlebox that controls and monitors the network against unauthorized

traffic. It is widely used not only to restrict external and private traffic, but also to grant

access to applications and control user behavior. A firewall filters packets according to a

security policy which is represented as a list of rules to decide which actions apply to a packet.

A rule has the structure 〈predicate〉 → 〈action〉 that means if predicate is valid, then the

action takes place. A predicate is a logical expression evaluated over a set of packet fields such

as protocols, source and destination addresses and ports. The action is a forwarding decision,

commonly accept or deny. A packet matches a rule if its header satisfies the predicate. Rules

are sorted, therefore if a packet header matches a rule predicate, the corresponding action is

executed, and the following rules are discarded. To find conflicts on firewall configuration, it

is necessary to analyze the previous (i − 1) rules and evaluate them against the ith rule.

Here in SDN environment, the firewall is an application running on the controller server.

Now firewall operation is also distributed across the switches. The interesting issue, in this

scenario, is how to validate if firewall rules conflict. To solve this problem, we first introduce

how to identify conflicts in the SDN firewall application.

5.1.2 Firewall and Security rules in SDN

Recall that SDN separates control and data planes § 2.1. This functional separation

gives major flexibility, permits network administrators to create software routines, and allows

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 96

dynamic configurations. Now, applications operate and control the network. As with many

other network functionalities, firewall is adopted as an application for SDN controller.

SDN introduces a different scenario for firewall functionality. The firewall application

can modify the forwarding table of a device. This flexibility increases the risk of firewall–rule

conflicts unlike the pre–SDN scenarios. Detecting and preventing conflicts in firewall rules for

SDN is different than firewall-middlebox because, as any other SDN application, the output

of the control plane is a set of forwarding rules for datapaths. Firewall functionality and

other rules are distributed in multiple datapaths. The verification of those forwarding rules

must guarantee the inter–operation of multiple devices and network applications, not only

the firewall rules. The main goal is ensuring that all involved network devices satisfy the

high–level policies.

5.1.3 FireWell Proposal

We propose to verify firewall rules and forwarding rules from datapaths as product of

this SDN application. The verification engine is based on Alloy and finds examples (or

counterexamples) of networks that exhibit a topology and support a set of constraints of

firewall rules. Alloya is a first order relational language to model and explore solutions for

a formulation based on predicates. In our proposal, the network topology, traffic flows and

policies are written as predicates and then are evaluated. Alloy has demonstrated being

suitable to solve that kind of satisfaction problems.

Network security is a field that uses logic verification in extensible way [APS14]. For

instance, access control mechanisms, such as RBAC, were verified to find inconsistencies

and contradictions using Alloy [PSS11]. We propose to use Alloy, as a formal language, to

define and analyze models based on relational first–order logic. It has been used to analyze

inconsistencies in rules and policies in multiple domains [PSS11]. Using Alloy, we can translate

specifications in PPL into a relational model and determine if the set of network policies can

be implemented in a concrete network topology without conflicts.

The Path-Based Policy Language (PPL) is a well-known language for Policy-based network

management. Using PPL, network administrators can specify the set of rules about how the

network must deal with specific types of traffic, and then use a compiler to transform these

rules into technology-level instructions. Existing PPL compilers [SLX01][Guv03] perform

validations on policies to detect conflicts such as contradicting rules for the same network

segment. However, these compilers only support a subset of the language, and cannot detect

conflicts related to traffic priority, neither user–groups administration.

In contrast to configuration verifiers, Policy–Based Management is a tool to simplify

network administration and support the creation of error-free configurations. The

essential concept is that managers write a set of well–formed policies (at business-level)

in an unambiguous language, that are later translated into operational parameters (at

technological-level) for each entity in the corresponding network [Str03].

ahttp://alloy.mit.edu/alloy/

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 97

The network community has been struggling for years about how to manage networks,

supporting business demands and preventing configuration errors. Some approaches are

focused on configuring and monitoring each network device using centralized applications

and management protocols such as SNMP. Other approaches, such as VeriFlow [Khu+13],

are aimed at checking the configuration of each network device and detecting conflicts,

inconsistencies and bugs. In contrast, Policy-based Network Management focuses on the

specification of the intended behavior of a network and the automatic configuration of each

one of its elements [Ste+99]. It simplifies the administration and supports the creation of

error–free configurations. In Policy-based Management, the essential concept is the well–form

policy. This policy is written by managers in an unambiguous language, and later translated

into operational parameters (configuration scripts) for each entity in the corresponding network

[Str03].

Alloy is a first-order formal language used to model and explore solutions for a formulation

based on predicates. It has been used to analyze inconsistencies in rules and policies in

multiple domains. For instance, access control mechanisms such as RBAC were verified to

find inconsistency and contradictions using Alloy [PSS11]. Recently, it was used to model

general network behavior to find security violations [MLCD14]. Using Alloy, we can translate

firewall rules into a relational model and determine if the set of firewall policies are valid over

a given network topology. Moreover, it finds examples (or counterexamples) of traffic flows

that satisfy (or violate) the policy.

The administration of network demands automated tools to simplify the network

configuration. Managers call for mechanisms to check and validate network configurations

that guarantee the achievement of its goals. Moreover, a forecast engine would be helpful to

test configurations before being applied. Policy-based Management could be an important

method to achieve this goal.

5.2 Firewall model, rules and conflicts

Traditional firewall middlebox is placed in the route of flow paths for filtering traffic. The

decision of a firewall corresponds to the first matching in the listed rules; thus, rules are

sorted. At the end of the list there is an implicit (or explicit) denying action that blocks all

the packets that do not match any previous rule. Suppose a small network with two subnets,

140.192.37.0/24 for clients, 161.120.33.40 for the server (HTTP, FTP, and DNS), and an

Internet gateway. A typical rule list that describes this example is shown in table 5.1. The

infrastructure under the SDN paradigm used for this example is shown in figure 5.1. The rule

list blocks the HHTP service (port 80) to the host 140.192.37.20, but allows it accesses to

the rest of the subnet and Internet. FTP service is denied for 140.192.37.30 but available for

other addresses. Similarly, DNS service is allowed for all addresses.

5.2.1 Filters and headers

We model the packet header as a set of fields h = {h1, h2, . . . , hl } that represents addressable

elements on a packet. A field hi defines a specific value or a range on its domain. A filter f

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 98

140.192.37.20

CA

140.192.37.0

Firewall

Internet

140.192.37.30 161.120.33.40

140.192.33.0

Figure 5.1: Example scenario is adapted to SDN paradigm. Before, there was a typical
firewall in the middle of three networks and two routers. Now, the scenario has three switches,
a controller server, and firewall application.

Table 5.1: Example of firewall rules extracted from [ASH04a].

No Proto Src Addr Src
Port

Dst Addr Dst
Port

Action

1 tcp 140.192.37.20 any *.*.*.* 80 deny
2 tcp 140.192.37.* any *.*.*.* 80 accept
3 tcp *.*.*.* any 161.120.33.40 80 accept
4 tcp 140.192.37.* any 161.120.33.40 80 deny
5 tcp 140.192.37.30 any *.*.*.* 21 deny
6 tcp 140.192.37.* any *.*.*.* 21 accept
7 tcp 140.192.37.* any 161.120.33.40 21 accept
8 tcp *.*.*.* any *.*.*.* any deny
9 udp 140.192.37.* any 161.120.33.40 53 accept

10 udp *.*.*.* any 161.120.33.40 53 accept
11 udp 140.192.37.* any 161.120.35.* any accept
12 udp *.*.*.* any *.*.*.* any deny

is a set of packet–header fields f = { f1, f2, . . . , f l } where each element f i represents values,

boundaries or range of the element hi . Both, filter and header must have the same format

and be represented in the same domain. For example, h = (proto, as, ps, ad, pd) represents a

packet header, where proto is the protocol (commonly TCP or UDP), as and ad are source

and destination IP addresses, ps and pd are source and destination ports.

A rule is defined by the tuple r = (i, f , action), where i is an index that orders and

prioritizes a set of rules, f is the filter, and an action ∈ A = {Allow,Deny} which is the

operation executed by the firewall if the header matches the filter. The set R contains all

possible rules.

In addition, the notation index : R→ N is the function that returns the priority of a rule

r; filter : R→ F returns the filter applied by r; and, action : R→ A gives the action executed

by r. Other useful function is match : (H,F) → {TRUE,FALSE} that denotes if a header h

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 99

matches the filter f if:

match(h, f) =
l∧

i=1

hi ∈ f i (5.1)

5.2.2 Filter fields and relations

Since filter elements are comparable to each other, four relations are defined: subset,

superset, equality, and disjunction, Rf ield = {⊂, ⊃,=,�}. Given two filters f a and f b , the

relations over field’s values are denoted as follows:

Table 5.2: Relations for packet headers fields.

f ai ⊂ f bi values of f ai are included into f bi
f ai ⊃ f bi values of f bi are included into f ai
f ai = f bi elements of f ai are the same as f bi
f ai � f bi f ai ∩ f bi = ∅, they are completely disjoint.

Definition 5.1 (Quantifier function). Quantifies the number of fields in f a and f b that

satisfy the relation r. Q : (f a, f b, rel) → N, rel ∈ Rf ield.

This quantifier function describes how many elements of two filters have a given

relation.

5.2.3 Filter relations

Our model uses the relation set cardinality to get information about two filters.

The number of valid relations over filter fields in the relations set Rf il ter :=

{equivalent, inclusive, correlated, dis joint} allows to identify if two filters are inclusive,

correlated, disjoint, or equivalent.

Two filters f a and f b are correlated if all fields on f a are equals, subset, or superset of

f b . All fields on f a are equals, subset, or superset of f b .

Q(f a, f b, ⊂) ≥ 1

Q(f a, f b, ⊃) ≥ 1∑
rel ∈{=,⊂,⊃} Q(f a, f b, rel) = l

Two filters f a and f b are said disjoint if no field on a filter has a relation different of disjoint.

∀i : f ai � f bi . Two filters f a and f b are equivalent if they exactly match the same header.

∀i : f ai = f bi . A filter f a is said inclusive in f b if a header that matches the first filter also

matches the second one. ∀i : f ai = f bi ∨ f ai ⊂ f bi .

Definition 5.2 (Filter-Relation function). Denotes the relation between two filters f a and

f b, fRFil ter : (f a, f b) → Rf il ter .

5.2.4 Conflicts in firewall rules

There are two kinds of firewall conflicts: rule conflict and policy disagreement. A rule

conflict refers to rules that one contradicts the other. Policy disagreement are rules that

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 100

may be consistent but contradict the security policy. Particularly, if a set of rules contravene

previous rules it says a rule conflict. On the other hand, if a set of rules dispute the policy,

it is called a policy violation. In general, a firewall policy has a blacklist and a whitelist to

enforce a goal.

According to Al–Shaer [AS14] and Hamed [ASH04a], there are four kinds of rule conflicts

after misconfiguration.

Shadowing : a rule ry is shadowed if there is a previous rule rx that matches the same

header but has different action. e.g. table 5.1 shows a rule set, where the rule 4 is

shadowed by the rule 3.

Correlation : two rules rx and ry are correlated if some headers that match rx also match

ry , but those rules have different actions. e.g. Rules 1 and 3 are correlated.

Redundancy : two rules are redundant if both perform the same action over the same

packet header. e.g. rules 6 and 7 are redundant.

Generalization : a rule that matches rx is a particular case of another matching ry , but

they perform different actions. e.g. rule 2 is a generalization of rule 1.

Although generalization is not always considered a configuration failure, it is used to

exclude a header subset from a more general action, but it is considered an error prone activity.

Sometimes administrators need to create specific exceptions, e.g. allowing a route from a

specific terminal within a group and denying the other, they use generalization rules to allow

a route and deny for every else.

Note two interesting details: in the shadowing model, the relation between (ry, rx) as

inclusive means that the filters of ry are subsets of the filter (rx). In redundant policies

indexation is important; ry is included into rx means that some headers will match the rule

ry after non–matching rx headers.

A policy violation is a more interesting case of conflict. A set of firewall rules can be

consistent, free of rule conflicts, but without fulfill the policy. In SDN, a datapath can change

the packet header hence a corrupted application can include packet modification to circumvent

the security policy. Then the verification not only has to examine the set of rules searching

for conflicting rules but also the security policy should be contrasted against the set of firewall

rules and determine if the set of rules achieve (or not contradicts) the policy.

5.3 FireWell: Firewall-rules Well-formed

FireWell is a framework based on predicate logic and able to detect and prevent conflicts in

firewall rules over a SDN environment. FireWell connects to the controller and gets the network

informationb. The obtained information includes topology, firewall–rule set, and flow-table

from devices. Then, FireWell maps forwarding rules to well-defined logical expressions, which

are evaluated to verify satisfiability. Finally, FireWell interprets the SATsolver results. If the

bConnection with the controller by its RESTlet interface, http://restlet.com/

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 101

resulting predicate satisfies the configuration, the firewall–rule set does not have conflicts nor

inconsistencies.

5.3.1 Model in Predicate Relational Language

FireWell is based on a formal model of policies, topologies (nodes and links), and forwarding

rules. Then the formal model is written in Alloy which is a first-order relational language,

and a tool to explore and find an instance that satisfies the formulation [Jac03]. As it was

used in previous chapter § 3.3.1, it allows us to analyze inconsistencies in rules and policies in

multiple domains [PSS11].

Remember that Alloy model comprises facts, and assertions. Facts are general assumptions

always evaluated true, and assertions are expressions that will be checked. Also Alloy uses a

constraint–solver to check the assertions within a scope, an upper bound of the number of

elements of each type (set) included in the model. If the assertion is not satisfied, Alloy analyzer

returns a counterexample. Using Alloy, we can transform specifications from Floodlight to a

relational model and determine if the set of rules can be implemented in a concrete network

topology without conflicts.

Network abstraction

Network topology is described as a set of nodes, and the set of links is a relation of

nodes. The security policy is written as facts and assertions to validate the absence of specific

conflicts. FireWell uses the same network topology abstraction defined in § 3.3.2. There,

node is the base signature, and the set of links in the topology is a relation, denoted by

links : node → node.

Firewall Rule Model

Following the definition created in § 5.2.1, five header fields are created to formalize the

filter: source and destination addresses, source and destination Ports, and Protocol. Hence,

four signatures are created to describe a firewall rule: Protocol, Address, Port, and Action.

The Element definition is a sequence that describes the index number.

Firewall conflicts model

The model implementation of relations between header fields is showed in § 5.2.2. This

model is able to return data about two types of relations between filters; namely, the number

of fields that satisfy the relation (the quantifier function) and the kind of relation of relation

between two filters (the filter–relation functions). See definitions on definition 5.1 and

definition 5.2. Some additional functions are index(r) that returns the priority of r; f ilter (r)

that returns the filter applied by r; and action(r) that gives the action executed by r. Now,

we use the logical relations showed in § 5.2.4 to model rule conflicts as follows.

Shadowing rx shadows ry if index(rx) < index(ry), Rf il ter (f ilter (ry, rx)) ∈

{equivalent, inclusive}, and action(rx) , action(ry).

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 102

Correlation rx correlates ry if index(rx) < index(ry), Rf il ter (rx, ry) = correlated, and

action(rx) , action(ry).

Redundancy rx and ry are redundant if index(rx) < index(ry), Rf il ter (ry, rx) ∈

{equivalent, inclusive}, but action(rx) = action(ry).

Generalization ry is a generalization of rx if index(rx) < index(ry), Rf il ter (rx, ry) ∈

{equivalent, inclusive}, and action(rx) , action(ry).

5.3.2 Finding conflicting rules

Verification by SATisfiability identifies the set of conflicting rules in this model. Using

the SAT problem definition, as presented in § 2.2.2, the problem of detecting conflicts is

reformulated as a SAT problem where rules, flows and constraints are written as propositional

logic formulae. Moreover, the model defines a semantic function, like those described in § 3.1.6,

to identify the minimal set of rules that makes the model satisfiable.

Conflict semantics

In order to define firewall functionality as a set of rules and then identify conflicts or

violations, we follow the guidelines of Harel and Rumpe [HR04] to specify a modeling language

 L describing the syntactic domain LL , the semantic domain SL and the semantic function

ML : LL → SL(traditionally written J·KL). The semantic function over the complete set of

rules JRK = Ω is the set of conflicts of all rules in the firewall configuration. A set of rules ρ is

valid if its semantic function does not conflict and satisfies security policy JρK = ∅.
Definition 5.3 (Conflict Semantic Function). A conflict semantic JρK of a set of rules ρ ⊆ R,

is the set of conflicts for a packet whose header matches ρ.

JRK = Ω is the semantic of all firewall policies and produces the set of all conflicts in the

firewall operation.

• The semantic function JρK|ρ ⊆ R is the set of conflicts in the firewall configuration.

• A set of policies ρ is valid if it does not conflict and satisfies security policy Ω = ∅.

