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a b s t r a c t

We analyzed the conjoint effects of sewage inputs and hydrological alteration on the occurrence of
teratological forms and on the assemblage composition of stream benthic diatoms. The study was per-
formed in 11 Mediterranean streams which received treated or untreated urban sewage (Impact sites, I),
whose composition and morphological anomalies were compared to upstream unaffected (Control, C)
sites. The impact sites had high concentrations of ammonium, phosphorus, and pharmaceutical com-
pounds (antibiotics, analgesics, and anti-inflammatories), particularly in those receiving untreated
sewage. Impact sites had a higher proportion of teratological forms as well as a prevalence of diatom taxa
tolerant to pollution. The differences in the diatom assemblage composition between the paired C and I
sites were the largest in the impacted sites that received untreated sewage inputs as well as in the
systems with lower dilution capacity. In these sites, the diatom assemblage was composed by a few
pollution-tolerant species. Mediterranean river systems facing hydrological stress are highly sensitive to
chemical contamination, leading to the homogenization of their diatom assemblages.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Algal assemblages in rivers are potentially affected by multiple
stressors, including chemical contamination, irradiance excess and
high water temperatures, as well as hydrological alterations.
Mediterranean streams are naturally characterized by periods of
hydrological stability, only interrupted by autumnal floods and
intermittency during the summer period (Lake, 2003; Sabater and
Tockner, 2010). Most climate change scenarios predict low-flow
waters to become more pronounced in the next century in the
Mediterranean region (Giorgi and Lionello, 2008). Further, rising
human exploitation of water resources directly affects river eco-
systems (Alcamo et al., 2007). As a result, streams and rivers show
temporal and spatial increases of hydrological stability (i.e. more
extended and frequent basal flow periods) and even non-natural
loss of flowing water or streambed desiccation.

Non-natural conditions of low flow and hydrological stability in
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logic Park of the University of
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human-impactedMediterranean riversmay be associated to higher
concentrations of nutrients, organic matter (Almeida et al., 2014)
and organic micropollutants (Sabater et al., 2016). Wastewater
discharges of urban origin reach freshwater systems either via
wastewater treatment plants (WWTP) or through direct sewage
inputs. Wastewaters carry pharmaceutically active compounds
(PhACs) together with other micro-contaminants, and organic
matter (Gros et al., 2007; Mu~noz et al., 2009). These may reach
potentially hazardous concentrations (Gros et al., 2007) when
entering watercourses with reduced dilution capacity.

The co-occurring chemical stressors and hydrological alter-
ations in Mediterranean river systems produce a conjoint pressure
on biological assemblages. Amongst them, the diatoms are suitable
ecological indicators of the effects of these stressors, given their
high sensitivity to chemical and physical conditions (Pan et al.,
1999). Diatoms are siliceous algae which make up the largest
fraction of algal assemblages colonizing the streambed. Diatoms
may be affected morphologically by different sources of stress,
producing teratologies (Cantonati et al., 2014), and their assem-
blages respond to the stressors by shifting on their composition and
relative abundances (Torn�es et al., 2007; Sabater et al., 2016). The
diatom taxa show specific tolerances to stressors, some (e.g.
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Simonsenia delognei) being able to face harsh conditions during
desiccation (Souffreau et al., 2013; Novais et al., 2014; Falasco et al.,
2016) and to acclimate to unfavorable hydric conditions (Souffreau
et al., 2013), while many others have defined sensitivities to
chemical contamination due to nutrients, organic matter and
organic micropollutants (e.g. Nitzschia palea, Navicula gregaria;
Torn�es et al., 2007; Sabater et al., 2016).

While the separate effects of hydrological and chemical stress
on diatom assemblages have been well studied (e.g. Mu~noz et al.,
2009; Barth�es et al., 2014; Teittinen et al., 2015; Piano et al.,
2017), their response to the two conjoint stressors is still uncer-
tain (but see Corcoll et al., 2015; Ponsatí et al., 2016). We here
analyzed the combined effects of sewage inputs and hydrological
alteration on stream benthic diatoms and non-siliceous algae in
small and medium-sized Mediterranean rivers. We selected 11
streams receiving treated or untreated sewage discharges from
urban point sources. The streams differed on the received chemical
impact as well as on their dilution capacity.

We assumed that the potential chemical impact on the diatom
assemblages would be a function of the dilution capacity of the
receiving system as well as of the type of sewage entering each of
the systems. We performed this analysis by comparing the occur-
rence of teratologic forms and the compositional change of diatom
assemblages in the impact sites with respect to their respective
upstream (control) sites. We hypothesized (i) that chemical pollu-
tion would drive the changes in morphology and taxonomic
composition to the downstream sites, (ii) that the lower the dilu-
tion capacity of the receiving system, the higher the changes in
diatom composition, and (iii) that the most affected impact sites
will converge in the composition of their diatom assemblages by
favoring the dominance of the pollution-tolerant taxa.
2. Material and methods

