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Abstract

Omnidirectional vision has received increasing interest during the last decade from the
computer vision community. A large number of camera models have reached the market
to meet the increasing demand for panoramic imagery. However, the use of omnidirectional
cameras underwater is still very limited. In this thesis we propose a number of methods to
create a reference resource for designing, calibrating and using underwater omnidirectional
multi-camera systems.

The first problem we address is the design and calibration of omnidirectional cameras
for the underwater domain. Among the different imaging system approaches to capturing
omnidirectional imagery we chose the use of multi-cameras, due to the higher resolution
and quality of the final images obtained. In order to assist the design and insure a proper
view coverage, a field-of-view (FOV) simulator has been developed which takes into ac-
count the individual FOVs of the cameras, the position and orientation between them
and the geometry and relative pose of the waterproof housing. The latter is especially
relevant due to the strong image distortions caused by the refraction of the optical rays
when travelling through the different media. Nonetheless, once the system is built, a very
accurate calibration is required for any metrology or computer vision application. So, a
full calibration method is presented for the estimation of both the intrinsic and extrinsic
parameters of the cameras and the relative pose of the waterproof housing. This method
is able to cope with wide-angle lenses and non-overlapping cameras simultaneously and
applicable to both land or water Omnidirectional Multi-camera system (OMS).

Next, the topic of stitching strategies, to generate omnidirectional panoramas from
the individual images, is studied in depth. Stitching strategies have the complex objective
of joining the images in a way such that the viewer has the feeling the panoramas were
captured from a single location. Conventional approaches either assume that the world
is a simple sphere around the camera or use feature-based stitching techniques to align
the individual images. However, this leads to artifacts and misalignments in the final
panoramas due to parallax effects. This thesis presents a set of new stitching strategies,
for both online and offline applications, aiming at processing the images according to
available information of the multi-camera system and the environment.

Finally, we focus on potential underwater applications. We first explore the promis-
ing uses of omnidirectional cameras to create immersive virtual experiences. Then, we
demonstrate the capabilities of omnidirectional cameras as complementary sensors for the
navigation of underwater robots. Specifically, we present a new tracking system for au-
tonomous underwater vehicles (AUVs) navigating in a close formation. The proposed
system, which makes use of active light marker estimates the pose of a target vehicle at
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short ranges, with high accuracy and execution speed.
In order to validate all presented algorithms, two custom omnidirectional cameras were

built and several experiments with divers and underwater robots have been carried out to
collect the necessary data.
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Resum

Durant l’última dècada s’ha despertat un interès creixent per a la visió omnidireccional en
l’àmbit de la visió per computador. Podem trobar una gran varietat de càmeres omnidirec-
cionals al mercat amb l’objectiu de cobrir l’acutal demanda d’imatges i v́ıdeos panoràmics.
Tot i això, l’ús de càmeres omnidireccionals submarines encara és molt limitat. En aquesta
tesi doctoral hem creat un recurs de referència per al disseny, calibratge i ús de càmeres
omnidireccionals submarines de tipus multi-càmera.

El primer problema que tractem és el disseny i el calibratge de càmeres omnidirec-
cionals per al medi submaŕı. D’entre els diferents sistemes capaços de capturar imatges
omnidireccionals, hem escollit els sistemes multi-càmera per l’alta resolució i qualitat de
les imatges obtingudes. Hem dissenyat un simulador de camp de visió per tal d’ajudar
en el disseny de sistemes multi-càmera i assegurar que són capaços de cobrir el camp
de visió desitjat. Aquest simulador té en compte les caracteŕıstiques individuals de les
càmeres, la posició i orientació entre elles i la posició relativa amb la carcassa submarina.
És especialment rellevant tenir en compte aquesta última degut als importants canvis de
direcció dels rajos de llum quan travessen diferents medis. Una vegada el sistema ha estat
dissenyat i constrüıt, és necessari un calibratge molt prećıs per utilitzar-lo en qualsevol
aplicació de metrologia o de visió per computador. Per a resoldre aquest problema, pre-
sentem un sistema complet de calibratge que estima els paràmetres intŕınsecs i extŕınsecs
de les càmeres, aix́ı com la posició relativa de la carcassa. Aquest mètode és capaç de
tractar amb lents de tipus ull-de-peix o gran angular aix́ı com sistemes de càmeres sense
solapament i és aplicable tant a càmeres submarines com terrestres.

Després ens centrem en l’estudi en profunditat de les estratègies de combinació d’imatges
per tal de generar imatges panoràmiques partint de múltiples imatges capturades per difer-
ents càmeres. Aquestes estratègies tenen com a objectiu la complexa tasca de crear una
imatge panoràmica tal que l’observador tingui la sensació que la imatge ha sigut creada
des d’un únic punt de vista. Les estratègies convencionals parteixen de l’assumpció que
el món pot ser simplificat com una esfera centrada en el sistema de càmeres o fan servir
tècniques de combinació basades en punts d’especial interès per tal d’alinear correctament
les imatges. Malauradament, aquestes estratègies resulten en panoràmiques finals amb
alineaments dolents entre imatges i defectes visuals degut als efectes de parallax. Aquesta
tesi presenta un conjunt d’estratègies noves per a ús en temps real o post-processat amb
l’objectiu de millorar les panoràmiques finals fent ús de la informació disponible de l’entorn
i del sistema multi-càmera.

Finalment, ens centrem en les aplicacions potencials de les càmeres omnidireccionals
submarines. Primer, explorem els prometedors usos de les càmeres per tal de crear ex-
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periències virtuals immersives. Després, demostrem les capacitats de les càmeres omni-
direccionals com a sensors complementaris per a la navegació de robots. Concretament,
presentem un sistema de seguiment de robots submarins autònoms (AUVs) que naveguin
en formacions de distàncies curtes. El sistema proposat fa ús de marcadors de llum actius
per tal d’estimar la posició relativa del vehicle amb una alta precisió i velocitat d’execució.

Per tal de validar tots els algoritmes presentats s’han dissenyat dues càmeres omnidi-
reccionals i s’han realitzat múltiples experiments amb robots i submarinistes per a recollir
les dades necessàries.

4



Resumen

Durante la última década se ha generado un interés creciente por la visión omnidireccional
en el ámbito de la visión por computador. Podemos encontrar una gran variedad de
cámaras omnidireccionales en el mercado para cubrir la actual demanda de imágenes y
v́ıdeos panorámicos. Aun aśı, el uso de cámaras omnidireccionales submarinas es todav́ıa
muy escaso. En esta tesis doctoral hemos creado un recurso de referencia para el diseño,
calibración y aplicaciones de cámaras omnidireccionales submarinas de tipo multi-cámara.

El primer problema que tratamos es el diseño y calibración de cámaras omnidirec-
cionales para el medio submarino. De entre todos los sistemas capaces de capturar
imágenes omnidireccionales, escogimos los sistemas multi-cámara por la alta resolución
y calidad de las imágenes obtenidas. Hemos diseñado un simulador de campo de visión
con el objetivo de ayudar en el diseño de sistemas multi-cámara y asegurar que son capaces
de cubrir el campo de visión deseado. Este simulador tiene en cuenta las caracteŕısticas
individuales de las cámaras, la posición y orientación entre ellas, y la posición relativa con
la carcasa submarina. Es especialmente relevante tener en cuenta esta última debido a los
importantes cambios de dirección que sufren los rayos de luz cuando traviesan diferentes
medios. Una vez el sistema ha sido diseñado y fabricado es necesaria una calibración
muy precisa para usarlo para cualquier aplicación de metroloǵıa o visión por computador.
Para resolver este problema, presentamos un sistema completo de calibración que estima
los parámetros intŕınsecos y extŕınsecos de las cámaras, aśı como la posición relativa de
la carcasa. Este método es capaz de tratar con lentes tipo ojo de pez y gran angular,
aśı como sistemas sin solapamiento y es aplicable tanto para cámaras submarinas como
terrestres.

Después, nos centramos en el estudio en profundidad de las estrategias de la com-
binación de imágenes con tal de generar imágenes panorámicas partiendo de múltiples
imágenes capturadas por diferentes cámaras. Estas estrategias tienen como objetivo la
compleja tarea de crear una imagen panorámica tal que el observador tenga la sensación
de que la imagen fue capturada desde un único punto de vista. Las estrategias con-
vencionales parten de la asunción que el mundo puede ser simplificado como una esfera
centrada en el centro del sistema de cámaras o usan técnicas de combinación basadas
en puntos de interés por tal de alinear correctamente las imágenes. Desafortunadamente
estas estrategias resultan en panoramas finales con alineamientos malos entre imágenes y
defectos visuales debido al parallax. Esta tesis presenta un conjunto de estrategias nuevas
para su uso en tiempo real o durante un post-procesado con el objetivo de mejorar los
panoramas obtenidos haciendo uso de la información disponible del entorno y del sistema
multi-cámara.
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Por último, nos centramos en las aplicaciones potenciales de las cámaras omnidirec-
cionales submarinas. En primer lugar, exploramos los prometedores usos de las cámaras
con tal de crear experiencias virtuales inmersivas. Después, demostramos las capacidades
de las cámaras omnidireccionales como sensores complementarios para la navegación de
robots. Concretamente, presentamos un sistema de seguimiento de robots submarinos
autónomos (AUVs) que naveguen en formaciones de distancias cortas. El sistema prop-
uesto hace uso de marcadores luminosos activos para estimar la posición relativa del robot
con una alta precisión y velocidad de ejecución.

Con tal de validar todos los algoritmos presentados se han diseñado dos cámaras om-
nidireccionales y se han realizado múltiples experimentos con robots y submarinistas para
recoger los datos necesarios.
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1
Introduction

I
n this chapter we present the main problems that have motivated this thesis: the use of omnidi-
rectional camera systems for underwater navigation and mapping. The motivations behind this

problem are introduced in Section 1.1, relating them to the requirements of real-world applications
and the limitations of current approaches. Next, we state the objectives of the thesis in Section 1.2
and we briefly describe, in Section 1.3, the context in which this work has been carried out. Finally,
the organization of the thesis document is presented in Section 1.4.
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8 Chapter 1. Introduction

1.1 Motivation

Omnidirectional imagery has been a field of study for decades in the computer vision
community [11, 12]. The main advantage on using omnidirectional cameras is their Field
of View (FOV), which covers 360◦ horizontally and allows capturing a whole scene in a
single action.

Omnidirectional cameras are used in many robotics and computer vision fields as di-
verse as augmented reality[13], object recognition and tracking [14, 15], obstacle avoidance
[16], visual surveillance [17], navigation [18, 19], motion estimation [20] and Simultaneous
Localization and Mapping (SLAM) [21, 22]. Moreover, they are becoming extraordinarily
popular among the general public, to record personal video. The main appeal of the cam-
eras comes from their ability to easily produce panoramic images and videos of a scene.
The viewer is able to experience a unique immersive feeling when panoramic media are
displayed in a spherical viewer or in a Virtual Reality (VR) headset. The rise in the
demand for omnidirectional imagery has been supplied with the launch of many different
cameras in the market over the last decade.

Multiple systems have been designed in order to capture omnidirectional images. One
of the simplest and most widely used method consists in a conventional camera mounted
in a rotating base which is aligned with the optical center of the camera (Fig. 1.1a).
Through the rotation of the base it is possible to capture images of the whole scene and
stitch them together in a later post-processing stage using one of the many commercial
software available [23, 24, 25, 26]. This system is still very popular among professional
photographers as it is possible to obtain very high quality panoramas by simply manually
rotating the camera mounted on a tripod. However, this method is only applicable for
static scenes as the images are not captured at the same time instant and, consequently,
not suitable for recording omnidirectional video.

Another system that became very popular in the 90’s and beginnings of 00’s are the
catadioptric systems, which consist of the combination of a conventional or wide-angle
camera with parabolic or hyperbolic mirrors (Fig. 1.1b) [27, 28, 29, 30]. The setup is
mounted with the camera pointing to the mirror, which allows a considerable increase in
the FOV. In order to use the collected images for any computer vision application or to
re-project them into another panoramic projection, the model of the camera along with
the refractions caused by the mirror need to be estimated accurately [31, 32, 33]. The
main drawback of the system lies in the angular resolution, which is not constant over the
whole image.

More recently, advances in the resolution of optical sensors and optics manufacturing
techniques have popularized wide-angle and fisheye cameras, which use special optics with
extra-wide FOV able to open up to slightly more than 180◦ (Fig. 1.1c) [31, 34, 35]. As
for the catadioptric systems, the distortions introduced by this kind of optics need to be
modeled accurately before the images can be used. Many authors have developed models
able to handle distortions of both catadioptric systems and fisheye-cameras [30, 36, 37,
38]. However, similarly to the catadioptric systems, their main disadvantage is that the
angular resolution is not constant over the images.

Finally, since the 00’s Omnidirectional Multi-camera Systems (OMS) are becoming
more popular. They consist of clusters of cameras rigidly attached and positioned strate-
gically to cover the whole scene (Fig. 1.1d). Using these systems it is possible to obtain
omnidirectional images and videos with superlative resolution, when compared to the pre-



1.1 - Motivation 9

vious systems. Moreover, the panoramic images obtained have acceptably high uniformity
in the angular resolution. With a calibrated OMS, the individual images collected can be
used separately for vision and metrology applications, or they can be combined to create
omnidirectional panoramas. However, for the latter case, they need to be stitched carefully
to obtain a panorama without visible artifacts.

(a) Canon camera mounted in a RRS ro-
tating head for capturing panoramas.

(b) VSN Mobil V.360 is a catadioptric sys-
tem for capturing real time 360◦ panora-
mas.

(c) Kodak PIXPRO SP360 uses a fisheye
optics to capture 360◦ panoramic images. (d) Insta 360 Pro multi-camera system.

Figure 1.1: Different omnidirectional capturing systems.

The calibration of a OMS has two differentiated steps: the individual calibration of
each camera (to obtain the intrinsic parameters) and the estimation of the geometrical
relationship between the cameras (extrinsic parameters). While the first is a very well-
studied problem for the computer vision community [39], the latter, although well-known,
is still receiving research interest for the specific case of multi-camera systems. These
systems usually have small or nonexistent overlap between neighboring cameras, which
creates an important challenge to overcome [40, 41, 42].

The problem of combining the individual images to obtain panoramic images has been
an intensely-studied research topic in recent years. Many authors have studied techniques
to stitch individual images seamlessly [43, 44, 45]. However, research is still being carried
out to develop algorithms that adequately address the issues related to parallax [46, 47,
48].
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Although a large range of omnidirectional cameras are available on the market, their
use in the underwater domain is still very limited due to the tough conditions of the
medium. Underwater cameras suffer from problems related to color and contrast degra-
dation, due to light absorption and scattering of the light in water [49, 50, 51]. Moreover,
cameras need to be encapsulated inside a waterproof housing, which induce changes in
the direction of the rays of light travelling through it. The distortion introduced by these
direction changes needs to be modelled properly before the images can be used for any ap-
plication. During the last decade, several authors have studied the distortions introduced
by flat [52, 53, 54] and dome ports [55, 56].

Very few omnidirectional underwater cameras are available, either for commercial use
or for research, and there are scarce applications taking advantage of their potential [57,
58]. Nonetheless there are many potential uses of omnidirectional cameras in the under-
water domain. Panoramic content can be useful for pilots of Remotely Operated Vehicles
(ROVs) to mitigate spatial awareness problems resulting from the lack of landmarks and
the monotony of underwater scenes [5, 59]. Similarly, it could also help marine scientists
on live inspection missions or during mission replays. The large FOV of the cameras
can be very useful for object-tracking applications such as fish identification and track-
ing. Furthermore, panoramic content is a powerful tool for science dissemination as it
attracts the attention of the public, especially among younger generations [60]. Moreover,
it can also be used as a sensor for improving the localization capabilities of ROVs and
Autonomous Underwater Vehicles (AUVs). Navigation and localization is a key aspect for
the development of reliable underwater robots. Since absolute positioning systems such as
Global Positioning System (GPS) are not available underwater, navigation relies on other
localization systems such as inertial and Doppler Velocity Log (DVL) sensors. Optical
cameras can be especially useful when used on confined environments or when navigating
towards a known structure such as a docking station. They can be used for locating the
robot using SLAM approaches or by comparison with a map known a priori. Using an
omnidirectional camera can improve the performance of these localization approaches due
to their wide FOV.

1.2 Objectives

Now that our motivations have been described, we can state the goal of this thesis:
To develop a complete reference resource for designing, calibrating and using an

omnidirectional underwater multi-camera system and to prove its capabilities with practical
uses for the marine robotics field.

This general goal can be broken into the following more specific objectives:

• Design of an underwater OMS: To propose a general guideline for designing a
multi-camera system for the underwater medium, which takes into account the most
common issues involved in designing and using an underwater camera. We aim to
illustrate this objective with real custom-designed cameras.

• Calibration of an OMS: To propose a general calibration methodology for any
multi-camera system, both for air and underwater cameras. We want to design a
methodology that does not use any specialized calibration tool or pattern. Instead we
prefer a methodology that could be used for any OMS user with minimal knowledge
on computer vision.
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• Generation of panoramic imagery and video from an OMS: To create the
necessary tools to convert the individual images captured by the cameras into a
single omnidirectional panorama or video. The proposed tools should be compatible
with any OMS and easily configurable for users without deep knowledge on computer
vision.

• Exploration of the immersive Virtual Reality applications in the under-

water context: To explore all the potential uses of omnidirectional cameras in the
underwater environment, especially the capability to offer unique immersive expe-
riences. This includes uses for divers and underwater robots as well as potential
applications for the scientific community.

• Use of an OMS for aiding underwater navigation on an AUV: To test
the capabilities of omnidirectional cameras as underwater sensors for improving the
navigation systems of robots. Specifically we want to evaluate them as sensors to
detect close-range robots in cooperative navigation between AUVs.

1.3 Context

The work presented in this thesis has been supported by the FI 2015 grant from the Sec-
retaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Gen-
eralitat de Catalunya and has been developed at the Underwater Robotics and Vision
Research Center (CIRS) research group of the Universitat de Girona (UdG), which is part
of the VICOROB research institute. The group started researching in underwater vision
and robotics in 1992 and it is currently formed by pre-doctoral researchers, engineers,
technicians, postdoctoral fellows and permanent staff. The group is a leading team in the
research and development of AUVs for accurate seafloor mapping and light intervention. It
has participated in several European-funded and National-funded projects (of both basic
and applied research) and it has also been involved in technology transfer projects and
contracts with companies and institutions worldwide.

Among the large amount of articles published by the group, the most significant are
regarding SLAM [61, 62, 63, 64] , autonomous intervention [65, 66, 67, 68, 69] and path
planning [70, 71, 72].

The group has developed several AUV prototypes and has currently two fully oper-
ative robots: Sparus II [73], a torpedo-shaped vehicle winner of multi-domain robotics
competition Eurathlon 2014, 2015 and 2017, and Girona500 [74] a reconfigurable AUV for
both survey and intervention. Both vehicles have been used during this thesis for the data
collection and validation of the algorithms presented.

It is also especially relevant for this thesis the works of the Underwater Vision Lab,
which is a subgroup of VICOROB, and covers topics such as 3D reconstruction [75], image
dehazing [76], mosaic blending [77], multi-vehicle mapping [78] or fish detection [79].

