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Abstract

People with type 1 diabetes must control their blood glucose level through insulin infusion either
with several daily injections or with an insulin pump. However, estimating the required insulin
dose is not easy. Recommender systems, mainly based on Case-Based Reasoning (CBR), are
being developed to provide recommendations to users. These systems are designed to keep the
experiences or cases of the user in a case-base, which requires maintenance to keep system’s
response accurate and efficient. This paper proposes a case-base maintenance methodology that
combines case-base redundancy reduction and attribute weight learning. Contrary to previous
approaches designed for classification problems, the maintenance methodology presented in this
paper deals with numerical recommendations. It can manage a potentially huge case-base due to
the combinatorial derived from the number of attributes used to represent a case. The proposed
approach has been tested using the UVA/PADOVA type 1 diabetes simulator and the results
demonstrate that it can accomplish better levels of accuracy than other insulin recommender
systems mentioned in the literature, when a large number of attributes is considered.

Keywords: Case-based reasoning, insulin recommender system, case-base maintenance,
attribute weight learning, patient empowerment, diabetes

1. Introduction

In 2015, the International Diabetes Federation said that Europe had the highest incidence rates
of Type 1 Diabetes Mellitus (T1DM) with 140,000 children already having this disease and
21,600 new cases every year (International Diabetes Federation, 2015). Moreover, the American
Diabetes Association estimates that there are 1.25 million American adults and children with
T1DM.

People with T1DM suffer from autoimmune destruction of the beta cells of the endocrine
pancreas, which disables its ability to regulate Blood Glucose (BG). Therefore, people with
T1DM need to administer insulin to control their BG level. Large intervention trials, (Diabetes
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Control and Complications Trial Research Group, 1993), have highlighted the need for accurate
and timely insulin dosage to avoid hyperglycaemia1 and hypoglycaemia2.

To control BG, two types of insulin are combined: basal insulin (slow-acting insulin) and bolus
insulin (fast-acting insulin). Basal insulin is usually adjusted by clinicians in collaboration with
patients during periodic visits. Whereas, bolus insulin doses are estimated on demand, usually at
each meal, by the patients themselves using two numerical parameters, Insulin-to-Carbohydrates
Ratio (ICR) and Insulin Sensitivity Factor (ISF), along with information about the meal and
current BG level. These two parameters are estimated by the patients in collaboration with the
clinicians.

There are several bolus calculators on the market to help people to calculate the adequate bolus
dosage (Schmidt & Nørgaard, 2014) and their use has been proved useful in improving patients’
glycaemic self-control (Doyle et al., 2014; Lepore et al., 2012; Shashaj et al., 2008). However,
they do not achieve optimal glycaemic control because of the complexity of glucose metabolism.

The literature presents other approaches based on artificial intelligence that achieve more ac-
curate glycaemic control (Brown, 2015; Herrero et al., 2017; Torrent-Fontbona & Lopez, 2018).
Cased-Based Reasoning (CBR), (Aamodt & Plaza, 1994), emerges as one of the favourites
methodologies for insulin recommender systems. CBR relies on the use of past experiences
stored in a case-base to provide recommendations. However, most of the researchers do not
study in depth the problem of maintaining the case-base efficient and accurate. Instead, they usu-
ally select a few attributes for describing a case (e.g. physical activity and time of day), omitting
the fact that insulin and glucose metabolism depend on many factors such as type of activity
(aerobic or anaerobic), ambient temperature, size of the meal, stress, change of the day routine
(e.g. weekend or workday) or tiredness (Herrero et al., 2017; Facchinetti et al., 2016; Galloway
et al., 1981; Bangstad et al., 2009).

This paper proposes a methodology of case-base maintenance for bolus recommender sys-
tems, which consists of two steps: case-base redundancy reduction and learning the relevance
of the attributes. The proposed methodology outperforms the CBR bolus recommender system
of (Torrent-Fontbona & Lopez, 2018) when tested with the UVA/PADOVA T1DM simulator
(Visentin et al., 2014).

The paper is organised as follows: first, related literature is presented; second, the bolus rec-
ommender system is described; third, the maintenance methodology proposed in this paper is
detailed; fourth, the experimentation and the results are explained; finally, the paper ends with
the conclusions.

2. Related Work

This paper presents a case-base maintenance methodology for a CBR bolus recommender
system including an algorithm for learning the relevance of the attributes. This section presents
related literature in terms of CBR case-base maintenance algorithms and attribute weight learn-
ing.