Definition 5.4 (Rule Conflict). A rule conflict occurs when a set of rules presents any of

the conflicts shown in § 5.3.1.

Conflicts in rules are detected by the semantic function. Given two rules rx and ry , they

do not conflict if Jrx ∪ ryK is empty, otherwise they are conflicting. The rule conflict has also

a quantifier JRK , ∅ i.e. when ∃ρ ∈ R,Q(ρ) , 0.

The set of rules ρ that creates conflicts is obtained using the minimal diagnosis function

which returns the minimal set that produces conflicts.

Definition 5.5 (Minimal diagnosis). Given a set of policies ρ ⊆ R such that JR \ ρK = ∅, the

minimal set ρ is the minimal diagnosis.

Definition 5.6 (Consistency). The relation of policies without any conflict. In other words,

it is the ability of a firewall to support a set of policies which are free of misconfiguration nor

ambiguity.

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 103

Now we need a verifier able to find the semantic function JρK, verify if that set is empty,

and calculate the minimal diagnosis of that set. Then, we use FireWell to obtain a set of

tuples that satisfy the policies (exactly the semantic function). If FireWell does not find any

element (the set is empty), the policy set is valid.

For a set of rules ρ and a topology G, the solution of the conjunctive SATisfiability

problem S that satisfies the semantic function Jρ,GK = ω is the set of rules that creates

conflicts. FireWell uses this model based on predicate logic to analyze propositional logic

formulae and checks its satisfiability.

5.3.3 FireWell implementation

FireWell is a tool to validate, detect and prevent conflicts on firewall policies in SDN.

FireWell is an independent application and can run remotely to the controller. It serves and

consumes information with the controller. FireWell is configured to run in parallel with Alloy

version 4 and the UNSAT solver of Kodkodc. This section shows the FireWell architecture and

details its implementation that translates firewall policies, from SDN controller, for validating

and detecting conflicts.

FireWell Architecture

As shown in figure 5.2 FireWell is an external application that serves and consumes

information to/from the controller. FireWell has two interfaces: the first one is the RESTlet

which establishes connection with the controller to get and install rules into the SDN firewall

application; the second one is the interface with Alloy which parses rules on files that later

are processed by the solver and its outputs are received through the same interface. FireWell

also has two modules to process structures taken from the controller: the network topology

parser and the firewall rule transformer. It comprises a module to parse structure into Alloy

language, a module that abstracts the topology, a module that handles firewall rules, a

module that creates trees of data–fields, and I/O interfaces with the RESTlet service and the

interpreter.

The process through FireWell is as follows:

1) FireWell gets controller information, such as network topology, and the set of rules from

the SDN firewall application.

2) FireWell builds its own representation of firewall rules.

i) The module of topology creates the FireWell representation of nodes and links.

This data structure is inspired in the formalization done in § 3.1.1.

ii) Firewall rules are transformed into a set of fields trees to reduce the number of

variables. This tree–data transformation allows to create sets of symbols that later

are defined into predicate logic.

cThis work uses the same methodology presented in chapter 3.

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 104

FireWell
Parser

Network
Applications

REST APITopology

Firewall

RESTlet

Interpreter

Floodlight controller

OpenFlow protocol

Alloy

Counter
Examples

SAT
Solver

KodKod

UnSATcore

Virtual
Switch

Circuit
Pusher

Forwarding

Alloy
Language

Topology Rules
Fields
Tree

Figure 5.2: FireWell architecture. It gets topology information from Floodlight, creates the
model and exchanges formulation with Alloy.

iii) FireWell uses its Parser module to translate its rules into well-formed expressions.

3) Once rules are in logic expressions, FireWell writes an .als file which later will be load

into Alloy. After that, the .als file is processed with the Alloy solver.

4) After the SAT solver with unsatisfiability procedure is executed, the list of counter

examples, if they exist, are interpreted to identify firewall rule conflict or nodes which

violate the security policy by counterexamples. Recall that a counterexample is an

abstraction of conflicting rule or a policy violation.

5) Conflicts are reported to the network administrator. This report includes the firewall

rule, its number, and the counterexample explanation, the set of contradicting rules or

the policy circumvention.

RESTlet interface and Model Parser

FireWell, at first instance, has a RESTlet that gets information from the Floodlight

controller. This information includes topology nodes and links, and the set of rules in the

firewall application. Then, FireWell resolves nodes, links, and firewall rules, and builds its

own representation on JAVA–data structures. Network topology is also represented on its

structure and creates forwarding tables for each device with information available through

the Floodlight controller.

Parsing the model has three steps. First, fundamental elements such as nodes, protocols,

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 105

addresses, ports and actions are created as sets. The parser module writes rules, topology,

paths, and flows into sets and relational logic expressions. In the second phase the parser

writes trees for addresses, a sequence which defines priority, and rule instantiation as show in

figure 5.3. Firewall rules are inspected. Fields from all rules are analyzed; FireWell parser

identifies relations over fields and builds data–trees. This procedure maps variables and rule

definitions into sets to reduce the amount of variables. Additionally, following the same model

presented in § 5.3.1, FireWell creates the functions to classify filter–field relations, and rule

conflicts. The identifier of each rule is represented as a sequence of elements used to illustrate

priority. At the third phase, parser establishes the scope to run the model, and write the

unsatisfiable cases. This output is recorded to a .als file which can also be run from the Alloy

interface. Figure B.1 shows an example of the result the firewall model translated into Alloy

language.

Floodlight [Big12] is a NOS and controller system used by FireWell because it supports

upper applications and protocols, and translates their instructions to forwarding devices. At

the lower level, OpenFlow [McK+08b] is the communication protocol that binds Floodlight in

a centralized controller to forwarding devices, establishes standard interfaces, and executes

applications, algorithms and protocols on the switches.

Tree optimization

An attribute of FireWell is the ability to reduce the number of variables that later will be

evaluated in Alloy. A naive way to create sets and identify relations between their elements

by creating all possible elements in a set, and then, calculate their relations. For example, a

firewall rule can have IP ranges or subnets in the form 192.168.10.0/24 and then FireWell

identifies field relations (=, ⊂, ⊃,�) with another field, e.g. 192.168.10.0/25 and creates a tree

of field relationships.

In this manner, FireWell creates a tree of relations between fields. In the case of IP

addresses, the root of the tree is the wildcard (∗. ∗ . ∗ .∗) equivalent, because all addresses

are subsets of the root. Then, FireWell analyses other policy fields, establishes relations

and creates a tree. Additionally, each node in the tree has a reference to the policy. Thus,

analyzing different walks over the tree, dependencies between rules can be found. Figure 5.3

shows the address tree created by FireWell from the example of table 5.1.

Interpreter

FireWell uses the Alloy–Java–API interface to process the model, and receives the solver

output. An unsatisfiable result is an abstraction of a conflict. The solver, in this case the

UNSAT, executes verification clauses, denoted by check-assert into Alloy model. Results from

the SAT solver are interpreted by FireWell to identify counter examples found by the solver.

The interpreter decodes the output and identifies the set of fields, rules, and nodes that are

received in the counter example and identifies the conflict.

FireWell interprets the result from the SAT solver and shows if the set of firewall policies

contains conflicts. Once the solver reports a counter example is found, the interpreter executes

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 106

a0

a1 a4

a3a2

a5

(*.*.*.*)

(140.192.37.*)

(140.192.37.20) (140.192.37.30)

(161.120.33.40) (140.192.35.*)

Figure 5.3: Tree of addresses created from the example of table 5.1.

a routine to identify the set of policies that generates the conflict. Finally, rules in conflict are

shown to the console. FireWell is able to identify conflict fields and this information could

give more tools to the administrator to identify the inconsistent rule.

5.3.4 Mapping firewall rules into Alloy model

The FireWell parser interprets firewall rules and produces Alloy instances. There are two

ways in which FireWell reads firewall rules. The first one is loading a file with rules in text

format as shown in table 5.1; the second one is grabbing rules through the Floodlight REST

API. Once the rules are in the FireWell structure, it creates a map into Alloy language. The

mapping process comprises three steps: 1) Create sets of fields, 2) create the topology, and

3) build firewall rules.

Field Sets and the Address Tree Structure

In order to write a rule, five sets are defined: Index, Address, Port, Protocol, and Action.

The Index set is used to sort rules so it describes the priority field. Addresses, ports and

protocol describe the datagram and identify the traffic flow. Then, these sets are mapped

into relational model. The most demanding set is the addressing set because overlapping is a

common operation with addresses. FireWell represents this set as a tree because it reduces

the amount of variables that later will be evaluated in Alloy. More variables in the model

create larger predicates which are more complex to evaluate and finding counterexamples take

extra time. FireWell creates a tree of relations between fields. In case of IP addresses, the

root of the tree is the wildcard (∗. ∗ . ∗ .∗) because all addresses are subsets of the root. Then,

FireWell analyses other policy fields and establishes relations and creates a tree. Additionally,

node–structure has a reference to the policy, using the index as ID. Thus, analyzing different

walks over the tree, dependencies between rules can be found. Figure 5.3 shows the tree

created from the example in the Table 5.1. Note that Alloy interprets addresses just as

elements of a set instead of IP values. The figure 5.3 is the relational representation of this

example in Alloy language.

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 107

Listing 5.1: Abstract definition of the addresses tree for the example.

fact TreeCreation{

AddressTree.root = a0 / / ∗ . ∗ . ∗ . ∗ equ iva len t
a1 + a4 + a5 in a0.children

a2 + a3 in a1.children

}

Firewall rules

Rules are written in Alloy based on the rule model shown in § 5.3.1. Wildcard address

(∗. ∗ . ∗ .∗) is established as the zero element a0 of the tree, and the rest of the addresses (or

range) are specific elements in the Address set. The Alloy definition is depicted in listing 5.2.

Note that all attributes of the rule are relations to an element of each set.

Listing 5.2: Abstract definition of a firewall rule.

abstract sig rule{

ID: one Element,

proto: one Protocol,

srcAddr: one Address,

srcPort: one Port,

dstAddr: one Address,

dstPort: one Port,

action: one Action

}

For example, the instance of the first rule from the example table 5.1 is coded in

listing 5.3.

Listing 5.3: Abstract definition of first rule for the example.

/ / 1 , tcp ,140.192.37 .20 , any , ∗ . ∗ . ∗ . ∗ , 8 0 , deny
one sig r1 extends rule{}

{

id = i1 and proto = TCP and srcAddr = a2

srcPort = p0 and dstAddr = a0

dstPort = p80 and action = deny

}

Conflicts

FireWell model uses the assert declaration of Alloy language for conflict instances. Assert

instruction creates a set of constraints over the instances. For example, shadowing conflict

formulation is shown in listing 5.4 following the model described in § 5.3.1. The remainder

conflicts for firewall rules are detailed on appendix B.1.

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 108

Listing 5.4: Shadowing conflict definition.

/∗ a prev ious r u l e matches a l l packets t h a t
∗ matched by t h i s r u l e ∗ /

assert Shadowing {

no x,y: rule {

/ / index (X) < index (Y)
isBefore[x.id,y.id]

/ / X covers X
(equals[x,y] or inclusiveMatch[y,x])

x.action , y.action

}

}

check Shadowing

The shadowing conflict detection compares the index of each rule and calculates the

inclusive match over two rules. If the action is different, the inclusive relation is held, and the

index, then a shadowing conflict occurs.

Network instances

After the definitions, the parser creates a translation of policies into Alloy language.

This translation starts by declaring the topology, paths, target flows, and policies. Network

topology and paths are declared as appears in § 3.3.2. Also, flows and policies have the same

structure.

5.4 Experiment and Results

This section presents a test case on FireWell to prevent conflicts in aggregative mode

when policies are configured on the SDN controller.

To evaluate the feasibility of our proposal, we set up a test topology, our FireWell

framework, and the network controller for SDN. The experimental set up shown in [ASH04a]

is adapted to the SDN environment. The previous experiment has a typical firewall in the

middle of three networks and two routers. Now, the present scenario has three switches, and

the firewall application running on the controller server. The modified topology is emulated

by Mininet [LHM10] which allows us to create realistic virtual networks, connect a SDN

controller, access to switch configuration, and run custom applications.

The network operating system (NOS) used in this experiment is Floodlight which is an

open SDN controller written in Java that supports OpenFlow as the protocol to communicate

controller and switches. The controller supports upper applications and protocols, and installs

or modifies the forwarding tables which define how packets will be delivered across the network.

Controller translates upper instructions to forwarding rules. Each entry on the forwarding

table describes the action to be executed for packets that match a predicate; those actions

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 109

Table 5.3: Example of firewall rules for the first three rules.

No Action Rule Description

0 ALLOW dl-type:ARP Data link protocol
0 ALLOW nw-proto:ICMP Network protocol

1 DENY nw-proto:TCP,
nw-src:140.192.37.20,
tp-dst:80

Host cannot get web

2 ALLOW nw-proto:TCP,
nw-src:140.192.37.*,
tp-dst:80

Subnet gets web

3 ALLOW nw-proto:TCP,
nw-dst:161.120.33.40,
tp-dst:80

Web server input

3 ALLOW nw-proto:TCP,
nw-src:161.120.33.40,
tp-src:80

Web server output

are forward, drop or redirect the packet. At the lower level, OpenFlow [McK+08b] is a

communication protocol that binds the NOS in a centralized controller to the forwarding

devices.

Firewall function application of the Floodlight controller is tested by its RESTlet interface

to install and remove firewall rules. For example, Table 5.3 includes the rules inserted to

firewall application for the first four rules given in the example. Note that rule 0 is necessary to

process address resolution protocol. Rule 1 and 2 deny web requests from this specific address

and allows the rest of subnet. Rule 3 allow web traffic to/from the web the server.

FireWell parser module tests four sets of firewall rules: 100, 1000, 10000, and 100000.

Figure 5.4 shows the parsing time for each set. It shows that the translation is fairly lineal;

even though, the complexity of the address insertion into tree structure is not lineal. On

the other hand, writing the Alloy model is more expensive, thus slower. Experiments show

that writing a model with 100.000 rules takes more than 130 seconds. For the example, the

parsing module can translate, insert into the tree, and build the Alloy model in less than

three minutes for a set of 100.000 firewall rules.

The entire model, for the example, consists of 12 firewall rules, 6 nodes, 4 ports, and 6

addresses. After the Alloy analysis, the model produces 14389 variables, and 43266 clauses

that are evaluated, and finds the list conflict (counterexamples) in less than 356 ms. It shows

that solving the Alloy model is expensive; although, it depends on the codification done by

the parser.

Table 5.4: Analysis of time using the Alloy API.

Num of rules 12 20 30 40

Time (ms) 1183 1224 11933 44607

Other experiments show that the analysis over 40 firewall rules takes more than 40s, see

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 110

Time (ms)
101 102 103 104 105

P
ar

si
ng

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parsing firewall rules to Firewall structure

100
1000
10000
100000

Figure 5.4: Required time to parse firewall rules to Alloy model.

Table 5.4, for the US-carrier topology taken from the Internet Topology Zood. We infer that

the evaluation time does not depend exclusively on the amount of rules, but also the topology

complexity. We expect to analyze similar number of rules on different topologies to test this

hypothesis. A more complex model could include other forwarding rules in devices distributed

across the network in addition to firewall rules.

Table 5.5 shows FireWell effectiveness. Every conflict detected in previous approaches

[AS14] is also resolved with FireWell plus those related with routing and packet modification

such as address spoofing.

Table 5.5: Conflicts detected in the example firewall-rule set.

Conflict Rule Pair

Shadowing (r2,r4)
(r3,r4)

(r2,r4)
Correlation (r1,r3)

(r3,r4)
(r5,37)

(r1,r2)
Generalization (r5,r6)

(r2 r3 r6 r7,r8)
(r9 r10 r11,r12)

Redundant (r6,r7)

dhttp://www.topology-zoo.org/gallery.html

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 111

Shadowing r3 r4
Shadowing r2 r4
Correlated r2 r4
Correlated r1 r3
Correlated r3 r4
Correlated r5 r7
Generalization r11 r12
Generalization r6 r8
Generalization r10 r12
Generalization r5 r6
Generalization r9 r12
Generalization r1 r2
Generalization r7 r8
Generalization r3 r8
Generalization r2 r8
Redundant r6 r7
−−−−−−−−−−−− −−−−−−−−−−−−

Total Time : 2299ms .

5.4.1 Advantages of translating to Alloy

Existing tools use algorithms that first expand all the elements in a subset definition, then

runs one-by-one algorithm to find overlapping, and finally determine if there are conflicting

conditions in the common fields. In contrast, FireWell maps firewall policies into a relational

logic model. This translation offers some advantages over the previous work:

• Extended support for high-level policy definition. FireWell can adapt the input of firewall

policies. With Alloy, policies are abstractions which can be easily transformed as

predicates.

• Aggregate functionality Alloy is able to run from previous results, once an analysis

is done, FireWell can use previous executions and add new signatures (policies), and

execute only with those with potential conflict.