2.1. Study sites

The study was conducted in 11 Mediterranean streams tribu-
taries from the lower part of the Ebro River (NE Iberian Peninsula)
(Fig. 1). The streams were comparable in terms of geology (mostly
calcareous), and ranged between orders 2 to 4. All the sites shared a
similar light regime, all being of small to medium order with sparse
canopy cover. Most of the rivers were poorly urbanized, mostly
having forested and agricultural land uses in their basins. All of
them receive strong pressure for the use of their water resources, in
the forms of direct water abstraction or groundwater exploitation.
We selected two sites (i.e. Control-upstream and Impact-
downstream) in each of these systems. The Control (C) sites did
not receive direct inputs from human activities in its vicinity, but
were submitted to hydrological alteration because of the intensive
use of water resources. The Impact (I) sites were immediately
downstream to wastewater discharges from urban sources (small
cities ranging 540e7000 inhabitants), and were submitted to
analogous hydrological alterations than those affecting the C site.
The distance between the C and I sites ranged from a few hundred
meters in the smaller systems to a few kilometers in the larger
systems. The sites were selected not to have tributaries or dams
entering or intercepting the stream in between the C and I sites.
Some of the sites received treated effluents from WWTP while
others directly received untreated urban sewage (Table 1). In the
smaller rivers (having the lowest water flow) the sewage outflow
represented a moderate increase to the basal water flow but in
most of the sites the change was inappreciable (Table 1).
2.2. Physical and chemical measurements

We conducted sampling surveys during early summer (June) of
2015 and spring (April) of 2016. These two sampling periods
respectively covered lower-water flow (summer) and higher-water
flow (spring) conditions. Water depth, velocity, and instant
discharge were measured at each sampling campaign with an
acoustic Doppler velocity meter (ADV; Flow Tracker, SonTek
Handheld-AD®, P-4077). Water pH, dissolved oxygen, and electrical
conductivity were measured in situ using hand-held probes at each
sampling campaign (WTW, Weilheim, Germany). One water sam-
ple for nutrient analyses (nitrate (NO3

�, mg N$L�1), nitrite (NO2
�, mg

N$L�1), ammonium (NH4
þ, mg N$L�1) and phosphate (PO4

3, mg
P$L�1)), and dissolved organic carbon (DOC, mg$L�1) were collected
at each site, filtered in 0.7 mmGF/F filters (Whatman Int. Ltd.,
Maidstone, UK) and kept at �20 �C until analysis. Phosphate con-
centration was determined colorimetrically using a spectropho-
tometer (Alliance-AMS Smartchem 140, AMS, Frepillon, France),
after Murphy and Riley, (Murphy and Riley, 1962). Nitrite, nitrate
and ammonium concentrations were determined on a Dionex ICS-
5000 ion chromatograph (Dionex Co., Sunnyvale, USA; Hach, 2002).
DOC concentrations were determined on a Shimadzu TOC-V CSH
coupled to a TNM-1 module (Shimadzu Co., Kyoto, Japan). DOC
results were only available for the second sampling campaign, and
therefore were not used in the statistical analyses (see below).

Pharmaceutical products were assumed to be the dominant
microcontaminants given the urban sources of wastewaters. Their
continuous discharge into the aquatic environment makes the
PhACs pseudo-persistent contaminants, potentially able to cause
adverse effects on living organisms and the environment
(Daughton and Ternes, 1999). The PhACs analysis in water samples
was conducted following the method developed by Gros et al.
(2012). Briefly, the analyses were carried out with an off-line
solid phase extraction (SPE) followed by ultra-high-performance
liquid chromatography coupled to triple quadrupole linear ion
trap tandem mass spectrometry (UHPLC-QqLIT-MS2). Chromato-
graphic separations were carried out with a Waters Acquity Ultra-
Performance™ liquid chromatography system, coupled to a 5500
QTRAP hybrid triple quadrupole-linear ion trap mass spectrometer
(Applied Biosystems, Foster City, CA, USA) with a turbo Ion Spray
source. Quantification was carried out by isotope dilution. Finally,
all data were acquired and processed using Analyst 1.5.1 software,
while quantification was carried out by isotope dilution. Detailed
information regarding chemicals and reagents used, as well as
method performance parameters of target compounds including
limits of detections (LODs), limits of quantifications (LOQs) and
recovery rates are described in detail in Mandaric et al. (2018).

2.3. Algal (diatom) sampling and analysis

The algal collection was performed simultaneously to the
physical and chemical measurements, in June 2015 and April 2016.
For the algal collection, at least five stones were randomly collected
from the stream bottom in riffle sections of the C and I sites. The
substrata were scraped with a knife and a hard bristled toothbrush
to fully detach the algal assemblage to a final area of ~50 cm2.
Samples were preserved in 4% formaldehyde until analysis. Each
algal sample was partitioned in the laboratory for the taxonomic
analysis of diatoms, and for the determination of non-diatom algae
and cyanobacteria.

