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1 INTRODUCTIONNowadays, proper management of wastewaters in modern industrialized societies isnot only an option, but a necessity. The main objective is to maintain natural watersystems at as high a quality level as possible, and to ensure equilibrium betweensupply and demand through a rational use and management of water resources.Moreover, the wastewater treatment would help to reach the attainment of rivers asbiological corridors, which means to ensure a good quality of life for animals and veg-etals living in the water. Wastewater coming from di�erent municipal uses contains awide variety of contaminants. Among them, the most commonly found in municipalwastewater are total suspended solids (TSS), organic matter|measured as biochem-ical oxygen demand (BOD) and chemical oxygen demand (COD)| pathogens, andnutrients. The basis of wastewater treatment processes lies in oxidizing biodegrad-able organics from raw water into stabilized, low-energy compounds, maintaining amixture of microorganisms and supplying oxygen by aerators (WEF, 1996).The autonomous Government of Catalonia, according to the European direc-tive of the Council 91/271/CEE, is developing its Pla de Sanejament (Govern-ment, 1996), which foresees wastewater treatment for populations greater than 2; 000inhabitants-equivalents before year 2005. To achieve these purposes, more than 200Wastewater Treatment Plants (WWTP) have already been built in Catalonia, treat-ing an average daily wastewater ow of about 2; 000; 000 m3.Although it is very important to ensure the quality of the treated wastewaterprior to discharge, the correct control and operation of the process carried out in theWWTP is not a well established task. Some of the factors which a�ect the real-timecontrol of the process are:{ the biological nature of the process, involving the presence of a true trophic web,{ the great complexity and variability of the inuent composition,{ the lack of on-line sensors and signals,{ the delay of the analytical results from the laboratory (WEF, 1992): minutes,hours or even days according to the di�erent TSS (30 minutes), COD (2 hours)or BOD (5 days) determinations, and{ the dynamic state of the process.Di�erent, classical control methods (among which we can �nd feed-forward, feed-back, adaptative, predictive, etc.), have been used to improve and optimize WWTPoperation (Dochain, 1991; Moreno, 1992; Isaacs, 1992; Heinzle, 1993; Nejjari, 1997;Queinnec, 1998).It seems then interesting to predict the behaviour of the plant under a wide rangeof operating conditions. The objective is to improve the control of the process, avoid-ing poor treated discharges that break the environmental balance. This is why ourgoal is focused on the development of a prediction model, through the applicability2



of fuzzy modeling, which could contribute to a better management of the process.This method is concerned with extracting useful patterns or relationships betweendi�erent variables by means of analysing the historical WWTP database providedby years of operation. This analysis will allow to build a fuzzy model that wouldhelp to understand dynamics of the system and could support in making decisionsin WWTP management. The developed model characterizes the e�uent quality asa function of the inuent characteristics and control actions, by means of developinga model for each variable. The aim of this work (much of which is presented in (Be-lanche, 1998b) has been to �nd, as a �rst step, models able to characterize the timevariation of outgoing WWTP variables using soft computing techniques; in partic-ular, rough sets and time-delay neural networks of two kinds: fuzzy heterogeneousand classical.The paper is organized as follows. Section 2 describes the problem at hand,the particular WWTP under study. Section 3 briey introduces the reader to softcomputing methods, while Section 4 reviews the concept of fuzzy heterogeneousneurons and their use in con�guring hybrid neural networks, which will be thenused to �nd input-output models of the plant. Rough set theory, used in the secondpart of the experiments, is outlined in section 5. The experiment setup itself and theobtained results are collectively presented in Section 6. Finally, Section 7 presentsthe conclusions.2 A WWTP CASE STUDYThe database utilized to build the characterization model corresponds to a WWTPof a touristic resort situated in Costa Brava (Catalonia). This plant provides pri-mary and secondary treatment using the activated sludge process to remove organicload and suspension solids contained in the raw water of about 30; 000 inhabitants-equivalents in