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Abstract

Due to absorption and scattering effects the underwaterescare characterized by poor contrast, color shiftingjtiaddl noise and hazy
appearance. In this paper we introduce a novel solution ébtitnates locally the backscattered light. While in gendnal éxisting solutions
estimate a global backscattered light value over the entigaes our local strategy is able to deal effectively to theenarallenging non-uniform
illumination generated by multiple light-sources. Our solmtcomputes two complementary estimates of the local backsedtlight, covering
a large and a small patch size. The optimal local backscattagetis computed as the mean of the outputs processed withrtladl and the
large patches while the transmission map, is estimated baséueatark-channel prior (DCP) [1]. Finally, our restoredules are computed by
simply inverting the optical model using the transmission drellbcal backscattered light estimates. The qualitativéuatian demonstrates the
effectiveness of our approach compared with the recent wader enhancing techniques.
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|. INTRODUCTION

A various and large number of underwater image-based applicatimms,dontrol of underwater vehicles to inspection of the underwater
infrastructure, archeology or marine biology research, requilegble image and video enhancement techniques. In underwater sbenes
visibility is highly degraded due to the attenuation of the propagated light ardtalihe absorption and scattering effects. While the
absorption effect diminishes the energy of the incident rays, the dogtteffect changes the direction of the ray of light. Due to these
effects the underwater scenes are characterized by poor contiastskifting, additional noise and hazy appearance.

In general the poor visibility of underwater scenes is due to the backsegttSince traditional enhancing techniques such as gamma
correction, histogram equalization have shown strong limitation for ureterwimage enhancement task, several specialized underwater
image enhancing techniques that extend these traditional enhancinggtezshifor underwater case have been introduced [2], [3], [4]. To
deal with extreme backscattering, a first class of techniques appliétioadt equipments such as polarization filters [5], which in general
represents impractical acquisition systems.

More recently, and in general inspired by the recent outdoor imagazdehtechniques [10], [11], [12], [13], [14], [15] several @mdiater
enhancing solutions [6], [7], [8], [9], [16], [17], [18], [19] ke been introduced in the literature. These techniques reconstruct énagj¢ime
original scene radiance by inverting the Koschmieder’s visibility mod@].[®lany of these techniques have been built on the well-known
Dark Channel Prior (DCP) [11], [1]. DCP, originally introduced fartdoor dehazing problem, is a statistical prior that assumes that for
haze-free outdoor images in a given non-sky patch at least one cmomel has intensities very close to zero. Chiang and Chen [21]
employs the DCP to segment the foreground and the background se@onsequently, this segmentation has been used to reduce the haze
effects and color variations based on color compensation. Drewtsalr [22] introduce an underwater specific prior directly derived from
DCP, called Underwater Dark Channel Prior (UDCP). They assunadrttunderwater scenes most of the visual information are contained
by the green and blue color channels.

Similarly, Galdran et al. [6] introduced a specific prior called Red chiaprier built on the observation that in underwater the intensity
of the red channel decreases faster as distance increases. Emdieato[7] employ a set of features to find regions that are the most haz
opaque. Then, a hierarchical rank based method is used to estimatcksedttering and the transmission map. Ancuti at al. [19] introduce
a fusion-based approach for underwater image enhancement shatie to perform better than the initial solution [23] in presence of severe
light attenuation, while supporting accurate transmission estimation in vaaicgugsition settings. Inspired by the color lines approach of
Fattal [24], Lu and al. [25] used DCP to estimate the transmission in urderwn [18], Ancuti et al. introduces an original strategy that
exploits color transfer while tuning the color correction locally, as a funatibthe light attenuation level estimated from the red channel.
This color correction strategy demonstrates also to improve significantljotia¢ keypoints matching for underwater scenes. However, in
general the existing single-image underwater enhancing techniquesirsiportant limitations for complex situation such as swirling water
and/or artificial ambient illumination (see Fig.1).