The non-diatom algal fraction was inspected under light mi-
croscopy (Nikon Eclipse 80i, Tokyo, Japan) at a magnification of
400�, after performing 50 random microscope fields per aliquot.
Taxonomic determination was performed at the genus level and
estimated after semi-quantitative analysis based on cell numbers



Fig. 1. Map of the sampling locations. Prades (Pr), Bisbal F. (Bi), Poboleda (Po), Maella (Ma), Vallderoures (Va), Nonasp (No), Caseres (Ca), Bot Gandesa (BG), Bot Canaleta (BC),
Corbera d’Ebre (Co), Prat de Compte (PC).
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and ranked on the following scale: 0.1 (presence), 1 (�5%), 2 (>5 to
�25%), 3 (>25 to �50%), 4 (>50 to �75%) and 5 (>75%). Reference
books used for the determination of non-diatom algae and cyano-
bacteria were those of John et al. (2011) and Wehr and Sheath
(2003).

The diatom analysis was performed after cleaning diatom frus-
tules from organic matter. This cleaning was performed in boiling
hydrogen peroxide, and cleaned frustules were mounted on per-
manent slides using Naphrax (r.i. 1.74; Brunel Microscopes Ltd.,
Chippenham, Wiltshire, UK). Up to 400 valves were counted on
each slide by performing random transects under light microscopy
(Nikon Eclipse 80i, Tokyo, Japan) using Nomarski differential
interference contrast optics at a magnification of 1000�. Diatom
taxa were identified according to reference floras (Krammer and
Lange-Bertalot (1991a,b), Krammer and Lange-Bertalot (1991a,b,
1997a,b), Hofmann et al., 2011), and complemented through the
monographs series of “Diatoms of Europe” and “Bibliotheca Dia-
tomologica”. We inspected the samples for the presence of tera-
tological forms for each diatom taxa. Teratological forms are non-
adaptive phenotypic abnormalities usually involving anomalous
valve outlines or modification in their striation patterns (Falasco
et al., 2009a). The teratological forms were recorded and quanti-
fied in both C and I sites, and summarized in a single value when
different types of deformities occurred for a given taxon. For all
types of teratologies we considered from slight to marked teratol-
ogies (Fig. S5) following Cantonati et al. (2014) and Lavoie et al.
(2017).
2.4. Data analysis

The chemical variability at the sites (C and I) was explored by
means of a Principal Components Analysis (PCA). PCA allows
summarizing the variables data provided the Principal Components
can be identified as descriptors of a given gradient. Candidate
physical and chemical variables were nutrient concentrations,
conductivity, dissolved oxygen and PhACs concentrations (Tables 1
and S1). Pearson's correlation was performed between the candi-
date variables, and those strongly correlated to each other (corre-
lation coefficient was >0.8) were unselected to avoid
multicollinearity. This resulted in the final selection of phosphate,
ammonium, nitrate, conductivity (EC), dissolved oxygen (DO),
analgesics/anti-inflammatories and antibiotics. Concentrations of



Table 1
Major physical and chemical variables at sampling locations. C control sites, I impact sites. Numbers in sample labels represent sampling (1, June 2015; 2, April 2016). The
annual discharge mean and standard deviation (SD) for each site is provided besides the corresponding discharge of each period. Codes with asterisk (*) correspond to those
locations with WWTP upstream of impact sites, while those not showing it received direct (untreated) sewage in the impact sites.

Location Site Code N-NH4 N-NO3 P-PO4 DOC EC DO T pH Width Discharge Annual discharge (m3/
s)