winter and about 150; 000 in summer. An schematic of this WWTPis illustrated in �gure 1.The available historical data comprises a large amount of information corre-sponding to an exhaustive characterization of the plant. This information is alsobeing used in other approaches to improve WWTP operation (Comas, 1998). It in-cludes analytical results of water and sludge quality, together with on-line signalscoming from sensors (wastewater, recycle, purge sludge and aeration ow rates, pH,temperature and dissolved oxygen concentration at the biological reactor).The �rst work was focused on selecting an homogeneous amount of days, tocover a representative period of time. Then, it was necessary to select the mostrelevant variables of the process, corresponding to the analysis of water qualityand ow-rates at di�erent points of the plant. These variables are presented below,distinguishing between the on-line and the o�-line values, and specifying the samplepoint (AB or inuent, OP1 or primary settler e�uent, and AT or e�uent). Global3



Fig. 1. Schematic of this WWTP that provides primary and secondary treatment.process variables are related to the three control actions that the plant's managercan modify when removal e�ciency decreases, in order to reconduct the process tonormal performance: purge (Q-P), recycle (Q-R) and biological aeration (Q-A) owrates. Sample Point On-line Data Analytical DataAB (inuent) Q-AB (inuent ow) COD, BOD, TSSOP1 (primary treatment e�uent) Q-OP1 (primary e�uent ow) COD, BOD, TSSAT (�nal treated e�uent) - COD, BOD, TSSQ-R (biological recycle ow)Global process Q-P (biological waste ow) -Q-A (biological aeration ow)Table 1. Basic variables for characterizing the behaviour of the studied WWTP.The �nal database studied in this paper covers a period of 609 consecutive days,considering each day as a new sample. Note that the period studied has an importantamount of missing data due to the frequency of analysis, so the data utilized to buildthe model includes only those days with an actual value in the e�uent (see table 1).Finally, to simplify the description of the inuent characteristics, the set of internalvariables (Q-OP1, COD-OP1, BOD-OP1 and TSS-OP1) has been excluded fromthe preliminary analysis. 4



The second work has comprised a statistical analysis of the studied databasevariables. Basic statistical descriptors are shown in table 2. In it, the extremely highincidence of missing values for most variables is the relevant feature. Specially in thecase of target variables from the point of view of developing prediction models (COD-AT, BOD-AT and TSS-AT) and variables characterizing the physical-chemical stateof incoming waters (COD-AB, BOD-AB and TSS-AB), the proportion of missingvalues is very severe (between 60-80%, approximately), i.e., there are much moremissing data than actual information. Clearly, this situation makes considerablyhard the search for models to characterize WWTP behaviour and must always betaken into account in evaluating the quality of the learned model.Variable Unit Number of Number of Mean StDev Min Maxnon-Missing MissingQ-AB m3/d 591 18 10707 3634 0.0 23681COD-AB mg/l 229 380 795.8 198.0 150.0 1644.0BOD-AB mg/l 129 480 390.70 95.70 70.00 620.00TSS-AB mg/l 229 380 315.85 91.35 69.00 647.00Q-R m3/d 608 1 5597.7 2287.1 0.0 12086.0Q-P Kg TSS/d 598 11 771.6 756.6 0.0 6523.0Q-A Kg O2/d 548 61 4138.6 1878.4 0.0 8643.0COD-AT mg/l 229 380 55.80 18.52 20.00 134.00BOD-AT mg/l 129 480 8.959 4.876 2.300 32.000TSS-AT mg/l 233 376 9.562 5.750 2.000 42.000Table 2. Basic statistical descriptors for selected WWTP variables.The linear intercorrelation structure among variables is shown in �gure 2 asan average clustering of the (absolute) correlation matrix of variables. With theexception of incoming water discharge (Q-AB), the actuation (Q-), output (-AT)and input (-AB) variables are clustered into three {not too homogeneous{ groups.The fact that the highest intercorrelations are observed in output variables (0.736-0.764) indicates that once a reasonable model is found for one of them, similar onesshould be also found for the rest.The complexity of the WWTP behavior problem is reected in the frequencydistribution of their values. For example, Kolmogorov-Smirnov tests applied to theincoming TSS-AB and outgoing TSS-AT variables con�rms what direct inspectionsuggests, in the sense that, whilst the �rst variable distributes normally, the seconddoes not. Actually, it has a right-skewed distribution, reecting strong non-lineardistortions introduced by the WWTP dynamics (see �gure 3).5



Fig. 2. Average clustering of the absolute correlation for the studied WWTP variables.