The work presented in this thesis was developed in the scope of, and contributed to,
the following National and European projects:

• FP7 EU Project MORPH: Marine robotic systems of self-organizing, logically linked
physical nodes (FP7-ICT-2011-7-288704), funded by the European Comission.
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• MINECO Project OMNIUS: Lightweight robot for OMNIdirectional Underwater
Surveying and telepresence (CTM2013-46718-R), funded by the Spanish Ministry of
Economy, Industry and Competitiveness.

• MINECO Project ARCHROV: marine ARChaeology through HROV/AUV coopera-
tion (DPI2014-57746-C3-3-R), funded by the Spanish Ministry of Economy, Industry
and Competitiveness.

• FP7 EU Project SUNRISE: Sensing, monitoring and actuating on the Underwater
world through a federated Research InfraStructure Extending the Future Internet
(FP7-ICT-611449), funded by the European Commission.

• MINECO Project UDRONE: Robot submarino inteligente para la exploración om-
nidireccional e inmersiva del bentos (CTM2017-83075-R), funded by the Spanish
Ministry of Economy, Industry and Competitiveness.

1.4 Document Structure

The rest of the thesis is structured as follows:
Chapter 2: Omnidirectional Underwater Camera Design and Calibration

addresses the problem of designing and calibrating an omnidirectional underwater camera
and generating omnidirectional panoramas.

Chapter 3: Omnidirectional Multi-Camera Video Stitching using Depth

Maps deals with the issue of mitigating the effect of parallax when generating omnidi-
rectional images. We propose new strategies that take into account the structure of the
scene for reducing the effects of parallax.

Chapter 4: Close-Range Tracking of Underwater Vehicles Using Light Bea-

cons presents a practical application of underwater cameras. Specifically, in this chapter
an omnidirectional camera is mounted as a sensor in a AUV and used to track other
vehicles in a cooperative navigation mission.

Chapter 5: Main Results and Discussion lays out the results obtained during
this thesis. The results are outlined according to the objectives already presented.

Chapter 6. Conclusions and Future Work summarizes the conclusions based on
the contributions of this thesis. Based on these conclusions, proposed future work is also
presented.
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Omnidirectional Underwater

Camera Design and
Calibration

I
n this chapter, we describe the design and calibration of an underwater omnidirectional
camera. First we focus on the design of an OMS and we illustrate it with a under-

water OMS based on an adaptation of a Point Grey Ladybug3 multi-camera. Afterwards,
we focus on covering all calibration process for such a system. The process is validated
with the calibration of the proposed system. Finally the problem of generating panoramic
images from multiple individual cameras is addressed in order to appreciate the results ob-
tained. All proposed work was described in detail and published in the following journal paper:

Title: Omnidirectional Underwater Camera Design and Calibration
Authors: J. Bosch, N. Gracias, P. Ridao, and D. Ribas
Journal: Sensors
Volume: 15, Number: 3, Pages: 6033–6065, Published: 2015
DOI: 10.3390/s150306033
Quality index: JCR2016 Instruments & Inastrumentation IF 2.677, Q1 (10/58)
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Abstract: This paper presents the development of an underwater omnidirectional

multi-camera system (OMS) based on a commercially available six-camera system,

originally designed for land applications. A full calibration method is presented for the

estimation of both the intrinsic and extrinsic parameters, which is able to cope with

wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for

any OMS in both land or water applications. For underwater use, a customized housing is

required, which often leads to strong image distortion due to refraction among the different

media. This phenomena makes the basic pinhole camera model invalid for underwater

cameras, especially when using wide-angle lenses, and requires the explicit modeling of

the individual optical rays. To address this problem, a ray tracing approach has been adopted

to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for

the testing of different housing geometries and optics for the cameras to ensure a complete

hemisphere coverage in underwater operation. This paper describes the design and testing

of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and

presents the first results of its use. A proposed three-stage calibration process allows for

the estimation of all of the relevant camera parameters. Experimental results are presented,

which illustrate the performance of the calibration method and validate the approach.

Keywords: omnidirectional; underwater; camera; calibration; housing; OMS; image

stitching; image blending; panorama construction
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1. Introduction

In the last few years, omnidirectional cameras have received increasing interest from the

computer vision community in tasks such as augmented reality, visual surveillance, motion estimation

and simultaneous localization and mapping (SLAM). The wide field of view (FOV) provides a

comprehensive view of a scene. However, the use of these cameras underwater is still at a very early

technological stage.

The use of omnidirectional cameras in underwater environments opens the door to several new

technological applications in fields as diverse as underwater robotics, marine science, oil and gas

industries, underwater archeology and science outreach. As an example, underwater panoramic images

can be used to create virtual reality tours of zones of special interest, like shipwrecks or underwater

nature reserves. In the first case, it would be an attractive and innovative tool to bring archeology closer

to the general public, and in the latter, it can be an enticing way to promote awareness for the preservation

of a specific region.

For underwater robotics, omnidirectional cameras are expected to have a large impact in both

remotely-operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) [1]. It will allow

ROVs to be piloted directly through the images captured by the omnidirectional cameras through virtual

reality headsets. This immersive experience will extend the pilots spatial awareness and reduce the usual

orientation problems during missions. For AUVs, the wide FOV of the cameras is very convenient for

visual SLAM and mapping tasks, especially in confined or cluttered environments. In particular, the

omnidirectional camera presented in this paper has been developed in the framework of the MORPH

(Marine robotic systems of self-organizing, logically linked physical nodes) EU-FP7 project [2]. One

of the tasks of the project involves cooperative navigation between AUVs. For this purpose, the camera

will be integrated into the Girona500 AUV (Figure 1a) [3], enabling the tracking and pose estimation of

other robots navigating close to it.

(a) (b)

Figure 1. Integration of the omnidirectional camera in the Girona500 AUV. (a) The

omnidirectional camera integrated with the Girona500 AUV in the CIRS (Underwater

Robotics Research Centre) water tank; (b) scheme of the communications between the

Girona500 AUV and the omnidirectional camera.
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This paper presents an underwater omnidirectional multi-camera system (OMS) based on a Point

Grey’s Ladybug 3 [4] camera. The Ladybug 3 comprises six individual cameras and is designed for

land applications. In order to be used underwater, structural changes are required in the camera itself, as

well as the manufacturing of a custom waterproof housing. As a consequence, the factory-provided

calibration is not valid, and a new custom calibration procedure for underwater OMS needs to

be developed.

Calibration is a mandatory step for most camera applications. It enables the use of many

computer vision tools for tasks, such as 3D reconstruction or motion estimation. Calibration for

multi-camera systems typically covers two different sets of parameters: intrinsic parameters, concerning

the image formation geometry for each individual camera, and extrinsic parameters, which describe

the relative positions and orientations between cameras. In omnidirectional multi-camera systems, the

calibration of the extrinsic parameters is an important challenge, due to the usual small overlap between

neighboring cameras.

In this paper, the complete calibration is done in three different stages. The first consists of the

estimation of the intrinsic parameters, which is done separately for each single camera in air and without

the waterproof housing. The second stage consists of the estimation of the extrinsic parameters, also

done in the same conditions as the first step. Finally, the last stage takes place underwater and estimates

the camera pose with respect to the waterproof housing.

This calibration procedure is done in three stages rather than in a single combined step. The reason

behind this is two-fold. Firstly, it allows for a smaller number of parameters to be estimated in each

individual step, thus avoiding unwanted correlations among the parameter estimates. Secondly, it

allows the use of image sets captured in air, for the estimation of the parameters that are not related

with the underwater housing. This way, the intrinsic and extrinsic parameters are not affected by

disturbances, such as the non-modeled geometric inaccuracies of the waterproof housing. Furthermore, it

is significantly easier to find feature points in images captured in air than in water, due to light absorption

and varying illumination conditions. The use of a larger number of well-spread feature points contributes

to a higher calibration accuracy.

Different target applications of the OMS impose different requirements on the calibration accuracy.

When used for science outreach and visualization purposes, the effort will be put in creating panoramas

with the minimal amount of distracting visual artifacts. By contrast, when the OMS is used for object

recognition or tracking, the effort will concentrate on achieving the best model possible for the image

formation geometry.

1.1. Related Work

Camera calibration has been a topic of research since cameras have started being used for

metrology [5,6]. There is a vast body of literature in the photogrammetry field [7–9] that focuses on

modeling all of the relevant aspects of the image formation, towards obtaining high accuracy models.

However, such a vast literature is almost completely devoted to aerial and land applications. Comparably

fewer references can be found for underwater metrology, especially for the case of non-conventional

camera systems, like OMS. Of particular relevance to this paper is the existing work on the modeling
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of wide-angle and fish-eye lenses. Kannala and Brandt [10] presented a generic geometric model and a

calibration method based on a planar calibration pattern suitable for both fish-eye lenses and conventional

cameras. Scaramuzza et al. [11] propose another calibration method using a planar grid assuming that

the image projection function can be described by a Tailor series expansion. Mei and Rives [12] propose

a model based on the exact theoretical projection function and with the addition of parameters to model

real-world errors.

Most omnidirectional cameras can be divided into two main groups [13]: central omnidirectional

cameras, which strictly satisfy the single-viewpoint property, and non-central omnidirectional cameras.

The first group is formed by all catadioptric systems, combinations of wide camera lenses and parabolic

or hyperbolic mirrors. The later group, known as omnidirectional multi-camera systems (OMS) or

polycameras, is formed by cameras composed of a cluster of individual cameras pointing to different

directions in order to cover the maximum FOV possible. The first group of omnidirectional cameras is

usually less expensive than an OMS, but their resolution tends to be lower and nonuniform. Typically,

the resolution of catadioptric cameras is maximum in the center of the image and decreases significantly

when approaching the corners. Furthermore, they are not as compact as an OMS, and its encapsulation

to be used underwater is not trivial.

A few authors have analyzed the calibration of OMS with minimal overlapping between cameras.

Kumar et al. [14] propose a calibration methodology for non-overlapping cameras using a mirror and a

standard checker board. Ikeda et al. [15] propose a calibration method based on a calibration pattern and

the use of a laser measurement system. Li et al. [16] presented a MATLAB toolbox for OMS calibration.

This toolbox estimates both intrinsic and extrinsic parameters of the omnidirectional camera through the

use of a custom descriptor-based calibration pattern rather than a standard pattern. The authors claim

that the use of the custom pattern enables many more features of varying scales to be easily detected.

Regarding underwater cameras, very few works on omnidirectional underwater cameras can be found.

Yamashita [17] proposed an omnidirectional underwater stereo sensor based on individual conventional

video cameras and hyperboloid mirrors inside an acrylic cylindrical waterproof case. As mentioned

before, this solution has not been adopted, as the use of an OMS allows one to capture panoramas

in higher resolution and is more uniformly distributed. al waterproof case. As mentioned before, this

solution has not been adopted, as the use of an OMS allows one to capture panoramas in higher resolution

and is more uniformly distributed.

However, many authors have worked with underwater cameras and faced similar challenges due to

the image distortion caused by the changes in the refractive indexes when the rays of light go through the

waterproof housing. Kunz and Singh [18] examined the challenges that pressure housing interfaces

introduce, focusing on hemispherical interfaces. They propose a camera calibration in two steps:

a first traditional in-air calibration and the second step of adding the terms accounting for refraction.

For hemispherical interfaces, there are three degrees of freedom due to the camera position inside the

housing, apart from its radius and thickness, which can be measured physically. Through an optimization

procedure and with the use of any standard calibration pattern, the three degrees of freedom are easily

determinable. Sedlazeck and Koch [19] used mainly the same model presented by Kunz and Singh, but

applied to flat ports. Similarly to [18], only three degrees of freedom are considered, corresponding

to the plane orientation, plus a parameter d corresponding to the distance between the camera and the
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interface. Both works use the same approach for the underwater housing calibration as the one used in

this paper. However, the geometry of the housing developed in this paper and, therefore, its ray-tracing

study are significantly more complex than the ones studied previously.

1.2. Contributions

The main contributions of this paper are:

1. A new calibration method applicable to multiple non-overlapping camera systems in both out of

the water and underwater systems. This method has the following advantages:

(a) It overcomes the need of the cameras to see a calibration pattern entirely to compute

accurately its intrinsic parameters.

(b) It is not required during the extrinsic parameters calibration that a calibration pattern must

be seen entirely by different cameras at the same time. This allows one to calibrate cameras

with non-overlapping FOV.

(c) It can handle the distortions introduced by a waterproof housing thanks to a ray tracing study.

2. The proposal and experimental validation of a compact underwater housing that does not block or

limit the full FOV of the omnidirectional camera.

3. The development of an open source Linux driver [20] and a robot operating system (ROS) [21]

package [22] for a Ladybug 3 camera or similar. This kind of driver was only available for

Windows OS and was under the copyright of Point Grey Research Inc.

The rest of the paper is organized as follows. Section 2 presents the design of the camera and housing.

Section 3 describes the single camera calibration problem. Section 4 presents the procedure used to

calibrate the extrinsic parameters of all of the cameras. Section 5 introduces the challenges of the use of

an omnidirectional camera underwater. In Section 6, the results of the calibration are presented. In the

last section, we draw the conclusions of this work.

2. Camera Design

A custom housing has been designed for the Ladybug 3 camera to make it submersible to a water

depth of 60 m. The housing is composed of a transparent poly-methyl methacrylate (PMMA) dome,

which contains the camera, and a body made of aluminum alloy, which contains a small form factor

computer, dedicated to processing the video feed (Figure 2).

The Ladybug 3 camera comprises six individual cameras (Figure 3). Five of these cameras, referred

to as the lateral cameras (and numbered 0 to 4), have the optical centers on the same plane. Their optical

axes also lie in the same plane with a 72◦ separation between neighboring cameras. The remaining

camera, numbered as 5, points at the normal direction of the plane.

Each camera contains a 2 MPixel sensor, making a total of 12 MPixel for every frame captured.

The images are acquired by a high-end, small form factor computer inside the housing. The role of

this computer depends on the aim of the mission. When the aim of the mission is to record panoramic

images of the sea, the computer will store the images without any further processing. By contrast, when
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the camera is used as a real-time navigation sensor, it will perform all of the image processing and send

only the valuable information to the host vehicle, such as, for example, the relative position of another

robot. The communication between the camera and the robot is done through an Ethernet (100 Mb/s)

connection (Figure 1b).

Figure 2. Final design of the omnidirectional underwater camera.

Figure 3. Arrangement of the cameras. The red overlay indicates the plane where the optic

centers of the five lateral cameras are located (identified as Camera 0 to Camera 4). The last

camera (Camera 5) has its optical axis approximately perpendicular to this plane.

One of the most important aspects to take into account when designing the housing is the presence

of strong refraction effects on the optical rays due to the changes of media. A ray of light coming from

the water changes its direction twice before reaching the sensor, as it must pass through two medium

transitions (water-PMMA and PMMA-air). The change of direction is described by Snell’s law [23],

and it depends on two factors: the angle between the incident ray and the normal of the surface at the

incidence point and the refraction indexes of the two media. Therefore, the refractions of the rays of

light depend strongly on the geometry of the housing. These refractions affect the FOV of the individual

cameras and the amount of overlapping between the images. Given the fact that the original camera

lenses are designed for land applications, the use of an underwater housing may result in blind spots in

the spherical view.
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The two most typical geometries used when designing an underwater camera housing are flat and

hemispherical interfaces. Flat interfaces are less expensive to manufacture and easy to mount, but they

introduce important bending in the rays, which reduces the FOV of the cameras. By contrast, for an

hemispherical interface with its center on the exact optical center of the camera, the incident angle and

the normal of the surface are exactly the same for all of the rays, and no bending is produced during the

transition. However, perfect hemispherical interfaces are difficult to produce and to mount at the exact

desired position.

Due to the geometry of the Ladybug 3 camera, a transparent dome has been designed, composed of

two pieces joined together with an adhesive. The first piece is a cylinder and covers the whole FOV

of the five lateral cameras. A cylindrical interface has the advantage of allowing larger FOV (in one

direction) for the five lateral cameras when compared with the option of having five individual flat ports

(Figure 4) and is easier and less expensive to produce. The cylindrical housing only increases the FOV in

the horizontal axis (perpendicular to its main axis). The FOV in the vertical axis is reduced in a similar

way as a flat view-port. al housing only increases the FOV in the horizontal axis (perpendicular to its

main axis). The FOV in the vertical axis is reduced in a similar way as a flat view-port. al interface has

the advantage of allowing larger FOV (in one direction) for the five lateral cameras when compared with

the option of having five individual flat ports (Figure 4) and is easier and less expensive to produce. The

cylindrical housing only increases the FOV in the horizontal axis (perpendicular to its main axis). The

FOV in the vertical axis is reduced in a similar way as a flat view-port. al housing only increases the

FOV in the horizontal axis (perpendicular to its main axis). The FOV in the vertical axis is reduced in a

similar way as a flat view-port.
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Figure 4. Comparison between a pentagonal prism and a cylinder as view-port options for

the lateral cameras. When compared with the flat view-ports of the pentagonal prism, the

cylinder has the advantage of being less affected by the refractions of the media transitions,

along one of the directions. (a) Pentagonal prism shape; (b) cylindrical shape.

For the top-looking camera (down-looking in water), the final design was a hemispherical piece.

The manufacturing of this piece was significantly more challenging than a flat port alternative, since it

required a thermoforming process to obtain the intended shape. However, the flat port option had to be

discarded due to the severe reduction of the FOV that it would cause.
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In order to test possible scenarios for the choices of the shape of the view-ports, a FOV simulator was

implemented. This simulator uses ray-tracing techniques that take into account the full camera projection

model and Snell’s law for the refraction effects of the possible shapes of the housing. The results of the

FOV simulator can be seen in Figure 5, which presents a full-sphere representation of the FOV, with a

horizontal view angle in the x-axis of the plot and a vertical view angle on the y-axis.

(a)

(b)

Figure 5. Equirectangular projection of the covered FOV at a 5-m distance in an underwater

environment with different configurations. Each colored region represents the FOV of

each camera (red, green, blue and white) and the areas of FOV intersection (other colors).

(a) Projection of the covered FOV at a 5-m distance with a flat interface for the bottom

camera; (b) projection of the covered FOV at a 5-m distance with a hemispherical interface

for the bottom camera.

As illustrated in Figure 5a, using a flat view port for Camera 5, this camera would not have any

overlap with any of the other cameras. By contrast, the hemispherical view port allows some overlap,

but not complete coverage of the lower hemisphere. For this reason, the original optics (3.3 mm of focal

length) of Cameras 1, 4 and 5 were replaced for others with wider FOVs (2.95 mm of focal length) to
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achieve full coverage of the panoramic view (Figure 6). Further details on the computation of the FOV

in underwater environments can be found in Sections 5 and 6.

During the design, it was important to ensure that the junction between the two parts of the dome

was placed in a location that would not be visible by any camera, hence avoiding occlusions in the

resulting image.

Figure 6. Equirectangular projection of the covered FOV at a 5-m distance with a

hemispherical interface for the bottom camera and 2.95-mm focal length optics for Cameras

1, 4 and 5. Each colored region represents the FOV of each camera (red, green, blue and

white) and the areas of FOV intersection (other colors).

3. Single Camera Calibration

In this section, we first present the camera model used and then the calibration procedure for each one

of the six individual cameras.