• Support for additional types of actions Besides denying or permitting a type of traffic

through a path. These policies can be written in Alloy and support additional constraints.

• Checking firewall application in double way Firewall rules can be checked to find

inconsistencies in a set of firewall rules, but there is not possible to check how

firewall–forwarding rules affect other network functionalities. With SDN all applications

insert forwarding rules in datapaths, and with Alloy we can check if the firewall behavior

conflicts with the topology or with the rules installed by another network application.

5.5 Summary and Conclusion

This chapter presents FireWell, a firewall policy analyzer supported on Alloy to detect

conflicts in policies. First, it reads policy configuration directly from the Floodlight controller,

and builds abstract representation of policies. Our tool exploits relational logic to explore

CHAPTER 5. VERIFICATION OF SECURITY POLICIES 112

configuration conflicts in firewalls, and reasons about defined constraints in a simpler and

more complete way than the existing solutions. Currently, we are focused on evaluating

alternatives to optimize the conflict detection performance. Mainly, we are considering model

slicing techniques where the tool analyses subsets of the network instead of all the elements.

In addition, we are working on an implementation that uses KodKod, the internal library

used by Alloy that provides support for partial instances to optimize processing.

FireWell creates a variable scope for the symbolic representation of addresses, ports, and

protocols. Ranges are also symbolic, which are represented by a single variable rather than

an array of variables. This reduces the number of variables and simplifies the evaluation.

The translation made by the parser is fundamental for the performance of the SAT-solver

and general behavior. We use Alloy to create better translation of complex policies into

CNF, as compared to other existing tools. Optimizing the translation in Alloy will allow us

to contemplate other network features such as security, routing, QoS, or network resilience.

We understand that having Boolean quantifiers, such as universal (∀) and existence (∃),

degrades the performance, but they are necessary to test more complex properties like security

or resilience. For example, creating symbolic multipath and evaluating properties over the

multipath is a Boolean formula that requires logical quantifiers instead of calculating all

possible elements before performing the validation.

FireWell is a project to create well–defined firewall policies on SDN. As main contributions,

this chapter and its related paper [MLCD15] 1) identifies firewall misconfiguration for SDN

networks, 2) shows that firewall rules can be translated into a model written in Alloy, and

3) introduces our implementation that solves the model to detect and prevent conflicts on these

rules. Using FireWell, a network administrator could prevent the introduction of conflicting

rules into the SDN infrastructure. FireWell extracts firewall rules from the SDN by the REST

interface of Floodlight controller, detects the conflicting rules (if they exist), and determines

if a new rule will conflict with the existing ones.

Chapter 6

Verification of Policies in Multiple

Domains

A problem well put is half solved.

John Dewey

This chapter proposes a mechanism to audit network policies in multiple domains called

AudIt. This approach allows the network administrators to validate if the network policies are

enforced by an external domain. In summary, this chapter introduces the foreign controller

verification problem. Also, multi–domain policies in programmable networks are defined. A

mechanism to gather information from external SDN domains is detailed, and a validation

engine that uses gathered information to check if a network policy is enforced by the external

domain is designed.

In the SDN architecture, the control plane remains on a centralized server and makes

decisions about how the traffic is processed. The controller is responsible for managing

connections, addressing, and routing protocols. In summary, it manages the behavior of its

own network domain. The entire network is an aggregation of several domains and each has

its own network controller. Forwarding rules must be implemented through several datapaths

on multiple domains. For instance, the network traffic is delivered using an internal network

such as LANs, and an external network such as WANs or Internet. Only the domain controller

has access to the rules used by each datapath in its network domain. Thus, neither a datapath

nor a controller can access information about rules from foreign domains.

Current SDN is good for dealing with policies in a single domain. However, the network

administrator cannot observe how an external network, out of its domain, handles the traffic.

The administrator is not able to enforce nor monitor network policies on multi–domain

scenarios. This problem is defined as the policy enforcement on multi–domain. If the network

administrator needs to enforce or monitor a network policy, she needs to grab information

of how her traffic is handled by a foreign domain. She can define applications in her own

network domain but cannot do it in the foreign domains. Unfortunately, she cannot check if

external domains enforce a network policy because she cannot determine how the traffic is

113

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 114

delivered in those external networks.

This situation can be especially critical in network security policies. For example, crucial

traffic that is delivered through external networks can be duplicated or redirected to other

network machines using a simple application in the external domain SDN controllers. Since

network administrators cannot get access to the rules in the external networks, they are

unable to detect these situations or validate if their policy is achieved.

For this reason, we present the problem of auditing own policies at external domains.

Then, we present a model to illustrate network topology, paths, forwarding rules and policies

in § 6.2. Later, we introduce the AudIt protocol which can gather information from an external

SDN domains and validate if an own policy is enforced by the external domain. Finally, we

describe AudIt design, functionality, and present an example.

6.1 Auditing Policies in Multi–Domain Networks

A Network policy is a set of conditions, constraints, and settings about how a specific

type of traffic must be managed by a network. Policy may also include authorized users and

hosts to create connections, and the circumstances under which they can or cannot connect.

Network policies are the accurate and unambiguous way to specify the traffic behavior. Review

table 2.4 for general definitions.

Initially, Stone et al. proposed a path-based policy language (PPL) that abstracts

topological (physical) paths and flows to check network properties [SLX01] such as invariants

§ 2.4.2. With programmable networks as SDN, new network policy abstractions are under

development, therefore the challenges in policy checking open an interesting field for research.

High–level declarative languages were proposed to represent network policies with more

expressiveness. Declarative languages such as FML [Hin+09b; Hin+09a] express network

policies in terms of flows. For general purposes, Hinrichs developed a declarative language

called Flow-based Management Language (FML) to describe network policies and configuration

in a high-level and declarative approach[Hin+09a]. FML is based on flows, and checks the

first packet of every flow against the policy. FML identifies a network flow by: source and

target for users, hosts, and access points, in addition to protocols and requests

A flow is the specification of a traffic, sometimes is called a session, that contains

common attributes such as source, destination, protocol, but also can specify more granular

characteristics as duration, valid time, users, data format and so on § 3.1.4. Then those policies

are processed using DATALOG to find matching flows. Other languages were designed for SDN

are Merlin and NetCore. Merlin [Sou+13] is a framework to write network policies for SDN.

NetCore [MFHW12] is a language for describing forwarding rules and it is integrated with

another framework called Frenetica [Fos+11]. These languages allow network administrators

to define policies in a single-domain networks. They did not contemplate checking policy

enforcement on a third-domain.

aFrenetic is a project from Cornell and Princeton universities. http://www.frenetic-lang.org/

http://www.frenetic-lang.org/

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 115

In contrast to previous approaches, AudIt offers the ability to write and check network

policies; it is unified with the controller, extracts forwarding data, and checks it. AudIt also

uses the flow specification, as it is described in § 3.1.4, and verifies if the set of flows is valid

for the given topology. Moreover, AudIt reports inconsistencies at level of flows in addition to

instructions at the level of hardware implementations.

For example, suppose that a network policy defines only computers assigned to members

of IT department can get access to database servers. The policy can be written as:

allow(src,target) | src ∈ IT ∧ target ∈ DataBase (6.1)

deny(src,target) | src < IT ∧ target ∈ DataBase (6.2)

Expression (6.1) means that the network must allow flows from IT to database servers.

Since policies must be closed, (6.2) denies any flow from other machines to database servers.

In SDN networks, policies are enforced by its domain controller which rules the behavior of

every datapath in its domain. So, the question is: How can a network administrator monitor

that this policy is enforced?

6.1.1 Policies in Multi-domain Networks

Consider a multiple–domain network where each domain is managed by its own controller.

This example scenario is depicted in figure 6.1; the domain A, left cloud, is ruled by its

controller CA, and operates the IT department and its users. The foreign domain B, right

cloud, is managed by the controller CB and connects the database servers. the network

administrator supervises her own controller CA, and may install forwarding rules on devices

S1, S2, and S3 to deal with traffic generated by the IT department. However, network

controller CA cannot access the rules of datapaths in the domain B neither compel controller

CB to install required forwarding actions into the devices S4, S5, and S6.

S3

IT

S4
S6

S5S2

CA CB

S1

DB

Figure 6.1: Domain A may send a policy to be implemented in domain B, but there is no
guarantee that B implements the policy correctly.

A multi-domain policy must be enforced in both domains, its own and foreign domains. CA
controller may share the policy with CB controller, and expects that CB correctly implements

the policy in its devices. However, there is no certainty that delivered traffic in the external

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 116

domain B obeys any policy defined by A. Then, the administrator of domain A cannot enforce

policies related to delivering traffic to database servers, because the domain B is external.

6.1.2 Challenges in multi-domain networks

Each network controller oversees configuring switching devices on its domain. Figure 6.2

shows the required configuration installed on devices in the path of domain A that process the

flow until it reaches the next domain. Network configuration is the set of rules that implements

the policy. In this case, the configuration conducts the flow traffic from IT department to

database servers. This traffic arrives to switch S1, then is forwarded to switch S3, and finally

it is forwarded to domain B interface, switch S4. Clearly, a controller does not know and

cannot handle implemented configurations in external domains. However, administrators

want to know if their policies are enforced in external domains. Because of database servers

are located in an external network, for instance it could be hosted by another company,

the above policy redirects flows from the IT department to external servers but denies the

flows originated from sources other than IT department. Usually, companies rely on external

networks such as WANs and Internet to deliver their network flows.

S1 flowtable

Match Action
Src = IT ∧ Dst = DB 〈 Fwd S3 〉

S3 flowtable

Match Action
Src = IT ∧ Dst = DB 〈 Fwd S4 〉

Figure 6.2: Flowtables for devices in domain A. Note that this policy implementation is
closed and avoids connections from different sources of IT department.

Since the configuration of a network device is protected information, it is only accessed

by its own domain controller, and the administrator wants to check if the external controller

applies a policy on its domain. The main challenge is: how to detect if a policy is enforced

by an external domain? and how to audit the policy enforcement without revealing risky

information?

6.1.3 Policies in Programmable Networks

In the SDN environment there are some languages to describe network policies. For

example, NetCore is a high-level declarative language that describes the desired behavior

of the network but does not define the implementation of that behavior at datapath level.

With NetCore language is possible to express packet forwarding policies for SDN networks

[MFHW12]. Another declarative language is Merlin [Sou+13] but it is based on logical

predicates and regular expressions which can be solved using linear programming to determine

forwarding paths.

Verification of SDN configurations is focused on checking network properties that follow

a rule. For instance, VeryFlow [Khu+13] creates network–wide invariants and checks them

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 117

against rules. FatTire [RCGF13] writes the policies by regular expressions and validates them.

Other works try to find conflicting rules, i.e. rules that contradict earlier ones. In such a way

FortNOX [Por+12] checks new flow rules against a flow–constraint set, and authenticates the

source of rules by digital signatures. It implements the alias set rule reduction algorithm to

identify rules conflict and role-based authentication to authenticate OF applications. Another

illustration is NetPlumber [Kaz+13], which searches if a candidate rule introduces network

misconfigurations or policy violations. It executes a procedure called Header Space Analysis

(HSA) over dependency graphs to find conflicts. These approaches examine the forwarding

tables from each network device and check if they conform with the specified policy. However,

none of these approaches support the validation of policies in external domains.

Policy implementation into flow-rules

Network applications — or functionality— run on a controller and define the general

behavior or policies by installing specific configurations on each switching device. Regularly,

those programs use OpenFlow (OF) [Ope12] to communicate controllers and forwarding

devices, and install, modify, or get flow-rules that specify how a device deals with specific

traffic. A flow–rule is a pair <match,action> on the device’s flowtable. A flow–rule defines

which action is performed once a packet header matches the match pattern.

OF defines a set of messages to control the internal information on each device, and rules

used to process a flow. In summary, OF messages can add, modify, and query rules from a

device’s flowtable. Actions also include: dropping a packet (DROP), forwarding a packet to a

specific port (FWD), or report the set of installed rules (STATUS). The rule-set is closed, and

the packet is reported to the controller if its header does not match any rule.

6.2 Topology and Policy Models

This section presents the model that describes the physical topology, paths, and flows.

Also, this model describes network operations such as flows, policies, and conflicts. After the

model is set up, the relation of correspondence is used to write the model in predicate logic

and other Alloy expressions.

6.2.1 Network topology and paths

The model for network G and path p ∈ P used in this chapter is based on the definition

of § 3.1.1. Also, it includes three network invariants such as the connection to all nodes, the

self–loop restriction, and the links consistency. However, there are some differences from the

model shown in the previous chapter. Nodes in this model do not represent a datapath, a node

denotes a device port. Then, under this abstraction, node transitions represent physical links

in the topology and forwarding rules. At this point, it is appropriated to describe the transitive

closure. This characteristic is needed to tackle the reachability property when describing a

path. A binary relation R is transitive if it contains tuples in the way a → b and b→ c, and

also contains a → c. This relation is noted as R+ and contains R. Let the function links+(n) be

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 118

the set of all nodes that can be reached from n. A path has no loops if @n ∈ Np |n ∈ links+(n).

Also for convenience, we denote a path as a node sequence as 〈s, n1, n2, . . . , t〉. The wildcard

symbol (∗) is included in this model to denote any unspecified node or sequence of nodes. For

example, the path p = 〈A, ∗,C〉 is the path that starts at node A and ends at C.

6.2.2 Traffic flows

Flow is a fundamental abstraction for the model. It is similar to communication session

supported by a set of paths and device configurations. Traffic flow defines network parameters

needed to create a competent communication channel. A flow provides enough detail to

describe a set of feasible sessions, and provides a way to group and manage these sessions.

Definition 6.1 (Traffic flow). A traffic flow is a sequence of packet–header constraints

f = (f1, . . . , fn). Each term f i is a restriction over a traffic characteristic, strongly related to

filters on packet fields.

Due to flow is defined as a set of traffic constraints, this model indicates that

header–fields match those constraints. The used definition allows us to construct

flexible and composed communication flows. A term of flow involves transport-layer

protocol, source / destination at third layer, and some application fields. Also, this

model uses a set of operators over these packet fields to define the flow. For instance,

f lowa = {protocol = TCP,src ip = 192.168.5.10,dst ip = 192.168.7.10}

details a traffic flow between those IP addresses and TCP as transport protocol. Note

that this flow only defines the traffic in one way. It means that the other direction is not

included in this definition. Note that this flow definition is only associated to communication

characteristics and packet fields, but not to the set of paths that supports the flow. Paths

were considered on § 3.1.1.

6.2.3 Policy conflicts and semantics

In order to define the set of paths that implement a flow and then identify policy conflicts

and violation, we use modeling language L to describe a syntactic domain LL , a semantic

domain SL and a semantic function ML : LL → SL . We use the tradition schema as it is

shown in § 3.1.6.

As we define in § 3.1.5, a policy is a set of rules, and a rule is a tuple π = (p, f ,C, α) where

f is the target flow composed of packet–field values, p is a path that supports the flow, C

is a set of conditions, over the flow f or path p, and α is an action, regularly {permit, deny}.

Then, a policy is a set of rules that achieves a management procedure. Forwarding rule is the

action that a node executes to forward a packet into a datapath. For example, forwarding

rules are stored in the iptable application to configure the firewall in Linux kernel. Those

rules are described in terms of flows, by the previous definition.

The semantic policy is the result of the semantic function Jπ,GK which determines a

set of configurations, ω in this model. Then, ω implements the flow over a path on the

topology G and complies the policy π. As was shown in § 3.1.6, the semantic of all policies

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 119

JΠK = Ω produces the set of all network implementation. The complete network configuration

is denoted by Ω. The semantic function Jπ,GK of a policy contains the sets of paths, flow

definitions, conditions and the network G that satisfy the policy π. Obviously, the policy π is

valid in a network G, if Jπ,GK is not empty.

Essentially, a policy resolves whether allowing the flow f over the set P concludes on

a specific action α. The semantics over the policy produces a configuration network that

allows or denies the traffic flow according to the policy. For example, a network administrator

wants to apply the policy: Ana is a user with profile of IT member, who is in the subnetwork

192.168.5.*/24 (S1), is allowed to access the database at subnetwork 192.168.7.*/24 (S6) and

port 1521, and her traffic must go through the router S3.

Now the manager has to detail the policy. In order to do that she solves the following

steps:

1. path S1 S6 := <S1,*,S3,*,S6>,

2. transport protocol: = TCP,

3. port number: = 1521;

4. the conditions user = Ana, and Ana ∈ IT member;

5. finally, the policy decision: permit

In this way, finding ω means finding the configuration set and instructions that implement

the paths and the policy π. Note that IP addresses, user groups, traffic class and protocols

should be modeled as sets. On the other hand, ordered items, such as time, are modeled as

sequences to be able to compare them using ≤ and ≥ operators.

