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RESUM 

En aquest treball de final de grau s’ha desenvolupat i optimitzat una ruta sintètica per 

obtenir diferents complexos de ruteni amb lligands tipus N-donors, posteriorment s’ha 

avaluat l’eficiència d’un aquo complex com a catalitzador per a l’epoxidació d’alquens. 

Inicialment, s’ha sintetitzat un dels lligands N-donors no comercial (pypz-H) 

seguidament, s’ha sintetitzat el producte de partida cis,cis-[RuCl2(dmso)2(pypz-H)] 2, 

seguidament aquest complex mononuclear reacciona  amb el lligand trpy per generar 

una mescla del cloro complex cis i trans-[RuCl(trpy)(pypz-H)](PF6) 3b i 3a, aquests 

isòmers han pogut ser separats mitjançant cristal·lització i columna cromatogràfica. 

Posteriorment a partir d’aquest cloro complex s’ha sintetitzat i caracteritzat l’aquo-

complex trans-[Ru(trpy)(pypz-H)(OH2)](PF6)2 4a. 

Tots el compostos han sigut caracteritzats mitjançant tècniques espectroscòpiques en 

dissolució (RMN, UV-Visible) i alguns d’ells mitjançant difracció de Raig X, corroborant 

que mantenen la seva estructura en estat sòlid. 

Les propietats redox dels compostos han sigut estudiades mitjançant CV i DPV. El 

diagrama de Pourbaix presentat per el compost trans-[Ru(trpy)(pypz-H)(OH2)](PF6)2 4a 

ha permès obtenir informació dels equilibris redox així com també s’ha pogut conèixer 

els corresponents valors de pKa de les espècies de RuII i RuIII. 

Per acabar, s’ha avaluat l’activitat catalítica del complex trans-[Ru(trpy)(pypz-

H)(OH2)](PF6)2 4a en l’epoxidació d’alquens, utilitzant PhI(OAc)2 com a oxidant. Els 

resultats han mostrat bones conversions pels compostos provats amb uns excel·lents 

valors de  selectivitat. 



Lorenzo Rico Lazaro 

 

 

III 

RESUMEN 

En este trabajo de final de grado se ha desarrollado y optimizado una ruta sintética 

para obtener diferentes complejos de rutenio con ligandos tipo N-dadores, 

posteriormente se ha evaluado la eficiencia de un aquo complejo como catalizador en 

la epoxidación de alquenos. 

Inicialmente se ha sintetizado uno de los ligandos N-dadores no comercial (pypz-H), 

así como el producto de partida cis,cis-[RuCl2(dmso)2(pypz-H)] 2, seguidamente este 

complejo mononuclear reaciona con el ligando trpy para generar una mezcla del cloro 

complejo cis, trans-[RuCl(trpy)(pypz-H)](PF6) 3b y 3a, cuyos isómeros han podido ser 

separados a través de cristalización y columna de cromataografía. Posteriormente a 

partir de este cloro-complejo se ha sintetizado y caracterizado el aquo complejo, trans-

[Ru(trpy)(pypz-H)(OH2)](PF6)2 4a. 

Todos los compuestos se han caracterizado mediante técnicas espectroscópicas en 

disolución (RMN, UV-Visible) y algunos de ellos mediante difracción de Rayos X, 

corroborando que mantienen su estructura en estado sólido. 

Las propiedades redox de los compuestos han sido estudiadas mediante CV y DPV. El 

diagrama de Pourbaix presentado por el compuesto trans-[Ru(trpy)(pypz-

H)(OH2)](PF6)2 4a ha permitido obtener información de los equilibrios redox así como 

también se ha podido conocer los correspondientes valores de pKa de las especies de 

RuII y RuIII 

Finalmente, se ha comprobado la actividad catalítica del complejo trans-

[Ru(trpy)(pypz-H)(OH2)](PF6)2 4a en la epoxidación de alquenos, utilizando PhI(OAc)2 

como oxidante. Los resultados obtenidos han mostrado buenas conversiones para los 

compuestos probados así como excelentes valores de selectividad.
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SUMMARY 

In this dissertation work we have developed and optimized a synthetic route to obtain 

different ruthenium complexes with N-donor type ligands, afterwards, we have 

evaluated the efficiency of an aqua-complex as catalyst for the epoxidation of alkenes. 

Initially we have synthesized one of the non-commercial N-donor ligand (pypz-H), and 

the starting product cis,cis-[RuCl2(dmso)2(pypz-H)] 2, this mononuclear complex reacts 

further with the ligand trpy to generate a mixture of the chloro-complex cis, trans-

[RuCl(trpy)(pypz-H)](PF6) 3b and 3a. Afterwards, from this one we have synthesized 

and characterized the correspondent aqua-complex trans-[Ru(trpy)(pypz-

H)(OH2)](PF6)2 4a. 

All the compounds have been characterized in solution throught spectroscopic 

techniques (RMN, UV-Visible) and some of them by X-ray difraction, confirming that 

they maintain their structure in solid state. 

The redox properties of the compounds have been studied by CV and DPV. The 

Pourbaix diagram displayed by the complex trans-[Ru(trpy)(pypz-H)(OH2)](PF6)2 4a 

allowed to obtain data about the redox equilibriums as well as have allowed to know 

the correspondent pKa values of the RuII and RuIII species. 