(mg/L) (mg/L) (mg/L) (mg/L) (ms/cm) (mg/L) (�C) (m) (m3/s) Average SD

Prades C Pr1 0.017 1.741 0.012 e 598 7.3 e 7.4 2 0.002 0.004 ± 0.003
Prades I Pr1* 6.638 1.193 0.825 e 639 3.5 e 7.6 2 0.01 0.018 ± 0.012
Bisbal de Falset C Bi1 0.008 0.347 0.005 e 546 5.7 22.7 7.5 2 0.007 0.227 ± 0.382
Bisbal de Falset I Bi1* 0.028 0.269 0.019 e 546 5.5 21.1 7.8 3 0.005 0.216 ± 0.369
Poboleda C Po1 0.022 0.012 0.016 e 1068 4.3 24 7.9 0.1 0.001 0.032 ± 0.048
Poboleda I Po1* 3.002 0.39 0.632 e 1122 2.3 22.2 7.4 1 0.001 0.011 ± 0.007
Maella C Ma1 0.001 7.433 0.002 e 887 11.5 27 8.1 6 0.009 0.329 ± 0.6
Maella I Ma1 2.637 1.048 0.203 e 1148 9.9 25.8 7.9 4 0.018 0.319 ± 0.577
Vallderoures C Va1 0.001 2.622 0.003 e 472 8.7 23.3 8.3 10 0.276 0.477 ± 0.338
Vallderoures I Va1 0.274 2.963 0.025 e 509 7.4 24.2 8.2 12 0.236 0.53 ± 0.384
Nonasp C No1 0.003 3.498 0.004 e 1031 8.6 25.3 8.1 4 0.036 0.253 ± 0.389
Nonasp I No1 0.001 3.243 0.017 e 1048 5.6 25.8 7.6 2 0.042 0.317 ± 0.503
Caseres C Ca1 0.001 8.026 0.002 e 748 6.9 23.7 7.7 7 0.182 0.339 ± 0.39
Caseres I Ca1 0.001 7.548 0.004 e 750 6.9 23.3 8 14 0.161 0.225 ± 0.252
Bot Gandesa C BG1 0.006 0.389 0.002 e 2180 8.1 18.7 7.9 2 0.007 0.023 ± 0.038
Bot Gandesa I BG1 0.931 0.747 0.088 e 2190 7.2 19.6 7.9 2 0.007 0.029 ± 0.03
Bot Canaleta C BC1 0.001 1.236 0.002 e 1056 7.7 21.4 8 7 0.029 0.068 ± 0.07
Bot Canaleta I BC1 0.001 1.147 0.002 e 1170 7.3 21.7 7.9 1 0.049 0.077 ± 0.072
Corbera d'Ebre C Co1 0.013 9.756 0.427 e 2170 7.1 21.2 8.1 2 0.012 0.013 ± 0.006
Corbera d'Ebre I Co1 1.149 8.84 0.538 e 2130 5.8 21.3 8.1 1 0.02 0.023 ± 0.01
Prades C Pr2 0.012 2.945 0.011 1.4 605 9.6 14.9 7.9 2 0.006 0.004 ± 0.003
Prades I Pr2* 2.692 3.198 0.394 6.8 585 7.4 11.1 7.6 3 0.027 0.018 ± 0.012
Bisbal de Falset C Bi2 0.001 0.112 0.002 3.8 481 10.4 15 7.8 4 0.082 0.227 ± 0.382
Bisbal de Falset I Bi2* 0.009 0.153 0.008 3.7 481 9.7 14.2 7.8 2 0.068 0.216 ± 0.369
Poboleda C Po2 0.001 0.018 0.002 1.6 624 10 14.7 7.9 6 0.104 0.032 ± 0.048
Poboleda I Po2* 0.001 0.044 0.011 1.7 621 10.3 13.2 7.9 2 0.016 0.011 ± 0.007
Maella C Ma2 0.001 2.991 0.002 1.3 641 10.5 15.2 8.2 9 0.074 0.329 ± 0.6
Maella I Ma2 0.102 1.507 0.002 3.3 754 4.7 15 7.6 6 0.057 0.319 ± 0.577
Vallderoures C Va2 0.001 0.489 0.002 0.8 460 12.4 13.6 8.4 7 0.425 0.477 ± 0.338
Vallderoures I Va2 0.403 0.744 0.023 1.3 482 9.4 13.6 8.1 6 0.448 0.53 ± 0.384
Nonasp C No2 0.001 1.073 0.002 2.2 944 9.5 18.2 7.9 3 0.133 0.253 ± 0.389
Nonasp I No2 0.047 1.106 0.014 1.2 862 6 16.9 7.7 3 0.133 0.317 ± 0.503
Caseres C Ca2 0.001 1.806 0.003 e 620 10.3 15 8.2 16 0.157 0.339 ± 0.39
Caseres I Ca2 0.009 1.819 0.002 1.8 619 9.9 14.3 8.1 12 0.144 0.225 ± 0.252
Bot Gandesa C BG2 0.001 0.514 0.002 4 2400 11.8 14.6 8 2 0.001 0.023 ± 0.038
Bot Gandesa I BG2 0.136 0.532 0.009 10.5 2440 8.9 14.6 8 1 0.016 0.029 ± 0.03
Bot Canaleta C BC2 0.001 1.147 0.002 3.6 827 8.5 14.2 7.8 4 0.065 0.068 ± 0.07
Bot Canaleta I BC2 2.688 1.143 0.083 1.7 925 6.8 14.5 7.8 1 0.066 0.077 ± 0.072
Corbera d'Ebre C Co2 0.019 4.868 0.704 5.5 2560 12.1 12.6 8 4 0.019 0.013 ± 0.006
Corbera d'Ebre I Co2 2.929 7.573 0.962 11.7 2700 8.2 12.6 8 2 0.035 0.023 ± 0.01
Prat de Comte C PC2 0.007 3.85 0.005 1.5 1784 9.9 13.3 8 3 0.008 0.009 ± 0.011
Prat de Comte I PC2 4.362 1.705 0.43 18.9 1764 0 14.7 7.1 2 0.029 0.02 ± 0.013
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PhACs below method detection or quantification limits were
replaced by a value equal to one-half of the method detection or
quantification limit. Before performing the PCA the variables were
normalized by subtracting themean and dividing it by the standard
deviation.

