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Abstract

Due to absorption and scattering effects the underwater scenes are characterized by poor contrast, color shifting, additional noise and hazy
appearance. In this paper we introduce a novel solution thatestimates locally the backscattered light. While in general the existing solutions
estimate a global backscattered light value over the entire scene, our local strategy is able to deal effectively to the more challenging non-uniform
illumination generated by multiple light-sources. Our solution computes two complementary estimates of the local backscattered light, covering
a large and a small patch size. The optimal local backscatteredlight is computed as the mean of the outputs processed with the small and the
large patches while the transmission map, is estimated based onthe dark-channel prior (DCP) [1]. Finally, our restored results are computed by
simply inverting the optical model using the transmission and the local backscattered light estimates. The qualitative evaluation demonstrates the
effectiveness of our approach compared with the recent underwater enhancing techniques.
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I. I NTRODUCTION

A various and large number of underwater image-based applications, from control of underwater vehicles to inspection of the underwater
infrastructure, archeology or marine biology research, requires reliable image and video enhancement techniques. In underwater scenesthe
visibility is highly degraded due to the attenuation of the propagated light and due to the absorption and scattering effects. While the
absorption effect diminishes the energy of the incident rays, the scattering effect changes the direction of the ray of light. Due to these
effects the underwater scenes are characterized by poor contrast, color shifting, additional noise and hazy appearance.

In general the poor visibility of underwater scenes is due to the backscattering. Since traditional enhancing techniques such as gamma
correction, histogram equalization have shown strong limitation for underwater image enhancement task, several specialized underwater
image enhancing techniques that extend these traditional enhancing techniques for underwater case have been introduced [2], [3], [4]. To
deal with extreme backscattering, a first class of techniques applied additional equipments such as polarization filters [5], which in general
represents impractical acquisition systems.

More recently, and in general inspired by the recent outdoor image dehazing techniques [10], [11], [12], [13], [14], [15] several underwater
enhancing solutions [6], [7], [8], [9], [16], [17], [18], [19] have been introduced in the literature. These techniques reconstruct in general the
original scene radiance by inverting the Koschmieder’s visibility model [20]. Many of these techniques have been built on the well-known
Dark Channel Prior (DCP) [11], [1]. DCP, originally introduced for outdoor dehazing problem, is a statistical prior that assumes that for
haze-free outdoor images in a given non-sky patch at least one colorchannel has intensities very close to zero. Chiang and Chen [21]
employs the DCP to segment the foreground and the background regions. Consequently, this segmentation has been used to reduce the haze
effects and color variations based on color compensation. Drews-Jr et al. [22] introduce an underwater specific prior directly derived from
DCP, called Underwater Dark Channel Prior (UDCP). They assumed that in underwater scenes most of the visual information are contained
by the green and blue color channels.

Similarly, Galdran et al. [6] introduced a specific prior called Red channel prior built on the observation that in underwater the intensity
of the red channel decreases faster as distance increases. Emberton et al. [7] employ a set of features to find regions that are the most haze-
opaque. Then, a hierarchical rank based method is used to estimate the backscattering and the transmission map. Ancuti at al. [19] introduce
a fusion-based approach for underwater image enhancement that isshown to perform better than the initial solution [23] in presence of severe
light attenuation, while supporting accurate transmission estimation in variousacquisition settings. Inspired by the color lines approach of
Fattal [24], Lu and al. [25] used DCP to estimate the transmission in underwater. In [18], Ancuti et al. introduces an original strategy that
exploits color transfer while tuning the color correction locally, as a functionof the light attenuation level estimated from the red channel.
This color correction strategy demonstrates also to improve significantly thelocal keypoints matching for underwater scenes. However, in
general the existing single-image underwater enhancing techniques show important limitations for complex situation such as swirling water
and/or artificial ambient illumination (see Fig.1).

This work introduces a novel solution that estimates locally the backscattered light. While most of the solutions estimate a global
backscattered light value over the entire scene, our local strategy is ableto deal effectively to the more challenging non-uniform illumination
generated by multiple light-sources that may be present in many underwater scenes (see Fig. 1). Local estimation of the backscattered light
has been used recently in the work of Berman et al. [9]. However, we use a different approach inspired by our previous work [16]. In contrast
to [16] that uses multi-scale fusion and computes the backscattered light on a grid of patches, here we introduce a simplified approach that is
built on the optical model. To circumvent the difficulty of selecting the optimalpatch size (accounting for distinct features such as dimensions
and colors of objects in the scenes, nature of the ambient light, non-uniform illumination), our strategy employs two complementary estimates
of the local backscattered light, covering a large and a small patch size. The large size of the patch aims to recover the global contrast while
the small size of the patch deals with the degradation due to the multiple light sources. The optimal local back-scattered light is computed
as the mean of the outputs processed with the small and the large patches. The other unknown of the optical model, the transmission map,
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Fig. 1. Specialized underwater restoration methods based onglobal [6], [7], [8] and local estimation [9] of the backscattered light show important limitations
to recover visibility of underwater scenes illuminated by artificial lightning. Our local approach restores both color and contrast (local and global) comparable
and even better than polarization-based technique (uses multiple images) of [5].