Fig. 3. Kolmogorov-Smirnov test for Total Suspended Solids (TSS). Left: incoming. Right: outgoing.3 A SOFT COMPUTING APPROACHUnder the name of soft computing several theories, approaches and techniques aregathered together with a common purpose: to �nd solutions (usually in the form ofmodels) to a wide variety of problems (such as pattern recognition, systems control,prediction, optimization and others) which share some characteristics: the natureof the problem is usually non-linear, and data is disturbed by noise, imprecision6



or uncertainty, and is often missing. Moreover, the sources of these data can bevery heterogeneous, ranging from discrete to continuous variables, which can alsobe scalar, vectorial, etc, and include a spatial or temporal component. The mostcommon theories and methods employedmake use of fuzzy logic (Klir, 1988), geneticalgorithms (Goldberg, 1989), arti�cial neural networks (Hertz, 1991), probabilisticreasoning (Pearl, 1987) and rough set theory (Pawlak, 1982; Pawlak, 1991).Fuzzy Logic brings a formalism with its own syntax and semantics capable toexpress qualitative knowledge about the problem under study. Its excellence reliesspecially in the strength of its interpolative reasoning mechanism. Genetic Algo-rithms are general adaptive search methods based on the main ideas of Darwinianevolution. They maintain a population of individuals {each of which represents apossible solution to a given problem{ that evolves from generation to generationthrough two main processes: a) selection of the �ttest and b) application of ge-netic operators to recombine and somehow alter surviving individuals in the hopeof �nding better ones. These two mechanisms together form a powerful domain-independent search method. Neural Networks are structures capable of universalcomputation where knowledge and function are distributed among nodes or unitseach performing some simple (usually non-linear) computation. They can be given atraining set, based on examples of some unknown input-output relation or system forwhich one is interested in �nding a functional expression. Probabilistic Reasoning of-fers a means to evaluate the output of systems a�ected by randomness or other typesof probabilistic uncertainty. In essence, it provides ways of updating the expectedresults in light of new acquired knowledge. Finally, in Rough Set theory structuralset relationships in qualitative or imprecise data are explored from the point of viewof their ability to approximate concepts {expressed as subsets of a universe of dataobjects{ in terms of subsets of variables describing these objects. One of the mainproblems addressed by this technique is the discovery, representation and analy-sis of data regularities, aimed at discovering cause-e�ect relationships, identifyingdependencies among group of variables and evaluating their relative importance.Despite their obvious (and bene�cial) di�erences, the common denominator ofthese approaches is that they leave behind non-exible concepts such as binary logic,analytic models, rigid classi�cations and deterministic search. Ideally, the perfectsystem to be modeled or controlled can be described in a precise and complete way.In such cases, it is possible to use formal reasoning systems to associate booleantruth values to descriptions of the state or behaviour of this ideal physical system.However, when tackling a real-world problem, it turns out that they are mostlypartly (and, sometimes, ill) de�ned, di�cult to model {if one wishes to understandthe nature of the process{ and the solutions are immerse in huge search spaces. Now,precise models are impractical to use, costly, or simply non-existent. This makes softcomputing approaches a exible means to deal with such problems.7



4 HETEROGENEOUS NEURAL NETWORKSA fuzzy heterogeneous neuron is de�ned as a mapping h : Ĥn ! Rout � R, satisfyingh(;) = 0 (; is the empty set). Here R denotes the reals and Ĥn is a cartesian productof an arbitrary number of source sets. Source sets may be families of extended realsR̂ = R [ fXg, extended fuzzy sets F̂i = Fi [ fXg, and extended �nite sets ofthe form Ôi = Oi [ fXg; M̂i = Mi [ fXg, where each of the Oi has a full orderrelation, while the Mi have not. In all cases, the special symbol X denotes theunknown element (missing information) and it behaves as an incomparable elementw.r.t. any ordering relation. According to this de�nition, neuron inputs are possiblyempty arbitrary tuples, composed by n elements among which there might be reals,fuzzy sets, ordinals, nominals and missing data. Heterogeneous neurons are classi�edaccording to the nature of its image set (which does not