Finally, we have evaluated the catalytic activity of the complex trans-[Ru(trpy)(pypz-

H)(OH2)](PF6)2 4a in the alkene epoxidation, using PhI(OAc)2 as oxidant. The results 

obtained shown good conversion values for the compounds tested as well as excellent 

selectivity values. 
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GLOSSARY OF TERMS AND ABBREVIATIONS 

 

Abs Absorbance 

abs. Absolute 
acetone-d6 Deuterated acetone 
Anal. Found (Calc.) Analysis found (analysis calculated) 
trpy 2,2’;6’,2’’-terpyridine 
bpy 2,2'-bipyridine 
Cl Cloride 
CDCl3 Deuterated chloroform 
CV Cyclic voltammetry 
d Doblet 
dmso Dimethyl sulfoxide 
ε Extinction coefficient 
E Potential 
E1/2 Half-wave potential 
ESI-MS Electrospray ionization mass spectrometry 
ET Electron transfer 
h Hours 
IR Infrared 
J Coupling constant 
M Metal 
m Multiplet 
MHz Megahertz 
MLCT Metal to ligand charge transfer 
MeOH Methanol 
Methanol-d4 Deuterated methanol 
m/z Mass-to-charge ratio 
NMR Nuclear magnetic resonance 
PCET Proton-coupled-electron transfer 
ppm Parts per million 
pypz-H 2-(3-pyrazolyl)pyridine 
pypz-Me 2-(1-Methyl-3-pyrazolyl)pyridine 
S Sulfur 
s Singlet 
Ru Ruthenium 
RT Room Temperature 
T Temperature 
t Triplet 
TBAH Tetra(n-butyl)ammonium hexafluorophosphate 
TON Turnover number 
UV-Vis Ultraviolet-visible spectroscopy 
vs Versus 
λ Wavelength 
δ Chemical shift 
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CHAPTER 1. INTRODUCTION 

1.1 Ruthenium complexes properties  

Ruthenium is a metal situated in the d group of the periodic table. The electronic 

configuration of ruthenium ([Kr] 4d7 5s1) makes this metal, together with osmium, 

unique among most of the elements in displaying the widest range of oxidation states 

in their complexes. The oxidation state of ruthenium takes place from -2 as in 

[Ru(CO)2]2+ (d0) to +8 as in RuO4 (d10). The synthetic versatility and the kinetic stability 

of ruthenium complexes in different oxidation states make these complexes particularly 

interesting. Other characteristics of ruthenium’s coordination compounds are their high 

electron transfer capacity,1 a robust character of their coordination sphere, their redox-

active capacity, their easily available high oxidation states and their applications as 

redox reagents in many different chemical reactions.  

Ruthenium complexes have experienced a large boost in the fields of catalysis, 2 

photochemistry and photophysics, 3  and more recently in supramolecular 4  and bio-

inorganic chemistry.5 

The properties of ruthenium complexes are certainly correlated with the nature of the 

ligands coordinated to the central metal ion. Ruthenium complexes with N-donor 

ligands are studied due to their spectroscopic, photophysical and electrochemical 

properties. 6  On the other hand, ruthenium complexes with π-conjugate ligands or 

systems that enable electronic delocalization have shown specific properties in 

nonlinear optics, magnetism, molecular sensors and liquid crystals. 7  Furthermore, 

ruthenium complexes with heterocyclic N-donor ligands are the most used due to their 

interesting spectroscopic, photophysical and electrochemical properties.8 

 

 

1.2 Ruthenium polypyridyl aqua complexes 

In recent years, the study on ruthenium complexes with N-donor ligands have received 

much attention owing to their interesting uses in diverse areas such as photo 

sensitizers, as oxidation catalysis9, for photochemical conversion of solar energy,10 

molecular electronic divices11 and photoactive DNA cleavage agents for therapeutic 

purposes.12 

 

 

http://en.wikipedia.org/wiki/Krypton
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Extensive coordination chemistry about hexacoordinated complexes containing 

polypyridyl ligands has been reported, due to the stability of these ligands against 

oxidation and their great coordinative capacity, increased by their quelating effect. 

These properties give a great stability to the formed complex. 

The redox properties of these complexes become especially interesting when an aqua 

ligand is directly bonded to the metal center. In this case, a proton-coupled-electron 

transfer (PCET) is possible, making the high oxidation states fairly accessible.13 

The successive oxidation from Ru(II) to Ru(IV) are accompanied by a sequential loss 

of protons favored by the enhanced acidity of the bonded aqua ligand (Scheme 1). 

Therefore, the initial RuII-OH2 is oxidized to RuIV=O, passing through a RuIII-OH 

species. 

 

Scheme 1. PCET oxidation process characteristic of Ru-aqua complexes. 

 

1.3 Ruthenium in epoxidation catalysis of olefins 

The catalytic epoxidation of alkenes (Scheme 2) has great importance from academics 

and industry point of view. Olefin epoxidation has an interest due to the fact that 

epoxides are useful as intermediates in organic reactions and they can be easily 

transformed to functionalized compounds.14  Epoxides are used in the synthesis of 

many industrial products, for example, in fine chemical some anti-inflammatory and 

anti-allergic agents are synthesized from epoxides.15 Epoxy polymers are widely used 

in the marine, automotive, aerospace and building industries.  

 

Scheme 2. Alkene epoxidation process. 

 

Ruthenium complexes have been proved to be efficient in the epoxidation of different 

olefins with relatively high selectivities.16 In general, epoxide yields depend on several 

factors such as the nature of the substrates, catalysts and reaction conditions.  
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A key point in ruthenium-mediated epoxidation is the mechanism followed. 17  Two 

general routes have been described, which are depicted in Scheme 3 for a general cis-

olefin:  

 

 

Scheme 3. Possible pathways for metal-catalyzed epoxidation. 

 

The concerted oxo transfer (I) leads to a stereospecific epoxidation, keeping the cis 

stereoisomerism of the original alkene in the final epoxide product, whereas the radical 

pathway (II) generates an intermediate specie that can either undergo direct ring 

closure (also leading to the cis-epoxide) or, alternatively, it can suffer C-C bond rotation 

prior to ring closure leading to the trans-epoxide, which is thermodynamically more 

stable. Depending on the relative reaction rates of these processes, the radical 

mechanism can result in a mixture of cis- and trans-epoxides.  
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CHAPTER 2. OBJECTIVES 

The aims of this work are the ones following: 

• To learn the techniques of synthesis and spectroscopic and electrochemical 

characterization, which are characteristic of a research laboratory.   

 

• The synthesis of new ruthenium (II) complexes (chloro and aqua), containing 

polypyridylic ligands. The ligands used in this work are the ones following in the 

Figure 1.  

 

Figure 1. Plot for ligands used in this work 

 

• The spectroscopic and electrochemical characterization of the complexes 

synthesized. 