3.1. Camera Model

The pinhole camera model [8,9,24] has been adopted for this work due to its compactness (Figure 7)

and accurate results. This model will allow one to project any 3D world point Q = (X, Y, Z) in the

camera coordinate frame to a pixel position (u, v) in the image plane through Equations (1) and (2).

u
v

b

xcam

ycam

zcam

b

b

b

image plane

f=focal length

Q = (X,Y, Z)
{img}

q{img} = (u, v)

pp{img} = (u0, v0)

q{cam} = (X/Z · f, Y/Z · f, f)

{cam}

Figure 7. The pinhole camera model.
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where:

• (u0,v0) is the location of the principal point in the image plane coordinates. This is the point

where the camera optical axis intersects the image plane and is normally located near the center of

the image.

• (fx, fy) are the focal lengths along the x and y directions, expressed in pixels. Most cameras have

sensors with squared pixels, where fx = fy.

However, all lenses induce image distortions that are not modeled by the pinhole camera model. The

most common one is the radial distortion, which is due mainly to the shape of the lenses and produces

nonlinear distortions along the radial direction from the principal point. The further from the center of

the image, the higher is the radial distortion. Radial distortion is very strong for wide-angle lenses. For

example, in Figure 8a, the edges of the rectangular board look curved when, in reality, they are perfectly

straight. It can also be noticed in the image that this distortion becomes more important in the regions

further from the center: the bottom edge of the board looks straighter than the top one. Fortunately

there are models that introduce corrections in the original images (distorted) to undistort them and create

a new undistorted (ideal) image that follows the pinhole model (Figure 8b). In this work, we adopt the

model proposed by Kannala [10].

(a) (b)

Figure 8. A sample image of a checker board captured by a wide-angle lens camera used

for any standard calibration toolboxes, before (a) and after (b) the distortion correction.

(a) Original image; (b) undistorted image.

Let (u, v) be the ideal (non-observable, distortion-free) pixel image coordinates corresponding to a

point Q = X, Y, Z. These coordinates do not match with the real ones (ud,vd) due to the distortion

effect. The relation between the real point x, y (expressed in the camera reference plane, Z = 1) and a
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virtual point xd, yd that projects to the pixel coordinates (ud,vd) according to the pinhole model can be

found through:

θd = θ
(

1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8
)

(3)

xd = x

(

θd

r

)

(4)

yd = y

(

θd

r

)

(5)

where r2 = x2 + y2, θ = atan(r) and k1, k2, . . . , kn are distortion coefficients.

3.2. Calibration

A two-step method for the calibration has been devised and implemented. In the first step, a standard

calibration toolbox is used in order to provide an initial estimate of the intrinsic parameters. In the second

step, these values are refined in order to obtain better results.

3.2.1. Initialization

The OpenCV Library (Open Source Computer Vision Library) [25,26] methods for camera calibration

and 3D reconstruction have been used to compute a first estimate of the intrinsic values of the six

independent cameras. Given multiple shots of a planar grid (typically a checker board) acquired at

different positions and orientations, the methods in this module allow one to compute the intrinsic

camera parameters and extrinsic parameters for each of the views, based on the approaches presented

in [10,24,27].

In most cameras, these methods are accurate enough for metrology applications, and there is no need

for further refinement. However, for an OMS camera using wide-angle lenses, a refinement procedure

can help to obtain better results, especially in the regions close to the borders of the image. In these

regions is where the overlapping between camera images take place, and a very accurate calibration is

required in order to avoid visible misalignments in the final panoramas.

3.2.2. Refinement

Due to the high distortion of the images (seen in Figure 8), it is not possible to place the checker

board close to the corners of the image while seeing it entirely, as required by the standard calibration

packages. This fact leads to calibration results that are inaccurate in the regions close to the image

corners. For this reason, a different approach was implemented, which uses a more versatile pattern and

allows results when only a portion of the pattern is visible in the images. An aerial image of the city of

Girona (Figure 9a) has been used for this purpose, since it provides a large number of visual features at

different scales.

Different shots of the poster in different positions and orientations have been taken, paying special

attention to capturing parts of the poster rich in features in the corners of the images.

As a following step, scale-invariant feature transform (SIFT) [28] features are found in all of the

selected shots and in the original poster image. Every feature has a keypoint and descriptor associated.
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(a) (b)

Figure 9. Posters used for the dry and underwater calibration, respectively. (a) Aerial image

of the city of Girona used for both the intrinsic and extrinsic calibration procedures. The

dimensions of the printed poster are 2.395 × 1.208 m; (b) Underwater image used for the

optimization of the housing parameters. The printed poster measures 7.09 × 3.49 m and was

placed in a flat area at the bottom of the test pool.

Afterward, putative matches between the features in the captured images and the original poster are

found following Lowe’s criterion [28]. Under this criterion, for every feature in the original image, the

nearest neighbor in the captured image is defined as the keypoint with minimum Euclidean distance. In

order to decide if this match is potentially the correct one, the second closest neighbor is found, and a

ratio between its distance is computed as per Equation (6).

Ratio =
Distance closest

Distance second closest
(6)

If the ratio is smaller than a threshold, the matching is considered valid. The threshold chosen in

this work was 0.7, which, according to Lowe, eliminates about 95% of false matchings and discards

about 8% of the correct matches. To find the closest and the second closest matches among all of the

features, the Fast Library for Approximate Nearest Neighbors (FLANN) [29] has been used to speed up

the process, instead of purely brute force.

If the number of matches is greater than a fixed minimum, e.g., 100 matches, then the image is

accepted to be used to optimize the intrinsic parameters. Otherwise, the image is rejected.

For the accepted images, the poster pose that minimizes the re-projection error of all correct matches

found is estimated making use of the initial intrinsic parameters estimated in the previous step and

solving the perspective-n-point (PnP) problem [9]. The PnP problem is the problem of the determination

of the position and orientation of a calibrated camera given a set of n correspondences between 3D points

and their 2D projections. In this case, the 3D points belong to the poster, and the 2D projections belong

to the camera images. We assume that the poster is totally flat and in the plane z = 0; hence, the 3D

points used are the coordinates of the matches in the original poster image, in the real scale, i.e., meters,

with its coordinate z set to zero. The 2D projections are the coordinates of matches in the camera images,

in pixels. The implementation in OpenCV, which uses an iterative method to minimize the re-projection

error, has been used to solve the problem. The solution is robust to outliers, thanks to the use of random

sample consensus (RANSAC) [30]. The features discarded by RANSAC will not be used further in the

intrinsic parameter optimization.
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From the set of all RANSAC inliers, a subset is chosen that contains image points that are well

distributed on the image plane. The objective is to have approximately the same number of features

in all regions of the image. A bucketing strategy [31] has been implemented to achieve this purpose.

The image is divided into a number of disjoint regions of the same size. Then, every feature is associated

with the region to which they pertain. Only one feature per region, selected randomly, will be used for

the further calibration steps (Figure 10). The number of regions can be set arbitrarily, but must be in

concordance with the size of the image and the number of features able to match in every shot, as it

represents the maximum number of features selected. For this work, this parameter has been set to 500.

(a) (b)

Figure 10. Selection of features with simulated data and 49 regions. (a) All feature

matchings are associated with a region of the image; (b) only one feature per region is used

for the optimization procedure.

Finally, we are ready to define the optimization problem that will find the refined intrinsic parameters.

The number of variables to estimate will be the totality of the intrinsic parameters (focal length, principal

point coordinates and distortion parameters) and the pose of the poster (x, y, z, α, β, γ) in all of the

selected images (Equation (7)). The initial values for the intrinsic parameters will be the ones found in

the initialization step, while the initial values for the pose of the poster in every image will be the results

of the PnP problem solved previously.

θ = [f, u0, v0, k1 . . . k4, ximg(0), yimg(0), zimg(0), αimg(0), βimg(0), γimg(0) . . .

ximg(n), yimg(n), zimg(n), αimg(n), βimg(n), γimg(n)] (7)

The re-projection error for every feature pp of the poster, which has a matching pc in a captured image,

can be defined as:

ereproj(p
p, pc, θ) = ‖π (pp, θ)− pc‖2 (8)

where π is the projection function of the 3D point associated with pp to the camera through

Equations (1) and (3)–(5). For all of the matched features in an image, the total re-projection error can

be expressed as:
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∑

k

ereproj(p
p
k, p

c
k, θ) (9)

Then, the cost function that includes all of the selected images, can be expressed as:

∑

imgi

∑

k

ereproj(p
p
k, p

c
k, θ) (10)

This optimization problem is solved using a Levenberg–Marquardt algorithm [32,33] that minimizes

the sum of all re-projection errors.

In order to quantify the uncertainty of the estimated parameters, a Monte Carlo analysis has been

carried out. It consisted of repeating the same estimation procedure a significant number of times, but

in this case, the set of paired features between the captured images and the original poster were not

found using SIFT and RANSAC. For every feature in the original poster used for the estimation of the

parameters, we find its projection in the captured image using the estimated intrinsic parameters and

poster poses and add Gaussian noise. The Gaussian noise has zero mean, and the standard deviation was

the value obtained as the standard deviation of all of the residues of the optimization. The study of the

variability of the estimated parameters during the simulations provides valuable information about the

uncertainty of the parameters. It also allows one to validate the adequacy of the input data in terms of

the observability of the parameters being estimated. An example of this is checking that the used poster

poses are sufficiently well spread to allow an accurate estimation of the parameters.

4. Extrinsic Calibration

The main problem when working with multiple cameras is the determination of the exact geometric

relationship between the different camera frames. These rotations and translations are referred to as the

extrinsic parameters. In this work, both these and the intrinsic parameters are assumed not to change

in time. Each camera has its own independent coordinate system, but the local coordinate system of

Camera 5 has been defined as a global frame that will be used to deal with the external world (Figure 11).

Therefore, the global coordinate system follows the standard convention for underwater frames, where

the z-axis points downwards into the sea floor, making it more intuitive when integrating the camera in

a robotic platform.

ZLadybug

XLadybug

YLadybug

x0

z0

y0

z1
x1

y1

z2
x2

y2

x5

y5
z5

Figure 11. The relationship between cameras and the global coordinate system.
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The procedure to estimate the extrinsic parameters will be very similar to the one used in the

refinement of the intrinsic ones, in Section 3.2.2. However, in contrast, in this subsection, images from

two or more cameras acquired at the same exact time frame are needed.

In order for the algorithm (Algorithm 1) to work properly, all cameras must acquire a recognizable

section of the poster where one of the other cameras also acquires a different section of the poster

simultaneously. The observation of different parts of the poster by two cameras at the same instant

implicitly imposes constraints on the relative placement and relative orientation of the two cameras.

These constraints are used in the cost function that is minimized. It should be noted that a standard

checker calibration pattern cannot be used in this step, since it would be difficult to determine

automatically which part of the pattern would be seen by each camera, due to the similarity of the

squares in the grid. It is advantageous to have a wide range of images where the poster is visible from

as many cameras as possible in different positions and orientations in order to estimate the unknown

variables effectively.

In the first estimation, we will focus on estimating the rotations of each camera frame, and for that,

we will assume that the sensors of the camera are placed ideally, i.e., the optical centers of the five lateral

cameras lie in the same plane and are placed in a perfect regular pentagon. The remaining camera is

assumed to have its optical center placed along a perpendicular line passing through the center of the

pentagon. With these assumptions, only three variables are needed to fully describe the location of the

optical center of all of the cameras: d1 represents the distance between the center of the pentagon and

the optical center of the three lateral cameras with the original optics (Cameras 0, 2, 3); d2 represents the

same distance, but for the lateral cameras with the new 2.95-mm focal length optics (Cameras 1, 4); and

d3 represents the minimum distance from the plane containing the lateral cameras to the optical center

of the remaining camera (Figure 12). For the optimization, the initial values of these three variables will

be an approximated physical measurement.

Algorithm 1 Extrinsic parameter calibration.

Find SIFT features in original poster image

for frame = 0 to frame = n do

for cam = 0 to cam = 5 do

Find SIFT features in the image

Poster found?

end for

if Poster found in more than two cameras then

Solve PnP problem for one of the cameras

Find initial estimation of poster position in global coordinates

Add to the list of frames and features to be used in the optimization

end if

end for

Optimize parameters to minimize re-projection error sum
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Figure 12. The geometrical unknowns during the first estimation of the extrinsic parameters

of the cameras are: d1 (for Cameras 0, 2 and 3), d2 (for Cameras 1 and 4), d3 (for Camera 5)

and the exact orientation of each camera. Side view (top) and top view (bottom).

The orientation of the global and the Camera 5 frames will be fixed, while the orientation of frames

of Cameras 0 to 4 will be estimated from the optimization procedure. Its initialization will be its ideal

orientation (Figure 12). For Cameras 0 to 4, each camera is rotated 72◦ along the x-axis with respect to

its neighbors, with the z- and y-axis of Camera 0 coinciding with the x- and y-axis of the global frame.

An initial pose of the poster for every different time frame will be needed to start the optimization

procedure. This can be estimated by solving the PnP problem from any camera seeing the poster in that

exact time frame and then converting it to global coordinates.

The vector containing the totality of parameters to estimate will be:

θ = [d1, d2, d3, αc(1), βc(1), γc(1) . . . αc(5), βc(5), γc(5), xf(0), yf(0), zf(0), αf(0), βf(0), γf(0) . . .

xf(n), yf(n), zf(n), αf(n), βf(n), γf(n)] (11)

where
[

αc(i), βc(i), γc(i)
]

represent the orientation of camera i and
[

xf(j), yf(j), zf(j), αf(j), βf(j), γf(j)
]

represent the pose of the poster position in the global frame in time frame j.

Through Equations (8)–(10), the cost function that includes the re-projection errors of all of the

features present in the images of the selected frames can be expressed as:

∑

framesj

∑

cami

∑

k

ereproj(p
p
k, p

c
k, θ) (12)
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After this first estimation, a new optimization procedure will be performed, fixing this time the

rotations of the camera frames and without constraints regarding its location. The cost function will

remain the same, while the vector containing the totality of parameters to estimate will be:

θ = [xc(1), yc(1), zc(1) . . . xc(5), yc(5), zc(5), xf(0), yf(0), zf(0), αf(0), βf(0), γf(0) . . .

xf(n), yf(n), zf(n), αf(n), βf(n), γf(n)] (13)

where
[

xc(i), yc(i), zc(i)
]

represent the position of camera i.

The estimation of the relative rotations and translations of the cameras is done in two stages due to a

unique step that led to physical non-sense values for the translations due to the sensitivity of the rotation

parameters. A Monte Carlo analysis has been carried out to determine the uncertainty of the estimated

parameters, similarly to the one described for the intrinsic parameters estimation.

5. Underwater Calibration

The direction of the rays of light changes in every medium transition found along the path from a

point underwater to the imaging sensor inside the camera. In order to model accurately the distortion

due to this effect, it becomes essential to explicitly model and simulate the intersection of each light ray

with different media, as detailed next.

5.1. Ray Tracing

Once the intrinsic parameters of each camera are known, each pixel of an undistorted image can be

associated with a 3D ray originated at the optical center of the camera and described in the 3D coordinate

frame of the camera. The direction vector of this ray can be computed through Equation (14).

v0{local} =

(

u− u0

fx
,
v − v0

fy
, 1

)

(14)

The local vector can be transformed to the global frame pre-multiplying by the rotation matrix R that

relates both coordinate systems:

v0 = R · v0{local} (15)

Let p0 be the optical center of one of the cameras. The 3D ray can be described as:

s = p0 + kv0 (16)

where k is a scalar.

When the camera is inside the waterproof housing, this ray will change its direction when transitioning

to the PMMA interface, due to the refraction effect. The direction of the refracted ray, vr, can be

computed through Snell’s law. In a 2D plane, as Figure 13, Snell’s law can be expressed as:

sin(θa) · nair = sin(θg) · nPMMA (17)

where θa is the angle between the incident ray and the normal vector of the surface in the intersection

point, θg is the angle between the refracted ray and the normal vector and nair, nPMMA are the refractive

indexes of air and PMMA, respectively.
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Figure 13. Ray tracing schematic of a single optical ray passing through air, PMMA and water.

Due the complex geometry of the dome, it is better to work in the 3D space and use the following

expression of Snell’s law:

v1 =
nair

nPMMA

(n1 × (−n1 × v0))− n1

√

1−
(

nair

nPMMA

)2

(n1 × v0) · (n1 × v0) (18)

where n1 is the normal vector of the surface in the intersection point between the ray and the surface and

v0, v1 are the direction vectors of the incident and refracted ray.

In order to find both p1 and n1, the waterproof housing must be geometrically modeled. It can be

expressed as the union of a cylinder of radius r, direction vector vc and origin pc, with a hemisphere of

radius r and center ps.

The points q of the cylinder can be expressed as:

‖(q − pc)− (vc · (q − pc)) vc‖ = r (19)

The points q of the hemisphere can be expressed as:

‖q − ps‖ = r (20)

Knowing both the expression for the optical ray and the geometrical model of the housing, we can

find the intersection point by replacing the expression of the ray by the surface point q, both in the case

of the cylindrical part:

‖(p0 + kv0 − pc)− (vc · (p0 + kv0 − pc)) vc‖ = r (21)

(p0 − pc + kv0 − (vc · (p0 − pc + kv0)) vc)
2 − r2 = 0 (22)

and the hemispheric:

‖p0 + kv0 − ps‖ = r (23)

(kv0)
2 + 2k(v0 · (p0 − ps)) + (p0 − ps)

2 − r2 = 0 (24)

Solving the value of k from these equations, the intersection point can be found as:

p1 = p0 + kv0 (25)

Before applying Snell’s law, the normal vector of the surfaces in the intersection point p0 needs to be

found. For the cylindrical part, the normal in a point q can be found through:

n = pc − q + ((pc − q) · vc) vc (26)
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while the normal vector for the hemispheric part in a point q can be found through:

n = ps − q (27)

We can finally compute the refracted ray direction vector v1 through the vectorial expression of

Snell’s law (Equation (18)). The refractive indexes of air and PMMA are assumed to be invariant for the

conditions in which the camera will work. The assumed values are nair = 1 [34] and nPMMA = 1.4914 [35]

(for wavelengths λ = 0.589 µm). The refracted ray can be expressed as:

s = p1 + kv1 (28)

This ray will change once again its direction when moving from PMMA to water. The new refracted

ray can be computed in an analog way to the transition detailed above. The refractive index of water for

this transition has been assumed as nwater = 1.333 (λ = 0.589 µm). This is the refractive index for fresh

water at 20◦ [36], which was approximately the water conditions of the water tank when the images for

the calibration were taken. In the case of seawater, the refractive increases slightly with the salinity. The

value of the refractive index can be easily tuned for further use after the calibration procedure if required.

Knowing both the intrinsic and extrinsic parameters of all of the cameras and through the use of the

ray tracing approach, it is possible to project any 3D point underwater to any of the cameras composing

the omnidirectional image. However, this projection is not straightforward. The distance d from the

camera to the 3D point will be computed, and through the ray tracing study and an iterative method, it

is possible to find the projection of the 3D point into the camera. An initial value for the projected pixel

is required, and then iterating its position until the error between the 3D point and the point of the ray

associated with the pixel at a distance d is negligible. The initial value of the pixel can be initialized with

the value of the projection in air or simply to the center of the image. This iteration procedure can be

solved through the Levenberg–Marquardt algorithm.