ω = impl (p : path|(S1 S6) ∧ protocol = TCP ∧ port = 1521

∧ Ana : user ∈ IT member) (6.3)

Equation (6.3) represents the policy as a conjunctive normal form predicate (CNF), and

logically solve it. Later, it allows us to check a formal solution using a model finder as Alloy

[Jac06], compare solutions, and find inconsistencies.

A policy conflict occurs when a set of policies are not implemented by any configuration

or there are inconsistencies that prevent the generation of any of them. See definition 3.8.

Essentially, if the semantics of a policy is empty, it means that there is not configuration set

that satisfies the policy. Given two valid policies π1 and π2, they are not conflicting in the

network G if Jπ1 ∪ π2,GK is not empty. That is, two policies are not conflicting if there is a set

of paths, flows, and restrictions in the network G that satisfies both policies. In contrast, we

say that two policies π1 and π2 are conflicting in G if |Jπ1 ∪ π2,GK| = ∅.

On the other hand, the semantics over the minimum set of policies without conflicts is

the minimal diagnosis. It is the littlest configuration applicable and functional from a set of

policies. See definition 3.9. Where a set of policies π ⊆ Π such that JΠ \ πK , ∅, the minimal

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 120

set π is the minimal diagnosis.

After the model is proposed, a verification engine is needed to calculate the semantic

function Jπ,GK and verify if the result set is empty, or the minimal diagnosis of that set.

Similar methodology and tools are also used for validating paths on network infrastructure

[MLCD14], and we show how to use the minimal diagnosis to detect and prevent firewall–rule

conflicts on software–defined networking [MLCD15].

6.3 Checking multi-domain policies with AudIt

AudIt is an auditing tool that uses the extension for OpenSwitch and OpenFlow protocols

and the domain–controller platform to validate network policies on a foreign domain. Our

proposal creates a language definition and transformation to audit network policies. It uses

Alloy translation to obtain a set of tuples that satisfy the policies (exactly the semantic

function). If Alloy does not find any element (the set is empty), the policy set is said invalid

or conflicting.

AudIt comprises three fundamental modules: 1) an extension to the OpenFlow protocol to

enable external auditing, 2) the AudIt interface for network devices that gathers information

about the actions performed in external domains to carry the flows of interest, and

3) a validation engine that runs into the internal network controller and detects policy

violations.

Owner DomainForeign

Inference Engine

Network
Applications

Topology

To
p

o
lo

gy

Fi
re

w
a

ll

Rules

Policy maker

Interpreter

SDN controller

DataPath protocol

Alloy

Counter
Examples

Parser

SAT
Solver

KodKod

UnSATcore

V
ir

tu
al

iz
at

io
n

Fo
rw

ar
d

in
g

AudIT
getter

AudIT
getter

Figure 6.3: AudIt architecture

AudIt architecture is depicted on figure 6.3. AudIt works as a validation protocol that

allows a controller to gather auditing information from external domains and validate the

origin policy. It has two phases: gathering network information and validation process. First,

the controller, in the origin domain, gets information from the foreign domain which send

back audit packets. Datapath of the foreign domain produces those audit packets and route

them back through the network as regular traffic. Then, when auditor packet reaches devices

in the external domain, these network devices report a subset of its own flowtable to the

controller in the origin domain. Finally, the controller in the origin domain processes the

gathered flow tables to obtain all the processing rules related to the flows of interest, and

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 121

executes the inference engine that checks if the external domain is accomplishing the security

policy.

6.3.1 AudIt: the protocol extension

OpenFlow specifies control messages between controller and forwarding devices. Control

messages can perform three important tasks: 1) modify–state by adding or deleting flow tables

in the device, 2) collect-statistics by reading counters and device statistics, and 3) managing

groups of flow tables. Controller is also able to request device’s status, where the device

reports the flowtable to the controller. AudIt uses regular controller primitives to request

information from the flowtable on devices from the external domain.

Information gathering

Once the controller enables AudIt on each network device, and the audit packet arrives,

the device invokes OFPMP TABLE FEATURES and the header match to filter a subset of the

rule table that matches the header. Thereby, it extracts a set of all the related flowtable

entries (RFE).

RFE = {e|e.src � π.src ∪ e.target � π.target} (6.4)

A Related Flowtable Entries (RFE) e is a forwarding rule that match some fields with the

policy abstraction. π is the policy and � is the match relation. For example, equation (6.4)

shows a RFE that matches two fields, source and destination addresses. The RFE set for

the example in figure 6.1 contains the IP addresses and masks in the IT–database scenario

depicted on expressions 6.1 and 6.2.

AudIt message

Figure 6.4 shows the structure of an AudIt message. It has the same flow header of the

audited traffic in order to be routed through the same path; moreover, it includes origin

controller identifier, controller authentication data, the list of fields and rules to be filtered by

the device, and other AudIt settings.

Flow header Origin Controller ID AudIt settings Controller Signature

List of fields List of policies

Figure 6.4: Structure of an AudIt packet. The list of policies are constraints over packet
fields.

6.3.2 AudIt protocol

Figure 6.5 shows the proposed protocol that allows controllers to enable AudIt protocol,

gather information from foreign devices, and check network policies.

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 122

S3

IT

S4
S6

CA CB

S1

DB

Audit agreement

Traffic policy

Audit request

Forwarding rules

Configuration set

Verification engine

Conflict report

Figure 6.5: AudIt protocol execution. Devices from domain B report packet rules to CA,
then A verifies traffic policy and generates an auditing report.

1. Involved domains subscribe an audit agreement that specifies the permission to create,

send and process AudIt packets. Then, all implicated domains update their modules so

that it can recognizes the audit request and overwrites AUDIT ENABLE variable.

2. Origin domain A shares the traffic policy over IT’s traffic with B. The network policy

described in expressions 6.1 - 6.2 which state DataBase is only accessed from IT

department. External-domain controller CB enforces the security policy in its network,

translates the policy into rules applicable to its infrastructure.

3. Origin controller creates an AudIt packet. This packet contains all packet fields from

the regular flow traffic. This procedure requests information about how the traffic is

delivered. Thus, foreign datapaths process the AudIt packet as they process regular

data flow, and use an interface to return the Related Flowtable Entries (RFE).

4. Foreign devices reply the AudIt packet with the RFE list. The list of entries from its

flowtable.

5. At the origin domain, the controller of A executes the validation engine, determines if

there is a subset of rules that violates the policy, and writes a conflict report.

6.3.3 Multi-domain Policy Checking

With the purpose of policy checking, origin controller gets the rules —forwarding rules—

related with the traffic policy that comes from the external domain. Then, it validates the

set of RFE against the policy to identify violations. Figure 6.6 shows the RFE set that CA
gathers from domain B of the example shown in figure 6.1. It is a list of rules related with

the traffic policy defined in expressions 6.1 and 6.2. Then, the validation engine determines

if this subset of rules violates the policy. Similar policy-rule validation engine is found in

NetPlumber [Kaz+13].

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 123

S4 flowtable S6 flowtable
Match Action Match Action

Src = IT ∧ Dst = DB 〈 Fwd S6 〉 Src = IT ∧ Dst = DB 〈 Fwd DB 〉

Figure 6.6: Related flowtables entries from devices in domain B.

6.3.4 Inference Engine based on SAT

The developed inference engine is able to check implementation procedures against network

policy.

Network Topology

Topology is defined as a set of nodes. Links is a closure relation with arity two over the

node set. We model device ports as nodes, and forwarding rules and datapaths as links, hence

paths are the result of the closure relation over nodes. Figure 6.7 shows how the topology is

represented in terms of device ports. A forwarding rule, the simplest instruction that redirects

a packet from one port to another, it is represented as part of the path. Under this perspective,

the configuration is part of the topology. Forwarding rules are shown in the figure as dotted

lines. Our model handles forwarding rules as soft–links. These soft-links are considered as

regular topology once the model is built.

S1

S2

S3 S4

S5

S6

DB

IT

Figure 6.7: Representation of a network topology based on ports from the original deployment.
Blocks are network devices and circles are ports. Forwarding rules are depicted as dotted lines
that connect two ports.

An optimization opportunity arises because forwarding rules create soft–links which are

interpreted as part of the topology. If the traffic policy is too much specific, the resulting

topology is a disconnected graph, even if some paths are reduced or eliminated from the

model. This abstraction of nodes as device ports, and soft-links can reduce the complexity,

and hence the evaluation time.

Traffic flow

Flow is depicted as the list of constraints over packet fields, traffic movement sense, and

other topological considerations. For example, the flowtable described in Figure 6.2 is the

interpretation of constraints, source and destination addresses, over fields of a packet header.

Note that flowtable also denotes the soft-link between two ports generated by the forwarding

rule. Nevertheless, these soft–links are part of the topology just as wired links do. In other

words, the model does not discern one from another. Communication details such as protocols

or port numbers are considered sets if these elements are part of the packet header. Since our

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 124

approach uses set theory notions, ordering is not considered in this model, because of this

it cannot have policies with arithmetic conditionals. For example, the expression if the port

number is greater than 1024, then ... is invalid in our approach.

As part of the methodology of this thesis, the inference machine is implemented on Alloy

[Jac02]. It is fed with external-domain information gathered by the audit procedure or through

services that shares the forwarding information.

6.4 Experimental results

The proposed AudIt protocol is implemented and tested using the Floodlight controller
b. Test cases are divided into two groups: information gathering, and violation inferring.

Controller runs on a server and deploys a test–network using mininet c, which operates as

external domain and implements the example topology used by Sethi in [SNM13]. From another

terminal, which operates as owner domain, AudIt interface is executed and extracts traffic

information from the controller. AudIt implementation creates a topology representation, a

policy inventory, and a configuration repository. Thereafter, the inference engine is executed.

AudIt writes, policies, configurations and topology as Alloy instructions and executes the

satisfiability solver KodKod as done in previous chapters §§ 3.4 and 5.4.

Figure 6.8: Solutions from Alloy implementation. The same implementation is evaluated
using two solvers: minisat and minisatprover with minimal unsatisfiable core.

Figure 6.8 shows two evaluations over the same topology and set of policies. FatTree

topology described in [SNM13] is used to test our approach (figure 6.9). AudIt takes less

than a second using the minisat solver, which only finds if an instance accomplishes the set of

policies. On the other hand, if the network administrator wants to determine the set of policies

violated by the external domain, she executes AudIt with the minisatprover option and could

take up to 1.5s. These measures are lower than the values reported on [SNM13], for the same

Fat Tree topology composed of 20 switches, 16 hosts, and 48 links. We test forwarding and

reachability on an Intel i5 at 3.0 GHz, with 3.74 GB of RAM. With the intention of showing

how state explosion and variable affect the performance, we test AudIt for 930K, 1.5M, 2.2M

and 2.8M of states, which are represented on primary variables shown in figure 6.8.

bhttp://www.projectfloodlight.org/floodlight/
cmininet.org

http://www.projectfloodlight.org/floodlight/
mininet.org

CHAPTER 6. VERIFICATION OF POLICIES IN MULTIPLE DOMAINS 125

000 003002 005004 007006 009008 011010 013012 015014003

412 421 422411

001

131

111

121

101

231221

201

331

311

321

301

022

011

021

211

Figure 6.9: FatTree topology for test.

6.5 Summary and Conclusions

In contrast to previous works shown in § 6.1, our work proposes to express network

policies as predicates but use a SAT solver and a model finder to evaluate predicates, find

inconsistencies and detect policy violations. AudIt uses Alloy [Jac02] to describe the network

topology, policies and network traffic. Mirzaei et al. proposed using Alloy to verify network

properties in [Mir+16]. They model internal states of a network and OpenFlow switches.

Our approach presented OpenFlow AudIt, a mechanism that checks if foreign domains are

enforcing multi-domain network policies. AudIt helps to overcome policy-checking limitations

of the SDN architecture. It comprises (1) an extension to the OpenFlow protocol to enable

external auditing, (2) an Audit protocol to gather information about rules applied to specific

network flows, and (3) a validation engine that uses flow information and determines if the

external network is enforcing specific traffic policies. Additionally, AudIt can identify policy

violations. It informs the network configuration, the rule and the flow that infringes the

policy and its identifier. In general terms, AudIt allows network administrators to gather

information from external domains and determine if network policies are enforced in multiple

domains.

However, AudIt does not have complete information about the network as opposed to

NetPlumber [Kaz+13]. Moreover, AudIt requires the deployment of our OpenFlow extensions

into the network devices in those external domains. Commercial products (i.e. switches

from companies such as IBM or HP) do not support the deployment of new extensions

without a firmware update. We expect that future experimental implementation shows the

benefits of AudIt and can be a foundation to introduce multi-domain policy validation into

the standard.

Letting external domains gather information about network flow processing may represent

a potential security risk for external controllers. In addition, controllers in external domains

may include programs that hide information or mimic policy enforcement. Future work focuses

on evaluating security risks on our experimental implementation in order to determine which

additional mechanisms are required to ensure safe auditing of multi-domain policies.

Chapter 7

Conclusion and Future Work

This chapter summarizes the main contributions of this work and presents potential directions

for future research.

7.1 Conclusions

The purpose of this thesis is to study verification of network policies in Software–Defined

Networking oriented to Policy–Based Management. For that end, this thesis proposes modeling

network policies by predicate–relational logic and uses a solver to find solutions and counter

examples for the model.

In the research process, verification of topology invariants was the initial approach.

Different techniques for verifying network policies were studied including constraint

programming and optimization techniques. However, we were focused on closed policies.

The objective was to verify if that a policy is achieved by a network configuration, but also if

the configuration is the minimum required to fulfill the policy. This condition forces the use

of formal methods to guarantee the closed policy–configuration relationship. We identified

that this problem can be solved if it is expressed as a SAT problem, we studied structures to

represent policies as predicates, and applied a solver. The main aspects considered in this

thesis are summarized in the following paragraphs.

Topology and policy model A model for topology and policy was proposed. We developed

a structure to model topologies based on predicates, constraints and axioms. In similar

way, policies are defined, with sets to describe packet–header fields and filters to model

the restrictions. Fundamental network invariants such as reachability, no–loop paths, and

connectivity were checked. Checking those characteristics reassures the effectiveness of the

proposed model.

SDN model as Interdependent Networks This thesis presented a SDN representation

as Interdependent Network. This model presents a possible network behavior after verification

failures. This model also describe graph properties and measures an SDN scenario of failures,

126

CHAPTER 7. CONCLUSION AND FUTURE WORK 127

attacks, to explain the network behavior when the data or the control plane experiment

failures if the network invariants are wrong.

Firewall and filter rules model After essential characteristics for topology were verified,

a natural step was checking rules for firewall and access control. A predicate–relational model

was designed for set of packet–header fields, set relationship and operators, and filters per

field. Then, firewall conflicts were modeled as logical relations over fields, and the model was

prepared to identify inconsistencies on SDN rules of firewall.

Datapath configuration Vs. Closed Policy Another goal was to identify if a different

network domain is enforcing a given policy. This identification was achieved by analyzing

from configuration to policies. A module was designed to grab forwarding information from

datapaths and later contrast it against the policy. This mechanism can audit network policies

on a foreign domain and reduces neglected activities of an external service provider.

Conceptual framework of verification for networking Additionally, this thesis

presented a review on mechanisms of verification applied to networks and SDN. The aim was

to offer a conceptual framework to apply verification instruments from other disciplines to

networking software. Logical formulation and solvers for verification such as SAT problem are

fit to be use in the networking software domain.

7.2 Discussion

This thesis decides using transformations to a SAT problem to deal with the quantifier

in predicate formalism. Network policies treated by this thesis, require the use of logical

quantifiers (QBF) to compose closed policies. However, there are difficulties in applying SAT

for the verification of temporal properties. For the time being, there is no efficient way to

express temporal properties on propositional logic. However, some approaches use bounds to

simulate steps in the protocol [Tre09].

The SAT problem presented in this work is a NP–complete. Hence, its runtime grows

exponentially with the number of variables in the graph. This exponential growth shows

difficulties when the problem scales. This means that, in the worst case, it is necessary to

calculate all possible combinations of variables to evaluate the satisfiability of a formula.

However, SAT solvers have progressed in recent years and have developed efficient–search

methods. Our approach uses solvers that implements variations of the DPLL algorithm

which reduce the number of variables to efficiently evaluate clauses. In the last years, new

approaches have enhanced the solver efficiency by clause elimination, branching steps after

local–exhaustive search, learned–clauses, and random restarting and assignation [MZ09].

An advantage of using model checking for networking is that it explores all possible states

until it finds an error state. Another advantage is the counter–example finder. Common

CHAPTER 7. CONCLUSION AND FUTURE WORK 128

Model–Checking tools generate counter examples which highlight the conditions where the

formula is evaluated as false and violates constraints, policies or configurations.

Efficiency improvements facilitate using SAT for industrial applications. Now, SAT solvers

are more common, and multiple tools are developed to verify and test. Their use for software

verification and debugging is the motivation to use them for this thesis. However, the challenge

is how to deal with the scale.