have to be necessarylyrestricted to a subset of the reals). In the present study, since the image set is givenby Rout the model is of the real kind, which is easily coupled with other, classicalneuron models (i.e. accepting only real inputs), thus leading to hybrid networks ina straightforward way. These networks have been used successfully in classi�cationproblems reported elsewhere (Vald�es, 1997; Vald�es, 1998; Belanche, 1998c), but theirpotential of application in other �elds was not yet assessed experimentally. Thepurpose of this paper is to explore the performance of fuzzy heterogeneous networks(in hybrid architectures) for the identi�cation of valid input-output models of awastewater treatment plant.R̂nrF̂nfÔnoM̂nm h = f � s Rout � R H CCHH YXFig. 4. Left: The fuzzy heterogeneous neuron model. Right: An example of a hybrid neural network com-posed by a hidden layer of heterogeneous neurons (H) and an output layer of classical neurons (C).The use of the resulting heterogeneous neuron (shown in Fig. 4 (left)) to con-�gure network architectures is thus straightforward, and a layered structure having8



a hidden layer composed of heterogeneous units and an output layer consisting ofclassical neurons is an immediate hybrid feed-forward choice (Fig. 4 (right)).A particular class of heterogeneous networks (HNNs) is constructed by consid-ering h as the composition of two mappings h = f � s , such that s : Ĥn ! R0 � Rand f : R0 ! Rout � R. The mapping h can be considered as a n-ary function,parameterized by a n-ary tuple ŵ � Ĥn representing neuron's weights, that is,h(x̂; ŵ) = f(s(x̂; ŵ)). In particular, the function s represents a similarity and fa squashing non-linear function with its image in [0; 1]. Accordingly, the neuron issensitive to the degree of similarity between its inputs |composed in general by amixture of continuous and discrete quantities possibly with missing data| and itsweights. More precisely, s is understood as a similarity index, or proximity relation(transitivity considerations are put aside). That is, a binary, reexive and symmetricfunction s(x; y) with image on [0; 1] such that s(x; x) = 1 (strong reexivity).The concrete instance of the model under study in the present paper uses asaggregation function a Gower-like similarity index in which the computation forheterogeneous entities is constructed as a weighted combination of partial similaritiesover subsets of variables. This coe�cient has its values in the real interval [0; 1] andfor any two objects i; j given by tuples of cardinality n, is given by the expressionsij = Pnk=1gijk �ijkPnk=1�ijkwhere:{ gijk is a similarity score for objects i; j according to their value for variable k.These scores are in the interval [0; 1] and are computed according to di�erentschemes for numeric and qualitative variables.{ The factor �ijk is a binary function expressing whether objects i, j are comparableor not according to their values w.r.t. variable k. It is 1 if and only if both objectshave values di�erent from X for variable k, and 0 otherwise.Gower's original de�nitions for real-valued and discrete variables are kept (see(Gower, 1971) for details), but other similarity functions are possible. For variablesrepresenting fuzzy sets, similarity relations from the point of view of fuzzy theoryhave been de�ned elsewhere (Dubois, 1997) and di�erent choices are possible. In ourcase, if Fi is an arbitrary family of fuzzy sets from the source set, and ~A; ~B are twofuzzy sets such that ~A; ~B 2 Fi, the following similarity relation is usedg( ~A; ~B) = supx (� ~A\ ~B(x))where � ~A\ ~B(x) = min(� ~A(x); � ~B(x))9



For the activation function, a modi�ed version of the classical logistic is used, whichis an automorphism of the real interval [0; 1].f(x; p) = ( �p(x�0:5)�a(p) � a(p) if x � 0:5�p(x�0:5)+a(p) + a(p) + 1 otherwisewhere a(p) is an auxiliary function given by a(p) = �0:5+p0:52+4�p2 and p is a real-valued parameter controlling the curvature, set in the experiments to 0.1. The gen-eral training procedure for the HNN is based on genetic algorithms, since the het-erogeneity of the variables involved and the non-di�erentiability of the similarityfunction prevent the use of gradient-based techniques.5 ROUGH SETSFrom the methodological point of view, lowering the precision with which a givensystem is observed usually makes easier the characterization of that system's interde-pendencies and makes data regularities more visible. This is the case, for example, ofprocesses described by continuous variables which undergo a discretization processby converting these variables into categorical ones, introducing qualitative