 

• The evaluation of the synthesized complex trans-[RuII(H2O)(pypz-H)(trpy)](PF6)2 

4a in the catalytic epoxidation of alkenes.  
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CHAPTER 3. EXPERIMENTAL SECTION 

3.1 Instrumentation and measurements  

• UV-Vis 

UV-Vis spectroscopy was performed on a Cary 50 Scan (Varian) UV-Vis 

spectrophotometer with 1 cm quartz cells. 

• Cyclic voltammetry (CV) and differential pulse voltammetry (DPV)  

CV and DPV experiments were performed in an IJ-Cambria IH-660 potentiostat using a 

three electrode cell. Glassy carbon electrode (3 mm diameter) from BAS was used as 

working electrode, platinum wire as auxiliary and SCE as the reference electrode. The 

complexes were dissolved in solvents containing the necessary amount of n-Bu4NPF6 

(TBAH) as supporting electrolyte to yield a 0.1 M ionic strength solution. All E1/2 values 

reported in this work were estimated from cyclic voltammetry experiments as the 

average of the oxidative and reductive peak potentials (Ep,a+Ep,c)/2, or directly from 

DPV peaks. 

• IR 

IR spectroscopy was performed on an Agilent Technologies, Cary 630 FTIR equipped 

with an ATR system, directly on the samples without any previous treatment. 

• NMR spectra 

The NMR spectroscopy was performed on a Bruker DPX 400 MHz. Samples were run 

in CD2Cl2, CDCl3, CD3OD and (CD3OD/10% CF3COOD). For the NMR assignments, we 

used the same labeling scheme as for the X-ray structures. 

• Gas chromatography  

Gas chromatography experiments were performed by capillary GC, using a GC-2010 

Gas Chromatograph from Shimadzu, equipped with an Astec CHIRALDEX G-TA 

Column (30 m x 0.25 mm diameter) incorporating a FID detector. All the product 

analyses in the catalytic experiments were performed by means of calibration curves 

using biphenyl as internal standard. GC conditions: initial temperature, 40º C for 5 min; 

ramp rate, 5º C min-1; final temperature, 170 ºC; injection temperature, 250 ºC, detector 

temperature, 250 ºC, carrier gas, He at 25 mL min-1. 
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• X-ray Structure Determination 

The measurement was carried out on a BRUKER SMART APEX CCD diffractometer 

using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) from an x-Ray Tube. 

The measurements were made in the range 2.461 to 28.426° for θ. Full-sphere data 

collection was carried out with ω and φ scans. A total of 21219 reflections were 

collected of which 7288 [R(int) = 0.0458] were unique. Programs used: data collection, 

Smart18; data reduction, Saint+19; absorption correction, SADABS20. Structure solution 

and refinement was done using SHELXT and SHELXL21. 

The structure was solved by direct methods and refined by full-matrix least-squares 

methods on F2. The non-hydrogen atoms were refined anisotropically. The H-atoms 

were placed in geometrically optimized positions and forced to ride on the atom to 

which they are attached, except for the N-H hydrogen which was refined freely.  

3.2 Synthesis of compounds 

Materials. All reagents used in the present work were obtained from Aldrich Chemical 

Co. in the highest commercially available purity grade and were used without further 

purification. Reagent grade organic solvents were obtained from SDS and high purity 

deionized water was obtained by passing distilled water through a nanopore Mili-Q 

water purification system. 

Synthesis. Ligand [3-(2-pyridyl)pyrazole] pypz-H22 and complexes cis-[RuIICl2(dmso)4] 

123, cis, cis-[RuIICl2(pypz-H)(dmso)2] 224 were prepared as described in the literature. 

All synthetic manipulations were routinely performed under nitrogen atmosphere using 

Schlenk tubes and vacuum line techniques.  

Synthesis of the ligand 2-(3-pyrazolyl)pyridine, pypz-H 

1 g (5.67 mmol) of 3-(dimethylamino)-1-(2-pyridyl)-2-propen-1-one together with 0.4 mL 

(7.42 mmol) of hydrazine were refluxed in ethanol (20 mL) at 110ºC for 1 hour. The 

mixture was cooled to room temperature. Once cooled, the solvent was evaporated in 

a vacuum. The brown precipitated correspond to pypz-H. Yield: 0.81 g (99%). 1H-NMR 

(400 MHz, CDCl3): δ= 6.81 (d, 1H, H5), 7.23 (dd, 1H, H4), 7.66 (d, 1H, H6), 7.74 (ddd, 

2H, H2, H3), 8.63 (dd, 1H, H1). 
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Synthesis of [RuCl2(dmso)4], 1 

1g (3.83 mmol) of RuCl3·2.53H2O was refluxed in 5 mL of dmso at 150 ºC for 30 

minutes. After this time, the solution was cooled to RT; 50 mL of acetone were added. 

The yellow precipitate formed was separated by filtration and successively washed with 

acetone and ether and dried in vacuum. Yield: 1.095 g (57%). 

Synthesis of cis,cis-[RuIICl2(pypz-H)(dmso)2], 2 

A mixture of [RuCl2(dmso)4] 1 (250 mg, 0.51 mmol), and pypz-H (75 mg, 0.52 mmol) 

was dissolved in 50 mL of ethanol absolute and heated at 90ºC under nitrogen 

atmosphere for 2 hours. After the reaction time, the solution was cooled to room 

temperature and the volume was reduced in a rotary evaporator. The yellow precipitate 

formed (corresponds to compound 2) was separated by filtration and successively 

washed with ether and dried in vacuum. Yield: 179 mg (58%). 1H-NMR (400 MHz, 

CD2Cl2): δ = 2.00 (s, 3H, H11), 2.92 (s, 3H, H10), 3.52 (s, 3H, H9), 3.54 (s, 3H, H8), 

6.99 (d, 1H, H5, J5,6=2.8Hz), 7.54 (ddd, 1H, H2, J2,1=6.8Hz; J2,3=7.4Hz; J2,4=1.5Hz), 

7.79 (d, 1H, H6, J6,5=2.8Hz), 7.95 (ddd, 1H, H4, J4,3=7.4Hz; J4,2=1.5Hz; J4,1=0.9Hz), 

8.02 (td, 1H, H3, J3,2=J3,4=7.4Hz; J3,1=1.5Hz), 9.44 (ddd, 1H, H1, J1,2=6.8Hz; 

J1,3=1.5Hz; J1,4=0.9Hz), 13.11 ppm(s, 1H, H7). E1/2
(III/II) (CH2Cl2 + 0.1 M TBAH): 1.12 V 

vs. SCE. 