5.2. Housing Parameters Optimization

Due to the ray bending, any small variation in the assumed relative position of the housing can

significantly affect the final direction of the rays and end up generating projection errors. In order to

avoid this, the difference between the estimated relative position and the real one has to be minimized.

There is no guarantee that the center of the global camera frame coincides exactly with the cylinder

axis of the housing, nor is the alignment between the global coordinate system and the cylinder perfect.

For this purpose, the relative position of the housing with respect to the camera will be estimated in a

procedure almost identical to the one in Section 4, but using now images captured underwater and with

a different poster specially prepared to be placed underwater (Figure 9b). The poster was placed at the

bottom of a water tank of 5 m in depth, and different images were captured with the camera in different

positions and orientations. It is important that the images are captured in the best lighting conditions

possible, in order to minimize the light absorption caused by water, making difficult the recognition of

features on the images.

The parameters to optimize (Equation (29)) are the location of the center of the cylinder (Cx,Cy),

the orientation of the cylinder (Rx, Ry, Rz) and the position of the center of the hemisphere (Sx,
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Sy, Sz), illustrated in Figure 14, apart from the poses of the poster for every different time frame i

used
[

xf(i), yf(i), zf(i), αf(i), βf(i), γf(i)
]

. All of the parameters are with reference to the global frame of

the camera.

θ = [Cx, Cy, Rx, Ry, Sx, Sy, Sz, xf(0), yf(0), zf(0), αf(0), βf(0), γf(0) . . .

xf(n), yf(n), zf(n), αf(n), βf(n), γf(n)] (29)

So = 79mm

Si = 74mm

Co = 80mm

Ci = 70mm

(Cx, Cy)

(Sx, Sy, Sz)
b

b

(Rx, Ry , Rz)

Figure 14. Cross-section representation of the PMMA waterproof housing.

The initial values for the target parameters are established from the knowledge of approximate

geometry of the housing. For the poster pose initialization, for every different time frame, the poster

pose can be estimated by solving the PnP problem from any camera seeing the poster without taking into

account the distortion caused by the housing. It is preferably to compute this initial pose from Camera

5, as the distortion caused by the hemispherical port is less important than that caused by the cylindrical

port; hence the initialization values will be more accurate. The estimation process is similar to the

one described in Section 4. A cost function is defined on the residues of the re-projection of the points

detected in the multiple images of the poster (Equation (12)). This cost function is parametrized by

the unknowns described above and minimized using the Levenberg–Marquardt algorithm. A Monte

Carlo method is also used to determine the uncertainty of the estimated values, as described in

the last section.

6. Results

In this section, we present both the numerical and graphical results of all of the steps during the

calibration procedure. In order to interpret correctly the reconstructed panoramas, a subsection is first

presented explaining in detail the process behind the creation of the panoramas.

6.1. Panorama Composition

After a successful calibration of the omnidirectional camera, each pixel of any image can be associated

with a 3D ray in space. The length of this ray depends on the distance to the objects in the scene.

Except for the small area where there is image overlap, it is not possible to estimate the distance to
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the objects from just a set of images acquired at a single location. For the overlapping parts, it is

possible to estimate the distance to features seen from both cameras using the same method as in a

conventional stereo camera. However, this would be very difficult in underwater environments where

the overlapping is very small, the baseline is extremely short and there are very few features in most of

the environments. Furthermore, this would be expensive computationally and would make it impossible

to render panoramic images in real time with the existing hardware. For this reason, for visualization

purposes, the world around the camera is assumed to be a sphere, where all of the points sensed by

the camera are at a constant distance, pre-selected by the final user. Once the sphere radius is defined,

a spheric point cloud is quick to compute, and it can be easily loaded in a computer 3D viewer or

re-projected into a 2D image. For omnidirectional cameras, the equirectangular projection is the most

commonly used [37].

Given a world point in Cartesian coordinates Q = (X, Y, Z), it can be converted to spherical

coordinates (Figure 15) Q = (θ, φ, R) through Equations (30)–(32).

R =
√
X2 + Y 2 + Z2 (30)

θ = atan2(Y,X), 0 ≤ θ ≤ 2π (31)

φ = acos

(

Z

R

)

, 0 ≤ φ ≤ π (32)

× Q = (X,Y, Z)

φ

θ x

y

z

R

Figure 15. Conversion from Cartesian to spherical coordinates.

The equirectangular projection projects a given point q to a cylinder (Figure 16) through

Equations (33) and (34):

u =
θ + π

2π
·W (33)

v =
φ

π
·H (34)

θ

φ

0

π−π

π

u

v

H

W = 2H

Figure 16. Equirectangular projection.
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The inverse equations are:

θ =
u · 2π
W

− π (35)

φ =
v · π
H

(36)

The first step when composing a panorama (Algorithm 2) is choosing its parameters: projection

type, projection distance and final size. For every pixel of the panorama, the 3D point it represents is

computed according to the inverse equations of its projection (Equations (35) and (36)). This 3D point

is then projected to each one of the six cameras according to its intrinsic and extrinsic parameters. For

underwater panoramas, it will be necessary to do a numeric iteration to find this projection through the

equations presented in Section 5. If the point is only in the FOV of one camera, we will give to the pixel

of the panorama the same intensity values as the pixel corresponding to the projection of the 3D point

into the camera. In the case of overlapping regions, a blending criterion [38] will be needed, to establish

the value of the panorama pixel.

Algorithm 2 Panorama construction.

Choose projection

Set suitable sphere radius: r

Set panorama size

for all pixels in panorama do

Compute 3D point according to pixels position, projection inverse equations and r

for cam = 0 to cam = 5 do

Project 3D point to camera image.

if Point falls into camera FOV then

Store color information and location of the pixel.

end if

end for

if The point is only seen for one camera then

Give to the pixel the same value of the pixel of the camera that represents the point

else if The point is seen for more than one camera then

Give to the pixel a value according to a selected blending criterion

else {The point is not in the FOV of any camera}

Set the value of the pixel to black

end if

end for

Three different criteria are presented below. The first one does not do any smoothing on the transition

between cameras. The second one is a basic, but fast smoothing approach, which can be executed

online. The last one makes a smooth blending offline. A practical comparison between them can be

found in Table 1.
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Table 1. Transition in a panorama with different blending criteria applied and without or

with individual gain correction. The color transition is more homogeneous when applying

gain corrections, and the transition is smoother when moving from left to right using the

blending criterion approach.

Blending Criterion

Closest Camera Weighted Mean Gradient Blending

Original color

Corrected color

• Closest camera: From all of the pixels that represent the same 3D point:

pcam = (ucam, vcam), 0 ≤ cam ≤ 5 (37)

the one with the minimum euclidean distance to its principal point is chosen:

d(pcam, ppcam) =

√

(ucam − u0,cam)2 + (vcam − v0,cam)2 (38)

The reason for using this criterion is that the distortion is lower for the points closer to the principal

point of the image than for the ones further away. This will reduce the error in the panoramas

related to the distortion of the lenses.

• Weighted mean: A weighted mean of all of the pixels representing the same 3D point is performed,

giving more weight to the pixels closer to its principal point. A blending width threshold will

decide where this criterion is applied. A bigger blending width will mean a smoother transition,

but with a higher degree of blurriness. This method can be considered as a simpler version of Burt

and Adelson’s method [39].
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The minimum distance between the pixels and their principal point is computed using

Equation (38). The final value of the intensity for each one of the channels (R,G,B) is defined

as:

Ichannel =

∑

cam

Ip,cam,channel · (blending width− (d(pcam, ppcam)− dmin))

∑

cam

blending width− (d(pcam, ppcam)− dmin)
(39)

for blending width 6= 0.

• Gradient blending: Gradient blending methods are able to unify different exposures seamlessly and

can lead implicitly to a high dynamic range from a set of low dynamic range images. However,

they require solving large sparse systems of equations to recover the luminance from the gradient

vectors. This method is based on the computation of the vertical and horizontal image gradients

of the unblended image produced by the first criterion. The gradient field is modified to impose

null gradients along the transition borders among images. This modified gradient field is no longer

consistent, in the sense of allowing one to recreate an image that has this exact gradient field.

Therefore, a least squares approximation to a consistent gradient field is performed. The final

blended image is obtained from this approximated gradient field. More details for this technique

can be found in [38,40].

To improve the final panoramic image and make the transitions between cameras softer, a gain

compensation can be carried out. When in capture mode, the camera itself computes overall gain and

shutter values to obtain visually pleasant images. All of the individual cameras are set with these values,

but due to the fact that the lighting conditions are different for each one of the cameras and the replaced

optics (Section 2) have slightly different aperture values than the original ones, there are luminosity

differences between images from different cameras. To reduce these differences, the approach presented

by Brown and Lowe [41] was implemented. This technique uses an individual gain for each image to

minimize the intensity differences on the overlapping regions between images. The results of applying

this technique, compared with the images without correction, can be seen in Table 1.

For a correct visualization of the results, it is very important that the estimated “radius” where the

image is projected is properly set. It is important to notice, as well, that if all of the objects of the

scene are not at the same distance, it will not be possible to align perfectly different images composing

the panorama. This is not an error of the projection of the images, but rather an effect of the unknown

distance of all of the objects of the scene, which is assumed to be constant and fixed. As can be seen

in Table 2 for a scene with objects at a different distance, different distance projections will result in

different objects aligning the overlapping regions of the panoramas.
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Table 2. Details of the same scene projected at different distances. The details are ordered

by increasing distance to the camera.

Detail 1 Detail 2 Detail 3

Projection Distance

R = 2 m

R = 5 m

R = 10 m

6.2. Single Camera Calibration

As explained in Section 2, for achieving a complete semi-spherical FOV without blind spots,

two different type of lenses have been used. Three cameras were left with the original optics of a

3.3-mm focal length, while the other three were replaced with wider angle lenses of 2.95 mm in focal

length. For the sake of simplicity, we will present here only the results for one of the optics, namely a

2.95-mm one, since it is more illustrative due to the presence of stronger distortions. The results for the

other optics are similar, apart from minor numeric variations.

For the initialization step, where a standard calibration toolbox has been used, a few parameters need

to be set before executing the toolbox, to obtain the best results possible. These parameters are the

initial guesses for focal lengths and the principal point location. The initial guesses were set from the

information provided by the lenses and camera manufacturers. The numeric index used to evaluate how

accurate the calibration is is the root mean square (RMS) of re-projection error defined in Equation (40).

The final RMS was 0.479 px for Camera 5 (2.95-mm focal length).

RMS(reprojection error) =

√

∑

d (xi, x̂i)
2

n
(40)

Although the results in the first step appear to be very good, it is worth noting that these calibrations

are only done with data from the image center, where all of the squares of the calibration grid are visible.

Therefore, it is difficult to evaluate the calibration quality on the image corners, where the distortion

effects are most prominent. For omnidirectional cameras, a very accurate single camera calibration is

required. The refinement step will use a larger number of features and is better distributed, thus allowing

one to obtain more accurate results.

The initial values for the optimization procedure are the values found by the standard calibration

toolbox in the previous step. Table 3 presents the final results of the calibration. During the optimization,

the RMS decreased from an initial value of 1.35 px to 1.09 px. The first column shows the result of the
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standard calibration and the second column the results of the refinement step. Thanks to the refinement

step, it has been possible to find matches in regions where it was not possible using only the checker

board and the standard calibration methodology (Figure 17). This allowed one to estimate the intrinsic

parameters much more accurately (Table 3). This is due to the fact that the dataset used in the refinement

step had much better distributed features all around the image than the checkerboard dataset, which has

most of its features in the central region of the image where the distortion is less prominent. As can be

seen in Figure 18, the distribution of the errors closely follows the shape of a 2D Gaussian probability

distribution. The result of the focal length after the refinement procedure is much more similar to the

values provided by the lense manufacturers than after the initialization step.

Table 3. Initial and refined values of the intrinsic parameter optimization for Camera 5

(2.95-mm focal length) and standard deviation of the Monte-Carlo Simulation (MCS).

Parameter
Standard

Refinement

Std Deviation MCS

Calibration
(1000 Iterations,

σ = 1.086 px)

Focal length (pixel) 682.47 674.84 0.29

Focal length (mm) 3.0 2.97 0.0013

Principal point (pixel) [798.66, 617.97] [799.38, 617.9] [0.31, 0.33]

Distortion coefficients
[−8.41× 10−4, −1.82× 10−2, [−8.16× 10−4, −1.1× 10−2, [2.69× 10−5, 2.18× 10−4,

1.21× 10−2, −3.7× 10−3] 1.19× 10−2, −5.3× 10−3] 2.17× 10−4, 1.07× 10−4]

Number of images used 34 11 11

Number of checkerboard crosses/
3400 5268 N/A

matched points

Number of features used 3400 3494 3494

The last column of Table 3 shows the standard deviation of a Monte Carlo analysis with 1000 runs

where it can be seen that the focal length, principal point and distortion coefficients are well determined.

(a) (b)

Figure 17. Comparison between the location of the features and its re-projection error in the

initialization (a) and refinement step (b) for the intrinsic calibration of Camera 5 (2.95-mm

focal length).
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Figure 18. Re-projection error of the features after the refinement step of Camera 5.

6.3. Extrinsic Calibration

Once the intrinsic parameters of all of the cameras are known, the next step is the determination

of the external geometric relationship, i.e., translation and rotation, between them. Coarse physical

measurements have been used for the initial values of d1, d2 and d3 (Figure 12). For the rotations,

the ideal values have been used. The numeric results obtained during the optimization of the extrinsic

parameters can be seen in Table 4. As in the intrinsic parameter calibration, the re-projection error of

the features follows a Gaussian distribution and does not depend on its location on the image. The last

column of Table 4 shows the standard deviation registered during the Monte Carlo analysis with 1000

runs. As can be seen, the estimated parameters are well determined and show low uncertainty.

Excellent graphic results have been obtained using this calibration parameter, as can be seen in

Figure 19.

6.4. Underwater Housing Optimization

The last stage of the calibration consists of the estimation of the parameters associated with the

geometry of the waterproof housing that cannot be measured directly. The starting values for these

parameters in the optimization are given by approximated physical measurements. The numeric results

obtained during the optimization can be seen in Table 5. The distribution of the errors approximately

follows the shape of a 2D Gaussian probability distribution with a 3.45-pixel standard deviation.
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Table 4. Initial and refined values of the extrinsic parameter optimization and results of the

Monte-Carlo Simulation (MCS). Camera 5 is selected as the global reference frame and,

therefore, not included in the table.

Parameter Initial Values After Optimization
Std Deviation MCS

(1,000 iterations, σ = 1.33 px)

[α, β, γ]c(0) (rad) [0, π

2
, 0] = [0, 1.571, 0] [1.26× 10−6, 1.5719,

2.35× 10−8]

[2× 10−20, 9.22× 10−6,

2× 10−22]

[α, β, γ]c(1) (rad) [ 2π
5
,

π

2
, 0] = [1.257, 1.571, 0] [1.2575, 1.5713,

−2.57× 10−5]

[5.21× 10−6, 8.06× 10−6,

1× 10−10]

[α, β, γ]c(2) (rad) [2 2π

5
,

π

2
, 0] = [2.513, 1.571, 0] [2.524, 1.5751,

9.88× 10−6]

[9.6× 10−6, 9.5× 10−6,

3× 10−21]

[α, β, γ]c(3) (rad) [3 2π

5
,

π

2
, 0] = [3.77, 1.571, 0] [3.7705, 1.568,

−4.59× 10−5]

[2.2× 10−5, 4.56× 10−6,

1× 10−18]

[α, β, γ]c(4) (rad) [4 2π

5
,

π

2
, 0] = [5.027, 1.571, 0] [5.0258, 1.5742,

1.45× 10−5]

[1.42× 10−5, 5.38× 10−6,

1× 10−19]

[x, y, z]c(0) (mm) [40, 0, −50] [39.84, −3.37× 10−6,

−61.83]

[8.4× 10−5, 4× 10−20,

5.5× 10−5]

[x, y, z]c(1) (mm) [12.36, −38, −50] [12.55, −40.27, −61.28] [9.9× 10−6, 1.2× 10−4,

2.43× 10−3]

[x, y, z]c(2) (mm) [−32.4, −23.5, −50] [−32.91, −24.84, −62.81] [7.8× 10−5, 2.5× 10−5,

4.9× 10−4]

[x, y, z]c(3) (mm) [−32.4, 23.5, −50] [−32.21, 22.89, −61.71] [3× 10−5, 1.5× 10−5,

7.5× 10−4]

[x, y, z]c(4) (mm) [12.36, 38, −50] [13.42, 39.83, −61.39] [2.2× 10−4, 3.5× 10−4,

4.9× 10−5]

Images used 23

Different time frames 9

Matched features 10,564 N/A

Features used 3212

RMS error (pixel) 8.77 1.35 N/A

Figure 19. Equirectangular projection of the interior of the CIRS building, created with a

re-projection distance of 10 m and using the closest blending method.
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Table 5. Initial and refined values of the housing parameter optimization and results of the

Monte-Carlo Simulation (MCS).

Parameter Initial Values After Optimization
Std Deviation MCS (500

iterations, σ = 3.455 px)

Cylinder center (mm) [0, 0] [0.514, −0.679] [0.031, 0.0438]

Cylinder direction vector [0, 0, 1] [−2.33× 10−3,

6.08× 10−4, 1]

[1.5× 10−4, 3.4× 10−5,

1.5× 10−4]

Hemisphere center (mm) [0, 0, 15] [0.328, −1.47, −2.6] [0.155, 0.1876, 0.206]

Number of images used 15

Number of different time frames 5

Matched features 7286 N/A

Features used 560

RMS of re-projection error (pixel) 11.24 3.81 N/A

Good visual results have been obtained using these calibration parameters (Figure 20). Misalignments

between camera transitions are barely visible when the panoramas are rendered at the correct distance,

even with the simplest blending criterion. Even though, the numeric results obtained are not as flawless

as in the previous steps. The three main causes analyzed that could have a negative impact on the mean

re-projection error obtained are as follows:

1. The hemispherical part of the housing cannot be modeled as a perfect hemisphere. Given the

shape and dimensions of the camera system, it is not feasible to manufacture the PMMA cover

as a single piece. For this reason, the hemispherical dome was thermoformed separately and

then attached with adhesive to a prefabricated cylindrical body. Although this solution is simple

and inexpensive, the hot-forming process is dimensionally inaccurate and induces changes in the

thickness of the material along the body of the dome. During the ray tracing, this part has been

considered as a perfect hemisphere, which may induce inaccuracies in both the intersection point

between the ray and the hemisphere and the refracted ray direction. New manufacturing techniques

and a new housing design are being studied to improve this condition.

2. The poster used during the estimation of the underwater parameters was placed at the bottom of

a water tank. Due to the upward force that the water under the poster applies against it, it is not

possible to guarantee the exact flatness of the poster, especially in its corners. This fact could have

increased the final RMS due to the introduction of inaccuracies in the location of the features in

the estimation procedure.

3. The refraction indexes used for the estimation of the housing parameters could not have been

accurate enough according to the environmental conditions, leading the optimization algorithm to

a higher residual re-projection error.
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Figure 20. Equirectangular panorama of the CIRS water tank projected at a distance of 4 m

with gradient blending.