1Hyperglycaemia can cause, in the long term, micro-vascular complications such as retinopathy, nephropathy and
neuropathy, and macro-vascular complications such as coronary heart disease, stroke and peripheral vascular disease.

2Hypoglycaemia may result in clumsiness, trouble talking, loss of consciousness, seizures, or death.
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2.1. Case-base maintenance
The use of CBR for developing insulin recommender system was first explored in (Poerschke,

2004). The author proposed to follow the four steps methodology of CBR - retrieve, reuse, revise,
retain - proposed in (Aamodt & Plaza, 1994), but leaving key decisions to the user. Nevertheless,
she dismissed the implementation of a CBR system because it exceeded the technological limits
of the time. Brown extended this work in (Brown, 2015) by proposing and implementing a
CBR bolus recommender system, but he did not tackle the maintenance of the case-base and
assumed that all query cases with positives outcomes will be stored in the case-base. Despite not
tackling the maintenance of the case-base, he pointed out the practical infeasibility of a system
with hundreds of cases in the case-base due to the computation time needed in the retrieve step.

The authors in (Herrero et al., 2015a, 2017) propose another bolus recommender system based
on CBR. It consists of a combination of CBR and a run-to-run algorithm. The authors devote the
retrieve and reuse steps to estimate the accurate ICR of a new case from the most similar one in
the case-base. Then, they use a run-to-run algorithm, (Wang et al., 2009), in the revise step to
correct the ICR if necessary. Instead of a retain step, the authors propose a case-base with fixed
cases and they only allow the correction of the ICRs. Therefore, they are proposing a kind of
concept drift approach (Lu et al., 2016), where any incoming information is used to update the
target variable of the model, i.e. the ICR of the cases in the case-base. A similar approach is
presented in (Herrero et al., 2015b), which differs from that in (Herrero et al., 2015a, 2017) in
the revise step, where it corrects the proposed ICR using the area under the postprandial glucose
curve, instead of the minimum glucose level of the postprandial glucose curve. Thus, in practice,
the methods have a small case-base with approximately nine cases or less. Conversely, this paper
proposes a methodology capable of maintaining the case-base efficient and accurate even when
cases have several attributes with a large combinatorial.

Maintenance of the case-base has been the focus of in-depth research. First approaches to case-
base maintenance can be found in (Leake & Wilson, 1998), and in the utility concept defined
in (Smyth & Cunningham, 1996), which gather the situation in which adding more cases to a
case-base could reduce rather than improve system efficiency. In (Roth-Berghofer & Reinartz,
2001), case-base maintenance is analysed from a knowledge engineering perspective, providing
some guidance to developers. The need for case forgetting and case adding is related to the
concept drift, (Delany et al., 2005), as the capacity of a CBR system to adapt to changes in the
problem space. These previous concepts were gathered in (Lopez de Mantaras et al., 2005),
where the authors highlighted the need to extend the traditional retain step in a more complex
maintenance phase with two additional steps: a review step, capable of monitoring quality of the
system knowledge, i.e. the case-base, and a restore step, which selects and applies maintenance
operations (e.g. deletion or merging of cases).

The literature exhibits several algorithms for the review-restore process. Some examples are
the Iterative Case Filtering (ICF) (Brighton & Mellish, 2002), the Coverage Redundancy Reduc-
tion (CRR) (Delany et al., 2005), and the Instance-Based learning Algorithm3 (Aha et al., 1991).
Current trends on case-base maintenance techniques focus on dealing with big data issues (Juarez
et al., 2018): volume, i.e. improving and defining new redundancy reduction techniques like in
(Chebel-Morello et al., 2015); variety, i.e. exploring case-base redefinitions due to the impact
of dealing with heterogeneous data like in (Leake & Schack, 2015); velocity, i.e. providing a
fast answer to massive data flows like in (Lupiani et al., 2014; Lu et al., 2016); and value i.e.
providing best solutions in complex problems like in (Yamamoto et al., 2015).

Nevertheless, these approaches were thought to be CBR systems for classification, i.e. predic-
tion of the label of a case for a limited number (usually two) of labels. Conversely, the insulin
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recommender system needs to predict a real number. Thus, this paper presents a maintenance
phase, which includes retain, review and restore steps capable of reducing case-base redundancy
when cases have a numeric solution, the ICR, and adds an attribute weight learning step which
is responsible for adapting the weight of each attribute according to its relevance.