Synthesis of trans- and cis-[RuIICl(pypz-H)(trpy)](PF6), 3a and 3b 

0.558 g (1.179 mmol) of [RuIICl2(dmso)(pypz-H)] 2, complex and 0.275 g (1.155 mmol) 

of trpy were refluxed in 150 mL of methanol for 18 h. The dark reaction mixture was 

reduced to dryness and redissolved in 10 mL of a 75:1 mixture of MeOH/NH4OH. The 

mixture was cooled until a brown precipitate P1 was formed. This solid was filtered on 

a frit and washed two times with cold MeOH/NH4OH (75:1) solution. The filtrate 

solution, F1 which contained mainly the cis-isomer, was reduced to 5 mL volume and 

purified by column chromatography (vide infra). The P1 was dissolved with a mixture of 

MeOH/HCl (adjusting the pH to < 2) and a 1 mL of a saturated aqueous solution of 

NH4PF6 was added. Afterwards 100 mL of cold water was added under vigorous 

stirring. The pure 3a complex was obtained as a precipitate, was filtered off and 

washed with cold H2O and diethyl ether. Yield: 0.267 g (34%). 

Suitable crystals of 3a were grown as brownish-purple needles by diffusion of diethyl 

ether into a CH2Cl2 solution of the pure complex. 
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Column chromatography on silica was carried out (SiO2, MeOH/NH4OH 30:1), the first 

yellow fraction was discarded and contained Ru(trpy)2
2+. A second purple fraction 

contained a small amount of the 3a isomer which one was also discarded. Finally, a 

third brownish fraction contained the 3b was obtained. The volume of the later fraction 

was reduced to dryness and dissolved with 10 mL of a mixture of MeOH/HCl (adjusting 

the pH to < 2), then 1 mL of saturated aqueous NH4PF6 solution was added. Finally 

100 mL of water was added under vigorous stirring and cooling until precipitation. The 

fine crystalline precipitate was filtered off, washed twice with 10 mL of water and 10 mL 

of diethyl ether. and dried in vacuum. Yield: 98.7 mg (13 %) of pure 3b complex was 

obtained.  

For 3a: 1H NMR (400 MHz, Methanol-d4): δ 10.03 (ddd, J = 5.7, 1.4, 0.9 Hz, 1H, H1), 

8.59 (d, J = 8.1 Hz, 2H, H15, H17), 8.48 (d, J = 8.1 Hz, 2H, H12, H20), 8.37 (d, J = 7.7 

Hz, 1H, H4), 8.23 (td, J = 7.8, 1.5 Hz, 1H, H3), 8.11 (t, J = 8.1 Hz, 1H, H16), 7.92 (td, J 

= 7.8, 1.5 Hz, 2H, H11, H21), 7.83 (td, J = 5.7, 1.4 Hz, 1H, H2), 7.71 (ddd, J = 5.5, 1.4, 

0.7 Hz, 2H, H9, H23), 7.48 (d, J = 2.8 Hz, 1H, H8), 7.33 (ddd, J = 7.5, 5.5, 1.3 Hz, 2H, 

H10, H22), 7.10 ppm(d, J = 2.8 Hz, 1H, H7). 13C NMR (400 MHz, Methanol-d4): δ 

158.8 (C14, C18), 152.6 (C6), 152.1 (C9, C23), 137.2 (C3), 136.6 (C11, C21), 133.3 

(C16), 133.0 (C8), 127.2 (C13, C19), 126.8 (C10, C22), 124.2 (C2), 122.8 (C12, C22), 

121.9 (C4), 121.8 (C15, C17), 121.3 (C5), 103.9 ppm(C7). IR (ν max, cm-1): 3626, 

3562, 1628, 1445, 1386, 1062, 842, 760. E1/2
(III/II) (CH2Cl2 + 0.1 M TBAH): 0.80 V vs. 

SCE. UV-vis (CH2Cl2) [λmax, nm (ε, M-1 cm-1)]: 236 (1477), 276 (1235), 322 (1146). 

For 3b: 1H-NMR (400 MHz, Methanol-d4): δ 8.65 (d, J = 8.1 Hz, 2H, H15, H17), 8.53 

(d, J = 8.1 Hz, 2H, H12, H20), 8.41 (d, J = 2.9 Hz, 1H, H7), 8.16 (t, J = 8.1 Hz, 1H, 

H16), 8.11 (ddd, J = 8.0, 1.5, 1.0 Hz, 1H, H4), 7.95 (td, J = 7.9, 1.5 Hz, 2H, H11, H21), 

7.79 (ddd, J = 5.5, 1.4, 0.7 Hz, 2H, H9, H23), 7.68 (td, J = 7.8, 1.4 Hz, 1H, H3), 7.55 (d, 

J = 2.9 Hz, 1H, H8), 7.40 (ddd, J = 7.5, 5.6, 1.3 Hz, 2H, H10, H22), 7.18 (ddd, J = 5.7, 

1.3, 0.8 Hz, 1H, H1), 6.91 ppm(ddd, J = 7.4, 5.8, 1.5 Hz, 1H, H2). 13C NMR (400 MHz, 

Methanol-d4): δ 141.81 (C9, C23), 139.62 (C1), 125.74 (C11, C21), 124.93 (C3), 

122.89 (C16), 122.05 (C7), 116.11 (C10, C22), 113.45 (C2), 112.85 (C12, C20), 

111.89 (C15, C17), 111.80 (C4), 94.21 ppm(C8). IR (ν max, cm-1): 3648, 3562, 1594, 

1445, 1382, 838, 760. E1/2
(III/II) (CH2Cl2 + 0.1 M TBAH): 0.88 V vs. SCE. UV-vis (CH2Cl2) 

[λmax, nm (ε, M-1 cm-1)]: 238 (1480), 276 (1163), 318 (1198). 
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Synthesis of trans-[RuII(H2O)(pypz-H)(trpy)](PF6)2, 4a 

A Sample of AgPF6 (0.08 g, 0.32 mmol) was added to a solution of 30 mL of H2O 

containing 3a (0.1 g, 0.15 mmol) and heated at reflux for 2 h in the absence of light. 