is estimated based on the dark-channel prior (DCP) [1]. Finally, our restored results are computed by simply inverting the optical model
using the transmission and the local backscattered light estimates. The extensive evaluation of our approach demonstrates the effectiveness
of our approach compared with the recent underwater enhancing techniques.

II. U NDERWATER OPTICAL MODEL

In our approach we rely on the well-known optical model of Jaffe-McGlamery [26], that is often employed in the representation of the
underwater scenes. Based on this optical model, the total radiance of animageI that reaches the camera is influenced by three additive
components: adirect component ED, a forwardscattering componentEFS and abackscattering componentEBS . Considering the fact that
underwater medium is not ideal, the energy of a light ray that crosses thismedium from a scene object until it reaches the observer is
diminished due to the physical phenomena such as absorption and scattering.

Direct component ED is the attenuated signal (dependent by the distance) of the reflected light, and it is estimated at each image coordinate
x as:

ED(x) = J(x)e−ηd(x) = J(x)t(x) (1)

whereJ(x) represents the radiance of the object,d(x) represents the distance from the observer to the object, andη is the attenuation
coefficient of the medium. The transmissiont(x) is expressed as an exponential termt(x) = e−ηd(x).

Forward-scattering EFS , is the deflection of a portion of the incident light and in general it is neglected since it has a small influence in
the overall image degradation process.

Back-scattering or the veiling light [27], expresses both the loss of the contrast and the color shifting of underwater images. Defined
in [27], for visually acceptable distances (between 3-10 m) it is expressed as:

EBS(x) = B∞(1− e−ηd(x)) (2)

whereB∞ is theback-scattered light or thewater background [28] andd(x) is the distance.
The simplified underwater optical model expression considers bothdirect component andbackscattering, but ignores theforwardscattering

component and therefore it writes:

I(x) = J(x)e−ηd(x) +B∞(1− e−ηd(x))

= J(x)t(x) +B∞(1− t(x))
(3)
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Due to the similarities between the underwater camera model (3) and the optical model of Koschmieder [20] (employed for outdoor image
dehazing), recently in the literature have been proposed several methods to restore underwater images that are derived from the outdoor
dehazing solutions.

For example, in the work of Chiang and Chen [21] the rough depth map ofthe underwater scene is estimated based on the Dark
Channel Prior (DCP) [1]. Similarly, Galdran et al. [6] computes a variation of DCP named Red Channel Prior that aims to recover colors
corresponding to short wavelengths. However, at greater depths when the artificial illumination is required to illuminate the scene, these
outdoor/DCP dehazing-inspired techniques perform in general poorlyand suffer from important limitations when restoring contrast and color
(see Fig. 1).

In the next section we explain how to estimate the two unknowns of the simplifiedoptical model: the transmission termt(x) and the
backscattered light valueB∞.

III. L OCAL BACKSCATTERING ESTIMATION

A. Transmission map estimation

The generally accepted solutions for the underwater medium apply various interpretations of the Dark Channel Prior (DCP) introduced by
He et al. [1] to estimate the transmissiont(x)for outdoor hazy scenes. We observe that this solution generates decent results in underwater
only if the selective attenuation is not affecting the color channels. To overcome the red channel attenuation (or zero transmission for the
affected regions), here we include a simple strategy for the red channel compensation as described recently in [19]. Based on the DCP, the
transmissiont(x), is computed by finding the smallest value over a neighborhood/patch ofx (the dark channel image is referred asIDC(x)
and is estimated asminy∈Ω(x) (minc∈r,g,b I

c(x)) ).
Applying the underwater optical model (3) the transmission is expressed:

t(x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)/B∞
c

)

(4)

whereΩ(x) is a local patch centered atx.
In our experiments we observed thatt(x) can be reasonably approximated when the backscattered lightB∞ is replaced with the (maximum)

color intensity vector[1, 1, 1], so that we have:

t(x) ≈ 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)

)

(5)

B. Backscattering estimation

The backscattered lightB∞ represents the light that is scattered back by floating particles and it is the main factor that generates the loss
of contrast and color degradation in underwater images.