The ordination of the diatom assemblage composition was
performed using the complete diatom taxa list for all the sites, so
forth avoiding arbitrary decisions on removal of rare taxa; down-
weighting the contributions of rare taxa is an inherent property of
the computation of Bray-Curtis similarities (Capone and Kushlan,
1991; Hansen and Ramm, 1994). We analyzed the spatial and
temporal patterns of the diatom assemblages' structure by means
of Principal Coordinates Analysis (PCO). PCO can be based on any
(symmetric) resemblance matrix like non-metrical multi-dimen-
sional scaling and it is a projection of the points onto axes that
minimise residual variation in the space of the resemblance mea-
sure chosen (Anderson et al., 2008). The PCO was performed on
BrayeCurtis similarities of the diatom assemblages in both the C
and I sites. Vector overlay was added on the PCO using Spearman
correlations to visualize relationships between taxa and ordination
axes. Spearman correlations highlight the overall increasing or
decreasing relationships of individual taxa across the plot, instead
of Pearson correlations that specifically highlight linear relation-
ships. Tolerance to pollution and desiccation of the different diatom
taxa were defined using Van Dam et al. (1994).

The diatom assemblages (Bray-Curtis) similarities (derived from
the diatom PCO) and the chemical (Euclidean) distances (derived
from the chemical variables included in the PCA) were related to
each other. The relationship between the chemical and diatom
assemblages in the C and I sites for each locationwas used to define
the degree of change in diatom assemblages composition against
the degree of change in the chemical variability. AIC (Akaike In-
formation Index) and RSE (Residual Standard Error) were used to
select the best fitted regression curves of the diatoms against the
chemical characteristics.

The significance of the occurrence frequency of teratological
forms in the I sites was tested using a PERMANOVA. The PERMA-
NOVA was based on the BrayeCurtis similarity scores. The PER-
MANOVA operates on a resemblance matrix and it is similar to
traditional parametric MANOVA (Anderson, 2001). Since C and I
pair sites were not independent, we considered in the design the
factors location and site (control or impact) nested in location as
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random factors.
The different PCA, PCO, and PERMANOVA (999 permutations)

were performed with PRIMER-E 6 v.6.1.11 and
PERMANOVA þ v.1.0.1 (PRIMER-E Ltd., Plymouth, UK). Analyses
were carried out with fourth-root transformed diatom data further
converted into a resemblance matrix using BrayeCurtis similarity.
Environmental data (except those expressed as ranked variables)
were logarithmically transformed (x þ 1) before analyses to reduce
skewed distributions. Pearson correlations were calculated using
the software package IBM SPSS version 21 (IBM Corporation,
Armonk, NY, USA). Regressions were conducted using R version
3.4.2 (R Development Core Team, 2013) applying the package nlme.

3. Results

3.1. Physical and chemical characteristics

The sites ranged from 0.1 to 16m width and between 1 and
400 L/s water flow (Table 1). Discharge was lower during summer
2015 (below annual mean discharge) and higher in spring 2016
(higher than the annual mean for each river). Most of the sites
showed high water conductivity (EC), particularly Bot Gandesa, Bot
Canaleta, Corbera d’Ebre and Prat de Compte. Oxygen concentra-
tions in the C sites averaged 9.1± 2.1mg/L, and nutrient concen-
trations in these sites were moderate, particularly regarding
ammonium (average 5± 6 mg/L) and reactive phosphorus (average
4± 4 mg/L), but higher in nitrate (average 2.6± 1.6mg/L). As an
exception, the C site of Corbera had high P concentrations in the
two sampling occasions (427e704 mg/L). DOC concentrations in the
second sampling campaign were low to moderate (0.81e4mg/L) in
the C sites, except in Corbera which also had high DOC concen-
trations (5.51mg/L). The I sites had lower oxygen concentration
(6.8± 2.6mg/L), and much higher nutrient concentrations
(1330± 1830 mg/L ammonium, 204± 301 mg/L reactive phosphorus,
2.2± 2.6mg/L nitrate). The DOC in the I sites (second sampling
campaign) ranged from moderate (Poboleda, 1.67mg/L) to very
high concentrations (10.4mg/L Bot Gandesa and 11.7mg/L Corbera
d’Ebre).

A total of 76 PhACs, belonging to 15 therapeutic groups
(Table S1), were detected in the water samples. The highest con-
centrations of PhACs were of analgesics and anti-inflammatories,
antihypertensives, lipid regulators and cholesterol lowering statin
drugs, diuretics, psychiatric drugs and antibiotics. Concentrations
of all PhACs moved from 6.53± 7.92 ng/L in the C sites to up to
151.54± 45.98 ng/L for analgesics and anti-inflammatories on
treated-sewage WWTP effluents. PhACs in I sites receiving un-
treated wastewater discharges reached maximum average con-
centrations of 1.92± 1.38 mg/L for analgesics and anti-
inflammatories, and 0.14± 0.1 mg/L for antihypertensives (Table S1).

The PCA performed with the selected chemical variables (Fig. 2)
explained 45.6% of the total variation in its first component. This
axis separated C sites (located on the right part) from I sites
(expanded from the center towards the left of the graph). Phos-
phate, ammonium, analgesics/anti-inflammatories and antibiotics
were the variables that contributed most to this axis. Some C sites
(Corbera d’Ebre) were located closer to the impact sites because of
their higher concentrations of phosphates and nitrates. The second
axis (17.7% of the total variation) accounted for the relevance of
nitrate, EC and DO, the sampling locations of Corbera d’Ebre,
Maella, Prat de Compte and Caseres having the highest values, and
opposite to the locations of Bisbal de Falset, Prades and Poboleda.