7.3 Contributions

The following table summarizes the contributions of this thesis which are related with the

research goal described in the Introduction chapter. This thesis presents four contributions,

each one maps a objective and complements the research project.

Table 7.1: Summary of contributions of this doctoral thesis.

Objective Contribution

To create a model in predicate–relational logic of
the network infrastructure and validate network
functionality

We create a formal lightweight model for the
network and validate of topology invariants such
as reachability, no–loops, blackholes, avoidances
and waypoints.

To represent the SDN as an interdependent
network and analyze the impact of targeted
attacks

We model a typical AS network with SDN, the
control and data planes, as an interdependent
network and evaluate the robustness. This
evaluation shows that network functionality is
lost after failures.

To represent SDN functionalities governed by
policies, such as firewall and auditing, and
evaluate the functionalities with a lightweight
formal method.

We formulate a model for firewall and auditing
functionalities to evaluate rule shadowing,
redundancy, correlation, generalization,
spuriousness and non–bypassing.

To implement a validation process for
network policies and test the solution by
a verification–case

We build a validation mechanism based
on policies, predicates and relational
transformations in the lightweight formal
method written in Alloy. Then, the model
search for inconsistencies between specification
and implementation. The generated report
shows those policies that cannot be applied on
the infrastructure.

7.4 Future work

This thesis opens new and exciting options for future research. We want to highlight the

following:

More network functions SDN and NFV are network functions that were brought to

software. This thesis focuses on just three features: network invariants, firewall rules, and

path–configuration–policy coherence. Checking correctness and verifying other network

functionalities. Failure recognition and recovery process are examples of network applications

that can be studied.

CHAPTER 7. CONCLUSION AND FUTURE WORK 129

Other failure consequences This thesis studies how failures (targeted attacks) are

propagated on an interdependent network as SDN. However, we use a ER model to model

topologies. An interesting behavior to study is modeling the network failures under other

physical topologies beyond ASs. For example, studying other topologies as datacenter, campus,

or Internet providers networks could improve the design of resilient mechanisms for SDN.

Scale?, Cloud may be the answer Formal methods are being used for checking multiple

kinds of systems, especially those related with hardware and software on critical systems. The

main concern is the scale of the model because it is a NP problem. However, this issue could

be handled by the cloud. SAT evaluation can be accomplished by parallel computing. A key

point here is the construction of a structure to store a policy and how to divide the research

space for simultaneous search.

Cost quantification Associated to parallel search of satisfiability, calculating the cost of

finding SAT solutions and counter examples would be welcomed. Evaluating complexity,

formally or empirically, is a critical issue, but estimating the economic cost, on cloud services

for example, is a realistic measure of how this kind of approaches can be implemented as

practical solutions.

Other logic representations Dynamic representation is useful, if not mandatory, especially

for security policies. Using temporal logic, for example Temporal Logic of Actions (TLA), it

is possible to model concurrent systems such a network protocol. On the other hand, modal

logic allows to model (un)frequent events such as those occurring in a IDS. Currently, we are

focused on evaluating alternatives to optimize the conflict detection performance. Mainly, we

are considering model slicing techniques where the compiler analyses subsets of the network

instead of all the elements. In addition, we are working on an implementation that uses

KodKod, the internal library used by Alloy, in order to provide support for partial instances

to optimize the process. Besides PPL, there are other network policy languages focused on

concerns such as fault tolerance and security such as FML and Merlin [Sou+13; Hin+09b].

Future work is planned to support these languages and detect conflicts among policies aimed

at dealing with different concerns. Future approaches could include temporal analysis of

policies if a policy triggers an action, and those actions activate other policies. These sequences

of actions might be observed on changes over routing rules as those analyzed by Reitblatt

[Rei+12]

Bibliography

[MLCD16] F. Maldonado-Lopez, E. Calle, and Y. Donoso. “Checking Multi-domain

Policies in SDN”. In: Int. J. of Computers, Communication and Control 11.3

(June 2016), pp. 393–405.

[MLD13] F. A. Maldonado-Lopez and Y. Donoso. “Reliable Critical Infrastructure:

Multiple Failures for Multicast using Multi-Objective Approach”. In: Int. J.

of Computers, Communication and Control 8 (2013), pp. 79–86.

[RCM16] D. F. Rueda, E. Calle, and J. L. Marzo. “Robustness Comparison of 15 Real

Telecommunication Networks: Structural and Centrality Measurements”. In:

Journal of Network and Systems Management (2016), pp. 1–21.

[MLCD15] F. A. Maldonado-Lopez, E. Calle, and Y. Donoso. “Detection and prevention

of firewall-rule conflicts on software-defined networking”. In: Reliable Networks

Design and Modeling (RNDM), 2015 7th International Workshop on. Oct.

2015, pp. 259–265.

[MLCD14] F. Maldonado-Lopez, J. Chavarriaga, and Y. Donoso. “Detecting Network

Policy Conflicts Using Alloy”. In: Abstract State Machines, Alloy, B, TLA,

VDM, and Z. Ed. by Y. Ait Ameur and K.-D. Schewe. Vol. 8477. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 314–317.

[MLD12] F. A. Maldonado-Lopez and Y. Donoso. “Multicast Session Protection Planner

- Tool to plan and deploy protection infrastructure: a SPEA approach”. In:

5 Congrés Internacional de l’Associació Catalana d’Intel·ligencia Artificial.

Ed. by D. Riaño, E. Onaindia, and M. Cazorla. Vol. 248. Frontiers in Artificial

Intelligence and Applications. 978-1-61499-138-0, 2012, pp. 191–200.

[MLCD11] F. A. Maldonado-Lopez, J. Corchuelo, and Y. Donoso. “Unavailability and

cost minimization in a parallel-series system using multi-objective evolutionary

algorithms”. In: Proceedings of the 2011 international conference on applied,

numerical and computational mathematics, and Proceedings of the 2011

international conference on Computers, digital communications and computing.

ICANCM’11/ICDCC’11. Barcelona, Spain: World Scientific, Engineering

Academy, and Society (WSEAS), 2011, pp. 33–38.

[ASH03] E. Al-Shaer and H. Hamed. “Firewall Policy Advisor for anomaly discovery

and rule editing”. In: Integrated Network Management, 2003. IFIP/IEEE

Eighth International Symposium on. 2003, pp. 17–30.

130

BIBLIOGRAPHY 131

[SLX01] G. Stone, B. Lundy, and G. Xie. “Network Policy Languages: A survey and a

new approach”. In: IEEE Network 15.1 (2001), pp. 10 –21.

[McK+08b] N. McKeown et al. “OpenFlow: enabling innovation in campus networks”. In:

SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74.

[Mar+14] J. Martins et al. “ClickOS and the Art of Network Function Virtualization”.

In: Proceedings of the 11th USENIX Conference on Networked Systems Design

and Implementation. NSDI’14. Seattle, WA: USENIX Association, 2014,

pp. 459–473.

[OGP03] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. “Why Do Internet

Services Fail, and What Can Be Done About It?” In: Proceedings of the 4th

Conference on USENIX Symposium on Internet Technologies and Systems -

Volume 4. USITS’03. Seattle, WA: USENIX Association, 2003, pp. 1–1.

[OM08] K. O’Callaghan and S. Mariappanadar. “Restoring Service after an Unplanned

IT Outage”. In: IT Professional 10.3 (2008), pp. 40–45.

[BP01] A. B. Brown and D. A. Patterson. “To Err is Human”. In: Proceedings of the

First Workshop on Evaluating and Architecting System dependabilitY (EASY

’01. 2001.

[Ker04] Z. Kerravala. As the Value of Enterprise Networks Escalates, So Does the

Need for Configuration Management. Tech. rep. Yankee Group, 2004.

[Jun] What’s Behind Network Downtime? Tech. rep. Juniper Networks, 2008.

[Woo10] A. Wool. “Trends in Firewall Configuration Errors: Measuring the Holes in

Swiss Cheese”. In: Internet Computing, IEEE 14.4 (July 2010), pp. 58–65.

[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings. New York, NY,

USA: Cambridge University Press, 1996.

[MWA02] R. Mahajan, D. Wetherall, and T. Anderson. “Understanding BGP

Misconfiguration”. In: SIGCOMM Comput. Commun. Rev. 32.4 (Aug. 2002),

pp. 3–16.

[MZ09] S. Malik and L. Zhang. “Boolean Satisfiability from Theoretical Hardness to

Practical Success”. In: Commun. ACM 52.8 (Aug. 2009), pp. 76–82.

[PW10] M. Pătraşcu and R. Williams. “On the Possibility of Faster SAT Algorithms”.

In: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete

Algorithms. SODA ’10. Austin, Texas: Society for Industrial and Applied

Mathematics, 2010, pp. 1065–1075.

[Jac03] D. Jackson. “Alloy: A logical modelling language”. In: ZB 3 (2003), p. 1.

[VN11] S. J. Vaughan-Nichols. “OpenFlow: The Next Generation of the Network?”

In: Computer 44.8 (2011), pp. 13–15.

[Koh+00] E. Kohler et al. “The click modular router”. In: ACM Trans. Comput. Syst.

18.3 (Aug. 2000), pp. 263–297.

[Fea+04] N. Feamster et al. “The case for separating routing from routers”. In:

Proceedings of the ACM SIGCOMM workshop on Future directions in network

architecture. FDNA ’04. Portland, Oregon, USA: ACM, 2004, pp. 5–12.

BIBLIOGRAPHY 132

[Cae+05] M. Caesar et al. “Design and implementation of a Routing Control Platform”.

In: Proc. Networked Systems Design and Implementation. 2005, pp. 15–28.

[Gre+05] A. Greenberg et al. “A clean slate 4D approach to network control and

management”. In: SIGCOMM Comput. Commun. Rev. 35.5 (Oct. 2005),

pp. 41–54.

[Cas+06] M. Casado et al. “SANE: A Protection Architecture for Enterprise Networks”.

In: Proceedings of the 15th conference on USENIX Security Symposium -

Volume 15. USENIX-SS’06. Vancouver, B.C., Canada: USENIX Association,

2006, pp. 1–15.

[Cas+07] M. Casado et al. “Ethane: taking control of the enterprise”. In: Proceedings of

the 2007 conference on Applications, technologies, architectures, and protocols

for computer communications. SIGCOMM ’07. Kyoto, Japan: ACM, 2007,

pp. 1–12.

[Cas+09] M. Casado et al. “Rethinking enterprise network control”. In: IEEE/ACM

Trans. Netw. 17.4 (Aug. 2009), pp. 1270–1283.

[McK+08a] N. McKeown et al. OpenFlow: Enabling Innovation in Campus Networks.

White paper. Stanford University et al., 2008.

[Ope11] Open Networking Foundation. OpenFlow Switch Specification. Tech. rep. ONF

Open Networking Foundation, 2011.

[Ope12] Open Networking Foundation. OpenFlow Switch Specification. Tech. rep. ONF

Open Networking Foundation, 2012.

[Ope13] Open Networking Foundation. OpenFlow Switch Specification. Tech. rep. ONF

Open Networking Foundation, 2013.

[Cur+11] A. R. Curtis et al. “DevoFlow: Scaling Flow Management for High-performance

Networks”. In: SIGCOMM Comput. Commun. Rev. 41.4 (Aug. 2011),

pp. 254–265.

[NSBT14] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti. “Optimizing Rules

Placement in OpenFlow Networks: Trading Routing for Better Efficiency”.

In: Proceedings of the Third Workshop on Hot Topics in Software Defined

Networking. HotSDN ’14. Chicago, Illinois, USA: ACM, 2014, pp. 127–132.

[Mal+04] D. A. Maltz et al. “Routing design in operational networks: a look from the

inside”. In: SIGCOMM Comput. Commun. Rev. 34.4 (Aug. 2004), pp. 27–40.

[Gud+08] N. Gude et al. “NOX: towards an operating system for networks”. In:

SIGCOMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110.

[Kim+12] H. Kim et al. Lithium: Event-Driven Network Control. Tech. rep. Georgia

Institute of Technology and Yale University, 2012.

[Eri13] D. Erickson. “The Beacon OpenFlow Controller”. In: HotSDN. ACM. 2013.

[Big12] Big Switch Networks. Project Floodlight. [Online]

http://www.projectfloodlight.org/floodlight. 2012.

[Kop+10] T. Koponen et al. “Onix: a distributed control platform for large-scale

production networks”. In: Proceedings of the 9th USENIX conference on

BIBLIOGRAPHY 133

Operating systems design and implementation. OSDI’10. Vancouver, BC,

Canada: USENIX Association, 2010, pp. 1–6.

[TG10] A. Tootoonchian and Y. Ganjali. “HyperFlow: A Distributed Control Plane

for OpenFlow”. In: Proceedings of the 2010 Internet Network Management

Conference on Research on Enterprise Networking. INM/WREN’10. San Jose,

CA: USENIX Association, 2010, pp. 3–3.

[CCN11] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: Balancing Fairness, Latency and

Throughput in the OpenFlow Control Plane. Tech. rep. Rice University, 2011.

[LPSY14] B. Lee, S. H. Park, J. Shin, and S. Yang. “IRIS: The Openflow-based Recursive

SDN controller”. In: Advanced Communication Technology (ICACT), 2014

16th International Conference on. Feb. 2014, pp. 1227–1231.

[LHM10] B. Lantz, B. Heller, and N. McKeown. “A Network in a Laptop: Rapid

Prototyping for Software-defined Networks”. In: Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks. Hotnets-IX. Monterey,

California: ACM, 2010, 19:1–19:6.

[Fos+11] N. Foster et al. “Frenetic: a network programming language”. In: SIGPLAN

Not. 46.9 (Sept. 2011), pp. 279–291.

[MFHW12] C. Monsanto, N. Foster, R. Harrison, and D. Walker. “A Compiler and

Run-time System for Network Programming Languages”. In: SIGPLAN Not.

47.1 (Jan. 2012), pp. 217–230.

[Mon+13] C. Monsanto et al. “Composing Software Defined Networks”. In: USENIX

Symposium on Networked Systems Design and Implementation (NSDI). 2013,

pp. 1–14.

[Sou+13] R. Soulé et al. “Managing the Network with Merlin”. In: ACM SIGCOMM

Workshop on Hot Topics in Networks (HotNets’13). 2013.

[And+14] C. J. Anderson et al. “NetKAT: Semantic Foundations for Networks”. In:

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’14. San Diego, California, USA: ACM,

2014, pp. 113–126.

[Voe+13] A. Voellmy et al. “Maple: Simplifying SDN Programming Using Algorithmic

Policies”. In: SIGCOMM Comput. Commun. Rev. 43.4 (Aug. 2013), pp. 87–98.

[NFSK14] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi. “Tierless

Programming and Reasoning for Software-Defined Networks”. In: 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

14). Seattle, WA: USENIX Association, Apr. 2014, pp. 519–531.

[WLSF11] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. “OFRewind:

Enabling Record and Replay Troubleshooting for Networks”. In: Proceedings

of the 2011 USENIX conference on USENIX annual technical conference.

USENIXATC’11. Portland, OR: USENIX Association, 2011, pp. 29–29.

[Han+12] N. Handigol et al. “Where is the debugger for my software-defined network?”

In: Proceedings of the first workshop on Hot topics in software defined networks

- HotSDN ’12. New York, New York, USA: ACM Press, Aug. 2012, p. 55.

BIBLIOGRAPHY 134

[DSB14] R. Durairajan, J. Sommers, and P. Barford. “Controller-agnostic SDN

Debugging”. In: Proceedings of the 10th ACM International on Conference on

Emerging Networking Experiments and Technologies. CoNEXT ’14. Sydney,

Australia: ACM, 2014, pp. 227–234.

[Fos+13] N. Foster et al. “Languages for software-defined networks”. In:

Communications Magazine, IEEE 51.2 (2013), pp. 128–134.

[Han+14] N. Handigol et al. “I Know What Your Packet Did Last Hop: Using Packet

Histories to Troubleshoot Networks”. In: 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14). Seattle, WA:

USENIX Association, Apr. 2014, pp. 71–85.

[Das+11] S. Das et al. “Application-aware aggregation and traffic engineering in

a converged packet-circuit network”. In: Optical Fiber Communication

Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber

Optic Engineers Conference. 2011, pp. 1–3.

[WNS12] G. Wang, T. E. Ng, and A. Shaikh. “Programming Your Network at Run-time

for Big Data Applications”. In: Proceedings of the First Workshop on Hot

Topics in Software Defined Networks. HotSDN ’12. Helsinki, Finland: ACM,

2012, pp. 103–108.

[WSY11] K. C. Webb, A. C. Snoeren, and K. Yocum. “Topology Switching for Data

Center Networks”. In: Proceedings of the 11th USENIX Conference on Hot

Topics in Management of Internet, Cloud, and Enterprise Networks and

Services. Hot-ICE’11. Boston, MA: USENIX Association, 2011, pp. 14–14.