ranges.Obviously, this implies a loss of precision in the representation of objects, and areduction in the ability to discern or di�erentiate among distinct objects. However,with a suitable compromise, this loss is compensated with the increase in the abilityto reveal interesting data regularities.Let U be a �nite set of objects called the universe. Any subset X � U is calleda concept or category in U and the main interest is when concepts form a partition(classi�cation) of the universe. In general, one deals with families of partitions overU which are called a knowledge base over U . A knowledge base is a relational systemK = (U;R) where U 6= ; is the universe (�nite) and R is a family of equivalencerelations over U . This is indeed the case, for example, in a collection of observedobjects described by a set of categorical variables, where each de�nes an equivalencerelation on U . Given P � R and P 6= ;, the intersection of all these equivalencerelations is also an equivalence relation denoted by IND(P) and called an indis-cernibility relation over P. It expresses the knowledge associated with the family ofequivalence relations P, also called P-basic knowledge about U in K. If X � U , Xis said to be R-de�nible if X is the union of some R-basic knowledge; otherwise Xis called R-unde�nible. The R-de�nible sets are those subsets of U which can beexactly de�ned in terms of the knowledge base K whereas the R-unde�nible sets arecalled rough sets. This leads to the idea of approximation of a set by other sets.With each subset X � U and an equivalence relation R 2 IND(K) two subsetscan be associated, called the lower and upper approximation, respectively, as follows:10



RL = fSY : Y 2 U=R : Y � XgRU = fSY : Y 2 U=R : Y \X 6= ;gwhere U=R is the equivalence class (partition) induced by R. The lower approx-imation (also called the positive region POSR(X)) is the set of elements which canbe certainly classi�ed as elements of X whereas the upper approximation is the setof elements which can be possibly classi�ed as elements of X.An important issue in the analysis of dependencies among variables is the identi-�cation of information-preserving reduction of redundant variables. In particular, to�nd a minimal subset of interacting variables having the same discriminatory poweras the original ones, which would lead to the elimination of irrelevant or noisy vari-ables without any loss of essential information. A set of variables P is independentw.r.t. the set of variables Q if for every proper subset R of P , POSP (Q) 6= POSR(Q);otherwise P is said to be dependent w.r.t Q. Moreover, the set of variables R is aminimal subset or reduct of P , if R is an independent subset of P w.r.t. Q, such thatPOSR(Q) = POSP (Q)A variable a 2 P is superuous if POSP (Q) = POSP�fag(Q); otherwise a issaid to be indispensable in P . The set of all indispensable relations is the core. Animportant property of the core is that it is equal to the intersection of all reducts.6 EXPERIMENT SETUPIf some �xed-length segment of the most recent input values is considered enoughto perform the task successfully, then a temporal sequence can be turned into a setof spatial patterns on the input layer of a multi-layer feedforward net trained withan appropriate algorithm such as backpropagation. These architectures are calledTime-delay neural networks (TDNNs), since several values from an external signalare presented simultaneously at the network input using a moving window (shiftregister or tapped delay line) (Hertz, 1991). A main advantage of TDNNs in front ofrecurrent neural networks is their lower cost of training, which is very important inthe case of long training sequences. TDNNs have been applied extensively in recentyears to di�erent tasks, in particular to prediction and system modeling (Lapedes,1987).In the present study, two di�erent TDNN approaches that di�er in the trainingmethod have been tested: a hybrid procedure composed by repeated cycles of sim-ulated annealing coupled with conjugate gradient algorithm (TDNN-AC) (Ackley,1987) and the HNN model presented. In the former case the hidden layer uses the11