7. Conclusions

In this paper, we have presented in detail a complete method to calibrate and model an underwater

omnidirectional camera composed of multiple single cameras (OMS). This calibration has three different

stages. The first one estimates the intrinsic parameters of the individual cameras composing the OMS

and can handle strong distortions introduced by wide-angle lenses. The second stage estimates the

geometrical relationship between all of the individual frames with respect to a global frame and can deal

with cameras with small or no overlapping between cameras. The third stage consists of a ray tracing

approach to model correctly the light rays when the camera operates inside a housing in underwater

environments. This study can be easily modified to be adapted to different housing geometries. Using

this approach, an FOV simulator was developed and used to determine a suitable housing shape and

optics replacements to cover a complete hemisphere when operating underwater. The final solution for

the Ladybug 3 camera required the replacement of three of the original optics for others with wider

FOVs and a dome-shaped housing composed of a cylindrical and a hemispheric part. The results, both

numerical and graphical, are very good for the dry calibration part. The parameters estimated have low

uncertainty, and the RMS of the re-projection error is small (1.35 px). The final panoramas obtained have

very good quality, and there are no visible misalignments when rendered at the correct distances. The

results for underwater operation present good results, even though the RMS of the re-projection error is

larger (3.85 px), mainly due to unmodeled imperfections from the manufacturing of the hemispherical

section of the housing. As future work, other housing shapes and manufacturing techniques will be

further analyzed in order to reduce the amount of distortion introduced by it and to improve the results.

The graphical results obtained are very good, and misalignments not due to the rendering distance

are barely visible.

The high quality of the overall results validate the approach and the methods proposed and pave

the way for this OMS to be used both for visualization purposes as a means for popular science or

dissemination or as an additional sensor in AUVs and ROVs for navigation, mapping and sea exploration.
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3
Omnidirectional

Multi-Camera Video
Stitching using Depth Maps

F
ollowing the work presented in the previous chapter, we analyze in depth the state of the art for
generating omnidirectional images and video for OMS. Afterwards we propose new methods to

improve the quality of the panoramas obtained. This methods take into account the environment
where the cameras is located to mitigate the parallax effects. The methodologies are applied and
compared in simulation and with a real dataset. This work has recently been submitted to the
following journal and is currently under review:

Title: Omnidirectional Multi-Camera Video Stitching using Depth Maps
Authors: J. Bosch, K. Istenič, N. Gracias, R. Garcia, and P. Ridao
Submitted to: IEEE Journal of Oceanic Engineering
Quality index: JCR2016 Ocean Engineering IF 2.297, Q1 (2/14)
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Abstract 

Omnidirectional vision has recently captured plenty of attention within the computer vision 
community. The popularity of cameras able to capture 360◦ has increased in the last few 
years. A significant number of these cameras are composed of multiple individual cameras 
that capture images or video, which are stitched together at a later post-process stage. 
Stitching strategies have the complex objective of seamlessly joining the images, so that the 
viewer has the feeling the panorama was captured from a single location. Conventional 
approaches either assume that the world is a simple sphere around the camera, which leads 
to visible mis-alignments on the final panoramas, or use feature-based stitching techniques 
that do not exploit the rigidity of multi-camera systems. 
In this paper we propose new stitching strategies for both online and offline applications. 
The techniques aim to stitch the images according to available information on the multi-
camera system and the environment. Exploiting the spatial information of the scene helps to 
achieve significantly better results. While for the online case this information is obtained 
from a SLAM process, for the offline case, it is estimated from a 3D-reconstruction of the 
scene. The information available is represented in depth maps, which provide all information 
in a condensed form and allow easy represention of complex shapes. The strategies proposed 
are compared, both visually and numerically, against conventional approaches, using a real 
dataset. The dataset was collected in a challenging underwater scene with a custom-designed 
multi-camera system. The results obtained surpass those of conventional approaches. 
 
 
 



4
Close-Range Tracking of

Underwater Vehicles Using
Light Beacons

I
n this chapter, we focus on the application of omnidirectional cameras for aiding the navigation of
underwater robots. We present a new tracking system for AUVs navigating in a close formation,

based on computer vision and the use of active light markers. The proposed system allows the
estimation of the pose of a target vehicle at short ranges, with high accuracy and fast execution.
The use of an omnidirectional camera provides a full coverage of the lower hemisphere and enables
the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real
sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation
during extended periods of time.
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Abstract: This paper presents a new tracking system for autonomous underwater vehicles (AUVs)

navigating in a close formation, based on computer vision and the use of active light markers.

While acoustic localization can be very effective from medium to long distances, it is not so

advantageous in short distances when the safety of the vehicles requires higher accuracy and update

rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges,

with high accuracy and execution speed. To extend the field of view, an omnidirectional camera

is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent

tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions

by tracking vehicles in mapping missions, where it demonstrated robust operation during extended

periods of time.

Keywords: tracking system; AUV; relative navigation; pose estimation; light beacons; active markers

1. Introduction

Oceanographic exploration and research are still today challenging tasks due to the demanding

conditions underwater. The use of remotely-operated vehicles (ROV) and autonomous underwater

vehicles (AUV), especially in deep-water operation, is essential for applications as varied as

environmental surveying, geology, archeology, cable inspection and several others relating to industry

and the military. However, the existing technology is still immature for close-range surveying of

rugged terrain, such as caves, narrow passages or overhangs, due to limitations on the terrain sensing

and on the navigation accuracy.

The use of a team of robots navigating in a close formation has the potential to significantly

expand the coverage swath in mapping missions that require close proximity to the seafloor, such

as optical or electromagnetic surveying. In areas of high topography, rigid arrays of sensors cannot

be used safely, whereas AUV formations can provide the required degree of terrain compliance.

The present work has been developed within the framework of the MORPH ( Marine robotic system

of self-organizing, logically linked physical nodes) EU-FP7 project (2012–2015) described in [1]. This

project proposes a novel concept of an underwater robotic system that emerges out of using different

mobile robot modules with distinct and complementary resources. These mobile robots navigate at

a very close range as a group and have the ability to adapt the formation to changes in the terrain.

The most relevant concept with respect to this paper is that an underwater vehicle equipped with a

multibeam sonar profiler advances at the forefront of the formation, flying at a “safe” altitude from the

sea-floor, while two other vehicles fly behind, very close to the bottom, acquiring images. As can be

deduced, precise knowledge of the poses of all robots during the missions is fundamental for both safe

navigation and an accurate reconstruction of the optical and acoustic maps. The relative localization

Sensors 2016, 16, 429; doi:10.3390/s16040429 www.mdpi.com/journal/sensors
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between vehicles is done through acoustic ranging. There has been space, though, for experimenting

with the use of a vision-based method as an alternative for relative localization at short distances,

where acoustics cannot provide updates with enough precision and frequency to ensure safety.

Under adequate visibility conditions, optical cameras can be very effective for computing precise

position estimates, including full inter-vehicle poses. The effects of absorption and scattering often

preclude the use of standard feature detectors [2] as a solution to the problem of vision-based formation

sensing. To improve the chances of detecting point features and to identify individual vehicles, this

paper proposes to endow the AUVs with light beacons, namely a set of active light markers blinking

with distinctive patterns to facilitate their recognition. With this system, it is possible to track vehicles

with full information about their relative pose with high accuracy and rapid update rates. In order to

have a sensor with the widest possible field of view, an omnidirectional underwater camera was used

to provide full vision of the lower hemisphere during the experiments (Figure 1).

This paper presents all of the aspects related to the system: the components and methodologies

used, as well as the experiments performed and the results obtained.

Figure 1. Representation of the localization of two target vehicles using active light markers.

The leading vehicle, endowed with a wide field of view camera, localizes two target vehicles that are

equipped with a set of active light markers.

1.1. Related Work

Navigation and localization are two of the most important topics for underwater robotics.

While navigation in land and air robotics is mainly based on the use of GPS and inertial sensors,

the inability to receive GPS updates underwater makes the task of navigating precisely more

challenging [3]. Most AUVs rely on the use of inertial sensors combined with a Doppler velocity log

(DVL) [4], an acoustic-based instrument that measures relative velocities with respect to the water or

ground. However, this navigation technique is subject to drift over time. To avoid the unbounded

growth of the navigation error in long missions, the system must restart the navigation periodically

either by surfacing and receiving a GPS update [5] or by determining its relative position from an

external reference point. It is at this point that acoustics are highly relevant. With acoustic ranging, it is

possible to determine the relative position between an AUV and one or multiple beacons placed in a

known underwater position. Between all existing acoustic technologies, the most widely used are long

baseline systems (LBL) and ultra-short baseline systems (USBL) [6,7].

An LBL system [8,9] comprises two or more geo-located beacons, which are usually attached

to the seafloor. Whenever these beacons receive an acoustic signal from an AUV, they reply to it

after a short known delay. With the knowledge of the two-way time-of-flight time of the signals,

the position of the beacons and the speed of sound, it is possible to precisely localize an underwater

vehicle. An USBL system [7,10], instead, consists of a single acoustic beacon, which is localized by an
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array of transceivers able to estimate both the range and angles of the incoming signal and, hence, the

relative position of the beacon. This system can be used for tracking an AUV from a vessel (where the

transceiver array is placed) or for improving the navigation system of the AUV, placing the array in

the vehicle and the beacon in a geo-located position.

A solution to the underwater relative position measurement for multiple AUVs, was developed

within the framework of the European GREX (Coordination and control of cooperating unmanned

systems in uncertain environments) project (2006–2009) [11,12]. The navigation systems of each

vehicle were combined with acoustic ranging from modems, to keep formation while following a

predefined path. This achievement paved the way for underwater applications featuring multiple

AUVs. Formation flying was limited to areas with approximately flat seafloors due to constraints on

the vehicles pre-planned formation and to ensure reliable use of DVLs. Over rough terrain, DVLs

tend to be highly inaccurate, and are of limited use for ensuring vehicle safety in tight formations.

In the TRIDENT (Marine Robots and Dexterous Manipulation for Enabling Autonomous Underwater

Multipurpose Intervention Missions) project (2010–2013) [13], a homing and docking solution using a

USBL was tested. An intervention AUV (I-AUV) [14] was placed in charge of a survey and intervention

mission, while an autonomous surface craft (ASC) was employed at the surface for communications

purposes. Once the intervention mission was finished, the I-AUV (fitted with the USBL transceiver

array) started a homing and docking procedure in order to dock in a special structure in the ASC,

where the USBL beacon was located.

The use of easily-identifiable light sources for pose estimation has gained momentum in recent

years in applications of land and aerial robotics. Recent examples are the work of Censi et al. [15] and

Faessler et al. [16], where favorable visibility conditions allow the use of fast cameras and infrared

LEDs to provide very fast pose updates. However, in underwater applications, where the detection

and identification of the light sources is far more challenging, few attempts have been made.

Krupinski et al. presented [17] a docking panel equipped with active light markers as an alternative

to acoustic localization for close ranges. Li et al. [18] applied this concept in a docking station for

underwater vehicles. Four green LEDs were placed along a large funnel to make it visible to underwater

vehicles using a stereo camera. Nevertheless, as there was no necessity of estimating the orientation

nor the motion of the docking station, all of the green LEDs were permanently lit, and no identification

was necessary. The fact that in our case the markers are placed on a mobile target makes it essential to

distinguish and identify each one of the beacons to predict the motion accurately.

1.2. Contributions

The main contributions of this paper are:

1. A new method for pose sensing and relative navigation for multiple AUVs in short ranges based

on the use of active light markers. This method has the following advantages in comparison with

traditional systems:

(a) High rate pose estimation: The update rate depends on the frame rate of the camera

and the capacity of the computer in charge of processing the images. It is expected

then that the update rate can be higher in the near future with the rapid evolution of

computer technologies.

(b) High precision: The minimum number of markers to retrieve the pose of a target vehicle is

three. When using only three markers, the accuracy of the estimated pose depends strongly

on the position of the markers on the vehicle and its location relative to the observer. The

use of extra markers drastically reduces the uncertainty of the poses obtained, making the

technique suitable for applications where very good accuracy is needed, such as cooperative

underwater manipulation. A second source of uncertainty has to do with the location of the

beacons in the image. The rapid evolution of underwater cameras in terms of resolution

and sensitivity will lead to further improvements in the pose accuracy.
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(c) Relative orientation data: The most frequently-used acoustic localization systems, such as

USBL or LBL, provide information about the relative position of a target, but they cannot

provide information about its orientation. The light beacon system is able to provide this

information with little uncertainty.

(d) Low-cost: Another handicap of acoustic-based systems is their cost. Acoustic modems and

arrays are significantly more expensive when compared to optical cameras. The decreasing

price of cameras makes the approach described in this paper extremely competitive against

traditional systems.

2. Real experiments and results of the method presented: The system was tested at sea over several

missions with results that support the advantages listed above. In the experiments presented

in this paper, the filtered pose estimates were updated at approximately 16 Hz, with a standard

deviation lower than 0.2 m in the distance uncertainty between vehicles, at distances between

6 and 12 m.

The rest of the paper is organized as follows. Section 2 describes the different components of the

system. Section 3 presents the approach followed for the tracking process. In Section 4, the results of

the experiments for testing the capacities and reliability of the whole system are presented. In the last

Section 5, we present some conclusions.

2. System Description

The objective of the method is the real-time localization of underwater vehicles for distances less

than 10 m and to obtain both position and orientation information with high update rates. The resulting

system must also be robust to short temporal occlusions of the direct line of vision to the target markers.

The proposed solution consists of the placement of a set of light beacons, or active markers, on the

target vehicles, which are optically tracked by a wide field of view camera placed in a camera vehicle.

The tracking of these markers allows estimating the 3D pose of the target vehicles. Tracking of multiple

target vehicles is possible by using different blinking pattern frequencies. The underlying assumptions

are that the camera field of view covers the areas where the vehicles operate and that the visibility

conditions are not severe for the intended inter-vehicle distances.

The light beacons and the camera system are the two main hardware components and are detailed

in the following section.

2.1. Light Beacons

Each set of beacons consists of four markers connected through electric cables to a control board

inside a watertight housing. This housing is placed in the payload area of the vehicles and is powered

by the batteries of the robot. This setup makes it easy to install the markers on different vehicles and

to distribute them in different geometries according to the vehicle design (Figure 2b). It is essential to

have a precise measurement of the location of the markers with respect to the navigation origin of the

vehicle for correct operation of the system. Each individual light beacon consists of five high-intensity

LEDs oriented strategically to create a homogeneous omnidirectional lighting effect inside a cylindrical

waterproof housing (Figure 2a). The system is operated at 24 V, and the maximum power consumption

is 22 W, when all markers are lit.

The number of beacons used and how they are placed on a target vehicle are two factors that

directly influence the precision of the estimated pose. A comprehensive study of such factors can be

found in [19].
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(a) (b)

Figure 2. Detail of a light beacon and demonstration of a light beacon set assembly in a real AUV.

They can be easily installed and adapted to any vehicle geometry. (a) Details of an active marker.

Each one consists of five high-intensity LEDs; (b) The Sparus II AUV [20] equipped with a set of four

active markers during a mission.

Various possibilities of differentiating each individual marker of the set to allow its identification

were studied. One of the most popular and simple techniques used in land robotics is the use of

colors to distinguish the different beacons composing the set, but this option was discarded, due to the

difficulty in consistently discerning colors for light sources at distances larger than a few meters. The

use of different blinking frequencies for each individual marker was discarded due to the use of this

strategy for identifying different sets of light markers, and hence, being able to estimate the pose of

different vehicles simultaneously. Instead, different blinking patterns, illustrated in Figure 3, are used

to allow the identification of the different markers in each set.

Figure 3. Blinking pattern of each marker of the light beacon set. Each beacon has a distinctive pattern

allowing the global identification in the minimum time possible while there are at least three beacons

lit more than 50% of the time.

Two objectives were considered in designing the patterns. On the one hand, it should allow the

identification of all lights in the minimum time possible, and on the other, it should maximize the

time when all lights are on, thus allowing the pose estimation algorithm to compute a large number of

poses per second, which facilitates tracking.

Two different sets of active markers with different minimum cycle periods, T, were manufactured

to allow the simultaneous tracking of two target vehicles on the same mission. These periods must be

chosen according to the camera frame rate, fps, and the design requirements, as they implicitly define

the minimum time necessary for the identification of the light beacons. The minimum cycle period, T,

contains for the fastest marker (L1) one on and one off period, and we need to be sure that the camera

captures at least one frame and preferably two to improve robustness: one where the beacon is lit and

another where the beacon is off. Thus, T
2 > 1

f ps .

For the experimental setup used in this paper, the camera has a frame rate of 16 fps, and so,

T > 0.125 s. The values used for the first and second sets of light beacons were T1 = 0.25 s,

and T2 = 0.7 s, respectively.
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The minimum time needed for the identification of n markers, Tident(n), is proportional to the

minimum cycle period. For the pattern presented in Figure 3, this time is Tident(n) = 2n−1 T. Thus, the

minimum time necessary for the identification of three of the markers, Tident(3), which is the minimum

necessary to compute a first pose estimation, is: Tident(3) = 4 T.

2.2. Panoramic Camera

The camera used for the localization must have a wide field of view (FOV) in order to keep track

of the target vehicle in a wide range of positions and orientations of both the target and the leading

vehicle. For this reason, in the experiments presented in this paper, a panoramic (or omnidirectional)

camera was used instead of a conventional one.

2.2.1. Model and Assembly

The camera used is an omnidirectional multi-camera system (OMS), based on a Point Grey’s

Ladybug 3 [21]. The Ladybug 3 comprises six individual cameras and is designed for land-based

applications. A custom housing was designed to make it submersible up to 60 m (Figure 4a). The

housing is composed of a transparent poly-methyl methacrylate (PMMA) dome, which contains

the camera, and an aluminum alloy body, which contains a small form factor computer dedicated

to processing the video feed. The computer is connected directly to the Ladybug 3 through a

FireWire 800 Mbps connection. The housing has a single external Ethernet cable used for both

power and communications.

(a) (b)

Figure 4. Omnidirectional camera and assembly in Girona500 AUV. The camera was installed under the

bottom cylinder to have a clear view of the bottom hemisphere and is protected by two aluminum bars

installed in front of the camera. (a) Omnidirectional underwater camera based on a Point Grey’s

Ladybug camera and a custom waterproof housing; (b) the Girona500 AUV equipped with the

omnidirectional camera.

For the experiments presented in Section 4, the omnidirectional camera was mounted in the

bottom part of Girona500 AUV [22], as shown in Figure 4b. To protect the camera from any damage in

the unlikely event of a collision, two aluminum bars were placed in front of the camera. These bars

have no impact on the performance of the tracking system, as the target vehicles were always behind

Girona500 in the formation employed during the missions. The Girona500 is able to power up or

down the camera through a digital output and communicates through Ethernet with the computer

embedded inside the housing, which provides the estimated poses of the target vehicles.

2.2.2. Camera Calibration

The camera outputs six separate images that can later be combined to create a hemispherical

panorama or treated separately as individual images according to the mission objectives. In both cases,

the camera must first be calibrated to ensure proper use of the images collected. The calibration takes
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into account all of the distortions introduced by both the lenses of the camera and the waterproof

housing, as well as the relative positioning between the individual cameras. The calibration of such a

complex camera was divided into three different steps: intrinsic, extrinsic and underwater calibration.