AgCl was filtered off through a frit containing Celite. Afterwards, NH4PF6 (1 mL) was 

added to the filtrate, and the volume reduced in a rotary evaporator until a precipitate 

appeared that was washed with the minimum amount of cold water and diethyl ether. 

Yield: 0.040 g (40%). 

For 4a:  1H NMR (400 MHz, Methanol-d4): δ 9.41 (ddd, J = 5.6, 1.4, 0.8 Hz, 1H, H1), 

8.68 (d, J = 8.1 Hz, 2H, H15, H17), 8.56 (d, J = 7.9 Hz, 2H, H12, H20), 8.41 (d, J = 7.9 

Hz, 1H, H4), 8.34 – 8.28 (m, 1H, H3), 8.27 – 8.22 (m, 1H, H16), 8.06 – 7.99 (m, 2H, 

H11, H21), 7.92 (ddd, J = 7.6, 5.7, 1.4 Hz, 1H, H2), 7.78 (ddd, J = 5.4, 1.4, 0.7 Hz, 2H, 

H9, H23), 7.47 (d, J = 2.9 Hz, 1H, H7), 7.42 (ddd, J = 7.6, 5.5, 1.3 Hz, 2H, H10, H22), 

7.09 ppm(d, J = 2.9 Hz, 1H, H8). IR (ν max, cm-1): 3618, 3551, 1992, 1602, 1449, 

820, 756. E1/2
(III/II) (phosphate buffer pH=7): 0.26 V vs. SCE. E1/2

(IV/II) (phosphate buffer 

pH=7): 0.65 V vs. SCE. UV-vis (phosphate buffer pH=7): [λmax, nm (ε, M-1 cm-1)]: 230 

(18800), 270 (16180), 315 (15060), 381 (3410), 460 (3654). 

Synthesis of cis-[RuII(H2O)(pypz-H)(trpy)](PF6)2, 4b 

A Sample of AgPF6 (0.06 g, 0.24 mmol) was added to a solution of 25 mL of H2O 

containing 3b (0.08 g, 0.12 mmol) and heated at reflux for 2h. AgCl was filtered off 

through a frit containing Celite. Afterward NH4PF6 (1 mL) was added to the filtrate, and 

the volume reduced in a rotary evaporator until a precipitate appeared that was 

washed with the minimum amount of cold water and ether. 

3.3 Catalytic experiments 

3.3.1 Conditions of alkene epoxidation 

Experiments have been performed in anhydrous dichloromethane at room 

temperature. In a typical run, Ru catalyst (0.5 mM), alkene (50 mM), and PhI(OAc)2 

(100 mM) were stirred at room temperature in dichloromethane (2,5 mL) for 24h. After 

the addition of an internal standard, an aliquot was taken for gas chromatographic (GC) 

analysis. The oxidized products were analyzed by GC. 
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3.4 Ethical and sustainability criteria 

Due to the experimental processes carried out in a synthetic laboratory, sometimes 

large quantities of solvent were need, especially in processes of purification of 

products. However, the waste generated residues were stored properly, in containers 

intended for properly labeled purpose. It has been tried to work maximizing the atomic 

economy, but sometimes it has not been possible because the reactions gave some 

byproducts. 

It is worth mentioning that the catalytic study in this work reduces the thermal energy 

needed for epoxidation reactions, as a clean and economical way to reduce the 

environmental impact caused by the huge industrial production involved in epoxidation.  
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Synthesis and structural characterization 

The synthetic strategies followed for the preparation of the Ru(II) complex 4a and 4b, is 

outlined in Scheme 4. The reaction of [RuIICl2(dmso)4] 1 with pypz-H ligand generates 

the mononuclear complex cis(Cl),cis(S)- RuIICl2(pypz-H)(dmso)2], 2. This mononuclear 

complex reacts further with the ligand trpy to generate a mixture of RuII-Cl isomeric 

complexes, trans and cis-[RuIICl(trpy)(pypz-H)](PF6), 3a and 3b with a 4:1 ratio, which 

are separated and purified through crystallization and column chromatography in silica. 

Treatment of the corresponding Ru-Cl complex with Ag+ generates the corresponding 

aqua ruthenium complexes, 4a and 4b. The nomenclature trans and cis for complexes 

refers to the relative position of the monodentate ligand with regard to the pyrazole ring 

of the pypz-H ligand. 
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Scheme 4. Synthetic strategies and ligands used in this work. 
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The isomer trans is favored versus the cis, this fact is due probably to steric and 

electronic effects. In the case of isomer trans the steric hindrance is due to the 

proximity of the pyrazolic proton to the trpy ligand and in the case of the isomer cis to 

the proximity of the pyridilic proton, leading to less steric hindrance in the former case 

(see scheme 5). Moreover, the isomer trans is favored due to the formation of a 

hydrogen bond between the monodentate chloride ligand Cl1 and H1 of pyridine ring 

(2.788A) that in the case of isomer cis we could assert that would be very weak (see 

scheme 4). This evidence can be also corroborated by the 1H-NMR spectra that in the 

case of trans isomer a strong downfield shift for the pyridilic proton next to the chloride 

ligand is observed for with regard to the cis. 

Moreover, the synthetic process also leads to the formation of side products, such as a 

dimeric specie that is shown below. This fact, could indicate the decrease in the 

obtention of the cis isomer. 

 

 

 

Scheme 5. Schematic drawing of the trans and cis-RuIICl(trpy)(pypz-H)](PF6) complexes 
indicating the Cl-H interaction.  
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Crystal structure of isomer trans- has been solved by X-ray diffraction analysis. Figure 

2 displays the molecular structure whereas the main crystallographic data and selected 

bond distances and angles can be found in the Tables 1 and 2.  

 

 

Figure 2. Plot and labelling scheme for 3a. 