[She+09] R. Sherwood et al. “Flowvisor: A network virtualization layer”. In: OpenFlow

Switch Consortium, Tech. Rep (2009).

[Kop+14] T. Koponen et al. “Network Virtualization in Multi-tenant Datacenters”.

In: Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation. NSDI’14. Seattle, WA: USENIX Association,

2014, pp. 203–216.

[WBR11] R. Wang, D. Butnariu, and J. Rexford. “OpenFlow-based Server Load

Balancing Gone Wild”. In: Proceedings of the 11th USENIX Conference

on Hot Topics in Management of Internet, Cloud, and Enterprise Networks

and Services. Hot-ICE’11. Boston, MA: USENIX Association, 2011, pp. 12–12.

[AF+10] M. Al-Fares et al. “Hedera: dynamic flow scheduling for data center networks”.

In: Proceedings of the 7th USENIX conference on Networked systems design

and implementation. NSDI’10. San Jose, California: USENIX Association,

2010, pp. 19–19.

[AKL13] S. Agarwal, M. Kodialam, and T. Lakshman. “Traffic engineering in

software defined networks”. In: INFOCOM, 2013 Proceedings IEEE. 2013,

pp. 2211–2219.

[Rot+12] C. E. Rothenberg et al. “Revisiting Routing Control Platforms with the Eyes

and Muscles of Software-defined Networking”. In: Proceedings of the First

BIBLIOGRAPHY 135

Workshop on Hot Topics in Software Defined Networks. HotSDN ’12. Helsinki,

Finland: ACM, 2012, pp. 13–18.

[SSZMF12] L. Suresh, J. Schulz-Zander, R. Merz, and A. Feldmann. “Demo: programming

enterprise WLANs with odin”. In: Proceedings of the ACM SIGCOMM

2012 conference on Applications, technologies, architectures, and protocols

for computer communication. SIGCOMM ’12. Helsinki, Finland: ACM, 2012,

pp. 279–280.

[FDFE14] J. François, L. Dolberg, O. Festor, and T. Engel. “Network Security Through

Software Defined Networking: A Survey”. In: Proceedings of the Conference on

Principles, Systems and Applications of IP Telecommunications. IPTComm

’14. Chicago, Illinois: ACM, 2014, 6:1–6:8.

[AX15] I. Alsmadi and D. Xu. “Security of Software Defined Networks: A survey”. In:

Computers & Security (2015).

[Shi+13] S. Shin et al. “FRESCO: Modular Composable Security Services for

Software-Defined Networks”. In: NDSS. The Internet Society, 2013, pp. 1–16.

[MKK11] S. A. Mehdi, J. Khalid, and S. A. Khayam. “Revisiting traffic anomaly

detection using software defined networking”. In: Proceedings of the 14th

international conference on Recent Advances in Intrusion Detection. RAID’11.

Menlo Park, CA: Springer-Verlag, 2011, pp. 161–180.

[Kem+12] J. Kempf et al. “Scalable Fault Management for OpenFlow”. In:

Communications (ICC), 2012 IEEE International Conference on. 2012,

pp. 6606–6610.

[Wic+15] J. A. Wickboldt et al. “Software-defined networking: management requirements

and challenges”. In: IEEE Communications Magazine 53.1 (2015), pp. 278–285.

[Dix+13] A. Dixit et al. “Towards an Elastic Distributed SDN Controller”. In:

Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking. HotSDN ’13. Hong Kong, China: ACM, 2013,

pp. 7–12.

[HSM12] B. Heller, R. Sherwood, and N. McKeown. “The controller placement problem”.

In: Proceedings of the first workshop on Hot topics in software defined networks.

HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 7–12.

[WH13] M. Wasserman and S. Hartman. Security Analysis of the Open Networking

Foundation (ONF) OpenFlow Switch Specification. Tech. rep. IETF, 2013.

[Feh13] S. Fehr. “Flexible networks for better security”. In: Network Security 2013.3

(2013), pp. 17 –20.

[LSK09] D. Liginlal, I. Sim, and L. Khansa. “How significant is human error as a

cause of privacy breaches? An empirical study and a framework for error

management”. In: Computers & Security 28 (2009), pp. 215 –228.

[QH15] J. Qadir and O. Hasan. “Applying Formal Methods to Networking: Theory,

Techniques, and Applications”. In: Communications Surveys Tutorials, IEEE

17.1 (2015), pp. 256–291.

BIBLIOGRAPHY 136

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.

Ed. by Springer. Springer, 1999.

[CE82] E. M. Clarke and E. A. Emerson. “Logics of Programs: Workshop,

Yorktown Heights, New York, May 1981”. In: ed. by D. Kozen. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1982. Chap. Design and synthesis of

synchronization skeletons using branching time temporal logic, pp. 52–71.

[Cla08] E. M. Clarke. “25 Years of Model Checking: History, Achievements,

Perspectives”. In: ed. by O. Grumberg and H. Veith. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008. Chap. The Birth of Model Checking,

pp. 1–26.

[ASA11] E. Al-Shaer and M. Alsaleh. “ConfigChecker: A tool for comprehensive

security configuration analytics”. In: Configuration Analytics and Automation

(SAFECONFIG), 2011 4th Symposium on. 2011, pp. 1–2.

[Rei+12] M. Reitblatt et al. “Abstractions for network update”. In: Proceedings of the

ACM SIGCOMM 2012 conference on Applications, technologies, architectures,

and protocols for computer communication. SIGCOMM ’12. Helsinki, Finland:

ACM, 2012, pp. 323–334.

[KKPB07] M. Karsten, S. Keshav, S. Prasad, and M. Beg. “An Axiomatic Basis for

Communication”. In: Proceedings of the 2007 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications.

SIGCOMM ’07. Kyoto, Japan: ACM, 2007, pp. 217–228.

[Jac02] D. Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM

Trans. Softw. Eng. Methodol. 11.2 (Apr. 2002), pp. 256–290.

[KT06] J. Kleinberg and É. Tardos. Algorithm Design. Alternative Etext Formats.

Pearson/Addison-Wesley, 2006.

[GPFW96] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. “Algorithms for the

Satisfiability (SAT) Problem: A Survey”. In: DIMACS Series in Discrete

Mathematics and Theoretical Computer Science. American Mathematical

Society, 1996, pp. 19–152.

[Gan] “SAT-Based Scalable Formal Verification Solutions”. In: Boston, MA: Springer

US, 2007. Chap. SAT-Based Verification Framework, pp. 247–261.

[Mos+01] M. W. Moskewicz et al. “Chaff: Engineering an Efficient SAT Solver”. In:

Proceedings of the 38th Annual Design Automation Conference. DAC ’01. Las

Vegas, Nevada, USA: ACM, 2001, pp. 530–535.

[SE05] N. Sörensson and N. Een. MiniSat v1.13 - A SAT solver with conflict-clause

minimization. Tech. rep. Chalmers University of Technology, Sweden, 2005.

[DM06] B. Dutertre and L. de Moura. Integrating Simplex with DPPL(T). Tech. rep.

SRI-CSL-06-01. Computer Science Laboratory, SRI International, May 2006.

[Bry86] R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.

In: IEEE Transactions on Computers C-35.8 (1986), pp. 677–691.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Tools and Algorithms for

the Construction and Analysis of Systems: 5th International Conference,

BIBLIOGRAPHY 137

TACAS’99 Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS’99 Amsterdam, The Netherlands, March 22–28,

1999 Proceedings”. In: ed. by W. R. Cleaveland. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1999. Chap. Symbolic Model Checking without BDDs,

pp. 193–207.

[BEL75] R. S. Boyer, B. Elspas, and K. N. Levitt. “SELECT-a formal system for

testing and debugging programs by symbolic execution”. In: ACM SIGPLAN

Notices - International Conference on Reliable Software (1975).

[BUZC11] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. “Parallel Symbolic Execution

for Automated Real-world Software Testing”. In: Proceedings of the Sixth

Conference on Computer Systems. EuroSys ’11. Salzburg, Austria: ACM, 2011,

pp. 183–198.

[McG12] R. McGeer. “Verification of switching network properties using satisfiability”.

In: Communications (ICC), 2012 IEEE International Conference on. 2012,

pp. 6638–6644.

[Hol97] G. J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on

Software Engineering 23.5 (1997), pp. 279–295.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. “Computer Aided

Verification: 11th International Conference, CAV’99 Trento, Italy, July 6–10,

1999 Proceedings”. In: ed. by N. Halbwachs and D. Peled. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1999. Chap. NuSMV: A New Symbolic Model

Verifier, pp. 495–499.

[End75] A. Endres. “An Analysis of Errors and Their Causes in System Programs”.

In: SIGPLAN Not. 10.6 (Apr. 1975), pp. 327–336.

[Can+12] M. Canini et al. “A NICE way to test OpenFlow applications”. In:

Proceedings of the 9th USENIX conference on Networked Systems Design

and Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012,

pp. 10–10.

[ZKVM14] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. “Automatic Test

Packet Generation”. In: IEEE/ACM Transactions on Networking 22.2 (Apr.

2014), pp. 554–566.

[FB05] N. Feamster and H. Balakrishnan. “Detecting BGP configuration faults with

static analysis”. In: Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation - Volume 2. NSDI’05. Berkeley,

CA, USA: USENIX Association, 2005, pp. 43–56.

[YCZ10] Z. Yin, M. Caesar, and Y. Zhou. “Towards Understanding Bugs in Open

Source Router Software”. In: SIGCOMM Comput. Commun. Rev. 40.3 (June

2010), pp. 34–40.

[Xie+05] G. Xie et al. “On static reachability analysis of IP networks”. In:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings IEEE. Vol. 3. 2005, 2170–2183 vol. 3.

BIBLIOGRAPHY 138

[XA07] Y. Xie and A. Aiken. “Saturn: A Scalable Framework for Error Detection

Using Boolean Satisfiability”. In: ACM Trans. Program. Lang. Syst. 29.3 (May

2007).

[GS05] T. G. Griffin and J. L. Sobrinho. “Metarouting”. In: Proceedings of the 2005

Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications. SIGCOMM ’05. Philadelphia, Pennsylvania, USA:

ACM, 2005, pp. 1–12.

[Nar05] S. Narain. “Network Configuration Management via Model Finding”.

In: Proceedings of the 19th Conference on Large Installation System

Administration Conference - Volume 19. LISA ’05. San Diego, CA: USENIX

Association, 2005, pp. 15–15.

[Mai+11] H. Mai et al. “Debugging the data plane with Anteater”. In: SIGCOMM

Comput. Commun. Rev. 41.4 (Aug. 2011), pp. 290–301.

[KVM12] P. Kazemian, G. Varghese, and N. McKeown. “Header Space Analysis:

Static Checking for Networks”. In: 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX, 2012,

pp. 113–126.

[NHW12] S. Natarajan, X. Huang, and T. Wolf. “Efficient conflict detection in flow-based

virtualized networks”. In: Computing, Networking and Communications

(ICNC), 2012 International Conference on. 2012, pp. 690–696.

[FS14] S. K. Fayaz and V. Sekar. “Testing Stateful and Dynamic Data Planes

with FlowTest”. In: Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking. HotSDN ’14. Chicago, Illinois, USA: ACM,

2014, pp. 79–84.

[SNM13] D. Sethi, S. Narayana, and S. Malik. “Abstractions for model checking SDN

controllers”. In: Formal Methods in Computer-Aided Design (FMCAD), 2013.

2013, pp. 145–148.

[GRF13] A. Guha, M. Reitblatt, and N. Foster. “Machine-verified Network Controllers”.

In: SIGPLAN Not. 48.6 (June 2013), pp. 483–494.

[Mir+16] S. Mirzaei et al. “Using Alloy to Formally Model and Reason About an

OpenFlow Network Switch”. In: CoRR abs/1604.00060 (2016).

[Nar13] S. Narain. “ConfigAssure: A Science of Configuration”. In: Military

Communications Conference, MILCOM 2013 - 2013 IEEE. 2013,

pp. 1497–1498.

[Kim+15] H. Kim et al. “Kinetic: Verifiable Dynamic Network Control”. In: 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15).

Oakland, CA: USENIX Association, May 2015, pp. 59–72.

[Kuz+12] M. Kuzniar et al. “A SOFT way for openflow switch interoperability

testing”. In: Proceedings of the 8th international conference on Emerging

networking experiments and technologies. CoNEXT ’12. Nice, France: ACM,

2012, pp. 265–276.

BIBLIOGRAPHY 139

[KZCG12] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. “VeriFlow: verifying

network-wide invariants in real time”. In: Proceedings of the first workshop

on Hot topics in software defined networks. HotSDN ’12. Helsinki, Finland:

ACM, 2012, pp. 49–54.

[Khu+13] A. Khurshid et al. “VeriFlow: Verifying Network-Wide Invariants in Real

Time”. In: 10th USENIX Symposium on Networked Systems Design and

Implementation (NSDI). 2013.

[Kaz+13] P. Kazemanian et al. “Real time Network Policy Checking Using Header Space

Analysis”. In: Proceeding on Network System Design and Implementation

(NSDI). USENIX Association, 2013.

[Hin+09b] T. L. Hinrichs et al. “Practical Declarative Network Management”. In:

Proceedings of the 1st ACM Workshop on Research on Enterprise Networking.

WREN ’09. Barcelona, Spain: ACM, 2009, pp. 1–10.

[LBGV13] N. Lopes, N. Bjorner, P. Godefroid, and G. Varghese. Network Verification in

the Light of Program Verification. Tech. rep. 2013.

[YL16] H. Yang and S. S. Lam. “Real-Time Verification of Network Properties Using

Atomic Predicates”. In: IEEE/ACM Transactions on Networking 24.2 (2016),

pp. 887–900.

[Woo04] A. Wool. “A quantitative study of firewall configuration errors”. In: Computer

37.6 (2004), pp. 62–67.

[ASH04b] E. Al-Shaer and H. Hamed. “Modeling and Management of Firewall Policies”.

In: Network and Service Management, IEEE Transactions on 1.1 (2004),

pp. 2–10.

[ASH04a] E. Al-Shaer and H. Hamed. “Discovery of policy anomalies in distributed

firewalls”. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies. Vol. 4. 2004, 2605–2616 vol.4.

[Yua+06] L. Yuan et al. “FIREMAN: a toolkit for firewall modeling and analysis”. In:

Security and Privacy, 2006 IEEE Symposium on. 2006, 15 pp.–213.

[GL07] M. G. Gouda and A. X. Liu. “Structured firewall design”. In: Computer

Networks 51.4 (2007), pp. 1106 –1120.

[Liu08] A. Liu. “Formal Verification of Firewall Policies”. In: Communications, 2008.

ICC ’08. IEEE International Conference on. 2008, pp. 1494–1498.

[JS09] A. Jeffrey and T. Samak. “Model Checking Firewall Policy Configurations”.

In: Policies for Distributed Systems and Networks, 2009. POLICY 2009. IEEE

International Symposium on. 2009, pp. 60–67.

[ZMMN12] S. Zhang, A. Mahmoud, S. Malik, and S. Narain. “Verification and synthesis

of firewalls using SAT and QBF”. In: Network Protocols (ICNP), 2012 20th

IEEE International Conference on. 2012, pp. 1–6.

[Son+13] S. Son et al. “Model checking invariant security properties in OpenFlow”. In:

Communications (ICC), 2013 IEEE International Conference on. June 2013,

pp. 1974–1979.

BIBLIOGRAPHY 140

[ASMEAE09] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi. “Network

configuration in a box: towards end-to-end verification of network reachability

and security”. In: Network Protocols, 2009. ICNP 2009. 17th IEEE

International Conference on. 2009, pp. 123–132.

[HHAZ14] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. “FLOWGUARD: Building Robust

Firewalls for Software-defined Networks”. In: Proceedings of the Third

Workshop on Hot Topics in Software Defined Networking. HotSDN ’14.

Chicago, Illinois, USA: ACM, 2014, pp. 97–102.

[Ste+99] M. Stevens et al. Policy Framework. Tech. rep. Internet-Draft. IETF, 1999.

[Wes+01] A. Westerinen et al. Terminology for Policy-Based Management. Tech. rep.

RFC 3198. IETF, 2001.

[BA07] R. Boutaba and I. Aib. “Policy-based Management: A Historical Perspective”.

In: Journal of Network and Systems Management 15.4 (2007), pp. 447–480.

[Str03] J. Strassner. Policy-Based Network Management: Solutions for the Next

Generation (The Morgan Kaufmann Series in Networking). San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[Dur+00] D. Durham et al. The COPS (Common Open Policy Service) Protocol. Tech.

rep. RFC 2748. IETF, 2000.

[Cla89] D. Clark. Policy Routing in Internet Protocols. Tech. rep. RFC 1102. IETF,

1989.