The intrinsic parameters of all single cameras are necessary to project a 3D point in space onto

the 2D image plane. They depend on specific geometry properties of each camera, as well as lens

properties, such as focal length ( fl), principal point (c) or distortion coefficients. The pinhole camera is

the most used camera model due to its compactness and freedom from distortions [23]. However, all

lenses introduce image distortions that are not explicitly included by this model. The most common one

is radial distortion, which is due mainly to the shape of the lenses and produces nonlinear distortions

along the radial direction from the principal point. The calibration of the intrinsic parameters is done

separately for each single camera in air and without the waterproof housing, making use of a standard

calibration toolbox. It is important to note that due to the high distortion of the lenses used in the

Ladybug3 camera, a fisheye distortion model was used to properly correct the radial distortion.

The calibration of the extrinsic parameters consists of the determination of the exact geometric

relationship between the different camera frames composing the OMS. For this calibration, a specific

procedure was developed. This procedure was based on a bundle adjustment of multiple features

observed from different images, similar to the calibration of a stereo camera. The data necessary for

this calibration were collected in air and without the waterproof housing.

The underwater calibration consisted of determining the exact position and orientation of the

waterproof housing with respect to the camera. It is worth noticing that the direction of the rays

changes at every medium transition found along the path from the imaging sensor inside the camera

to a point underwater (Figure 5). A small error in the relative position of the housing can lead to a big

inaccuracy in the direction of the final ray.

AIR PMMA WATER

θa

p0

~n1

~n2

~v0

p1
~v1

p2

~v2
θwθg′

θg

Figure 5. Ray tracing schematic of a single optical ray passing through air, PMMA and water.

Once the multi-camera system has been calibrated, it is possible to obtain the projection function

f , which projects a 3D point into a 2D location in the image sensor of a chosen camera, and its inverse

f−1, which projects a 2D pixel of an image sensor onto a 3D ray.

For a conventional pinhole camera, the function f−1 for projecting a 2D pixel, u = [ux, uy],

from a non-distorted image onto a 3D ray with center at the origin of the camera and direction vector

v = [vx, vy, vz], is straightforward:

v =
[

ux−cx
fl

,
uy−cy

fl
, 1

]

(1)

where c = [cx, cy] is the location of the principal point in the imaging sensor and fl is the focal length.

For underwater cameras, the fact that the direction of the ray changes in every medium transition

makes the process more laborious, as for each transition, the intersection point and the direction of the
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rays must be computed according to the laws of physics. For the sake of simplicity, the details are not

described here, but can be found in [24].

For the case of the projection function f that projects a 3D point p = [px, py, pz] into a 2D location

in the image sensor, it is equally simply to find an expression for pinhole cameras:

u =
[

fl
px
pz

+ cx, fl
py

pz
+ cy

]

(2)

In contrast, it is not possible to find such an expression for projecting an underwater 3D point.

To solve this problem, an iterative process is run instead. This process goes along the pixels of the

sensor and selects the one whose associated 3D ray passes closer to the desired 3D point.

3. Approach

The tracking of the target vehicle is divided into two stages (Figure 6). The first stage consists of

an initialization step, where the pose of the vehicle is unknown and there is not enough information

available for its estimation. The second stage begins when there is enough information for estimating

the pose of the target vehicle, and it lasts until the tracking of the vehicle is lost, where the system

returns to the initial stage.

Predict candidates position

Find tracked candidates

Search new candidates

Identification

Predict target pose

Find markers

Estimate target pose

TARGET TRACKING

New frame New frame

Lost

n > 3

START

INITIALIZATION

Figure 6. Block diagram of the light beacon tracking system.

During the initialization stage, the tracking consists of an independent tracking process for each

of the lights. In contrast, the second stage, named target tracking, consists of the global tracking of the

target vehicle.

All software programs have been implemented in C++ to achieve the best temporal performance

possible and to make the tracking system able to work in real time. Different programming libraries

have been used for the implementation of the full system, with special relevance on OpenCV [25] for

the treatment of digital images and Ceres-Solver [26] for solving the non-linear least squares problems.

3.1. Initialization

During the initialization stage, there are three main tasks: (1) searching for new light candidates;

(2) tracking previous candidates; and (3) deciding if they correspond to one of the beacons. When at

least three candidate lights have been identified, the system moves to the second stage. During this

stage, we will make use of acoustic ranges as extra information for making the prediction of the lights

in future frames more precise, but this could be replaced by the assumed distance between the camera

and the target vehicle for each mission.
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3.1.1. New Candidates

The system starts the identification process over the bright spots of the image. With this purpose,

the gradient image is computed from the grayscale image using the Sobel operator. The Sobel operator

applies two 3 × 3 convolution kernels to obtain two images that contain an approximation to the

horizontal, Gx, and vertical, Gy, derivative images:

Gx =







−1 0 +1

−2 0 +2

−1 0 +1






∗ A (3)

Gy =







−1 −2 −1

0 0 0

+1 +2 +1






∗ A (4)

where ∗ denotes the 2D convolution operation and A is the grayscale image.

The two derivative images are combined in order to obtain a gradient image:

|G| =
√

G2
x + G2

y (5)

A mask can be applied to the resulting image with the aim of avoiding the further inspection of

bright spots directly related to the body of the vehicle carrying the camera (Figure 7).

(a) (b)

Figure 7. Sample image and its corresponding gradient image. (a) Original grayscale image;

(b) gradient image with a mask for the part corresponding to the body of the AUV carrying the camera.

The next step consists of selecting from the gradient image the n brightest spots with a minimum

distance d between them to analyse them in detail. For each one, we select a window in the original

grayscale image, with size w centered on the point found previously, and we search for the local

maximum closest to the center of the window, as the location may vary from the gradient image. Once

the window has been re-centered and we are sure the candidate spot is in the center, we will check the

following different conditions before accepting it definitely as a candidate light.

• Intensity: A minimum intensity value is required to accept a bright spot as a candidate light.

This minimum depends on the existence of candidates in the previously-processed images. In the
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case that no previous candidates exist, the value depends both on the last acoustic range received

and on an extra parameter reflecting the visibility (and sun conditions in case the mission

is performed in shallow waters). In cases where there were candidates present in previous

frames, the value of intensity required is slightly smaller than the minimum intensity of the

existing candidates.

• Size and shape: For accepting the pre-candidate, its shape must be similar to a 2D-Gaussian

distribution, and its area cannot be greater or lower than certain selected values. The first step

required is determining the size of the spot analyzed. For this purpose, a technique very similar

to the radial contrast function (RcF) method is used [27]. This algorithm was developed for

source detection in astronomical images, but is flexible enough to be applicable to the images

processed by our system. It operates by choosing the brightest pixel and analyzing the mean of the

neighbor pixels at incrementally larger radial distances. The size of the light is determined when

the intensity profile obtained stops decreasing and remains constant. Once the size is determined,

we must ensure that its value is reasonable. As in the previous case, the minimum and maximum

size values depend on the existence of candidates in the previous frames. In the positive case, the

minimum and maximum values are determined from the features of the existing candidates, while

in the other case, they depend on the last distance estimate available and the visibility conditions.

3.1.2. Tracking of Candidates

Every time the system analyzes a new image, we look for lights that could correspond to previous

candidates. To estimate the position of a previous candidate in a new image, we consider that the lights

are still in the 3D space, and we take into account only the movement of the camera. It is important

to note that any small rotation of the camera results in a significant displacement in the image; thus,

assuming that the candidate lights are still in the image plane would result in a less efficient tracking.

The distance between the camera and the marker must be assumed in order to project the 2D

marker position from the last image frame, k−1u =k−1 [ux uy], to a 3D point, k−1 p. In our case,

that distance was assumed to be the last acoustic range, r, between the vehicle carrying the camera

and the target vehicle,
k−1 p = f−1

(

cam, r, k−1u
)

(6)

where f is the projection equation according to the camera calibration, as detailed in Section 2.2.2 and

cam is the number of cameras.

Once the 3D point corresponding to the last frame, k − 1, has been computed, it can be rotated

and translated according to the transformation matrix, kTk−1, which transforms a point from the k − 1

coordinate system to the k coordinate system and is computed according to the navigation system of

the camera vehicle:
k p =k Tk−1 · k−1 p (7)

Finally, the rotated 3D point can be projected back to the image plane through the iterative method

described in Section 2.2.2 to obtain the predicted position of the marker in the new image, ku:

ku = f
(

cam, r, k p
)

(8)

In the case that the predicted candidate position is close to the limit of the image, an image from

one of the adjacent cameras will be selected accordingly before any further processing.

For each candidate light, we select a patch around its predicted position. The size of the patch,

w, depends on the previous light size and the assumed distance r. In the patch, we search for the

closest local maximum, and we again use the RcF technique described in the previous subsection. We

check if there exist similarities between the candidate light and the local maximum found. Particularly,

they must have similar intensity, size and intensity gradient, or otherwise, it is assumed that the

maximum found does not correspond to the tracked light. Depending on the results obtained, we tag
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the candidate light as on or off. In the case that a candidate light has been tagged as off for a number

of frames that is significantly larger than the expected number according to the beacons’ pattern,

we remove it from the candidates list.

3.1.3. Beacon Identification

After the tracking of the candidate lights, an identification method checks if any of the candidates

can be associated with the beacons. The method described in this section has been proven very effective

for the pattern described in Section 2, but may need modifications in the case of a different blinking

pattern.

Each one of the tracked lights has a record of its full on-off state history. Especially important are

the mean of the periods when the light was off (not detected) and the mean of the periods when the

light was on (detected). A score matrix is computed to evaluate every possible association, containing

as many rows as candidates and as many columns as markers. The matrix is initialized with a negative

value for all cells, and two conditions must be met for computing a score value.

• An off period must have been detected for the candidate light, that is a light cannot be associated

with a marker, if it has not been absent for at least one frame and detected again. Furthermore, the

duration of this off period must be very close to the expected cycle time within a tolerance t.

• Additionally, for comparing a candidate light i with a marker j, the light must have been tracked

for at least the duration of the marker full period; otherwise, we could not be sure the association

is correct:

light tracking duration(i) > marker period(j) (9)

If these two conditions are met, a score is computed for every possible association using:

score(i, j) = 1 − expected time on(j)− mean time on(i)

expected time on(j)
(10)

Once all of the cell values are computed, we find the maximum value of the matrix. In the case

that this value is greater than a certain threshold, 0.8 for the results presented in this paper, we identify

the association as valid. The column and the row where the maximum occurs are removed, and a

maximum is searched for again. If this maximum is greater than the threshold, the association is

identified, and the corresponding row and column are removed. This process is repeated until all

values of the matrix are lower than the threshold.

In the case that we have identified at least three lights, it is then possible to estimate the pose of

the target vehicle. If the system was in the first stage of processing, it moves to the second one.

3.2. Target Tracking

Once a first pose estimation of the target vehicle has been computed, the system starts a tracking

process over the target vehicle. The procedure is as follows:

1. Each time there is a new image acquisition, the elapsed time between the previous processed

image and the new one is computed. A prediction of the movement of the target vehicle S with

respect to the camera in the elapsed time is computed, taking into account both the motion of the

camera and the dynamics of the target vehicle.

2. According to the predicted 3D pose of the target vehicle and the known position of the active

markers along the vehicle’s body, each one of the markers is projected onto the image plane to

obtain its 2D predicted position through the use of the projection equation (Equation (8)).

3. Each one of the markers is searched in the images according to its predicted 2D location using an

identical process to the one described in Section 3.1.2. If at least three markers are detected, a new

pose estimation is computed. Otherwise, the predicted pose is assumed to be the real one.

82Chapter 4. Close-Range Tracking of Underwater Vehicles Using Light Beacons



Sensors 2016, 16, 429 12 of 26

In order to reduce the noise in the estimated poses and obtain the smoothest possible dynamic

model of the target vehicle, we make use of an extended Kalman filter (EKF). It has been found possible

to reduce the noise for each one of the estimates and, thus, to produce a better result.

Details of the implementation of the EKF and the pose estimation are presented in the

following subsections.

3.2.1. Temporal Filtering

The use of an EKF filter proved very useful to reduce the noise of the estimated 3D poses of the

target vehicle. At the same time, it allowed a better prediction of the 2D position of the markers in the

images and significantly improves the performance of the system.

State vector:

The EKF state vector has two different parts, xk =
[

p νs

]T
. The term p contains the six degrees

of freedom defining the current position, p1, and orientation, p2, of the target vehicle S represented in

the camera frame C at time k (see Figure 8):

p =
[

p1
T p2

T
]T

=
[

x y z φ θ ψ
]T

(11)

Figure 8. Representation of the target vehicle (S) and the camera vehicle (C) at instants k-1 and k.

The term νs contains the six degrees of freedom defining the linear, ν1,s, and angular, ν2,s, velocities

of the target vehicle with respect to the inertial frame E represented in the tracked vehicle frame Sk at

time k:

νs =
[

ν1,s
T ν2,s

T
]T

(12)

Prediction:

Our model is governed by a non-linear function f :

xk = f (xk−1, uk, nk) (13)

which relates the state at a time k, xk, given the state at a time k − 1, xk−1, a control input uk and

a non-additive noise nk =
[

nT
1 nT

2

]T
that follows a Gaussian distribution with zero mean and

covariance Qk.
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According to the notation used in Figure 8, and assuming that the target vehicle follows a constant

velocity model, f can be expressed as:

xk =

[

pk

νk
s

]

=





(⊖∆c)
A
⊕
(

pk−1
B
⊕ ∆s

)

νk−1
s + n2∆t



 (14)

where operators ⊕ and ⊖ denote the commonly-used six degrees of freedom inversion and

compounding operations [28], the term ∆t denotes the time elapsed between time k − 1 and k, the

term ∆c denotes the variation of the pose of the camera vehicle in the elapsed time ∆t and is part of

the control input uk, the term ∆s corresponds to the variation of the pose of the target vehicle in the

camera frame, Ck, and can be computed as:

∆s =

[

νk−1
1,s ∆t + 1

2 n1∆t2

Jω(pk−1
2 )

(

νk−1
2,s + n2∆t − RT(pk−1

2 )νk−1
2,g

)

∆t

]

(15)

where ν
Gk−1
2,g is the angular velocity of the camera vehicle at the instant k − 1 and is part of the control

input uk, Jω(pk−1
2 ) is the Jacobian that transforms the angular velocity of the target vehicle (S) with

respect to camera vehicle (C) to ṗk
2 =

[

φ̇ θ̇ ψ̇
]T

and is given by:

Jω(φ, θ, ψ) =







1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0
sin φ
cos θ

cos φ
cos θ






(16)

and RT(pk−1
2 ) is the rotation matrix that transforms a point expressed in the S coordinate system to the

G coordinate system which depends on their relative attitude pk−1
2 .

The prediction of the state x̂−k and its associated covariance P−
k are given by:

x̂−k = f (x̂k−1, uk, nk = 0)

P−
k = AkPk−1 AT

k + WkQkWT
k

(17)

where:

Ak =
∂ f (xk−1, uk, nk)

∂xk−1
|(x̂k−1,uk ,nk=0) (18)

and

Wk =
∂ f (xk−1, uk, nk)

∂wk
|(x̂k−1,uk ,nk=0) (19)

According to Equations (14) and (15), the Jacobians Ak, Wk are:

Ak =







JA
2⊕

(

JB
1⊕ + JB

2⊕

[

03 03

03 J∗

])

JA
2⊕ JB

2⊕

[

I3∆t 03

03 Jω∆t

]

06 I6






(20)

Wk =







JA
2⊕ JB

2⊕

[

1
2 ∆t2 I3 03

03 Jω(pk−1
2 )∆t2

]

I6 · ∆t






(21)

where J∗ can be obtained by symbolic differentiation of the following expression:

J∗ =
∂
(

Jω(pk−1
2 )

(

νk−1
2,s − RT(pk−1

2 )νk−1
2,g

)

∆t
)

∂(pk−1
2 )

(22)
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Measurement model:

The general model for measurements is:

zk = Hkxk + mk (23)

where zk is the measurement vector and corresponds to the relative pose of the target vehicle with

respect to the camera:

zk =
[

xc
s yc

s zc
s φc

s θc
s ψc

s

]T
(24)

Hk is the observation matrix and has the form:

Hk =
[

I6 06

]

(25)

the term mk is a vector of white Gaussian noise with zero mean and covariance Rk = Σzk
.

This covariance is provided by the pose estimation module (Section 3.2.2).

Update:

Updates happen when a new measurement is computed from the pose estimation module.

Although the tracking system has been proven to be reliable, there are still situations where a

misidentification or mismatching could cause the wrong calculation of the pose estimation and, thus,

negatively affect the pose estimate of the filter. To avoid taking into account outlying observations, we

check if the observation is consistent with the current prediction computing the innovation term, rk,

and its covariance, Sk:

rk = zk − Hk x̂−k (26)

Sk = HkP−
k HT

k + Rk (27)

Then, in order to determine the compatibility of the measurement, an individual compatibility

(IC) test is performed. With this aim, the Mahalanobis distance [29] is computed as:

D2
k = rT

k S−1
k rk (28)

The observation is considered acceptable if D2
k < χ2

d,α, where the threshold χ2
d,α is given by

the chi-squared distribution with d degrees of freedom and a cumulative value of 1 − α. For the

implementation in this paper, values of d = 6 and α = 0.05 were used.

Since the measurement model is linear, the classical KF equations can be used for the update;

where the Kalman gain, Kk, is computed as:

Kk = P−
k HT

k S−1
k (29)

and the estimate of the current state x̂k and its covariance Pk according to the Joseph form are:

x̂k = x̂−k + Kkrk (30)

Pk = (I − Kk Hk) P−
k (I − Kk Hk)

T + KkRkKT
k (31)

3.2.2. Pose Estimation

The pose x∗ that best fits the observation of the markers in the image, u, is found using non-linear

least squares minimization, by searching for the values of the variable x that minimize the sum of f (x):

min
x

1

2 ∑
i

‖ fi(xi1 , . . . , xik )‖
2 (32)
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The variable x contains the complete pose of the target vehicle with respect to the camera

p =
[

xc
s yc

s zc
s φc

s θc
s ψc

s

]T
. The function f computes the re-projection error for each one of

the markers; that is, the difference between the real observation and the projection of the marker

according to the variable x and the calibration parameters of the camera. The problem is solved with a

Levenberg-Marquardt [30] iterative algorithm available in the Ceres library [26]. As with all iterative

methods, it needs an initial guess of the variables, which in our case is the predicted relative pose

according to the EKF filter described previously.

In addition to the pose estimate, it is essential to have an estimate of the associated uncertainty,

so that the pose information can be adequately used in a navigation filter. A first-order approximation

of the pose covariance Σx∗ can be computed from the assumed covariance Σu of the pixel location

of the beacons in the image and the Jacobian J(x∗) = ∂u
∂x (x∗) that relates small changes in the pose

parameter with small changes in the observations. The Levenberg–Marquardt implementation used

computes and provides this Jacobian at the end of the minimization. The pose covariance estimate

is given by:

Σx∗ = (J(x∗)TΣ−1
u J(x∗))−1 (33)

5 6 7 8 9 10 11 12 13 14
Distance (m)

1.0

1.2

1.4
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2.4

 (
px

)

Linear regression

Figure 9. Evolution of the standard deviation of the Gaussian distributions fitted to the lights

along distance.