2.2. Attribute weight learning
CBR is very sensitive on the similarity function used in the retrieve phase, which usually de-

pends on the relevance of case features expressed by weights. To obtain the weights, several
machine learning techniques have been proposed. Decision trees are proposed in (Doan et al.,
2008) and gradient descent and genetic algorithm in (Doan et al., 2006) to learn attribute weights
and use CBR for predicting costs of residential building projects. The use of genetic algorithms
for weight learning is also explored in (Pla et al., 2013). The authors in (Park & Han, 2002)
propose to use expert knowledge through an analytic hierarchy process to set the weights of the
attributes. A Naive Bayes learner is proposed in (Yeow et al., 2014) to learn attribute weights of
a CBR forensic autopsy decision support system. All such methods, however, are batch, mean-
ing that all the data should be available before its application, while there are other incremen-
tal approaches that could be more suitable for recommender systems under continuous change.
For example, an incremental attribute weight learning algorithm is proposed in (Lamontagne &
Bergeron-guyard, 2014). The authors assume that several recommendations are shown to the
user and she ranks these recommendations according to her preferences. Then this information
is used to adjust attribute weights to achieve the solution ranking provided by the user.

The closest work, regarding attribute weight learning, to the method proposed in this paper is
(Salzberg, 1991), where the author presented the Nested Generalised Exemplar (NGE) theory,
in which exemplars (or cases) are generalised and described by nested hyperrectangles in a Eu-
clidean n-space that could overlap. He also proposed algorithm EACH in order to classify new
cases according to the distance to the stored hyperrectangles and incrementally learn from these
new cases. The learning procedure consists of modifying the size of the hyperrectangles and the
weights of the corresponding attributes depending on whether the outcome of the recommenda-
tion was correct or incorrect.

Therefore, the attribute weight learning algorithm proposed in (Salzberg, 1991) aimed to bring
closer or farther the new case and the closest hyperrectangle depending on whether the classi-
fication was correct or incorrect. In particular, Salzberg proposed to increase weights of those
attributes that matched and decrease those that did not match if the classification was incorrect. If
the classification was correct, weights are adjusted in the opposite direction. However, as pointed
out in (Wettschereck & Dietterich, 1995), this procedure has different problems and it achieved
poor results. Conversely, the authors in (Wettschereck & Dietterich, 1995) proposed not to incre-
mentally update attribute weights but to calculate them according to mutual information using
the stored cases in order to give low weight to those attributes which provide no information for
classification and high weight to those that provide reliable information.

After (Salzberg, 1991; Wettschereck & Dietterich, 1995), modifications to the NGE theory
were presented in (Martin, 1995), modifications to the classification algorithms were proposed
in (Zaharie et al., 2011) and implementations of these classification algorithms for applications
such as clustering or predicting student’s performance are explored in (Hamidzadeh et al., 2015)
and (Kulkarni & Ade, 2014), respectively. Nevertheless, no other modifications to the attribute
weight learning algorithms of (Salzberg, 1991; Wettschereck & Dietterich, 1995) have been pro-
posed. Conversely to (Salzberg, 1991; Wettschereck & Dietterich, 1995), this paper proposes to
update attribute weights when the solution is a numeric value and not nominal. Moreover, this
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paper proposes to incrementally adjust weights as in (Salzberg, 1991) but according to mutual
information as in (Wettschereck & Dietterich, 1995).

Attribute learning helps to deal with a considerable amount of attributes, but an alternative for
dealing with high dimensionality is to split the initial set of data into different groups. This is
the case of (Thanh et al., 2017), which proposes the use of neutrosophic clusters to determine
the interactions between several recommender systems, so that similar persons can be treated
according to their group. A neutrosophic cluster defines memberships functions to determinant
clusters as well as to ambiguity (points in cluster boundaries) and outliers clusters (Guo & Sen-
gur, 2015). While this approach is attractive, current results incur in a high computational cost
and requires further research to run in an evolving environment, in practice. On the other hand,
CBR for insulin recommender systems implies the highest clusterization level: one cluster per
patient, because weight learning is performed upon an individual basis, i.e. upon the individual
history data of a single person.