hyperbolic tangent as neuron output function whereas the output layer was com-posed by a linear neuron. It should be noted that the HNN model as used here(TDNN-HG) is viewed as a TDNN that incorporates heterogeneous neurons and istrained by means of genetic algorithms. The TDNN-HG and the TDNN-AC archi-tectures were �xed to include 1 output unit, 8 hidden units, and 13 input units,corresponding to the model y(t+1) = F < x(t); x(t� 1); x(t� 2); y(t� 1) >, wherex(t) denotes the current value of the input variable and y(t) denotes the value ofthe output. Selected inputs were Q-AB, Q-A, Q-P and Q-R, that is, the incomingow rate and the three actuation variables.In the testing process, the normalized mean square error (in percentage) be-tween the predicted output value, ŷ(t), and the controller output, y(t), is usedto determine the quality of each of the inferred models. This error is given byMSE = E[(y(t)�ŷ(t))2]s2y � 100% where s2y denotes the variance of y(t). For each stud-ied output variable, the TDNN-HG was trained using a standard genetic algorithmwith the following characteristics: binary-coded values, probability of crossover: 0:6,probability of mutation: 0:01, number of individuals: 150, linear rank scaling withfactor: 1:5, selection mechanism: stochastic universal, replace procedure: worst. Thealgorithm stopped when no improvement was found for the last 1; 000 generations(typical values were about 7; 000). The TDNN-AC was trained in only one run andthe process was stopped when a reasonable error was attained. In both cases, thetraining set chosen was the �rst half of available data (about 300 days).6.1 Results of the experimentThe WWTP characterization produced via neural networks trained with a hybridsimulated annealing-conjugate gradient procedure was worse than the correspond-ing obtained by using a fuzzy heterogeneous neural network model, as illustratedby normalized squared errors shown in table 3 for BOD-AT and COD-AT outputvariables. In both cases the same neuron architecture was used but the errors ob-tained are appreciably lower for the heterogeneous model w.r.t the classical neuralone, although it uses a very sophisticated and robust training procedure.Classical Neural Model Fuzzy Heterogeneous ModelTDNN-AC TDNN-HGBOD-AT 45.55% 20.74%COD-AT 30.76% 11.64%Table 3. Normalized MSE errors of the two neural network models used for characterizing some WWTPoutgoing variables. 12



Fig. 5. Relation between estimated vs. real BOD-AT (left) and estimated vs. real COD-AT (right).
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78.7% of the data, corresponding to the 300 day period chosen for the characteriza-tion were missing, almost all observed values are within the con�dence band withonly very slight exceptions. A similar behavior is exhibited by the COD-AT vari-able (�gs. 5 (right) and 7). The fact that the HNN model outperforms the classicalone has been observed in other application contexts (Vald�es, 1997; Belanche, 1998c;Belanche, 1998a) and therefore deserves further attention as it seems to indicate amore general property of these recently introduced hybrid models.
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{ First, the correlation structure reected in �gure 2 shows that variables (Q-AB,Q-A), (COD-AB, BOD-AB) and (COD-AT, TSS-AT, BOD-AT) are reasonablysimilar. This suggests the use of Q-AB, Q-R, Q-P, COD-AB and TSS-AB as inputvariables when considering the construction of prediction models. The choice ofCOD-AB is favored by the fact that it is a much simpler and faster analyticalprocedure than BOD-AB from the chemical point of view.{ Second, we observed that part of the errors of the models inferred in the previousexperiments were due to the high peaks present in both studied variables (BOD-AT and COD-AT). For this reason, COD-AT was log10 transformed.{ Third, the delays used in such models were proposed intuitively, but without anyregard to actual underlying signi�cance. This is where rough set theory comesto play.No doubt that one of the most important tasks when �nding useful dependen-cies from the point of view of constructing prediction models for WWTP behavioris the discovery of those time delays in the input variables and in the predictedvariable itself which carries essential functional relationship. In the present studyan experiment was made by forming a data matrix containing the information con-cerning the behavior for each day of the last 10 days for variables Q-AB, Q-R, Q-P,COD-AB, TSS-AB and the target variable COD-AT itself. This makes a total of 60new variables potentially related with the value of the COD-AT for each day, witha dependency coe�cient found to be 0.9699 (a value of 1 means that the selectedvariables convey all the information present in the whole data available).The continuous process represented by these data was transformed into a dis-crete one by analysing the empirical probability distribution of all variables involvedand de�ning suitable categories introducing corresponding cut-point values. In par-ticular, the following were set: Q-AB (8500, 13000, 16500), COD-AB (650, 950),TSS-AB (250, 400), Q-R (5000, 7000), Q-P(1000) and