The uncertainty in the localization of the lights in the image is inversely dependent on the distance

of the beacon from the camera. The closer the beacon is to the camera, the larger the projected light disk

will be in the image, thus leading to higher location uncertainty than far away beacons that appear in

the image as small disks. In order to have an approximate value of this uncertainty, the size of the lights

was analyzed from a set of selected images of the experiment presented in this paper. The beacons in the

images were fitted to a 2D Gaussian distribution centered at u, with standard deviation σ, amplitude A

and an offset c0: f (u, σ, A, c0). The standard deviation of the 2D Gaussian distributions, σ, found can

be used as an indicative value of the uncertainty of the location procedure. The experimental evidence

from the mission presented in this paper (Figure 9) showed that the variation of σ is small enough to

be considered constant within the range of distances of the experiments (5 to 12 m). A conservative

mean value of σ = 2 pixels was chosen for the standard deviation of both horizontal and vertical pixel

uncertainties. The covariance used was:

Σu =

[

σ2 0

0 σ2

]

=

[

4 0

0 4

]

(34)
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4. Results

The performance of the light beacon tracking and pose estimation method was tested in several

trials during the MORPH EU FP7-Project. The most relevant field testing took place in Sant Feliu de

Guíxols, Spain, in March 2015 and in Horta, Azores Islands, in September 2015. This section presents

the results obtained in one of the longest and most successful missions (Azores 15). The mission was

performed by a total of five vehicles (four submerged and one at the surface) with the objective of

mapping a vertical wall and the sea floor next to it. The Girona500 (G500) carried the omnidirectional

camera and performed the role of the leading vehicle, while the Sparus II and Seacat AUVs [31] were

the optical mapping vehicles, in charge of capturing high resolution imagery of the seabed (Figure 10).

Figure 10. Image of G500, Sparus II and Seacat AUVs captured by a diver during a mission in Horta,

Azores Islands, September 2015.

Precise navigation data for all vehicles are fundamental for a good reconstruction of the

multi-vehicle optical mosaic [32]. The formation control was performed with acoustic ranging

following the MORPH guidelines [33,34]. The light beacons were used as an experimental technology

being field tested at the time. As such, the tracking was not used in the formation control loop,

but served as an important tool for online mission monitoring and to assist the data post-processing.

Figure 11 illustrates the optical tracking results. The system capabilities allow the reconstruction

of the scene in a 3D viewer with a high update rate of both the position and orientation of the target

vehicles, making it very easy for an operator to understand the development of the mission in real

time or during replay.

The intended positions of the target vehicles with respect to the leading vehicle varied considerably

during the mission. During most of the survey, the target vehicles were surveying the horizontal floor,

and the desired positions were 5 m behind the G500 AUV and 5 m to both the left and right sides.

However, when surveying the vertical wall, the two vehicles were commanded to move to the same

side of the G500 and explore the wall with different altitudes (Figure 12). For this reason, along with

the normal oscillation of the relative positioning due to the control system, the distance between the

G500 and the target vehicles was not constant and varied between 4 and 18 m. The performance of the

optical tracking system depends strongly on the distance between the camera and the target vehicles,

the geometry of the relative positions of the projections of the light beacons on the image [19] and

on the visibility conditions in the water, principally the turbidity and the presence of strong veiling

light. The complete characterization of the environmental conditions under which the system can

operate is undergoing assessment and is outside the scope of this paper. However, the tests reported

in this paper were done in realistic conditions of visibility at sea. Although not measured precisely, the

visibility was estimated by local divers to be in the 20–25 m range.
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(a)

(b)

Figure 11. Snapshots of the system while tracking simultaneously two target vehicles. (a) Processed

images from two independent cameras while the system is tracking two different target vehicles:

Sparus (left) and Seacat (right); (b) left: lateral view of the reconstructed scene in the Rviz simulator;

right: top view of the reconstructed scene in the Rviz simulator.

(a) (b)

Figure 12. During the MORPH (Marine robotic system of self-organizing, logically linked physical

nodes) project missions, the vehicles have the capability to change the formation geometry on-the-fly,

adapting it to the changes in the terrain. When the formation navigates towards a wall, the two target

vehicles, named in the figures C1V and C2V, change their altitude, which can result in one, or both,

target vehicle(s) being out of the field of view of the omnidirectional camera and, therefore, without

tracking capabilities. Source: MORPH Consortium. (a) Survey of a flat region. The two target vehicles

navigate close to the bottom, below the leading vehicle; (b) Survey of a vertical wall. The two target

vehicles have different altitudes, one or both of them above the leading vehicle.
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Figure 13 presents a top or planar view of the trajectory of the G500 during the mission. The figures

on the left are color-coded with the distances between the G500 and the target vehicles, while the figures

on the right show the intervals of the sustained operation of the optical tracking. The trajectories and

inter-vehicle distances were computed from offline optimization using all navigation data available [32].

During some parts of the mission, especially during the wall survey, the target vehicles were flying

above the leading vehicle and, thus, outside the field of view of the camera. On such occasions, it

was not possible to perform the tracking, even when the relative distance between the vehicles was

small. Figure 14 illustrates this issue: the top plot shows the distance between the G500 and the target

vehicles similarly to Figure 13; the middle plot presents the relative depth between the vehicles; the

bottom plot highlights the intervals of sustained operation of the optical tracking. An initial insight

into the performance of the optical tracking can be inferred from Figure 14. The plots show that under

the conditions of the experiment, the tracking system performs adequately when the target vehicles

navigate below the camera vehicle at distances less than 10 m, with intermittent operation for distances

between 10 and 15 m. For distances of more than 15 m, the operation is unreliable. The mission was

performed over a 40-min period at noon, under cycling illumination conditions of overcast cloud and

direct strong sunlight. The G500 AUV was navigating at a depth between 7 and 10 m, where the Sun

still causes reflections on the body of the vehicles and decreases the visibility of the light beacons.

Although not tested, it is safe to assume that performance would improve even further at deeper

depths or night-time conditions.
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Figure 13. Top view of the trajectory of the G500 during the mission. The distances between G500

and target vehicles are color-coded (a,c); and the intervals of sustained tracking operation are marked

in green (b,d). The points where the tracking was lost are numbered (b,d) for further analysis in

Tables 1 and 2. The survey of the vertical wall corresponds to the lower-left corner of the images.

(a) Distance between G500 and Seacat; (b) intervals of optical tracking of the Seacat; (c) distance

between G500 and Sparus; (d) intervals of the optical tracking of the Sparus.
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Table 1. Instants with a loss of visual tracking for Seacat and its failure mode. Points are numbered

according to Figures 13b and 14a.

Point 1 2 3 4 5 6 7

Failure mode Geometry Distance Distance FOV Distance Abrupt change in depth FOV

Table 2. Instants with loss of visual tracking for Sparus and its failure mode. Points are numbered

according to Figures 13d and 14b.

Point 1 2 3 4 5 6

Failure mode Distance Distance + Geometry Occlusion with Seacat Distance Distance Distance
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Figure 14. Analysis of intervals with optical tracking versus distance and relative depth between G500

and the target vehicles. Looking at the three plots in conjunction, it is easy to infer the necessary

conditions for the operation of the optical tracking. (a) Top: analysis of the distance between G500 and

Seacat over time; middle: analysis of the relative depth between G500 and Seacat over time. Negative

values mean that Seacat was below G500; thus, the optical tracking was plausible. Bottom: intervals of

optical tracking. The points where the tracking was lost are numbered for further analysis in Table 1;

(b) Top: analysis of the distance between G500 and Sparus over time; middle: analysis of the relative

depth between G500 and Sparus over time. Negative values mean that Sparus was below G500; thus,

the optical tracking was plausible. Bottom: intervals of optical tracking. The points where the tracking

was lost are numbered for further analysis in Table 2.
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Regarding the failure modes, Figure 15 shows two examples of the limit conditions of operation.

Both images correspond to loss of tracking after a long interval of operation. In both cases, the distance

between the camera and the vehicles was a decisive factor. The limit distance is determined not only

by the visibility conditions, but also by the resolution of the camera, which affects the apparent size

of the light disk. In these images, the disks are less than two pixels in diameter. This was further

compounded with the effects of ambient light and, in the case of Seacat, with the poor geometry of the

image projected light beacons, where two beacon disks are overlapping.

(a) (b)

Figure 15. Two instances where the tracking system lost the target vehicles due to the visibility

conditions. The lights at the distance of the vehicles were too weak for the system to discern them and

keep the tracking running. (a) Sparus at approximately a 13.2-m distance; (b) Seacat at approximately a

12.4-m distance.

Tables 1 and 2 show the failure modes for each instant where tracking was lost during the mission.

Three main reasons appear: (1) distance, the distance between the vehicles was too big and tracking

became unreliable; (2) FOV, the target vehicle navigated higher than the camera-vehicle, and thus, it

moved outside the camera field of view, or occlusions appeared between the markers and the body of

the target vehicle; (3) geometry, the combination of the pose of the target vehicle with the geometry of

the markers made it very difficult to estimate the pose correctly.

Let us now consider one of the longest sections with tracking capabilities for both vehicles.

In Table 3, we compare the information of the relative navigation between the leading vehicle and

the target vehicles in three different cases: (1) using only acoustic ranges; (2) using USBL updates; or

(3) using the light beacon tracking system. One of the most important limitations of underwater

communications using acoustics is that for a reliable and stable communication, only one emitter is

allowed to send messages at any given time. For this reason, when several vehicles co-exist, their

access to the media has to be scheduled using a time division media access (TDMA) protocol, assigning

to each vehicle a safe slot of time for sending messages. In the case of the mission analyzed, due

to the number of vehicles involved and all of the different uses of the acoustic channel, each one of

the vehicles was able to send messages every 5 s. We can observe from Table 3 that the information

provided by the light beacon system is the most complete, as it reports data on both the position and

orientation of the target vehicle, unlike USBL or range-only systems, which report only relative position

or distance. The number of updates received is another significant difference: acoustic-based systems

only provided 122 updates during the period studied, while the light-beacon system reported up to
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90-times more updates. This is due to the constraints on the acoustic or range-only communications

when multiple vehicles are in the water, while the optical system is independent of the number of

vehicles in the water.

Figure 16 shows a comparison of the distance between the G500 and the Seacat AUV computed

through acoustic ranges and using the light beacon system: the two online localization systems that

were available for the leading vehicle. Looking at the figure, it is clear that there is a high level of

agreement between the two systems, and there is no apparent offset between the different approaches.

We can also see the difference in the number of updates.

Table 3. Updates of relative navigation position received by Girona500 about Seacat during an interval

of a duration of 11 min 21 s. USBL, ultra-short baseline system.

Localization system Acoustic Ranges USBLs Light Beacons

Updates 122 122 10894
Information Distance Position Position and orientation
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Figure 16. Comparison of the distance between the G500 and the Seacat estimated using light beacons

and acoustic ranges.
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Figure 17. Detailed comparison between the distance estimated using light beacons and acoustic

ranges along with their uncertainties.

Figure 17 shows a zoomed section of the former plot, but including the uncertainties of the

measurements. The uncertainties of the poses computed through the optical system have been

92Chapter 4. Close-Range Tracking of Underwater Vehicles Using Light Beacons



Sensors 2016, 16, 429 22 of 26

calculated according to Section 3, while the uncertainty of the acoustic ranges has been estimated as a

fixed value obtained from computing the standard deviation between data from the acoustic ranges

and the estimated distances using the optical system. For both cases, we have chosen conservative

values: a standard deviation of 0.2 m for the acoustic ranges and a standard deviation of two pixels for

localization of the lights in the images, as explained in Section 3.2.2. We can observe from the figure

that the optical system is very competitive against acoustic ranges and even for the worst cases does

not exceed the 0.2-m standard deviation of the acoustic ranges.

The last two plots provide evidence of the accurate behavior of the tracking system. However,

they are only a comparison in one dimension, whereas the system provides full position information.

With the aim of achieving a more complete comparison, Figure 18 shows the navigation of the three

vehicles according to different navigation systems. Different conclusions can be drawn from the figure:

• Comparing the trajectories computed by the internal navigation systems of each vehicle, labeled

as dead reckoning, with the USBL updates and the trajectories computed by the other systems, we

can infer that the internal navigation systems have a significant drift over time, especially Sparus,

due to the fact that they are based on inertial sensors and DVL.

• The distances between the USBL updates and the trajectory computed by the light beacon system

are small. This fact makes clear that the computed trajectory is consistent with the USBL updates.

It also becomes clear that the number of updates is significantly higher for the light beacon system,

as seen previously.

• The navigation trajectories computed by the optical method and the offline optimization method

have a high degree of agreement. From this fact, we can conclude that the light beacon system

is consistent with the offline optimized trajectory of the vehicles. This trajectory was computed

once the mission was finished, gathering the navigation data from the vehicles participating in

the mission and the acoustic ranges and USBLs received, and is assumed to be the best navigation

estimate we can compute without the light beacon system. The trajectory was computed with the

algorithm described in [32].
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Figure 18. Comparison between the estimated position of target vehicles using light beacons and the

position according to their navigation systems before and after its optimization.
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Finally, Figure 19 show the evolution of the uncertainties in the position of the Seacat during a

section of the mission. The plot shows the difference in the uncertainties of the estimates computed

from three or four markers and how the uncertainty grows when the pose of the target vehicle only

allows the sight of three of them. It is also evident how the use of the EKF allows a drastic reduction in

the uncertainty of the estimates and, thus, improves significantly the performance of the optical system.
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Figure 19. Volume of the ellipsoid that contains the position of the target vehicle with a probability

of 95%. In red, the volume of the ellipsoid computed directly from the uncertainty given by the

pose estimation module. In blue, the volume of the ellipsoid according to the uncertainty estimated

by the EKF. The peaks in the red plot correspond to the pose estimates computed from only three

markers, which have a greater uncertainty than the estimates computed from four markers. The peaks

in the blue plot show how the uncertainty of the position grows until a new observation of the target

pose is received.

5. Conclusions

This paper has presented a complete method for the tracking of AUVs when navigating in

close-range based on vision and the use of active light markers. While traditional acoustic localization

can be very effective from medium to long distances, it is not so advantageous at short distances,

when for safety reasons, it is necessary to achieve a higher precision and faster update rate. The use

of the proposed system in such conditions allows the pose estimation of a target vehicle with high

accuracy and speed. To provide the system with the best possible performance, the camera used in the

experiments was an omnidirectional model, which provides a coverage of 360° in the horizontal plane

and allows the system to track vehicles in different positions simultaneously.

The system was tested in mapping missions in real sea conditions. The results presented focused

on a mission in which three vehicles were involved: a leader vehicle at the front of the formation and

two AUVs at the back for capturing images of the seafloor. These last two were fitted with one set of

light beacons each, while the leader was equipped with the omnidirectional camera. The control of

the formation was performed using acoustic ranging, but the light beacons enabled the possibility of

reconstructing their navigation and comparing them to their own navigation and acoustic systems.

As expected, the results showed that the system performs adequately for vehicle separations smaller

than 10 m, while the tracking becomes intermittent for longer distances due to the challenging visibility

conditions underwater.

The navigation reconstructed from the output of the light tracking system shows a high level of

agreement with the navigation computed from the vehicles’ navigation systems and acoustic ranging.

In addition, when compared to a multi-vehicle setup with strong constraints on the use of the acoustic

channel, the light beacon system is able to provide an enormous increase in the frequency of the
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updates (90-fold in the case of our test setup). It can also provide information about the orientation of

the target vehicles, which most common acoustic systems cannot achieve without using the explicit

data communication of sensor readings.

As a central conclusion, the use of light beacon technology for the pose estimation of underwater

vehicles can be considered to be at a technology readiness level of at least six, since this paper presents

a working prototype operating in a relevant/operational environment. This work also contributes by

raising the feasibility of active light markers for complex cooperative underwater operations in close

range, such as mapping missions for 3D environments or cooperative intervention missions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/4/429/s1.
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5
Main Results and Discussion

I
n this chapter we present the main results obtained during the development of the thesis. Ac-
cording to the objectives stated in Section 1.2, the results are presented in 5 different sections:

Section 5.1: Design of an Omnidirectional Multi-Camera System, Section 5.2: Calibration of an
Omnidirectional Multi-Camera System, Section 5.3: Generation of panoramic imagery and video,
Section 5.4: Immersive Virtual Reality applications and Section 5.5: Close Range Tracking of
multiple vehicles.
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100 Chapter 5. Main Results and Discussion

5.1 Design of an Omnidirectional Multi-Camera System

Two different OMS have been developed during this thesis. In Chapter 2 we presented a
system for real time purposes based on a PointGrey Ladybug 3 camera (Fig. 5.1a). In
Chapter 3 we described in detail a modular OMS based on Gopro Hero 4 cameras (Fig.
5.1b) which is intended for high-quality offline mapping. While in the first case the central
work consisted in adapting the off-the-shelf system for underwater use, in the later the
design of the multi-camera system was developed from scratch.

(a) Multi Camera System based on PointGrey La-
dybug 3.

(b) Custom designed OMS based on Gopro Hero 4
cameras.

Figure 5.1: Omnidirectional cameras designed during this thesis.

When designing an underwater OMS there are many aspects to take into account.
Among others, these aspects include the resolution of the cameras, the intended depth
rate, the need of real-time access to the images and the power supply. It is especially
relevant to ensure that the FOV of the designed system is able to cover 360◦ at the
desired minimum range. The FOV of the system depends basically on the optics, relative
location and orientation of the individual cameras and the waterproof housing used. The
latter is especially relevant since the FOV can be drastically reduced depending on the
chosen shape of the viewport. As explained in detail in chapter Chapter 2 the rays of light
coming from the underwater scene must pass through two medium transitions (water-case
and case-air) before reaching the camera lenses. These media transitions imply changes
in the direction of the incoming rays. The change of the direction is described by Snell’s
law and it depends on two factors: the angle of incidence and the material of the view
port. Due to the relevant role of the geometry of the waterproofing used, a FOV simulator
for OMS was implemented in order to analyze all the different combinations of cameras
and waterproof housings. This tool proved to be especially useful in cases where it is not
possible to design individual view ports for each of the individual cameras, such as when
the relative position of the cameras is predefined and there are severe space limitations.
In such cases, the camera housing needs to have a single view port shared by all cameras,
which make the analysis of distortions and the calibration significantly more complicated.
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The two most typical geometries used when designing an underwater camera housing
are flat and hemispherical interfaces. Flat interfaces are less expensive to manufacture and
easier to mount, but introduce important bending in the rays, which drastically reduces
the FOV of the cameras. By contrast hemispherical interfaces preserve the FOV when
positioned exactly in the optical center of the camera. However, perfect hemispherical
interfaces are difficult to produce and to mount at the exact desired position. Furthermore,
they reduce significantly the camera focusing range, especially for small radius domes.

For the first custom-designed system, a two-piece housing was designed. The first piece
is a cylinder and covers the whole FOV of the five lateral cameras, while the second piece
is an hemispherical port that covers the downward-looking camera.

The reason for choosing a cylindrical port was strongly linked to the fact that the
cameras were rigidly fixed. It was not possible to use individual flat ports due to the large
loss on the FOVs. Hemispherical ports were not suitable either, because the minimum
dome size to ensure proper focusing could not be used due to the geometrical arrangement
of the cameras. A cylindrical dome-port reduces the vertical FOV similarly to a flat port,
but has the advantage of having a much wider horizontal FOV.

By contrast, for the second system designed, the spatial arrangement of the cameras
was decided after a detailed analysis of their FOV [5]. The design priorities were to use the
minimum number of cameras and to introduce the minimum distortion in the images. For
these reasons hemispherical ports were chosen. The size of the dome was decided taking
into account the focusing range of the cameras. Once all these decisions were made, the
structure holding the cameras was designed to achieve the most compact system possible.