This work introduces a novel solution that estimates locally the backsaatligiet. While most of the solutions estimate a global
backscattered light value over the entire scene, our local strategy isoatidal effectively to the more challenging non-uniform illumination
generated by multiple light-sources that may be present in many uniderseenes (see Fig. 1). Local estimation of the backscattered light
has been used recently in the work of Berman et al. [9]. However,sgeaudifferent approach inspired by our previous work [16]. Intrash
to [16] that uses multi-scale fusion and computes the backscattered tighgod of patches, here we introduce a simplified approach that is
built on the optical model. To circumvent the difficulty of selecting the optipath size (accounting for distinct features such as dimensions
and colors of objects in the scenes, nature of the ambient light, nonrumitfamination), our strategy employs two complementary estimates
of the local backscattered light, covering a large and a small patch gieelalige size of the patch aims to recover the global contrast while
the small size of the patch deals with the degradation due to the multiple lighidtesourhe optimal local back-scattered light is computed
as the mean of the outputs processed with the small and the large pathbesth&r unknown of the optical model, the transmission map,
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Fig. 1. Specialized underwater restoration methods basegobal [6], [7], [8] and local estimation [9] of the backsaattd light show important limitations
to recover visibility of underwater scenes illuminated bifiial lightning. Our local approach restores both coladaontrast (local and global) comparable
and even better than polarization-based technique (usefplauimages) of [5].

is estimated based on the dark-channel prior (DCP) [1]. Finally, cstored results are computed by simply inverting the optical model
using the transmission and the local backscattered light estimates. Timsiextevaluation of our approach demonstrates the effectiveness
of our approach compared with the recent underwater enhancingigeels.

Il. UNDERWATER OPTICAL MODEL

In our approach we rely on the well-known optical model of Jaffe-Na@ery [26], that is often employed in the representation of the
underwater scenes. Based on this optical model, the total radianceiofageZ that reaches the camera is influenced by three additive
components: airect component Ep, aforwardscattering componentErs and abackscattering componentEzs. Considering the fact that
underwater medium is not ideal, the energy of a light ray that crossesnihikum from a scene object until it reaches the observer is
diminished due to the physical phenomena such as absorption andisgatter

Direct component Ep is the attenuated signal (dependent by the distance) of the reflected tidht, i@ estimated at each image coordinate
x as:

Ep(z) = J(z)e ") = J(z)t(x) 1)

where J(z) represents the radiance of the objeffz) represents the distance from the observer to the objectyasdthe attenuation
coefficient of the medium. The transmissitf:) is expressed as an exponential teffn) = e~ "4,

Forward-scattering Ergs, is the deflection of a portion of the incident light and in general it is neglesitece it has a small influence in
the overall image degradation process.

Back-scattering or the veiling light [27], expresses both the loss of the contrast and the color shifting ddruwater images. Defined
in [27], for visually acceptable distances (between 3-10 m) it is expdeas:

Eps(t) = Boo(1 — e %) @)

where B is the back-scattered light or the water background [28] and d(x) is the distance.
The simplified underwater optical model expression considersdiottt component andbackscattering, but ignores théorwardscattering
component and therefore it writes:

I(z) = J(z)e ") + Boo(1 — e ")

®3)
= J(z)t(z) + Boo (1 — t(x))



Due to the similarities between the underwater camera model (3) and thalaptidel of Koschmieder [20] (employed for outdoor image
dehazing), recently in the literature have been proposed several dsetthaestore underwater images that are derived from the outdoor
dehazing solutions.

For example, in the work of Chiang and Chen [21] the rough depth maghefunderwater scene is estimated based on the Dark
Channel Prior (DCP) [1]. Similarly, Galdran et al. [6] computes a vemeof DCP named Red Channel Prior that aims to recover colors
corresponding to short wavelengths. However, at greater deptha tie artificial illumination is required to illuminate the scene, these
outdoor/DCP dehazing-inspired techniques perform in general pandysuffer from important limitations when restoring contrast and color
(see Fig. 1).

In the next section we explain how to estimate the two unknowns of the simptfiédal model: the transmission tert(z) and the
backscattered light valuB...

I1l. L OCAL BACKSCATTERING ESTIMATION
A. Transmission map estimation

The generally accepted solutions for the underwater medium apply sariterpretations of the Dark Channel Prior (DCP) introduced by
He et al. [1] to estimate the transmissitfx)for outdoor hazy scenes. We observe that this solution generatest deselts in underwater
only if the selective attenuation is not affecting the color channels. Tocowes the red channel attenuation (or zero transmission for the
affected regions), here we include a simple strategy for the red cheompensation as described recently in [19]. Based on the DCP, the
transmissiort(z), is computed by finding the smallest value over a neighborhood/patehtbe dark channel image is referred Bsc ()
and is estimated asiingcq(y) (Mincer g6 Z°(x)) ).