The amount of attributes is also related to the sparsity problem when only few values are avail-
able or there is no overlapping between two attribute cases (Grčar et al., 2006). In such situations,
similarity functions used in the retrieve step, and which make use of the weight of attributes, are
unreliable unless defined in an alternative way. In some application domains, it is possible to
address the sparsity problem by enriching the information with additional data as categories, dis-
tances, time and social network data. This is the case of (Baral & Li, 2016), where the authors
propose a new similarity function for points of interest recommendations (e.g. locations) as an
average of category and distance sensitive information. In the case of the insulin recommender
systems, the sparsity problem does not happen because cases are repetitive experiences about the
same variables, whereas in specific situations (e.g. fever), nowadays the cases are considered as
outliers because no truth outcome is known.

Other alternative similarity functions are proposed in (Rosaci, 2007), where the authors model
each user behaviour with its own ontology, and define similarities among ontologies to carry out
recommendations. The learning problem in that case, however, is about ontology learning as a
way of learning the similarity function. The ontology approach could be of interest as a future
research in the insulin recommender problem, when there is a bulk of case-bases from different
persons, and some knowledge could be transferred from one to another to solve the cold start
problem, i.e. the initialisation of the case base. To that end, similarity measures on graphs like
(Ontañón & Plaza, 2012) could be taken into account in addition to (Rosaci, 2007).

3. Background: PepperRec

Recently, the Patient Empowerment through Predictive decision support (PEPPER) project
developed a bolus recommender system based on CBR for people with T1DM called PepperRec
(Torrent-Fontbona & Lopez, 2018), with limited maintenance operations. This work is based on
PepperRec.

PepperRec describes and contextualises cases using the following attributes: past aerobic
physical activity, quantified with four values, planned aerobic activity during the postprandial
phase, also quantified with four values, and the time of day, quantified with 24 values. The so-
lution to each case is the ICR, which enables the calculation of the ISF through Equation (1) as
proposed in (Walsh et al., 2011), where W is the weight of the user (in kg) and κ is a constant,
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e.g. κ = 341.94 (in mg/dl).

IS F =
κ · ICR

W
(1)

Upon calculation of the ICR and ISF, the needed bolus dose is calculated by Equation (2),
where CHO is the quantity of carbohydrates ingestion (in g), Gc is the BG level (in mg/dl), Gsp

is the target BG level (in mg/dl), and IOB is the insulin on board, i.e. remaining active insulin
from previous doses.

B =
CHO
ICR

+
Gc −Gsp

IS F
− IOB (2)

For estimating the ICR of each case, PepperRec follows a CBR methodology, which consists
of four steps:

1. Retrieve: Retrieval of the k nearest cases using the Euclidean distance.
2. Reuse: Estimation the new ICR using the weighted mean of the ICR of the retrieved cases

based on their similarity to the new case.
3. Revise: Correction of the previously calculated ICR based on the outcome obtained, i.e. the

postprandial BG
4. Retain: Storage of the new case if necessary.

At step four, Torrent-Fontbona & Lopez (2018) propose a simple methodology to update the
case-base, which consists of removing existing cases in the case-base if a new case, which has
equal attributes to other cases, is added. This is performed due to the assumption that the old
case is redundant because it has the same ICR, or it is obsolete because it has a different ICR.
Nevertheless, this simplistic approach is not able to keep the case-base small and efficient when
the number of attributes describing the cases is large. Consequently, the authors decided to
describe cases with only three attributes: past and planned aerobic physical activity and time of
day.

4. Case-base Maintenance

This paper proposes a novel approach for editing the case-base and learning the relevance of
the attributes of the bolus recommender system PepperRec to overcome the current limitations
of the system regarding the efficiency of the case-base if the number of considered attributes
increases in respect to those proposed in (Torrent-Fontbona & Lopez, 2018).

Thus, it is proposed to include two new steps in PepperRec for CBR maintenance: (i) redun-
dancy reduction, and (ii) attributes weight learning. Figure 1 shows the complete CBR method-
ology proposed for PepperRec. The new steps proposed by this paper are highlighted in a blue
square.

4.1. Redundancy Reduction

The case-base of a CBR system must be efficient and accurate. Namely, redundant cases
should be removed because they do not improve the performance. Techniques such as ICF and
CRR monitor (review) the reachability and/or the coverage of the cases to then (restore) decide
whether it is worth removing a case from the case-base. The reachability of a target case is the
number of cases that can be used to properly solve the target case (Lu et al., 2016). The coverage
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Figure 1: Methodology of the proposed bolus recommender system, which extends PepperRec methodology with a
maintenance phase. The steps proposed in this paper are highlighted in a blue square.

of a target case is the number of cases that can be solved properly using the target case (Lu et al.,
2016).