3.2. Non-diatom algal and cyanobacterial composition

Up to 37 non-diatom taxa were determined in the studied
streams (Table S2). While most of them occurred both in C and I
sites, a few were exclusive of ones or the others. Euglena sp. and
Phacus sp. were only recorded in I sites. The cyanobacteria Rhab-
doderma sp., Rhabdogloea sp. and Rivularia sp. were present in C
sites, while the rodophytes Bangia sp., Audouinella sp. and Batra-
chospermum sp. were recorded in the less illuminated sites of the C
sites. Coccoid and filamentous cyanobacteria (Oscillatoria sp.,
Chroococcus sp.,Merismopedia sp., Lyngbya sp., Gloeocapsa sp.) were
moderately abundant in C sites, and some of them dominated in the
I sites. The zygnematales Mougeotia sp., Zygnema sp. and Spirogyra
sp. preferentially occurred in the C sites of the wider river systems
(Vallderoures, Caseres, Nonasp), but also occurred in the I sites. The
filamentous green algae Stigeoclonium and Ulothrix occurredmostly
in the I sites. The proteobacteria Sphaerotilus natans was present in
some C sites but produced large masses in several I sites.

3.3. Diatom assemblage composition

Diatoms were the most abundant (60e100%) component of the
algal assemblage in all the studied locations and sites. A total of 231
diatom taxa were recorded (Table S3). The dominant taxa in the C
sites were Achnanthidiumminutissimum, Achnanthidium lineare and
Encyonopsis minuta, while Amphora pediculus, Navicula veneta and
Achnanthidium minutissimum were the most abundant taxa and
occurred in 80% of the I sites.

Teratological forms occurred in both C and I sites but were more
frequent in the I sites (Fig. 3; PERMANOVA; pseudo-F11,20¼1.723,
P¼ 0.049). Five types of Falasco et al. (2009a) teratologies were
found in the studied streams (Fig. 4). There was a clear dominance
of those affecting valve outline, followed by changes in striation
pattern, raphe canal modifications and valves with more than one
type of teratology (mixed type). The taxa Sellaphora nigri, Achnan-
thidium minutissimum, Craticula subminuscula, Nitzschia frustulum
and Planothidium frequentissimum accounted for most of the
occurring teratological forms. The presence of the teratological
forms could not be attributed to any particular location (PERMA-
NOVA; pseudo-F10,20¼ 0.798, P¼ 0.701).

The PCO which analyzed the ordination of the diatom assem-
blages separated those in the C and I sites in the first axis (24.9% of
total variation; Fig. 5 and Table S4). Encyonopsis ssp., Achnanthidium
spp., Gomphonema lateripunctatum and Sellaphora stroemii were
separated from Mayamaea atomus var. permitis, Planothidium fre-
quentissimum, Sellaphora seminulum, Craticula subminuscula, Nitz-
schia inconspicua and Gomphonema parvulum according to their
Spearman correlations with the PCO axes. The former were char-
acteristic of the C sites, while the latter were dominant in the I sites.
In some of the C sites (Corbera, Poboleda) pollution tolerant diatom
taxa were quite abundant, and they were arranged close to their
respective I sites (Fig. 5).

The second axis of the PCO (15.1% of the total variance) did not
provide any biologically meaningful ordination of the diatom taxa.
However, the third axis (8.6% of total variation) separated the taxa
for their hydrological preferences. Taxa regularly recorded in tem-
porary streams (Van Dam et al., 1994) (i.e. Amphora indistincta,
Amphora ovalis, Nitzschia frustulum, Simonsenia delognei and Navi-
cula tripunctata) were arranged on the upper part of the axis, while
Cymbella excisa, Nitzschia fonticola, Cocconeis pediculus, Fistulifera
saprophila and Navicula reichardtiana were arranged on the lower
side of the axis and they are taxa mainly occurring in permanent
watercourses (Van Dam et al., 1994). The samples from the two
sampling campaigns were grouped together, indicating a small
effect of the different hydrology of the two periods.

The difference in diatom assemblage composition in the I with
respect to the C sites was calculated using the respective pairwise
similarities accounted for the Bray-Curtis similarity matrix used in



Fig. 2. Principal components analysis (PCA) based on selected chemical variables of all studied streams (including both control and impact sites). The vector length and direction
reflects the importance of each variable's contribution to each of the two axes. The circle is a unit circle, whose relative size and centre is arbitrary with respect to the underlying
plot. Each vector begins at the centre of the circle and ends at the coordinates (x,y) consisting of the correlations between that variable and each of the PCO axis respectively. Codes
correspond to those of Fig. 1 and Table 1. Numbers in sample labels represent sampling (1, June 2015; 2, April 2016).