[LBN99] J. Lobo, B. Bhatia, and S. Naqvi. “A policy description language”. In: Proc.

of AAAI. 1999, pp. 291–298.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. “Policies for Distributed

Systems and Networks: International Workshop, POLICY 2001 Bristol, UK,

January 29–31, 2001 Proceedings”. In: ed. by M. Sloman, E. C. Lupu, and

J. Lobo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. Chap. The

Ponder Policy Specification Language, pp. 18–38.

[GM03] S. Godik and T. Moses. eXtensible Access Control Markup Language (XACML).

Tech. rep. OASIS, 2003.

[Loo+06] B. T. Loo et al. “Declarative Networking: Language, Execution and

Optimization”. In: Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data. SIGMOD ’06. Chicago, IL, USA: ACM,

2006, pp. 97–108.

[Guv03] A. Guven. “Speeding Up a Path-Based Policy Language Compiler”. MA thesis.

Monterrey, California: Naval Postgraduate School, 2003.

[AWY08] R. Alimi, Y. Wang, and Y. R. Yang. “Shadow Configuration As a Network

Management Primitive”. In: SIGCOMM Comput. Commun. Rev. 38.4 (Aug.

2008), pp. 111–122.

[CLN03] J. Chomicki, J. Lobo, and S. Naqvi. “Conflict resolution using logic

programming”. In: Knowledge and Data Engineering, IEEE Transactions

on 15.1 (2003), pp. 244–249.

BIBLIOGRAPHY 141

[Mog+13] J. C. Mogul et al. “Corybantic: Towards the Modular Composition of SDN

Control Programs”. In: Proceedings of the Twelfth ACM Workshop on Hot

Topics in Networks. HotNets-XII. College Park, Maryland: ACM, 2013, 1:1–1:7.

[Sun+14] P. Sun et al. “A Network-state Management Service”. In: SIGCOMM Comput.

Commun. Rev. 44.4 (Aug. 2014), pp. 563–574.

[AuY+14] A. AuYoung et al. “Democratic Resolution of Resource Conflicts Between

SDN Control Programs”. In: Proceedings of the 10th ACM International on

Conference on Emerging Networking Experiments and Technologies. CoNEXT

’14. Sydney, Australia: ACM, 2014, pp. 391–402.

[MDTW14] R. Majumdar, S. Deep Tetali, and Z. Wang. “Kuai: A model checker for

software-defined networks”. In: Formal Methods in Computer-Aided Design

(FMCAD), 2014. 2014, pp. 163–170.

[Dil96] D. L. Dill. “The Murphi Verification System”. In: Proceedings of the 8th

International Conference on Computer Aided Verification. CAV ’96. London,

UK, UK: Springer-Verlag, 1996, pp. 390–393.

[KCZ13] P. Kazemian, M Change, and H Zheng. “Real Time Network Policy Checking

Using Header Space Analysis”. In: USENIX Symposium on Networked Systems

Design and Implementation (2013), pp. 1–13.

[Hin+09a] T. L. Hinrichs et al. Expressing and Enforcing Flow-Based Network Security

Policies. Tech. rep. University of Chicago, 2009.

[BRA10] J. R. Ballard, I. Rae, and A. Akella. “Extensible and scalable network

monitoring using OpenSAFE”. In: Proceedings of the 2010 internet

network management conference on Research on enterprise networking.

INM/WREN’10. San Jose, CA: USENIX Association, 2010, pp. 8 –11.

[RFRW11] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. “Consistent updates for

software-defined networks: change you can believe in!” In: Proceedings of the

10th ACM Workshop on Hot Topics in Networks. HotNets-X. Cambridge,

Massachusetts: ACM, 2011, pp. 71–76.

[KRRW12] N. Kang, J. Reich, J. Rexford, and D. Walker. “Policy transformation in

software defined networks”. In: Proceedings of the ACM SIGCOMM 2012

conference on Applications, technologies, architectures, and protocols for

computer communication. SIGCOMM ’12. Helsinki, Finland: ACM, 2012,

pp. 309–310.

[YTG13] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. “On scalability of

software-defined networking”. In: Communications Magazine, IEEE 51.2

(2013), pp. 136–141.

[Qaz+13] Z. A. Qazi et al. “SIMPLE-fying Middlebox Policy Enforcement Using SDN”.

In: SIGCOMM Comput. Commun. Rev. 43.4 (Aug. 2013), pp. 27–38.

[VKF12] A. Voellmy, H. Kim, and N. Feamster. “Procera: a language for high-level

reactive network control”. In: Proceedings of the first workshop on Hot topics

in software defined networks. HotSDN ’12. Helsinki, Finland: ACM, 2012,

pp. 43–48.

BIBLIOGRAPHY 142

[KF13] H. Kim and N. Feamster. “Improving network management with software

defined networking”. In: Communications Magazine, IEEE 51.2 (2013),

pp. 114–119.

[NRFC09] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. “Resonance: Dynamic

Access Control for Enterprise Networks”. In: Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking. WREN ’09. Barcelona,

Spain: ACM, 2009, pp. 11–18.

[Fea+10] N. Feamster et al. “Decoupling policy from configuration in campus and

enterprise networks”. In: Local and Metropolitan Area Networks (LANMAN),

2010 17th IEEE Workshop on. 2010, pp. 1–6.

[ASAH10] E. Al-Shaer and S. Al-Haj. “FlowChecker: configuration analysis and

verification of federated openflow infrastructures”. In: Proceedings of the

3rd ACM workshop on Assurable and usable security configuration. SafeConfig

’10. Chicago, Illinois, USA: ACM, 2010, pp. 37–44.

[Kan+13] M. Kang et al. “Formal Modeling and Verification of SDN-OpenFlow”. In:

Sixth IEEE International Conference on Software Testing, Verification and

Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013. 2013,

pp. 481–482.

[SPNR13] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. “SymNet: Static

Checking for Stateful Networks”. In: Proceedings of the 2013 Workshop on Hot

Topics in Middleboxes and Network Function Virtualization. HotMiddlebox

’13. Santa Barbara, California, USA: ACM, 2013, pp. 31–36.

[Lew09] T. G. Lewis. Network Science: Theory and Practice. John Wiley & Sons, Inc.,

2009.

[Die10] R. Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2010.

[HR04] D. Harel and B. Rumpe. “Meaningful Modeling: What’s the Semantics of

“Semantics”?” In: Computer 37.10 (2004), pp. 64–72.

[Jac06] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT

Press, 2006.

[TCJ08] E. Torlak, F. S.-H. Chang, and D. Jackson. “FM 2008: Formal Methods:

15th International Symposium on Formal Methods, Turku, Finland, May

26-30, 2008 Proceedings”. In: ed. by J. Cuellar, T. Maibaum, and K. Sere.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. Chap. Finding Minimal

Unsatisfiable Cores of Declarative Specifications, pp. 326–341.

[Sto00] G. Stone. “A Path-Based Network Policy Language”. PhD thesis. Monterrey,

California: Naval Postgraduate School, 2000.

[PSS11] D. Power, M. Slaymaker, and A. Simpson. “Automatic Conformance Checking

of Role-Based Access Control Policies via Alloy”. In: Engineering Secure

Software and Systems: Third International Symposium, ESSoS 2011, Madrid,

Spain, February 9-10, 2011. Proceedings. Ed. by Ú. Erlingsson, R. Wieringa,

and N. Zannone. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 15–28.

BIBLIOGRAPHY 143

[KD12] K. Kant and C. Deccio. “Handbook on Securing Cyber-Physical Critical

Infrastructure”. In: ed. by S. Das, K. Kant, and N. Zhang. Morgan Kaufmann,

2012. Chap. Security and Robustness in the Internet Infrastructure.

[APS14] M. Avalle, A. Pironti, and R. Sisto. “Formal verification of security protocol

implementations: a survey”. In: Formal Aspects of Computing 26.1 (2014),

pp. 99–123.

[AS14] E. Al-Shaer. “Classification and Discovery of Firewalls Policy Anomalies”.

In: Automated Firewall Analytics. Springer International Publishing, 2014,

pp. 1–24.

[RCGF13] M. Reitblatt, M. Canini, A. Guha, and N. Foster. “FatTire: declarative fault

tolerance for software-defined networks”. In: Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking. HotSDN

’13. Hong Kong, China: ACM, 2013, pp. 109–114.

[Por+12] P. Porras et al. “A security enforcement kernel for OpenFlow networks”. In:

Proceedings of the first workshop on Hot topics in software defined networks.

HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 121–126.

[SH15] S. Scott-Hayward. “Design and deployment of secure, robust, and resilient SDN

controllers”. In: Network Softwarization (NetSoft), 2015 1st IEEE Conference

on. 2015, pp. 1–5.

[EK13] W. Ellens and R. E. Kooij. “Graph measures and network robustness”. In:

CoRR abs/1311.5064 (2013).

[Seg11] J. Segovia. “Robustness against Large-Scale Failures in Communications

Networks”. PhD thesis. University of Girona, 2011.

[LHKA12] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. “F10: A

Fault-Tolerant Engineered Network”. In: USENIX NSDI 2013. 2012,

pp. 399–412.

[Cal+10] E. Calle et al. “A multiple failure propagation model in GMPLS-based

networks”. In: Network, IEEE 24.6 (2010), pp. 17–22.

[CLM04] P. Crucitti, V. Latora, and M. Marchiori. “Model for cascading failures in

complex networks”. In: Phys. Rev. E 69 (4 2004), p. 045104.

[SQZ14] D. H. Shin, D. Qian, and J. Zhang. “Cascading effects in interdependent

networks”. In: IEEE Network 28.4 (June 2014), pp. 82–87.

[Ste+11a] J. P. G. Sterbenz et al. “Modelling and analysis of network resilience”. In: 2011

Third International Conference on Communication Systems and Networks

(COMSNETS 2011). 2011, pp. 1–10.

[SSYS10] A. Sydney, C. Scoglio, M. Youssef, and P. Schumm. “Characterising the

Robustness of Complex Networks”. In: Int. J. Internet Technol. Secur. Syst.

2.3/4 (Dec. 2010), pp. 291–320.

[Sch+11] C. M. Schneider et al. “Mitigation of malicious attacks on networks”. In:

Proceedings of the National Academy of Sciences 108.10 (2011), pp. 3838–3841.

BIBLIOGRAPHY 144

[BRSBJ15] I. Bachmann, P. Reyes, A. Silva, and J. Bustos-Jimenez. “Miuz: measuring

the impact of disconnecting a node”. In: 2015 34th International Conference

of the Chilean Computer Science Society (SCCC). 2015, pp. 1–6.

[HKYH02] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. “Attack vulnerability of

complex networks”. In: Phys. Rev. E 65 (5 2002), p. 056109.

[SSSK08] A. Sydney, C. M. Scoglio, P. Schumm, and R. E. Kooij. “ELASTICITY:

Topological Characterization of Robustness in Complex Networks”. In: CoRR

(2008).

[YKS11] M. Youssef, R. Kooij, and C. Scoglio. “Viral conductance: Quantifying the

robustness of networks with respect to spread of epidemics”. In: Journal of

Computational Science 2.3 (2011), pp. 286 –298.

[Mie12] P. V. Mieghem. “The viral conductance of a network”. In: Computer

Communications 35.12 (2012), pp. 1494 –1506.

[Ste+11b] J. Sterbenz et al. “Evaluation of network resilience, survivability,

and disruption tolerance: analysis, topology generation, simulation, and

experimentation”. In: Telecommunication Systems (2011), pp. 1–32.

[Wu95] T.-H. Wu. “Emerging technologies for fiber network survivability”. In:

Communications Magazine, IEEE 33.2 (1995), pp. 58 –59, 62–74.

[Tor92] D. Torrieri. “Algorithms for finding an optimal set of short disjoint paths in a

communication network”. In: Communications, IEEE Transactions on 40.11

(1992), pp. 1698–1702.

[HH07] A. Haider and R. Harris. “Recovery techniques in next generation networks”.

In: Communications Surveys Tutorials, IEEE 9.3 (2007), pp. 2–17.

[JOK03] B. G. Jozsa, D. Orincsay, and A. Kern. “Surviving multiple network failures

using shared backup path protection”. In: Computers and Communication,

2003. (ISCC 2003). Proceedings. Eighth IEEE International Symposium on.

2003, 1333–1340 vol.2.

[Sch03] D. Schupke. “Multiple failure survivability in WDM networks with p-cycles”.

In: Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003

International Symposium on. Vol. 3. 2003, III–866–III–869 vol.3.

[KAJ09] M. Kiaei, C. Assi, and B. Jaumard. “A Survey on the p-Cycle Protection

Method”. In: Communications Surveys Tutorials, IEEE 11.3 (Apr. 2009),

pp. 53 –70.

[LCCM10] Z. Liang, W. A. Chaovalitwongse, M. Cha, and S. B. Moon. “Redundant

multicast routing in multilayer networks with shared risk resource groups:

Complexity, models and algorithms”. In: Computers & Operations Research

37.10 (2010), pp. 1731 –1739.

[Pat+02] D. Patterson et al. Recovery Oriented Computing (ROC): Motivation,

Definition, Techniques, tech. rep. Berkeley, CA, USA: University of California

at Berkeley, 2002.

BIBLIOGRAPHY 145

[PSB11] E. Palkopoulou, D. Schupke, and T. Bauschert. “Shared backup router

resources: realizing virtualized network resilience”. In: Communications

Magazine, IEEE 49.5 (2011), pp. 140–146.

[RSM03] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee. “Survivable WDM

mesh networks”. In: Lightwave Technology, Journal of 21.4 (Apr. 2003),

pp. 870 –883.

[Sha+11] S. Sharma et al. “Enabling fast failure recovery in OpenFlow networks”. In:

Design of Reliable Communication Networks (DRCN), 2011 8th International

Workshop on the. 2011, pp. 164–171.

[Ku13] M. Kuźniar et al. “Automatic failure recovery for software-defined networks”.

In: Proceedings of the second ACM SIGCOMM workshop on Hot topics in

software defined networking. HotSDN ’13. Hong Kong, China: ACM, 2013,

pp. 159–160.

[PBH10] R. Parshani, S. V. Buldyrev, and S. Havlin. “Interdependent Networks:

Reducing the Coupling Strength Leads to a Change from a First to Second

Order Percolation Transition”. In: Physical Review Letters (2010).

[Bul+10] S. V. Buldyrev et al. “Catastrophic cascade of failures in interdependent

networks”. In: Nature 464 (Apr. 2010), pp. 1025–1028.

[MMCM12] M. Manzano, J. L. Marzo, E. Calle, and A. Manolovay. “Robustness analysis

of real network topologies under multiple failure scenarios”. In: Networks and

Optical Communications (NOC), 2012 17th European Conference on. June

2012, pp. 1–6.

[IKSW13] S. Iyer, T. Killingback, B. Sundaram, and Z. Wang. “Attack Robustness and

Centrality of Complex Networks”. In: PLoS ONE (2013).

[CD15] S. Chattopadhyay and H. Dai. “Towards Optimal Link Patterns for Robustness

of Interdependent Networks against Cascading Failures”. In: 2015 IEEE Global

Communications Conference (GLOBECOM). 2015, pp. 1–6.

[Hua+11] X. Huang et al. “Robustness of interdependent networks under targeted

attack”. In: Phys. Rev. E 83 (6 2011), p. 065101.

[Ken+14] D. Y. Kenett et al. “Network of Interdependent Networks: Overview of Theory

and Applications”. In: Networks of Networks: The Last Frontier of Complexity.

Ed. by G. D’Agostino and A. Scala. Cham: Springer International Publishing,

2014, pp. 3–36.

[DDTL16] R. Du, G. Dong, L. Tian, and R. Liu. “Targeted attack on networks coupled

by connectivity and dependency links”. In: Physica A: Statistical Mechanics

and its Applications 450 (2016), pp. 687 –699.

[Tre09] J. Treur. “Past–future Separation and Normal Forms in Temporal Predicate

Logic Specifications”. In: J. Algorithms 64.2-3 (Apr. 2009), pp. 106–124.

Appendix A

PPL interpreter for Alloy

A.1 Checking Network Invariants

The appendices work exactly the same way as chapters, they are numbered with letters

rather than numbers though.

one sig ALPHA, BRAVO, CHARLIE, DELTA, ECHO extends node{}

one sig exampleTopology extends topo logy {
nodes = ALPHA + BRAVO + CHARLIE + DELTA + ECHO

l i n k s = ALPHA −> BRAVO + ALPHA −> DELTA + BRAVO −> CHARLIE +

BRAVO −> ALPHA + DELTA −> ALPHA + CHARLIE −> BRAVO +

CHARLIE −> DELTA + BRAVO −> ECHO + DELTA −> ECHO +

DELTA −> CHARLIE + ECHO −> BRAVO + ECHO −> DELTA

}

A.2 Specification Languages for Policies

Ponder is a language for specification of security policies. The example is a policy that

grants four actions to network administrator over switches of its domain.

Table A.1: Syntax and example of Ponder policy [DDLS01].