These techniques are thought for classification problems where it is clear when a case has
properly contributed to solve another case or not (valid or not valid cases). However, in insulin
recommender systems where the solution is a real number, for example the ICR, these techniques
are not feasible. Therefore, this paper proposes a new method to label a case as valid or not using
a tolerance measure in the bolus error.

The permitted error ∆B =
∣∣∣B − B̃

∣∣∣ is defined as the allowed maximum absolute difference
between the optimal bolus B of a case A and the proposed bolus B̃, i.e. a bolus recommended
after reducing the case-base (without case A). However, while the bolus is the outcome prompted
to the user, the real product of the CBR methodology is the ICR. Thus, a relationship between
the bolus error ∆B and ICR tolerance is necessary.

Using Equations (1) and (2), the bolus B calculation is approximated as follows

B =
CHO
ICR

+
Gc −Gsp

κ · ICR/W
− IOB (3)

Thus, B̃ can be derived from the approximate ICR, ˜ICR, as follows

B̃ =
CHO

˜ICR
+

Gc −Gsp

κ · ˜ICR/W
− IOB (4)

According to Equations (3) and (4), the permitted bolus error is defined by Equation (5), where
ICR is the correct insulin-to-carbohydrates ratio (the ICR of case A that has been removed) and
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˜ICR is the approximated one.

∆B =

∣∣∣∣∣∣CHO
˜ICR

+
Gc −Gsp

κ · ˜ICR/W
−

(
CHO
ICR

+
Gc −Gsp

κ · ICR/W

)∣∣∣∣∣∣ (5)

Since ∆B is the maximum permitted bolus error, Equation (5) can be rearranged as

1
˜ICR

(
CHO +

Gc −Gsp

κ/W

)
∈

[
CHO
ICR

+
Gc −Gsp

κ · ICR/W
− ∆B,

CHO
ICR

+
Gc −Gsp

κ · ICR/W
− ∆B

]
(6)

and, thus, ˜ICR has to fulfil Equation (7).

˜ICR ∈

 CHO +
Gc−Gsp

κ/W

CHO
ICR +

Gc−Gsp

κ·ICR/W + ∆B
,

CHO +
Gc−Gsp

κ/W

CHO
ICR +

Gc−Gsp

κ·ICR/W − ∆B

 (7)

Considering Equation (8), then, Equation (7) can be expressed as Equation (9).

B + IOB =
CHO
ICR

+
Gc −Gsp

κ · ICR/W
(8)

˜ICR ∈
[
ICR

B + IOB
B + IOB + ∆B

, ICR
B + IOB

B + IOB − ∆B

]
(9)

In case that IOB = 0, the ICR tolerance range is given by

˜ICR ∈
[
ICR

B
B + ∆B

, ICR
B

B − ∆B

]
(10)

Thus, it is assumed that an ICR of a case is valid to solve another case if it fulfils Equation (9),
where ˜ICR is the ICR of the former case.

Upon setting this constraint, measures such as the coverage and the reachability can be eas-
ily calculated and traditional techniques like CRR, (Delany et al., 2005), or ICF, (Brighton &
Mellish, 2002) can be applied to reduce the redundancy of the case-base. CRR sorts cases in
descending order of coverage, then, it iteratively adds cases to the new case-base, but when a
new case is added, the cases belonging to its coverage are removed from the cases-pending-to-
be-added list. Therefore, CRR assumes that cases with lower coverage are those in the borders
and, therefore, are the ones to be included in the case-base. On the other hand, ICF calculates
the reachability and coverage of each case and removes those whose reachability is greater than
the coverage, i.e. those that could be solved by more cases than the cases that could solve the
evaluated case.

4.2. Attributes Weight Learning

This paper aims to extend PepperRec to deal with an undetermined number of attributes, whose
relevance is not known. Thus, it proposes to learn the relevance of the attributes using a method-
ology inspired by the algorithm presented in (Salzberg, 1991).