Fig. 3. Percentage of teratological forms in control and impact sites. Boxes represent
the median, and 25th and 75th quartiles. 5th and 95th percentiles are also shownwith
dots.
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the PCO (Fig. 6). The I sites receiving treated effluents (i.e. Bisbal de
Falset, Poboleda and Prades) had higher similarity to their respec-
tive C sites in the two sampling campaigns. The I sites receiving
direct sewage inputs but having higher discharges (Vallderoures
and Caseres) also presented high similarity to their C sites. The site
with the most polluted C samples (Corbera) also showed high
similarities to their I samples. The locations with the lowest simi-
larity (and those with the highest impact on their diatom
assemblages) were Maella, Bot Gandesa, Nonasp, and Bot Canaleta.
4. Discussion

Overall, the studied set of Mediterranean streams received
strong hydrological pressures as well as growing chemical
contamination. The impact sites received high concentrations of
dissolved organic carbon, ammonium, phosphorus, and pharma-
ceutical compounds (antibiotics, analgesics, and anti-
inflammatories), particularly in those receiving untreated sewage.
Concentrations of ammonium and total phosphorus were particu-
larly high in the impact sites (maximum values of 6.64mg/L and
1.1mg/L respectively). Pharmaceutical compounds reached
maximum concentrations ranging between 2.9 ng/L to 17.5 mg/L
(Mandaric et al., 2018). These concentrations werewithin the range
encountered in urban effluents (Gros et al., 2012). The effects of the
hydrological and chemical stressors potentially affected the diatom
cells as well as their assemblage composition, favoring the contri-
bution of pollution-tolerant taxa.

The diatom taxa were distributed according to their preferences
for resistance to desiccation and river size. This was indicated by
the third axis of the multivariate ordination analysis (PCO), where
taxa occurring in lower discharge (and smaller) sites were cate-
gorized as common inhabitants on wet and moist locations (Van
Dam et al., 1994), though not as strictly terrestrial taxa. Amongst



Fig. 4. Left, type of teratologies and their occurrence in C and I sites. Right, examples of the different types of teratologies observed on: (a) Craticula subminuscula, (b) Planothidium
frequentissimum, (c) Nitzschia frustulum, (d) Nitzschia amphibia, (e) Planothidium frequentissimum, (f) Navicula veneta, (g) Nitzschia fonticola, (h) Nitzschia inconspicua, (i) Gomphonema
parvulum, (j) Sellaphora nigri. Scale bar¼ 10 mm.

Fig. 5. Principal coordinates analysis (PCO) using diatom assemblages' composition of both control and impact sites, including vector overlay. To improve graphic display, overlay
was restricted to include only variables with a vector length greater than 0.5 (See Table S3 for all Spearman correlations). The circle is a unit circle, whose relative size and centre is
arbitrary with respect to the underlying plot. Each vector begins at the centre of the circle and ends at the coordinates (x,y) consisting of the correlations between that variable and
each of the PCO axis respectively. Site codes correspond to those of Fig. 1 and Table 1. Numbers in sample labels represent sampling (1, June 2015; 2, April 2016). Taxa codes are given
in Tables S2 and S3.
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these, Simonsenia delognei is frequent in exposed habitats
(Witkowski et al., 2014), Amphora indistincta has been observed in
spring-fed streams in Majorca (Delgado et al., 2013) and Sardinia
(Lai et al., 2016), and Amphora ovalis is common in slow flowing
rivers (Levkov, 2009) as well as in spring-fed streams in Majorca
(Delgado et al., 2013). On the contrary, the taxa occurring in sites
with higher discharges (and larger stream width) are not common
in exposed habitats (Van Dam et al., 1994). Cymbella excisa and
Nitzschia fonticola have been indicated as abundant in normal-flow
and less common under low-flow conditions (Isheva and Ivanov,
2016). Navicula reichardtiana is common in large rivers (Gom�a
et al., 2005) and in moderately hydrological stable habitats
(Torn�es and Ruhí, 2013). Other taxa are opportunistic, such as Fis-
tulifera saprophila, which is able to thrive under highly to moder-
ately stable hydrological conditions as well as in intermittent sites
(Torn�es and Ruhí, 2013). This diatom produces mucous films in
large quantities (Lange-Bertalot, 2001) and this allows it to adapt to
fast current conditions (Wendker, 1992).

Pollution caused, mostly in the small taxa of the genera Sell-
aphora, Craticula, Achnanthidium, Nitzschia and Planothidium, a
higher frequency of deformities in their valves. Teratological
diatom forms occur because of physical or chemical environmental
stress (Lavoie et al., 2017). Unstable environmental conditions, such
as wide changes in temperature, light irradiance, or moisture, favor
the occurrence of teratological forms (Falasco et al., 2009b). The
hydrological severity in our systems could account for valve de-
formities in some of the C sites, but chemical contamination made
the difference between C and I sites and likely drove the higher
proportion of deformities. Teratologic diatoms have been observed
under different forms of pollution, such as heavy metal



Fig. 6. Bray-Curtis similarity (%) between control and impact sites for each location
based on their diatom assemblages. Sites are arranged from left to right in increasing
order of similarity. Codes correspond to those of Fig. 1 and Table 1.
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contamination (Morin et al., 2008). Even though a clear interpre-
tation of the mechanisms and ecological implications of diatom
valve deformities is still unclear (Lavoie et al., 2017), our observa-
tions suggest that urban pollution (high abundance of nutrients,
organic matter, and PhACs) may reinforce the malformations
already occurring under hydrological stress.