log10(COD-AT) (1.65, 1.85).The core and reducts were obtained for the discrete process obtained via cate-gorization of the original data and it was found that, from the original 60 potentialpredictor variables, only 13 were really indispensable, whereas adding another 7makes them an optimal reduct. That is to say, from the point of view of relativesize of the positive region de�ned by these 20 variables and w.r.t. the positive regionde�ned by the whole set. The core itself was composed of the following variables:Q-AB (delay 1), TSS-AB (delay 7), Q-R (delays 1, 2, 3, 4, 5, 7, 9, 10) and log10(COD-AT) (delays 5, 7). The optimal reduct is completed by variables Q-AB (delays5, 10), COD-AB (delays 2, 4), Q-P (delay 5) and log10(COD-AT) (delays 2, 3). Itis interesting to observe that almost all information coming from the recirculationow was considered essential (a variable controlled by the WWTP human operator).The information given by the optimal reduct was used to set up a prediction modelbased on a fuzzy heterogeneous neural network (but using the original continuousvariables) with log10(COD-AT) with time delay 0 as target.15
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Fig. 8. Actual time behaviour of COD-AT during the last 56 days (solid line) with observed points againstprediction according to the TDNN-HG model. The normalized MSE for prediction is 60.0%.A very simple HNN architecture consisting of just 2 neurons was utilized (20inputs, 1 output), with the same training set used for the previous experiments(50% of the total available). The last 25% (56 days) as data to be predicted. Also,very small GA settings were used (26 individuals, 500 generations) to avoid excessivedata over�tting.The behavior of the predicted COD-AT values w.r.t. the real observed ones isshown in Fig. 8. In spite of the fact that the �t is not as accurate as before, therelation between the two is highly signi�cant, both the linear correlation coe�cientand the linear regression points of view, as tested with the corresponding t-test forthe correlation coe�cient and the F-test for the analysis of variance (for 95% con�-dence in both cases). Actual numbers for the t-test are: R = 0:504 with 54 degreesof freedom (t = 4:288). The result for the F-test is 18:39 for one degree of freedom inthe numerator and 54 in the denominator (Fig. 9). All this shows that the model, al-though far from perfect, does capture prediction information and is able to prognoseoutputs within a 95% con�dence band. This is also particularly important havinginto account the WWTP complexity and the big quantity of missing informationspread in the available data set.7 CONCLUSIONSFor the WWTP under study, three main aspects have been found that deeply char-acterize the processes that are taking place. First, with the exception of incomingwater discharge, actuation, outgoing and incoming variables are clearly distinguishedfrom one another, reecting an internal structure that must be taken into account16



Fig. 9. Relation between predicted vs. real COD-AT (solid line). Upper and lower dashed lines indicatethe 95% con�dence estimation interval (according to the TDNN-HG model).during the search for accurate models of the process. Second, the process dynamicsintroduces strong non-linear distortion between incoming and outgoing variables.Third, these outgoing variables are signi�cantly related and, therefore, could bedescribed by similar models. Soft computing techniques {in particular, fuzzy het-erogeneous neural networks{ have shown to be capable to describe and predict thebehaviour of some of these processes in a statistically signi�cant sense, despite theimprecision associated to raw real-world information and the high degree of incom-pleteness and fragmentation, due to the number of missing values and their timedistribution in many small chunks. This, together with the fact that the TDNN-HGmodel outperformed the classical TDNN-AC, suggests that it �ts better the especialrequirements posed by the WWTP problematic. Further experiments tackling thedi�cult prediction task are a signi�cant part of the future work.Acknowledgements:The authors wish to thank the Consorci de la Costa Brava for the data andinformation provided. This work has been supported by CICYT Projects AMB-97/889 and TIC96-0878.ReferencesAckley, D. (1987) A connectionist machine for genetic hillclimbing. Kluwer Acad.Press.Belanche, Ll., Vald�es, J.J. Alqu�ezar, R. (1998a) Fuzzy Heterogeneous Neural Net-works for Signal Forecasting. In Procs. of ICANN'98, Intl. Congress on Natural andArti�cial Neural Networks. Sk�ovde, Sweden.17
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