 

The structure shows that the Ru metal center adopts an octahedral distorted type of 

coordination where the trpy ligand is bonded in a meridional manner and the pypz-H 

ligand acts in a didentate fashion. The sixth coordination site is occupied by the 

chlorido ligand. All bond distances and angles are within the expected values for this 

type of complexes. 25 

Table 1. Crystallographic data and details of the structure solution and refinement 
procedures for the X-ray diffraction of the complex 3a. 

Empirical formula C31H35Cl1N6O4F6P2Ru1 

Formula weight 868.11 
Crystal system Triclinic 
Space group P-1 

a[Ǻ] 8.834(3) 
b[Ǻ] 14.292(4) 
c[Ǻ] 15.293(5) 
α[º] 101.867(6) 
β[º] 106.652(5) 
γ[º] 95.095(5) 

V [Ǻ3] 1787.8(9) 
Formula Units/ cell 2 

Temp. [K] 298(2) 
ρcalc, [Mg/m-3] 1.588 

μ[mm-1] 0.719 
Final R indices, R1 = 0.0722 

[I>2σ(I)] wR2 = 0.2019 
R indices [all data] R1 = 0.0881 

 wR2 = 0.2221 
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Table 2. Selected bond lengths (Å) and angles (°) for 3a. 

Ru(1)-N(1) 2.103(5) N(1)-Ru(1)-N(4) 104.61(17) N(2)-Ru(1)-Cl(1) 170.82(12) 

Ru(1)-N(2) 2.040(5) N(1)-Ru(1)-N(5) 174.38(15) N(5)-Ru(1)-N(4) 79.61(17) 

Ru(1)-N(4) 2.076(4) N(1)-Ru(1)- N(6) 95.99(18) N(5)-Ru(1)-N(6) 79.78(18) 

Ru(1)-N(5) 1.952(4) N(1)-Ru(1)-Cl(1) 94.14(13) N(5)-Ru(1)-Cl(1) 89.66(12) 

Ru(1)-N(6) 2.081(4) N(2)-Ru(1)- N(4) 91.48(16) N(4)-Ru(1)-N(6) 159.38(18) 

Ru(1)-Cl(1) 2.396(3) N(2)-Ru(1)- N(5) 99.34(16) N(4)-Ru(1)-Cl(1) 88.33(11) 

N(1)-Ru(1)-N(2) 77.03(17) N(2)-Ru(1)- N(6) 92.38(17) N(6)-Ru(1)-Cl(1) 91.00(12) 

 

The molecular structure of the dimeric ruthenium compound obtained together with 3b 

during the synthetic process is shown in figure 3. 

The structure shows two ruthenium atoms with octahedral distorted type of 

coordination where the trpy ligand is bonded in a meridional manner and the two 

deprotonated pyrazole rings of the pypz-H ligands bridging two ruthenium centers.  

 

Figure 3. Plot and labelling scheme for dimeric ruthenium compound.  
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4.2 Spectroscopic properties 

4.2.1 IR spectroscopy  

Figures 4 and 5 show the IR spectra corresponding to the complexes 3a-3b, and 4a, 

respectively. All compounds show peaks around 3090 cm-1, that can be assigned to the 

the υ(=C-H) stretching corresponding to the polypyridylic ligands, also the IR spectra of 

compounds show peaks between 1389-1412 cm-1 that can be assigned to the υ(C=N) 

stretching of the ligands. The peaks observed over 1300-1100 cm-1 and at 830 cm-1 can 

be assigned to the C-H) in plane bends. Moreover, a double peak present in all the 

complexes at 3600-3400 cm-1 corresponds to the υ(-N-H) of the pyrazolic ligand. All 

spectra show a peak around 845 cm-1 that can be assigned to the anion PF6
-. In the 

case of the 4a spectra (figure 5) it can be seen a new peak over 3350 cm-1 which 

corresponds to the υ(O-H) stretching of the water coordinated to the metal. 

 

Figure 4. FTIR spectra of complex 3a. 
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Figure 5. FTIR spectra of complex 4a. 

4.2.2 NMR spectroscopy 

The one-dimensional (1D) NMR and two-dimensional (2D) spectra of complex 3a, 3b 

and 4a were recorded in methanol-d4 and are consistent with the solid-state structure 

of 3a. Figure 6 ,7 and 8 show the 1H-NMR spectra of complexes 3a, 3b and 4a. 1H-

NMR spectra exhibit one set of signals in the aromatic region associated with the 

presence of polypyridyl ligands. The most interesting feature of the spectra of 

complexes 3a and 3b (chloro-complexes) (figures 6, 7), respectively, is the deshielding 

effects exerted by the chlorido ligand over the H1, thus different chemical shifts of H1 

are observed: 10,0 ppm for the trans isomer and 7.2 ppm for the cis. It is an evidence 

of the spatially close Cl ligand in the case of the trans isomer. For the Ru-OH2 4a 

complex (figure 8) the deshielding effect of the OH2 ligand over the H1, leads to a 

chemical shift of 9.4 ppm; this value is lower than the shift observed in the chloro-

complex. 
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Figure 6. 1H-RMN spectrum of complex 3a. 

 

Figure 7. 1H-RMN spectrum of complex 3b. 

 

Figure 8. 1H-RMN spectra of complex 4a. 
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4.2.3 UV-Vis spectroscopy 

The UV-Vis spectra of complexes 3a, 3b and 4a are displayed in Figure 9 whereas 

their main features are presented in the experimental section. The complexes exhibit 

ligand based -* bands below 350 nm and relatively intense bands above 350 nm 

assigned mainly to d-* transitions due to a series of MLCT transitions.26 For the Ru-

Cl complexes the MLCT bands are shifted to the red with regard to the Ru-OH2 due to 

the relative destabilization of the d(Ru) levels provoked by the chloro ligand (see 

Figure 9). A similar MLCT value are observed for other complexes described in the 

literature.27 

 

Figure 9. UV/Vis spectra of 3a (solid line), 3b (dotted dashed line) in DCM and 4a (dashed 
line) in phosphate buffer (pH=7). 