The approach aims to adjust the weights of the attributes every time a new case Cnew is stored
in the case-base. Algorithm 1 details the procedure for the proposed approach. It consists of
first selecting the n cases in the case-base with the most similar solution (ICR) to Cnew (step 3).
Next, it calculates the minimum and maximum difference, minD and maxD, between the ICR
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of Cnew and any ICR of the n selected cases (steps 4 and 5). Note that X0 is the selected case
with most similar ICR to Cnew and X‖X‖ is the case with most different ICR to Cnew. Then, for
each selected case and each attribute, the weight of the attribute is increased proportionally to
the similarity between its ICR and the ICR of Cnew, if the values of the attribute (for the selected
case and the new one) are equal (step 10). Otherwise, the weight is decreased (step 12). Note
that the similarity is defined as maxD−d

maxD−minD and, therefore, it is normalised between the similarities
of the n selected cases of step 3. The allowed increment/decrement is proportional to ε, so,
inversely proportional to the number of attributes to ensure that it does not exceed a percentage,
for example, ten percent of the average weight. Thus, in step 2, beta defines this percentage and

1
Nattributes

the average weight. Step 1 defines n proportional to the size of the case-base according
to α. At the end (steps 16 to 19), attributes weight are normalised to sum one.

Algorithm 1 Attributes weight learning algorithm
Initialisation: α = 0.1, β = 0.1
Require: caseBase, Cnew

1: n← bα × size(caseBase)c
2: ε ← β

Nattributes
3: X ← retrieveCasesWithS imilarICR(n, caseBase, ICRCnew )
4: minD←

∣∣∣ICRX0 − ICRCnew

∣∣∣
5: maxD←

∣∣∣ICRX‖X‖ − ICRCnew

∣∣∣
6: for each case ∈ X do
7: d ←

∣∣∣ICRCnew − ICRcase

∣∣∣
8: for each attribute ∈ ATTRIBUTES do
9: if attributecase = attributeCnew then

10: weightattribute ← weightattribute + ε maxD−d
maxD−minD

11: else
12: weightattribute ← weightattribute − ε

maxD−d
maxD−minD

13: end if
14: end for
15: end for
16: sum←

∑
attribute ∈ ATTRIBUT ES weightattribute

17: for each attribute ∈ ATTRIBUTES do
18: weightattribute ←

weightattribute
sum

19: end for

This approach aims to bring those cases with a similar solution (ICR) closer. This may help to
reduce the number of unnecessary cases, because cases with similar or equal ICR share the same
region of the problem space, they can be pruned with redundancy reduction algorithms.

5. Results and Discussion

The proposed approach was tested simulating eleven virtual adults throughout 180 days with
20 repetitions with the UVA/PADOVA T1DM simulator (version 3.2), (Kovatchev et al., 2009;
Visentin et al., 2014). This simulator is the only one approved by the Food and Drug Adminis-
tration as a substitute for preclinical trials for certain insulin treatments, including insulin recom-
mender systems (Visentin et al., 2014). The simulator has three main parts: (i) in silico subjects
with glucose-insulin models based on data from real people, (ii) in silico CGM sensor which

9



models calibration errors, loss of sensitivity depending on BG level, etc., and (iii) in silico in-
sulin pump which models the discrete insulin delivery and subcutaneous kinetics. The selected
CGM model was the default CGM provided by the simulator and the chosen insulin pump was
the one without infusion error in order to test the effectiveness of bolus recommendations.

UVA/PADOVA simulator does not consider intra-day variability of insulin sensitivity and ICR
variability depending on physical activity. However, such variability has been modelled and in-
troduced to the simulator by Imperial College Artificial Pancreas group as explained in (Herrero
et al., 2017). UVA/PADOVA simulator (and modified versions) has been used to test other in-
sulin recommender systems (Liu et al., 2013; Herrero et al., 2015a,b, 2017; Torrent-Fontbona &
Lopez, 2018; Torrent-Fontbona et al., 2017) and the methodology proposed in this paper.

The selected daily quantity pattern of carbohydrate dose intake was a uniform random distri-
bution with mean 70 g (breakfast), 100 g (lunch) and 80 g (dinner) and standard deviation of
10% of the quantity in g. Carbohydrate dose intake estimation uncertainty was modelled as a
uniform distribution between −30% and +10%. Carbohydrate intakes pattern and estimation are
similar to the ones used in Herrero et al. (2015a, 2017); Torrent-Fontbona & Lopez (2018).

In order to test the performance of the proposed algorithm when dealing with multiple at-
tributes and large combinatorial, additional dummy attributes were added to the CBR recom-
mender system to evaluate the performance of the proposed methodology. In particular, we
added eight new attributes: one binary attribute, two attributes with four possible nominal val-
ues and five new attributes with three possible values. This involves 7776 times more possible
combinations meaning that the case-base could grow up to 373,248 cases.