In general the existing underwater descattering strategies estimate a global constant value of the backscattered light.
As shown in Fig. 1 and Fig. 3, such global strategies are mislead by specular reflections or glowing effects due to the artificial illumination

in the underwater. In contrast, here we consider an alternative solution tothe global backscattered light estimation. Inspired by our previous
work [16], we first introduces a global estimator expression based onthe minimum ofIc over a small neighborhood aroundy, instead of
just its (potentially noisy) value iny:

Bc
G∞

= max
y∈MI

DC

(

min
z∈Ω(y)

Ic(z)

)

(6)

whereΩ(y) defines a neighborhood aroundy, andMI
DC denotes the set of locations in imageI where the dark channel reaches its global

maximum valueDCI
max, i.e. MI

DC = {y|IDC(y) = DCI
max}. Hence, instead of keeping an arbitrary99.9 percentile, we simply keep the

whole set of positions that maximizeIDC . SinceIDC is defined based on a minimization over a patch,MI
DC always includes multiple

locations. Our extensive validation reveals that this approximation does not impact the global estimation. Moreover, it makes the expression
easier to generalize to a local estimator.

Derived from the global estimator expression (Equation 6), we define the backscattered light in locationx as:

Bc
L∞

(x) = max
y∈M

Ψ(x)
DC

(

min
z∈Ω(y)

Ic(z)

)

(7)

whereΨ(x) is a patch centered inx of IDC . As for the global estimator,MΨ(x)
DC denotes the set of positions inΨ(x) where the dark

channel is maximum, i.e. reaches the value of its local maximum overΨ(x). In practice, the patchΨ is typically larger thanΩ. We use a
default value of 2 for the ratio between theΨ andΩ patches. For underwater scenes with relatively uniform illumination and less turbidity,
the ratio is recommended to be set to a higher value. An important observation is that the size ofΩ is not trivial to be selected since a
large neighborhood means that the result may be influenced by multiple light sources due to inaccurate estimation, which results in color
shifting. In contrast, a smaller neighborhood reduces the effectiveness of the dark channel prior and consequently the effectiveness of the
haze removal.

To mediate this complementary cases, we compute two different estimates of the localBc
L∞

(x). The first one is generated for a relatively
large patch size (e.g. 15% of the image size) and aims to improve the image contrast by reducing the haze effect, with the risk of introducing
color shifting. The second one is generated computing the estimate for a smaller patch size (e.g. 3% of the image size). Although this
might underestimate the backscattered light value, this shows to be effective to remove the glowing effect. To compute our optimal local
backscattering estimate, we simply average all the local values obtained when computing the two different size patches. Finally, to generate
our results we simply invert the optical model using the optimal estimate of backscattering and transmission as previously described.
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Fig. 2. Comparative results of the techniques [23], [7], [6],[8], [9] for underwater scenes with uniform lightning.
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Fig. 3. Comparative results of the techniques [5], [23], [7],[8], [9] for underwater scenes with non-uniform lightning.Our method restores the visibility
comparable and even better than polarization-based technique (that uses multiple images) of [5] and the approach of Berman et al. [9] that also estimates
locally the backscattering.

IV. RESULTS AND DISCUSSION

We extensively tested our approach for a large dataset of underwaterimages. In our experiments we considered several recent underwater
enhancing techniques including the techniques of Ancuti et al. [23], Emberton et al [7], Galdran et al [6], Drews-Jr et al.[8] and Berman et
al.[9].

In Fig. 2 are shown two underwater images of scenes with relatively uniform illumination. As can be seen our method yields comparative
and even better results when compared with the evaluated underwater techniques. On the other hand in Fig. 1 and Fig.3 are shown images
of non-uniform (artificially) illuminated underwater scenes. As can be observed our solution is very competitive also for such challenging
cases even compared with the local approach of Berman et al.[9].

To conclude, in this paper we present an original solution that estimates locally the backscattered light in underwater scenes. We compute
two complementary estimates of the local backscattered light, covering a large and a small patch size. The optimal local backscattered light
is computed as the mean of the outputs processed with the small and the largepatches while the transmission map, is estimated based on the
dark-channel prior (DCP) [1]. The qualitative evaluation demonstrates the effectiveness of our approach compared with the recent underwater
enhancing techniques.
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