 

4.3 Electrochemical properties  

The redox properties of the Ru-Cl and aqua complexes described in the present work 

were investigated by means of cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV) and are summarized in Table 3. Figure 10 shows the CVs for 3a 

and 3b, and figure 11 shows the DPV of 4a.  
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Figure 10. CV for complex 3a (blue) and 3b (red) exhibits a reversible Ru(III)/Ru(II) redox 
wave at E1/2= 0.80 V and E1/2= 0.88 V respectively. Both registered in CH2Cl2 with SCE as 

the reference electrode. 

 

Figure 11. DPV for complex 4a exhibits a Ru(III)/Ru(II) at E1/2= 0.03 V and a Ru(IV)/Ru(III) 
at E1/2= 0.34 V registered in phosphate buffer (pH=11.8) with SCE as the refence electrode. 

The redox potentials for the Ru-aqua complexes are pH dependent (1) due to the 

capacity of the mentioned aqua ligand to lose protons as has been shown in equations 

(2-7). 

E1/2 = Eo
1/2 – 0.059 (m/n) pH     (1) 

 
E1/2:  half wave redox potential at a given pH 
Eo

1/2: half wave redox potential at standard conditions 
m:  number of transferred protons 
n: number of transferred electrons 

 
Equation 1. Relation between potential and pH in the Nernst equationThe complete 

thermodynamic information regarding the Ru-aqua type of complex can be extracted 

from the Pourbaix diagrams, exhibited in Figure 12 for 4a. 

-8,0E-06

-4,0E-06

0,0E+00

4,0E-06

8,0E-06

1,2E-05

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

I 
(A

)

E (V)

0,0E+00

4,0E-06

8,0E-06

1,2E-05

1,6E-05

2,0E-05

-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6

I 
(A

)

E (V)



Lorenzo Rico Lazaro 

 

 

21 
 

 

Figure 12. Pourbaix diagram for complex 4a. The stability zones and the proton 
composition for the different redox species are indicated. The pKa of each species are 

represented with a dashed vertical line. 

Under strong acid conditions, pH < 2.2, the potential is not dependent from de pH and 

only one chemically reversible wave is observed at E1/2=0.64 V corresponding to the 

process represented according to the Equation 2: 

[RuII(pypz-H)(OH2)(trpy)]2+    ⇌ [RuIII(pypz-H)(OH2)(trpy)]3+  + e-  (2) 

 

Within the pH range 2.2-6.0 approximately, the potential corresponding to the couple 

Ru(III/II) decrease 69 mV for pH unit. This variation according to the Nernst prediction 

(Equation 1) is consistent with a process that exchanged one proton and one electron, 

with a theoretical slope of 59 mV for pH unit (see Equation 3): 

[RuII(pypz-H)(OH2)(trpy)]2+      ⇌      [RuIII(pypz-H)(OH)(trpy)]2+  + H+ + e- (3) 

 

Within the pH range 6.0-7.9, the potential decrease 118 mV for pH unit, which indicate 

that two protons and one electron are exchanged (see Equation 4): 

[RuII(pypz-H)(OH2)(trpy)]2+     ⇌  [RuIII(pypz)(OH)(trpy)]+  + 2H+ + e-   (4) 
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Within the pH range 7.9-11.8 approximately, the potential decrease 57 mV for pH unit. 

This variation is consistent with a process that exchanged one proton and one electron, 

(see Equation 5). 

[RuII(pypz)(OH2)(trpy)]+            ⇌       [RuIII(pypz)(OH)(trpy)]+ + H+ + e-     (5) 

 

Under strong basic conditions, pH >10.8, the wave potential is not dependent from de 

pH and the process can be represented according to the Equation 6: 

[RuII(pypz)(OH)(trpy)]  ⇌  [RuIII(pypz)(OH)(trpy)]+ + e-        (6) 

 

A second wave is observed over pH>10.5 it corresponds to the redox couple Ru(IV/III), 

where the potential decreases 58 mV for pH unit, 

[RuIII(pypz)(OH)(trpy)]+            ⇌       [RuIV(pypz)(O)(trpy)]+ + H+ + e-       (7) 

 

The changes in the slope correspond to the pKa values of the Ru(II) and Ru(III) 

species, respectively, and are indicated by the vertical lines in each case, The acid-

base equilibria are displayed below: 

pKa(RuIII)1 = 2.5 

[RuIII(pypz-H)(OH2)(trpy)]3+        ⇌  [RuIII(pypz-H)(OH)(trpy)]2+  + 1H+   (8) 

pKa(RuIII)2 = 6.0 

[RuIII(pypz-H)(OH)(trpy)]2+   ⇌ [RuIII(pypz)(OH)(trpy)]+  + 1H+      (9) 

pKa(RuII)1 = 7.9 

[RuII(pypz-H)(OH2)(trpy)]2+     ⇌  [RuII(pypz)(OH2)(trpy)]+  + 1H+        (10) 

pKa(RuII)2 = 11.8 

[RuII(pypz)(OH2)(trpy)]+       ⇌ [RuII(pypz)(OH)(trpy)] + 1H+  (11) 
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Table 3. pKa and electrochemical data (pH = 7, E1/2 in V vs SCE) for aqua complexes 
described in this work and others for purposes of comparison. 

entry compound 
E1/2 

(III/II) 

E1/2 

(IV/III) 
Ea pKa(II) pKa(III) ref 

1 4a 0.26 0.65 390 11.8(7.9) 2.5(6) b 

2 trans-[Ru(trpy)(pypz-Me)(OH2)]2+ 0.39 0.57 180 10.1 0.95 25b 

3 [Ru(trpy)(bpy)(OH2)]2+ 0.42 0.62 130 9.7 1.7 27a 

4 [Ru(trpy)(acac)(OH2)]2+ 0.19 0.56 370 11.2 5.2 27b 

aE = E1/2(IV/III) - E1/2(III/II) in mV. bThis work. 