For the first system, an open-source driver for Linux was developed and published
along with a ROS package to permit its integration with any robotics platform.

5.2 Calibration of an Omnidirectional Multi-Camera Sys-

tem

A complete pipeline for calibrating a OMS has been presented in chapter Chapter 2. The
proposed method is valid for both air and underwater cameras as the strategy to do the
complete calibration is done in three different stages.

The first stage consists of the estimation of the intrinsic parameters, which is done
individually for each one of the cameras in air, and without the waterproof housing. This
stage can be broken down into two parts. First, an initialization of the intrinsic parameters
is obtained using a standard toolbox for calibration. Multiple shots of a planar grid are
acquired at different positions and orientations to estimate the parameters. In a second
step, a refinement procedure is performed to improve accuracy. This step is needed due to
the usual high distortion of the cameras used in OMS. Standard toolboxes for calibration
need to see the entire extent of a planar calibration board in the images to complete a
calibration. However due to the high distortion of the images, it is not possible to place
the checker board close to the corners of the image while seeing it entirely. This can lead
to inaccurate results for regions of the image close to the corners. To avoid this issue, we
proposed a different approach that uses a more versatile pattern which allows us to use
images when only a portion of the pattern is visible. The pattern proposed in Chapter 2
consists of a large printout of a known image An aerial orthophoto was used since it
provides a large number of visual features at different scales.
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For each one of the shots, a camera pose with respect to the ortophoto is estimated
by minimizing the re-projection error of all correct matches using the initial intrinsic
parameters from the previous step and solving the perspective-n-point (PnP) problem.
The PnP problem is the problem of the determination of the position and orientation of
a calibrated camera given a set of n correspondences between 3D points and their 2D
projections. Finally, we define an optimization problem that finds the refined intrinsic
parameters. The number of variables to estimate is the totality of the intrinsic parameters
(focal length, principal point coordinates and distortion parameters), and the pose of the
ortophoto in all of the selected images. The initial values for the intrinsic parameters
are the ones found in the initialization step, while the initial values for the pose of the
ortophoto in every image are the results of the PnP problem solved previously. In order
to quantify the uncertainty of the estimated parameters, a Monte Carlo analysis is carried
out once the optimization has finished.

The second stage consists of the estimation of the extrinsic parameters, which is the
major issue when working with a OMS. Again, this step is carried out in dry conditions
and without the waterproof housing. The procedure to estimate the extrinsic parameters
is very similar to the one used in the refinement of the intrinsic ones. However, images from
two or more cameras acquired at the same exact time frame are needed. All cameras must
acquire a recognizable section of the ortophoto while one of the other cameras acquires
a different section of the ortophoto simultaneously. The observation of different parts
of the ortophoto by two cameras at the same instant implicitly imposes constraints on
the relative placement and relative orientation of the two cameras. The parameters to
estimate are the relative orientation and position of each one of the cameras with respect
to the origin of the OMS.

The final stage takes place underwater and estimates the camera pose with respect
to the waterproof housing. Due to the ray bending, any small variation in the assumed
relative position of the housing can significantly affect the final direction of the rays and
end up generating large projection errors. For this purpose, the relative position of the
housing with respect to the camera is estimated in a procedure almost identical to the
one for extrinsic parameters. The main difference is that it now uses images captured
underwater and with a different printout specially prepared to be placed underwater. The
parameters to estimate in this stage are the position and the orientation of the global or
individual housings with respect to the origin of the system.

The reason for dividing the calibration procedure into three stages, rather than a
single combined step, is two-fold. Firstly, it allows for a smaller number of parameters
to be estimated in each individual step, thus avoiding unwanted correlations among the
parameter estimates. Secondly, it allows the use of image sets captured in air, for the
estimation of the parameters that are not related with the underwater housing. This way,
the intrinsic and extrinsic parameters are not affected by disturbances, such as the non-
modeled geometric inaccuracies of the waterproof housing. Furthermore, it is significantly
easier to find feature points in images captured in air than in water, due to light absorption
and varying illumination conditions. And the use of a larger number of well-spread feature
points contributes to a higher calibration accuracy.

While for the first of the cameras used in this thesis (Fig. 5.1a) the whole calibration
procedure was carried out, for the second system (Fig. 5.1b), the third stage was omitted.
This is due to the fact that the second system uses independent spherical housings. When
spherical domes are centered exactly in the center of the camera, the direction of the rays
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of light are not altered when passing through the waterproof housing. This condition
implies the calibration of the camera does not change when using the waterproof housing,
and makes the third stage of the calibration unnecessary.

5.3 Generation of panoramic imagery and video

In chapter 2 the generation of panoramic images from multiple images was introduced to
show the results of the design and calibration of the OMS. The method used to generate
the panorama consisted in the state-of-the-art strategy that assumes the world is a sphere
centered on the origin of the OMS. While this strategy performs very well when the
objects in the scene are all far from the camera, it performs very poorly when the scene
contains elements located at very different distances. For these cases, severe mis-aligments
are visible in the panoramas in the transition zones between cameras, due to parallax
effects. The parallax is the difference in location of an object in an image seen by two
different cameras, and is the source of mis-alignments on the final panorama if not handled
correctly. In order to address this issue, new strategies were presented in chapter 3 to
obtain panoramas. These strategies are an important improvement over the previous
state-of-the-art methods, as they take into account the shape of the scene where the
images are captured to generate the panoramas.

Among the solutions presented, two are the most relevant. The first was designed to
be fast and computationally inexpensive, since it was envisioned for real-time applications.
The main idea is that during an ongoing SLAM process a sparse 3d point cloud of the
scene can be obtained. This point cloud can be converted to a sparse panoramic depth
map, which can be later interpolated and smoothed to achieve a full dense panoramic
depth map that can be texturised. Using this strategy allows a final panorama to be ob-
tained without visible gaps and with less visible mis-alignments in the transitions between
cameras. However, it could introduce some slight deformations in the final panorama.

The second strategy uses more sophisticated and time-expensive methods as it is in-
tended to be used during a post-process stage. The method is based on the idea that
a 3D reconstruction of the scene can be obtained making use of Structure from Motion
(SfM) approaches. Then individual depth maps can be extracted from the model and
re-projected to an equirectangular panorama with its origin on the center of the system.
The equirectangular depth map is then smoothed in order to fill the gaps that were not
observed by any of the cameras due to parallax. Finally, the contribution of each of the
cameras is defined by the use of a graph-cut technique. The goal is to trace a seam between
cameras that has the minimum accumulated error when comparing the obtained depth
map with the ideal depth map generated through the 3D reconstruction. By using this
strategy the visible mis-alignments between camera transitions are reduced drastically.

These methods were tested with a real underwater dataset of a sunken ship, collected
using the OMS based on Gopro cameras. The baseline between the cameras is larger
than the one on the Ladybug-based camera, and thus, the effects of parallax are more
prominent. The methods were applied to 20-second video sequence, which was selected to
contain a scene with objects at very different distances, thus allowing a better evaluation
of the performance of the methods presented. Both methods significantly improved the
quality of the generated panorama when compared to the spherical-world assumption.
The graphcut-based solution gave the more visually pleasant results with no visible seams
in the final panorama, at the cost of being a technique that needs to applied offline.
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5.4 Immersive Virtual Reality applications

During the development of this thesis, especial attention was given to the study of the
different capabilities and applications where omnidirectional underwater cameras could
have an impact. One of these applications is the generation of omnidirectional videos and
Virtual Tours (VTs) for public dissemination.

As seen in Chapter 3, panoramic videos can be generated using different methodologies.
Once the panoramic video is obtained, it can be visualized in any standard spherical video
player. The number of such video players is increasing rapidly along with the popularity
of 360◦ videos (e.g. VLC, Oculus Player, Total Cinema 360, among many others). Many
social networks, such as Facebook, YouTube and Google Plus also allow the upload of
360◦ videos.

To achieve an even more immersive experience, panoramic videos can be watched
through Virtual Reality headsets, such as the Oculus Rift. These headsets evoke a unique
feeling of immersion that could be used in schools, museums and interpretation centers.

When used together with an AUV, the panoramic images captured by omnidirectional
cameras can be augmented with their geo-location, obtained from the navigation data of
the vehicle. This allows VTs to be created, where users can virtually visit a region of
special interest by looking at a set of selected panoramas in a very similar way to how
Google Street Map allows moving along images captured on the street. Many platforms
exist that allow virtual tours to be created, although the most used is Google Maps,
where panoramas can achieve their maximum impact by reaching a very wide audience.
However, other Virtual Tour platforms have additional features that might be very useful
for science education, such as the possibility of placing augmented reality markers with
relevant information in the image, or displaying a customized map or informative drawings
with the geolocation of the panoramas.

During the development of the thesis, multiple datasets have been collected using
both AUVs and divers, in the framework of the field experiments in the projects listed in
Chapter 1.

With the purpose of showing the potential of omnidirectional imagery for public ed-
ucation we describe briefly the results obtained with two of the datasets. We refer the
reader to [5, 9] for further details on the techniques used.

The first experiment was a short survey over a shipwreck in the bay of Porto Pim in
Horta, Azores Islands, that was carried out in September 2014 during trials conducted in
the framework of the MORPH EU-FP7 project [80].

The Girona500 AUV [81] was equipped with the Ladybug-based omnidirectional cam-
era and was tele-operated from a land-base by a pilot who was operating the robot through
the preview images acquired from the camera. After the recovery of the vehicle, the data
from the camera was processed. The panoramic images from the survey were created from
the individual images of each camera composing the OMS and the calibration information,
and later tagged with a GPS location according to the AUV’s navigation.

A subset of the panoramic images were selected for the creation of a Virtual Tour
(Fig. 5.2). In order to automate the process, we developed tools that automatically select
the images depending on a chosen criterion, which can be distance-based, time-based,
according to the amount of visual information, or other.

In the second experiment, the objective was to demonstrate the advantages of omni-
directional cameras on underwater robots for the rapid high-resolution mapping of ship-
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Figure 5.2: Location and sample image of a shipwreck virtual tour in Google Maps. Left:
Location of the shipwreck in Porto Pim bay in Horta, Azores Islands. Middle: Different panoramas
and connections available in the virtual tour. Right: Sample view of the shipwreck from A.

wrecks in marine archaeology applications. In collaboration with the University of Zadar,
the methodology was demonstrated on the Gnalić shipwreck during the “Breaking the Sur-
face 2016” workshop held in Biograd na Moru (Croatia). The Girona 500 AUV, equipped
with the Gopro-based omnidirectional camera was programmed to survey the shipwreck
and the data collected was used to build 360◦ panoramic videos, topological panoramic
maps and 3D optical reconstructions. Results can be seen in Fig. 5.3.

(a) Map of the virtual tour of the shipwreck available at :
www.tiny.cc/gnalictour .

(b) Snapshot from the Gnalić ship-
wreck panoramic video on YouTube.
The complete video can be found at:
www.tiny.cc/gnalic .

Figure 5.3: Results of the survey of the Gnalić.

5.5 Close Range Tracking of multiple vehicles

One of the objectives of this thesis was to demonstrate that omnidirectional cameras can
be used as a sensor to improve the navigation of underwater vehicles. In chapter 4, this
goal was studied in detail, and it was put into practice in the framework of the MORPH-
FP7 project, where multiple vehicles were performing cooperative navigation missions in
a close-range formation.

The objective of the method was the real-time localization of underwater vehicles at
distances of less than 10m, and to obtain both position and orientation information with
high update rates. The resulting system also had to be robust to short temporal occlusions
of the direct line of vision to the target markers.
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The proposed solution consisted in the placement of a set of light beacons, or active
markers, on the target vehicles, which are optically tracked by a wide-field-of-view camera
placed in a camera vehicle. The tracking of these markers allows the 3D pose of the target
vehicles to be estimated. Tracking of multiple target vehicles is possible by using blinking
patterns of different frequencies. The underlying assumptions are that the camera field of
view covers the areas where the vehicles operate, and that the visibility conditions are not
too severe for the intended inter-vehicle distances.

The performance of the light-beacon tracking and pose -estimation method was tested
in several sea trials. The most relevant field testing took place in Sant Feliu de Gúıxols,
Spain, in March 2015 and in Horta, Azores Islands, in September 2015.

The system was tested in mapping missions in real sea conditions. The results pre-
sented focused on a mission in which three vehicles were involved: a leader vehicle at
the front of the formation and two AUVs at the back for capturing images of the seafloor.
These last two were fitted with one set of light beacons each, while the leader was equipped
with the omnidirectional camera. The control of the formation was performed using acous-
tic ranging, but the light beacons enabled the possibility of reconstructing their navigation
and comparing them to their own navigation and acoustic systems. As expected, the re-
sults showed that the system performs adequately for vehicle separations smaller than
10m, while the tracking becomes intermittent for greater distances due to the challenging
visibility conditions underwater.

The navigation reconstructed from the output of the light tracking system shows a high
level of agreement with the navigation computed from the vehicles’ navigation systems
and acoustic ranging. In addition, when compared to a multi-vehicle setup with strong
constraints on the use of the acoustic channel, the light beacon system is able to provide an
enormous increase in the frequency of the updates (90-fold in the case of our test setup).
It can also provide information about the orientation of the target vehicles, which most
common acoustic systems cannot achieve without using explicit data communication of
sensor readings.

An adaptation of the close-tracking method was also used successfully in the con-
text of the LOON-DOCK/SUNRISE project [6, 82]. The project aimed to demonstrate
autonomous homing and docking for underwater robots. The proposed approach for locat-
ing the Docking Station (DS) consisted in combining acoustic and optical sensing. While
range-only localization was used at greater distances, light beacon localization proved to
be a reliable strategy at short ranges with low-cost equipment.

The proposed solution consisted in placing a set of active light beacons in distinct and
known positions of the DS (Figure 5.4). Using a standard camera, the lights were detected
in the images and used to estimate the pose between the DS and the camera. Unlike range-
only localization, this method is able to provide information on the relative orientation of
the DS, involving the full 6 DoFs (three relative translations and three rotations) which is
key information for a correct approach to the DS.

Figure 5.5 presents the results obtained during the final approach to the DS for one of
the experiments. The distances between the AUV and the DS estimated according to the
acoustic ranges and the light beacons are compared. The methods show a high degree of
agreement with the trajectory estimated offline, once the DS position was known precisely.
A complete description of the approach used and the results obtained can be found in [4].
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Figure 5.4: Debug image of the optical tracking system. In orange the position of the light markers
according to the image analysis. In purple, the position of the markers in the DS according to the
estimated relative position. AR markers were used as a complementary resource during the final
approach when the light beacons were not in the FOV of the camera.
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Figure 5.5: DS tracking performance during the docking command execution in one of the
missions. The different colored dots represent three different updates: White dots correspond to
acoustic updates, black dots are visual updates computed using light beacons, while grey dots are
visual updates computed using AR markers. The blue line represents the relative distance between
the DS and the AUV according to the navigation of the vehicle, and was computed offline once the
position of the DS was known precisely. The colored background reflects how many light beacons
were inside the FOV of the camera according to the orientation of the vehicle.





6
Conclusions and Future

Work

T
his chapter concludes the thesis with the main conclusions and suggestions for future research
work. Section 6.1 discusses the main conclusions extracted from the work presented and

summarizes the contributions to the state of the art of this field. Finally future research lines in
the field are discussed in Section 6.2.

109
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6.1 Conclusions

This thesis presented a comprehensive investigation of underwater OMS, with beginning-
to-end coverage of the topic, from the design of the cameras to their practical applications
in underwater robotics. In spite of the slow establishment of omnidirectional cameras in
the underwater environment, they have been been proven to have great potential in many
different fields, and they will have a big impact once their use becomes widespread.

All objectives detailed in Chapter 1 have been successfully completed and led to the
following contributions:

Design of an underwater OMS:

• We developed a FOV simulator to study how the optics of the internal cameras and
the geometry of waterproof housings impact on the final FOV of the panorama.

• We designed and developed two underwater OMS, one for online purposes and a
second one for high-quality mapping.

Calibration of an OMS:

• We developed a calibration method for OMS applicable to both dry and underwater
systems. This method has the advantage that it does not require the calibration im-
ages to see an entire calibration pattern, for both intrinsic and extrinsic calibration.
This makes it suitable for non-overlapping systems. The method can also handle the
distortions introduced by the waterproof housings, thanks to a ray tracing approach.

Generating panoramic imagery and video from an OMS:

• Two new methods for generating panoramic video have been developed in order to
deal with parallax effects. One is intended for online use, while the other is intended
for a post-process stage.

• A new metric has been proposed for evaluating the quality of the panoramas and
the alignment on camera transitions.

Exploring immersive Virtual Reality applications:

• The potential uses of OMS have been analyzed with especial emphasis on the use of
omnidirectional video and Virtual Tours for public dissemination.

• Multiple datasets of interesting underwater regions and shipwrecks have been col-
lected with OMS in order to demonstrate the appeal of omnidirectional video and
Virtual Tours.

Use of an OMS for aiding underwater navigation on an AUV:

• We have proposed a new method for pose estimation and relative navigation for
multiple AUVs at short ranges, based on the use of active light markers. When
compared with traditional acoustic-based systems, this method has higher accuracy
and update rate, has a lower cost and can provide relative orientation information.
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• We tested the proposed method with a real dataset captured in a cooperative navi-
gation mission where 3 AUV where involved. The leading AUV was equipped with
a OMS while the two others where fitted with a set of blinking lights each with
different blinking frequencies.

• The same method has been applied to single cameras in the context of homing and
docking operations for AUV. In this case the set of blinking lights were placed on
the DS and were used to localize the AUV against the DS with high precision.

6.2 Future work

Although this thesis covered a wide field related to underwater OMS, there are many
different research lines for future work and many aspects of interest which were beyond
the scope of this work.

Regarding the generation of panoramic images, we consider that a promising research
line is to generate panoramas from larger baselines between the cameras, i.e., placing
cameras on different parts of a robot(front, back, laterals), and evaluating the quality of
the panoramas obtained. Due to the larger baselines between the cameras, the parallax
effects on the final panoramas would be more prominent. However, this would open the
door to easily adapting existing robots, which are usually equipped with multiple cameras,
for the generation of omnidirectional video. Related to this aspect, we would like to fully
implement ROV tele-operation through omnidirectional cameras and Virtual Reality (VR)
headsets. Although in the course of developing this thesis we made a first approach to this
goal, a full implementation has not been developed yet. A fully working application will
need to deal with data-compression methods for the transmission of the images. It will
also require an intuitive visual interface for the pilots, in order to receive comprehensive
sensor information and allow piloting the ROV while using a VR headset.

Another promising research line for underwater omnidirectional cameras is their use
for SLAM. The wide FOV of these cameras will make the task of self-localizing easier, es-
pecially in confined environments. Furthermore, as detailed in Chapter 3 it would improve
the generation of panoramas for online streaming.

With respect to the use of panoramic imaging for public dissemination, it will be very
interesting to implement a fully automatic pipeline for the generation of Virtual Tours.
This application would need to deal with the automatic selection of the panoramas to
cover the whole extent of a scene with the minimum number of images. While a first
automatic approach has been developed in this thesis, there is still a long way to go before
achieving an optimal solution that should include view-planning related strategies.
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