The multivariate analysis of the chemical variables indicated the
relevance of ammonium, phosphate, antibiotics and analgesics/
anti-inflammatories over the other chemical stressors. This chem-
ical contamination likely caused the differences in the diatom
assemblage composition between the paired C and I sites, since
other environmental factors did not differ between impact and
control sites. The differences between the paired C-I sites were the
Fig. 7. Relationship between diatom assemblages' (Bray-Curtis) similarities and
chemical (Euclidean) distances calculated between control and impact sites for each
location. The best fit, the R2 and the probability of each expression are also indicated.
largest in those that received untreated sewage inputs. In those
sites a few diatom taxa tolerant to organic and chemical pollution
(Torn�es et al., 2007) accounted for most of assemblage. Fig. 7 shows
the relationship that can be built between the similarity of the
diatom assemblages and their corresponding chemical change in
the paired C-I sites. This relationship follows a negative power
curve, where the higher similarity occurs in the sites showing the
lowest chemical difference between C and I, including some C sites
affected by upstream chemical pollution (which resembled in their
composition to those of their I sites). The power expression also
suggests a fast decrease in similarity between the paired C and I
sites with higher chemical pollution affecting the impact. In fact,
the diatom assemblage in the most polluted sites was largely
similar irrespectively of their upstream composition, composed by
a few pollution-tolerant species. Goldenberg Vilar et al. (2014)
showed that eutrophication favored the decrease in species turn-
over and the increased homogenization of community composi-
tion. In our most polluted systems, the assembled chemical
contamination of nutrients, organic matter andmicrocontaminants
(PhACs) was driving the homogenization of the diatom
assemblages.

The dilution capacities of the receiving watercourses (Petrovic
et al., 2011) as well as the quality of the sewage entering the sys-
tems were determinants of the degree of effect in the diatom
assemblage composition. A low dilution capacity not only favors
higher contaminant concentrations, but also affects the architec-
ture and function of benthic biofilms (Ponsatí et al., 2016) because
of its associated hydrological stability. In our studied set of streams
the change in diatom composition between the C and I sites was
less pronounced when the latter received treated effluents, and
more accentuated when the effluents were untreated (Fig. 8). The
potential relation to dilution is suggested by the slightly higher
effect (lower similarity) in systems with lower water flow (i.e.
lower dilution capacity) (Fig. 8). In the particular set of streams
included in this study, where most of them were submitted to
water resources exploitation, the extent of the difference between
smaller and larger systems is however very limited. We suspect
that this differencewould be accentuated in rivers not submitted to
such strong hydrological pressure than those in our study area.

Our results show that the confluence of chemical pollution
(organic matter, nutrients and PhACs) and hydrological alteration
enhances the effects of the former on the diatom assemblages. A
study performed in temporary streams in Greece showed the pre-
vailing effect of pollution over water stress on diatom assemblage
composition (Karaouzas et al., 2018). We also observed that the
effects of the two stressors were not as much apparent in non-
diatom taxa and cyanobacteria than in diatoms, but some gross
effects indeed occurred. Cyanobacteria were the second most
abundant taxonomic group in the C sites probably because of their
ability to adapt to hydrological alteration using their thickmucilage
layer. However, green algae were more common in the I sites,
where they showed higher resistance to chemical contamination.
An analogous response in the response of algal groups has been
observed in a separate experiment under simulated conditions of
hydrological stress and pharmaceutical contamination (Serra-
Compte et al., 2018).

The effects we described on the structure, composition, and
diatom deformitiess, as well as the accompanying results observed
in the other algal groups, stress the importance of chemical
pollution and altered discharge patterns on the ecological status of
Mediterranean streams. The low water flow of Mediterranean
streams enhances the potential ecological risk of chemical pollu-
tion. Our study revealed that fluvial systems facing hydrological
stress, in theway currently occurring inMediterranean streams, are
highly sensitive to chemical contamination and may experience



Fig. 8. Bray-Curtis similarity (%) based on diatom assemblages' composition between control and impact sites receiving either treated or untreated wastewater discharges (left), and
where the receiving river had higher (>0.05m3/s) or lower water flow (<0.05m3/s) (right). Boxes represent the median, and 25th and 75th quartiles. 5th and 95th percentiles are
also shown with dots.
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homogenization in their biological communities. The high sus-
ceptibility of these systems to the environmental impact of organic
matter, micropollutants and nutrients stresses the relevance of
preventing direct sewage inputs to rivers (Mu~noz et al., 2009).
Particular attention should be placed on adapting management
decisions and existing metrics to co-occurring hydrological alter-
ation and pollution (Karaouzas et al., 2018). Focusing on the com-
bined hydrological alteration and chemical contamination is
essential to predict potential ecological problems under future
climate change scenarios, as well as an essential step to improve the
conservation of these fluvial systems.
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