 

Table 3 shows the comparison of the redox potential of our Ru-OH2 complex with those 

previously reported in the literature.25b,28 The redox potential of the couple Ru(III/II) of 

4a is lower than the analogous trans-[RuII(trpy)(pypz-Me)(OH2)]+2, which is in 

accordance with the strong electron-donor character of the pypz-H ligand. This fact is 

also corroborated by the values of E that in the case of [Ru(trpy)(bpy)(H2O)]2+ 

complex at pH=7 and trans-[Ru(trpy)(pypz-Me)(OH2)]2 both possess a E = 130 mV 

and 180 mV, respectively.The substitution of bpy or pypz-Me ligands by strong -donor 

ligands such as acetylacetonate (acac) produces a stabilization of the Ru(IV) and 

Ru(III) oxidation states with regard to the bpy or pypz-Me, as consequence of the 

strong decrease of the III/II couple while the IV/III is much less affected E1/2(IV/III)=0.56 

V, E1/2(III/II)=0.19 V, E =370 mV indicating that the oxidation states IV and III are 

affected in a relatively similar manner by the (acac) ligand. A similar phenomenon is 

also observed for complex 4a (pH=7): E1/2(IV/III)=0.65 V, E1/2(III/II)=0.29 V, E=360 

mV) showing that the anionic nature of the (pypz-) ligand also produces a strong 

stabilization of oxidation states IV and III. Complex 4a has higher pka4 (11.8) than 

complex in entry 2, (10.1), this less acidic character for 4a is again in accordance with 

the anionic nature of the pypz-H, ligand that is deprotonated to this pH value. 

4.4 Catalytic epoxidation reactions 

This process has been assessed using different alkenes as substrates. The reaction 

has been performed at room temperature for 24 hours using PhI(OAc)2 as the oxidant, 

a catalyst/substrate/oxidant ratio of 1:100:200 and CH2Cl2 as solvent. No epoxidation 

occurred in the absence of catalyst. The remaining substrate has been quantified 

through GC analysis and employing biphenyl as an internal standard. 
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In Table 5 the catalytic results are shown. 

Table 5. Ru-catalyzed alkene epoxidation.a Conversion (conv) and selectivity (sel) values 
are given in %.  

 

Substrate Conv Selb 

 

69 >99 

 

86 >82 

 

90 
(78/22)c 

>99 

 

>99 
(100/0)d 

>99 

 

94 >99 

 66 >99 

aOxidation conditions: 4a:subs:PhI(OAc)2 (catalyst/substrate/oxidant) ratio of 1:100:200 in 
CH2Cl2, 24 h at RT.bSelectivity for epoxide (sel): [Yield/conversion]x100. cRatio [% cis 
epoxide / % trans epoxide]. dRatio [% ring epoxide/ % vinyl epoxide]. 

 

As can be observed in Table 5, in general high conversion and selectivity values for the 

corresponding epoxides (with benzaldehyde identified as main byproduct) are obtained 

for all the substrates tested. 
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The activity of catalyst with regard to the epoxidation of cis-β-methylstyrene shows 

78% of cis-epoxide and 22% of trans-epoxide; this fact is caused by the isomerization 

to the most thermodynamic stable isomer trans. It is interesting to compare the activity 

of our catalyst with regard to trans-[Ru(trpy)(pypz-Me)(OH2)]2+,25b which the 

isomerization to the trans-epoxide is inexistent, This fact could be in agreement with 

the high stabililty of Ru(III) in our complex and that the existence of a radical 

mechanism could take place. 

By report to 4-vinylcyclohexene, the catalyst showed preference towards the ring 

epoxidation, this is in agreement with the existence of electrophilic catalytic species 

since the more electron-rich aliphatic olefin is oxidized faster. 

Finally, with cyclooctene as substrate it has been obtained higher conversion values 

than with 1-octene. This is in accordance with the lower reactivity towards unactivated 

monosubstituted alkenes. 

CHAPTER 5. CONCLUSIONS  

1. Two new ruthenium complexes containing the tridentate trpy and the nonsymmetric 

didentate pypz-H ligands, cis and trans-[RuIICl(trpy)(pypz-H)](PF6) 3b and 3a and 

trans-[RuII(trpy)(pypz-H)(OH2)](PF6)2 4a, have been synthesized and throughly 

characterized by structural, analytical and spectroscopic techniques. 

 

2. In the case of the chlorido complex, a mixture of two isomers (cis and trans) were 

obtained and were separated. The crystal structure of the trans isomer has been 

solved through X-ray diffraction analysis, showing a distorted octahedral environment 

for the Ru metal center. However, the cis isomer is obtained in low yields and together 

with side products like the dimer specie shown in the x-Ray structure. 

 

3. The 2 isomers cis and trans of the Ru complex [RuIICl(pypz-H)(trpy)](PF6) 3b and 3a 

were obtained with a ratio of 4:1 being the trans isomer the most favored one, due to 

the formation of an hydrogen bond between the chloride ligand and a proton of the 

pyridine inside the pypz-H ligand.  

 

4. The aqua-complex 4a and 4b were easily obtained after refluxing the chlorido complex 

3a and 3b in water and in the presence of Ag+ as precipitating reagent. 
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5. All the complexes have been throughly characterized spectroscopically and 

electrochemically. The spectroscopic 1H-NMR analysis are consistent with the 

presence of the corresponding compounds and in the case of 3a complex exhibit a 

strong downfield shift for the pyridylic proton next to the chloride ligand. 

 

6. For the electrochemical data it can be seen that the 3a isomer have a lower redox 

potential than 3b, (80 mV vs 88 mV); this fact can be rationalized in terms of the 

hydrogen interaction with the Cl ligand, stabilizing the RuIII oxidation state in the case of 

the trans- isomer, which has a stronger H-Cl interaction, and thus decreases the 

RuIII/RuII redox potential. 

 

7. 4a complex displays two pH-dependent redox processes corresponding to the 

RuIV/RuIII and RuIII/RuII redox pairs. The Pourbaix diagram indicates that two 

deprotonation processes can take place, corresponding to the deprotonation of the 

pypz-H and aqua ligands. 

 

8. Compound 4a was tested in the epoxidation of different alkenes, showing good 

conversion and selectivity values, in the case cis-β-methylstyrene shows a certain 

isomerization to the trans-epoxide. This behavior is consistent with the higher 

stabilization of the Ru(IV) and Ru(III) oxidation states with regard to similar complexes 

containing bpy or pypz-Me ligands. 
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