Syntax inst (auth+ — auth-) policyName ”{”
subject [¡type¿] domain-Scope-Expression ;
target [¡type¿] domain-Scope-Expression ;
action action-list ;
[when constraint-Expression ;] ”}”

Example inst auth+ switchPolicyOps {
subject /NetworkAdmin;
target ¡PolicyT¿ /Nregion/switches;
action load(), remove(), enable(), disable() ; }

Another language for specifying network-security policies is XACML [GM03] which is a

language for specifying access-control. This is XML-based and works as request/response

146

APPENDIX A. PPL INTERPRETER FOR ALLOY 147

language. A XACML policy contains subjects, targets, resources and actions. Figure A.1

shows the basic syntax and a small example. Target is the condition to satisfy by the subject

and the resources, and actions —or effects at rule level— are the policy output. It is a

request/response language because operates by queries where the policy server respond to

a request with a allow or deny and the set of successive actions —in some cases it returns

indeterminate or not applicable. Obviously, this language is implemented as the IETF Policy

Framework [Ste+99] with PDP, PEPs and policy repositories.

<Subject>
<Att r ibut eAt t r ibute Id=” s u b j e c t : s u b j e c t − id ”
DataType=”data−type:rfc822Name ”>
<Attr ibuteValue>bs@simpsons . com</ Attr ibuteValue>
</ Att r ibute>
</ Subject>

<Resource>
<Att r ibut eAt t r ibute Id=” r e s o u r c e : u f s −path”
DataType=”XMLSchema#anyURI”>
<Attr ibuteValue>/medico/ record / pa t i en t /BartSimpson</ Attr ibuteValue>
</ Att r ibute>
</ Resource>

<Action><Att r ibut eAt t r ibute Id=” a c t i o n : a c t i o n − id ”
DataType=”XMLSchema#s t r i n g ”>
<Attr ibuteValue>read</ Attr ibuteValue>
</ Att r ibute>
</ Action>

Figure A.1: Example of policy description in XACML language.

Ethane With Ethane, administrator defines fine–grained policies which are declared over

high–level names, include the path, and the network binds the packet and the source. Ethane

created a language called Pol-ETH which followed the AC paradigm.

Table A.2: Syntax and example of Pol–ETH policy [Cas+07].

¡namespace¿ := ¡namespace name¿ = ”[” [¡element¿] ”]”
Syntax ¡rule¿ := ”[”[hsrc—hdst— apsrc—apdst]=in(¡element¿)”]:”¡action¿

¡action¿ :=[allow—deny—outbound-only—waypoint(¡element¿)] ;

#Goups
phones = [”gphone”,”rphone”];
computers = [”private”,”server”];

Example #Rules
Do not allow phones and private computers to communicate
[(hsrc=in(”phones”)∧(hdst=in(”computers”))] : deny;
[(hsrc=in(”computers”)∧(hdst=in(”phones”))] : deny;

FSL is the flow-based security language (FSL) [Hin+09a]. FSL was one of the first policy

languages for SDN, it was designed for NOX [Gud+08]. With FSL is possible to specify

policies of access controls, isolation, and communication paths.

OpenSAFE expresses routing policies for monitoring using the ALARMS language which

APPENDIX A. PPL INTERPRETER FOR ALLOY 148

Table A.3: Syntax and example of policy in FSL [Hin+09a], later FML [Hin+09b] language.

Syntax [allow—deny] (Us, Hs, As, Ut, Ht, At, Prot, Req)

Example
allow(Flow) ⇐ Prot = arp
allow(Flow) ⇐ Ht = auth srvr ∧ Prot = http ∧ As = patio
deny(Flow) ⇐ Us = unknown

describes a path as inputs, selections, filters and sinks.ALARM Here the input is the span

port; selection is the traffic with port number 443; the traffic goes through decrypts and

counter filters, and finally is sinks into TCP dump.

Table A.4: Syntax and example of ALARM policy[Hin+09b].

Syntax (input,selections,filters,sinks)

Example span port, port=443, (decryption, counter), TCP
dump

SIMPLE [Qaz+13] which is a policy-enforcement layer for middleboxes like firewalls, IDSs

or proxies, with layers L4 to L7 —higher-layers— functionality, into L2 and L3 functions of

SDN. SIMPLE expressed traffic as dataflows and allowed integration with legacy middleboxes.

The traffic is the result of function composition, and the management is presented an Integer

linear problem (ILP) formulation with datapath constraints, sequences of datapaths, and load

balancing.

Table A.5: Syntax and example of a SIMPLE policy [Qaz+13]

Syntax

c l a s s=<exte rna l , web>
<s r c= i n t e r n a l p r e f i x , dst= e x t e r n a l p r e f i x e s ,
s r c p o r t =∗ , d s tpor t =80, proto=TCP>

Example

c l a s s=<exte rna l , web>
<s r c= i n t e r n a l p r e f i x , dst= e x t e r n a l p r e f i x e s ,
s r c p o r t =∗ , d s tpor t =80, proto=TCP>

Flowexp language

Listing A.1: Syntax of policies in Flowexp language.

Constra int → TRUE | FALSE | ! Constra int

| (Constra int | Constra int)

| (Constra int & Constra int)

| PathConstraint | HeaderConstraint ;

PathConstraint → l i s t (Path let) ;

Path let → Port S p e c i f i e r [p ∈ {Pi}]
| Table S p e c i f i e r [t ∈ {Ti}]
| Skip Next Hop [.]

| Skip Zero or More Hops [. ∗]

APPENDIX A. PPL INTERPRETER FOR ALLOY 149

| Beginning o f Path [ˆ]

(Source / Sink node)

| End o f Path [$]

(Probe node) ;

HeaderConstraint → Hreceived ∩ Hconstraint , φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint ;

Frenetic Whit is a network administrator composes policies in Frenetic, then the compiler

translates policies into stream queries and transformations.

Listing A.2: Syntax of policies in Frenetic language.

Query q ::= S e l e c t (a)∗
Where(pat)∗
GroupBy([h1, . . . , hn])∗
SplitWhen ([h 1 , \ l d o t s , h n]) ∗
Every (n)∗
Limit (n)

Agregates a ::= packets | s i z e s | counts

Header h ::= i npo r t | vlan | srcamc | dstmac |
ethtype | s r c i p | ds t i p | pro to co l |
s r c p o r t | dstnport | switch

Patterns pat ::= t rue p () | h pat (n) |
and pat ([pat1, . . . , patn]) |
or pat ([pat1, . . . , patn]) |
d i f f p a t (pat1, pat2) | not pat (pat)

Appendix B

Conflict detection

B.1 Detecting other types of conflicts

abstract sig path {

nodes : some node,

links : node -> node,

source : one nodes,

target : one nodes

} {

no n : nodes | n in n.ˆ(links) // no loops

target in source.ˆ(links)

source.ˆ(links) in nodes

}

pred isValid (p : path, t : topology) {

p.nodes in t.nodes

p.links in t.links

}

Target flows Target is the traffic category that a policy conducts. We model target traffic

with groups and sequences. Sequence structures are ordered series of elements. First, we

define elements with a relation to the next element. The concept of next element allows

us to maintain a ordering property. Always, a root or zero element is defined to identify

where the sequence starts, and a loop-free predicate is mandatory to guarantee ordering

consistency.

abstract sig Element { next: lone Element}

one sig root extends Element{}

assert consistency{ e:Element in root.ˆ(next)}

150

APPENDIX B. CONFLICT DETECTION 151

Groups are defined under set theory abstraction. First, we define an abstract signature

of an element, then we define the group and the relation that contains the elements within.

Also, we declare fact (axiom) that guarantees an element only belongs to a group

abstract sig E{}

abstract sig Group{contains : some E}

fact oneIdOneGroup{

all e : E | no disj g, g’ : Group |

e in (g.contains & g’.contains)

}

Conflicts involving complext paths This is an example:

// define path xx1

// { <Alpha, *, Charlie, *, Echo>};

pred xx1 (p : path) {

isValid[p, topologyOne] // is a valid path

p.source = Alpha // starts in Alpha

p.target = Echo // ends in Echo

Charlie in p.nodes // Charlie is a node

Charlie in p.source.ˆ(p.links) // Charlie is in the path

}

// define path xx2

// { <Alpha, *, Charlie, *, Echo, *, Delta>};

pred xx2 (p : path) {

isValid[p, topologyOne] // is a valid path

p.source = Alpha // starts in Alpha

p.target = Delta // ends in Delta

Charlie in p.nodes // Charlie is a node

Charlie in p.source.ˆ(p.links) // Charlie is in the path

Echo in p.nodes // Echo is a node

Echo in Charlie.ˆ(p.links) // Echo is in the path after Charlie

}

// define path xx3

// { <*, Alpha, *, Charlie, *>};

pred xx2 (p : path) {

isValid[p, topologyOne] // is a valid path

APPENDIX B. CONFLICT DETECTION 152

Alpha in p.nodes // Alpha is a node

Alpha in p.source.ˆ(p.links) // Alpha is in the path

Charlie in p.nodes // Charlie is a node

Charlie in Alpha.ˆ(p.links) // Charlie is in the path after Alpha

}

Conflicts involving IP addresses This is an example:

// policy1 smith {<Alpha,*,Charlie>}

// {sourceIp=10.*.*.*} {*} {deny}

// policy2 smith {<Alpha,*,Charlie>}

// {sourceIp=10.10.1.*} {*} {permit}

Conflicts involving Groups and Users This is an example:

// -- NOTE: "John" user is part of

// the "Students" group

// policy1 smith {<Alpha,*,Charlie>}

// {group=students} {*} {deny}

// policy2 smith {<Alpha,*,Charlie>}

// {user=john} {*} {permit}

Conflicts involving Actions in Policies This is an example:

// -- NOTE: Both policies set different values

// for priority

// policy1 smith {<Alpha,*,Charlie>}

// {traffic_class=video} {*} {priority:=1}

// policy2 smith {<Alpha,*,Charlie>}

// {traffic_class=video} {*} {priority:=2}

Conflicts involving Policy Maker priorities This is an example:

// -- NOTE: smith and john has different policy

// maker priorities ?

// policy1 smith {<Alpha,*,Charlie>}

// {traffic_class=video} {*} {deny}

// policy2 john {<Alpha,*,Charlie>}

// {traffic_class=video} {*} {permit}

APPENDIX B. CONFLICT DETECTION 153

one sig a0, a1, a2, a3, a4, a5 extends Address{}

fact TreeCreation{
AddressTree.root = a0 / / ∗ . ∗ . ∗ . ∗ equ iva len t
a1 + a4 + a5 in a0.children
a2 + a3 in a1.children
}

abstract sig rule{
id: one Element,
proto: one Protocol,
srcAddr: one Address,
srcPort: one Port,
dstAddr: one Address,
dstPort: one Port,
action: one Action
}

/ / 1 , tcp ,140.192.37 .20 , any , ∗ . ∗ . ∗ . ∗ , 8 0 , deny
one sig r1 extends rule{}
{
id = i1
proto = TCP
srcAddr = a2
srcPort = p0
dstAddr = a0
dstPort = p80
action = deny
}

/∗ SHADOWING
∗ a prev ious r u l e matches a l l packets t h a t match t h i s r u l e / /
∗ /
assert Shadowing {
no x,y: rule {
isBefore[x.id,y.id] / / X < Y
(equals[x,y] or inclusiveMatch[y,x]) / / X covers X
x.action , y.action
}
}
check Shadowing

Figure B.1: Alloy representation of addresses, address tree, firewall rule definition, the
example of the first rule from Table 5.1, and the canonical form to find shadowed policies.

Appendix C

Alloy Syntax

sigDecl ::= [abstract] [mult] sig name,+ { decl,* }

decl ::= [disj] name,+ : [disj] expr

mult ::= lone | some | one

block ::= { expr* }

factDecl ::= fact [name] block

predDecl ::= pred [qualName] name [paraDecls] block

funDecl ::= fun [qualName] name [paraDecls] : expr { }

paraDecls ::= (decl,*) | [decl,*]

mult ::= lone | some | one

decl ::= [disj] name,

factDecl ::=

predDecl ::=

funDecl ::= fun [qualName] name [paraDecls]

expr ::= const | qualName

const ::= number | none | univ | iden

unOp ::= ∨ | or | ∧ | and | ≤> | iff | implies

compOP ::= in | = | < | > | =< | ≥

154

Appendix D

Parsing topology

The topology is parsed as port representation. Each node in the topology is a node in the

physical topology.

We recreate the physical topology as a set of nodes.

Algorithm 1 Topology parser algorithm

1: procedure TopologyParser(t : topology)
2: nodeList ← t .nodes . Get all nodes from the topology.
3: linkList ← t .links . Get all links from the topology.
4: for all n : node ∈ Nodes do
5: p← n.ports
6: for all p : port ∈ n.ports do
7: nodelList ← n.name, p.number
8: end for
9: for all r : rule ∈ n.rules do

10: linkList.Add(getLinksFromNode(n))
11: end for
12: end for
13: end procedure

14: procedure getLinksFromNode(n : node)
15: for all r : rule ∈ n.rules do
16: in ← r .inport
17: out ← r .outport
18: linkList.Add(in, out)
19: end for
20: end procedure

For each node, the parsed topology, has rule list. For each rule we create a link at our

representation.

Packet matching Packet fields are read by the datapath.

155

APPENDIX D. PARSING TOPOLOGY 156

Protocol Constant

IP eht type = 0x0800
IPv6 eht type = 0x86dd
UDP ip proto = 0x11
TCP ip proto = 0x06
SCTP ip proto = 0x84

	List of Publications
	List of Acronyms
	Glossary
	List of Figures
	List of Tables
	List of Listings
	Contents
	Abstract
	Resumen
	Resum
	Introduction
	Motivation
	SDN: a flexible networking paradigm
	Network failures and availability

	Problem Overview
	Proposed Solution
	Research Objectives
	Contributions
	Methodology
	Outline of the Thesis

	SDN and Policy Management
	Software–Defined Networking
	SDN architecture
	Software for Software–Defined Networking
	Network applications
	Challenges for Software-Defined Networking

	Verification and Model Checking for Networking
	Logical Systems
	Verification by Satisfiability: the SAT
	Solvers for satisfiability and verification

	Verification meets Networking
	Verification of Network Topology and its Invariants
	Verification of Network Security Properties
	Issues and Limitations of Verification

	Network Policies and Device Configurations to SDN
	Policy Specification Language
	Policy Analysis and Verification
	Network Security and Firewall policies
	Policies for Software-Defined Networking

	Summary

	Topology and Path Verification
	Abstractions for Topologies, Flows and Policies
	Network topology
	Transitive Closure and Reachability
	Categories and Sequences
	Traffic flow
	Network policy
	Policy conflicts and semantics

	The Path–Based Policy Language
	Network topology
	Path specification
	Policy representation

	Modeling Policies and Reasoning about Conflicts
	Alloy in a nutshell
	Network Topology Model
	Path Model
	Flow Model
	Policy Model
	Policy conflict Model

	Path, Policy and Conflict Detection with Alloy
	Checking topology invariants
	Checking invariants and policies with Alloy

	Summary and Conclusions

	Targeted Attacks on Interdependent Networks
	Network failures
	Multiple Failure Models
	Robustness
	Survivability and Resiliency for Communication Networks

	Targeted Attacks on Interdependent Networks
	Interdependent Network Model
	Targeted attacks
	Targeted Attacks and Robustness in Interdependent Networks
	Sequential targeted attacks in Interdependent Networks

	Targeted Attacks on ER networks: Case Study and Results
	Models of Random Network
	Backbone Telecommunication Networks: Case Study

	Summary and Conclusions

	Verification of Security Policies
	From Middlebox to Network Application
	Firewall functionality
	Firewall and Security rules in SDN
	FireWell Proposal

	Firewall model, rules and conflicts
	Filters and headers
	Filter fields and relations
	Filter relations
	Conflicts in firewall rules

	FireWell: Firewall-rules Well-formed
	Model in Predicate Relational Language
	Finding conflicting rules
	FireWell implementation
	Mapping firewall rules into Alloy model

	Experiment and Results
	Advantages of translating to Alloy

	Summary and Conclusion

	Verification of Policies in Multiple Domains
	Auditing Policies in Multi–Domain Networks
	Policies in Multi-domain Networks
	Challenges in multi-domain networks
	Policies in Programmable Networks

	Topology and Policy Models
	Network topology and paths
	Traffic flows
	Policy conflicts and semantics

	Checking multi-domain policies with AudIt
	AudIt: the protocol extension
	AudIt protocol
	Multi-domain Policy Checking
	Inference Engine based on SAT

	Experimental results
	Summary and Conclusions

	Conclusion and Future Work
	Conclusions
	Discussion
	Contributions
	Future work

	Bibliography
	Appendix A: PPL interpreter for Alloy
	Checking Network Invariants
	Specification Languages for Policies

	Appendix B: Conflict detection
	Detecting other types of conflicts

	Appendix C: Alloy Syntax
	Appendix D: Parsing topology