To analyse the performance of the proposed methodology, the following methods were tested:

• PepperRec according to (Torrent-Fontbona & Lopez, 2018) (state-of-the-art scenario).

• PepperRec and maintenance, which consists of PepperRec with the new methodology de-
scribed in this paper (redundancy reduction and weights learning). Both, CRR and ICF have
been tested as the redundancy reduction technique.

• PepperRec and maintenance without weights learning. Thus, only redundancy reduction
methodology is considered using CRR as it achieved better performance than ICF.

• PepperRec and maintenance without redundancy reduction. Thus, only weights learning is
considered.

All methodologies were tested with the number of nearest neighbours k equal to 1 and 3 in the
retrieve step.

Basal insulin was optimised using the algorithm described in (Torrent-Fontbona, 2018).

5.1. Case-base Efficiency

Case-base efficiency is evaluated in terms of the health results and the size of the case-base.
The health outcome is measured according to the portion of time the BG level of the subjects is
in, below and above the glycaemic target range, [70, 180] mg/dl.

Table 1 shows the results obtained by the tested methodologies in the last 30 days of the
simulations, as it is assumed that convergence is reached, at most, after 150 simulated days. It
shows that the inclusion of additional (dummy) attributes in PepperRec reduces the time in the
target range down to approximately 77.58% and the size of the case-base is large (more than 370
cases). Considering that simulations consists of 180 days and there are three recommendations
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Table 1: Averages of the 11 virtual adults of the mean and standard deviation of the portion of time (%) in, below and
above the glycaemic target range, [70, 180], using the proposed methodology (PepperRec and maintenance) with k = 1
and k = 3 in the retrieve and CRR or ICF as redundancy reduction techniques.

Methods Time in target (%) Time Below target (%) Time above target (%) Case-base size
PepperRec and maintenance (k = 1 and CRR) 79.95 ± 3.01 8.05 ± 2.50 12.00 ± 1.49 140.38 ± 46.86
PepperRec and maintenance (k = 3 and CRR) 80.01 ± 2.92 8.15 ± 2.55 11.84 ± 1.30 59.47 ± 18.01
PepperRec and maintenance (k = 1 and ICF) 79.61 ± 3.16 8.31 ± 2.56 12.88 ± 1.47 117.63 ± 32.59
PepperRec and maintenance (k = 3 and ICF) 80.14 ± 3.14 8.23 ± 2.89 11.63 ± 1.34 110.96 ± 38.10

PepperRec and maintenance without weights learning (k = 1 and CRR) 77.93 ± 4.19 10.09 ± 3.96 11.99 ± 1.86 209.25 ± 125.14
PepperRec and maintenance without weights learning (k = 3 and CRR) 77.78 ± 4.00 10.68 ± 3.72 11.54 ± 1.88 105.65 ± 79.01

PepperRec and maintenance without redundancy reduction (k = 1) 77.85 ± 3.51 9.37 ± 2.84 12.78 ± 1.56 310.57 ± 41.90
PepperRec and maintenance without redundancy reduction (k = 3) 78.09 ± 3.55 9.41 ± 2.99 12.49 ± 1.53 305.40 ± 47.81

PepperRec with dummy attributes (k = 1) 77.58 ± 3.35 9.75 ± 2.78 12.66 ± 1.49 378.90 ± 50.54
PepperRec with dummy attributes (k = 1) 77.66 ± 3.49 9.86 ± 3.11 12.48 ± 1.50 372.89 ± 57.65

per day, the system stores around 70% of cases. This confirms that the retain step of (Torrent-
Fontbona & Lopez, 2018) is not enough to keep the case base efficient.

The inclusion of a redundancy reduction algorithm (for example, CRR) helps to reduce the
case-base while the accuracy is maintained, that is time in, below and above the target are similar
and the case-base size is between one quarter and one half times the size using only PepperRec.
This reduction is especially significant when three neighbours, k = 3, are used because the
proposed ICRs in a weighted average of three cases are more alike when the CRR algorithm
checks if a case is solvable with another one.

Nevertheless, it is the combination of redundancy reduction and weights learning which in-
creases the accuracy of the system with a time in the target range of up to approximately 80%.
Moreover, it also reduces the size of the case-base in respect of using CRR without weights
learning. Therefore, learning the weights of the attributes helps to bring closer cases that have
similar solutions, and then, this shared region of the problem space can be modelled with fewer
cases. It is remarkable that when using CRR, the weights learning, and k = 3, the size of the
case-base is kept to about 60 cases, which is about 15% of the size with PepperRec alone or 10%
of the cases generated.