Applying the underwater optical model (3) the transmission is expressed

t(x)=1- i in Z°(x)/Boo® 4
(z) in (cgfgb (z)/ ) 4)
whereQ(z) is a local patch centered at

In our experiments we observed thét) can be reasonably approximated when the backscattereddighs replaced with the (maximum)
color intensity vectof1, 1, 1], so that we have:

t(z)~ 1— min (min IC(:E)> )

yEQ(z) \c€Mg,b

B. Backscattering estimation

The backscattered lighB.. represents the light that is scattered back by floating particles and it is thefantor that generates the loss
of contrast and color degradation in underwater images.

In general the existing underwater descattering strategies estimate halobtant value of the backscattered light.

As shown in Fig. 1 and Fig. 3, such global strategies are mislead bylapeeflections or glowing effects due to the artificial illumination
in the underwater. In contrast, here we consider an alternative solutitre fglobal backscattered light estimation. Inspired by our previous
work [16], we first introduces a global estimator expression baseth@minimum ofZ¢ over a small neighborhood around instead of
just its (potentially noisy) value iy:

Bg,, = max ( min Ic(z)> (6)
yeME  \2€Q2(v)
whereQ(y) defines a neighborhood arougdand M} denotes the set of locations in imagavhere the dark channel reaches its global
maximum valueDCl, .., i.e. Mbo = {y|Toc(y) = DCL,..}. Hence, instead of keeping an arbitra&t9.9 percentile, we simply keep the
whole set of positions that maximiZEpc. SinceZpc is defined based on a minimization over a patdhl - always includes multiple
locations. Our extensive validation reveals that this approximation daesipact the global estimation. Moreover, it makes the expression
easier to generalize to a local estimator.
Derived from the global estimator expression (Equation 6), we defindodickscattered light in locatiaon as:

B (z)= max min Z¢(z 7
)= (Lmin 7)) ™)

where ¥(z) is a patch centered im of Zpc. As for the global estimatorM‘g(cm) denotes the set of positions ili(z) where the dark
channel is maximum, i.e. reaches the value of its local maximum ¥ye). In practice, the patci¥ is typically larger thar2. We use a
default value of 2 for the ratio between tBeand 2 patches. For underwater scenes with relatively uniform illumination argtlebidity,

the ratio is recommended to be set to a higher value. An important okisanis that the size of2 is not trivial to be selected since a
large neighborhood means that the result may be influenced by multiptesbginces due to inaccurate estimation, which results in color
shifting. In contrast, a smaller neighborhood reduces the effecigeofthe dark channel prior and consequently the effectiveneseof th
haze removal.

To mediate this complementary cases, we compute two different estinfateslocal B7__ (). The first one is generated for a relatively
large patch size (e.g. 15% of the image size) and aims to improve the irnagast by reducing the haze effect, with the risk of introducing
color shifting. The second one is generated computing the estimate foakespatch size (e.g. 3% of the image size). Although this
might underestimate the backscattered light value, this shows to be \@fféatremove the glowing effect. To compute our optimal local
backscattering estimate, we simply average all the local values obtairerd es@mputing the two different size patches. Finally, to generate
our results we simply invert the optical model using the optimal estimate aksattering and transmission as previously described.
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Fig. 2. Comparative results of the techniques [23], [7], [8], [9] for underwater scenes with uniform lightning.
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Fig. 3. Comparative results of the techniques [5], [23], [8]. [9] for underwater scenes with non-uniform lightninQur method restores the visibility
comparable and even better than polarization-based taghrfthat uses multiple images) of [5] and the approach of Bernhah. €9] that also estimates
locally the backscattering.

IV. RESULTS AND DISCUSSION

We extensively tested our approach for a large dataset of underwetges. In our experiments we considered several recent urtéerwa
enhancing techniques including the techniques of Ancuti et al. [23],tmi et al [7], Galdran et al [6], Drews-Jr et al.[8] and Berman e
al.[9].

In Fig. 2 are shown two underwater images of scenes with relatively mmiflbumination. As can be seen our method yields comparative
and even better results when compared with the evaluated underwateigtezh On the other hand in Fig. 1 and Fig.3 are shown images
of non-uniform (artificially) illuminated underwater scenes. As can bgeoked our solution is very competitive also for such challenging
cases even compared with the local approach of Berman et al.[9].

To conclude, in this paper we present an original solution that estimatalyltite backscattered light in underwater scenes. We compute
two complementary estimates of the local backscattered light, coveringeadad a small patch size. The optimal local backscattered light
is computed as the mean of the outputs processed with the small and thpd&riyes while the transmission map, is estimated based on the
dark-channel prior (DCP) [1]. The qualitative evaluation demondriite effectiveness of our approach compared with the recentwatder
enhancing techniques.
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