The results achieved using PepperRec and attribute weight learning, but not a redundancy
reduction technique, indicate that the accuracy of the recommendations is maintained, since the
time in, below and above the target are like those achieved with PepperRec alone, but the size of
the case-base is reduced by about 15-20%.

These results are aligned with the hypothesis that attribute weight learning contributes in the
pruning of the case-base. But, it is especially effective when it is combined with a redundancy
reduction technique such as CRR or ICF.

5.2. Attributes Weight Learning Analysis
Figure 2 illustrates the evolution of the weights of the attributes along time. It shows how

the weights of attributes that have a correlation with the ICR (past and planned aerobic activity
and time of day) increase along time, and the others decrease. Figure 3 presents the attributes’
weight (average and standard deviation) at the end of the simulations, demonstrating that the
weights of relevant attributes are significantly higher than the other at the end of the simulations.
It is remarkable that the weight of the additional (dummy) attributes is not affected by the number
of possible values they could have.

5.3. Discussion
PepperRec, using only past and planned activity and time of day, achieves an amount of time in

the glycaemic target range of approximately 84% using the UVA/PADOVA simulator according
11
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Figure 2: Attributes’ weight evolution using Algorithm 1, CRR and k = 3.
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Figure 3: Attributes’ weight (average and standard deviation between the 20 repetitions) at the end of the simulations
using Algorithm 1, CRR and k = 3.
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to (Torrent-Fontbona & Lopez, 2018). Similarly, the methodology proposed in (Herrero et al.,
2017) achieves a percentage of time in the target of approximately 80% using also past and
planned physical activity and time of day as the only attributes describing the cases. These
three attributes are the only ones considered by the simulator, which are intra-day variability
and variability due to physical activity, but glucose and insulin metabolism depend on more
factors. When the number of attributes is increased, PepperRec is not capable of keeping the
case-base small and efficient as it stores about 70% of cases. This reduces the accuracy of the
recommendations and the achieved amount of time in the glycaemic target range, but this also
dissuades its implementation on devices such as smartphones.

On the other hand, the proposed maintenance methodology, which combines case-base redun-
dancy reduction and attribute weight learning, achieves a percentage of time in the glycaemic
target range of approximately 80%. This value is much like to the methodology proposed in
(Herrero et al., 2017) and, despite this value being slightly worse than that achieved by Pepper-
Rec with only physical activity and time of day as attributes, the results demonstrate that the
proposed methodology can maintain a case-base small and efficient and achieve a good level
of accuracy in the bolus recommendations when the number of attributes is increased. Conse-
quently, the proposed approach is preferable to PepperRec in practice, because it can deal with
more attributes and glucose metabolism depends on many factors. Moreover, since the case-base
only keeps information about the user, it can learn the relevance of these factors and, then, per-
sonalise and adapt the weight of the attributes to it, while PepperRec and the method in (Herrero
et al., 2017) cannot. This is remarkable because the list of factors that have an impact on glucose
metabolism is known, but their relevance is not known because it depends on each person.

6. Conclusions

This paper presents a maintenance methodology in a numerical CBR recommender system,
PepperRec, for bolus recommendation. The proposed approach combines case-base redundancy
reduction and attribute weight learning with the objective of having an efficient, personalised
and adaptive CBR bolus recommender system. In this regard, it is the first bolus recommender
system in the literature thought to deal with many attributes and not just those considered by the
UVA/PADOVA type 1 diabetes simulator, that is, time of day or physical activity.

The method has been tested with the UVA/PADOVA type 1 diabetes simulator and the results
demonstrate that other state-of-the-art CBR bolus recommender systems reduce the accuracy of
the recommendations when there are many attributes. This shows that they are not designed for
such a situation since the size of the case-base grows without limit. On the other hand, the results
demonstrate that the proposed methodology can keep the case-base small and efficient and learn
the relevance of the attributes, making it suitable for its implementation for general use and in
portable devices.

Despite the results achieved with the UVA/PADOVA simulator, the proposed methodology
should be tested in an environment where factors other than physical activity and time of day
have an impact on glucose and insulin metabolism. This means that this methodology should be
tested with real people with T1DM because there are no simulators with this capacity.
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