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Abstract 

The structural relaxation of amorphous materials is described as arising from the 

superposition of elementary processes with varying activation energies. We show that it is 

possible to obtain the kinetic parameters of these processes from differential scanning 

calorimetry experiments. The transformation rate is predicted for the transient decay when an 

isotherm is reached and for the relaxation threshold detected in partially relaxed samples. 

Good agreement is obtained with experiment if the individual components transform through 

first-order kinetics, but inconsistencies arise for second-order components. Our analysis, that 

improves the classical treatment by Gibbs et al.[1], allows the activation energies and the pre-

exponential rate constants to be extracted independently. When applied to a-Si, we conclude 

that the pre-exponential rate constant is far from constant. The kinetic parameters obtained 

from DSC are used to analyze the relaxation of a-Si in pulsed laser experiments and to discuss 

the relationship between structural relaxation and crystallization. 
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Introduction 

The structure of an amorphous material is metastable. During isothermal annealing, a 

moderate change of its properties is usually observed at short times (structural relaxation) 

followed by a very pronounced change at longer times (crystallization). This characteristic 

two-step evolution of amorphous materials can also be revealed by measuring the heat 

evolved when the material is heated at a constant rate [usually in a differential scanning 

calorimeter (DSC)],  

    dT/dt ≡ β.       (1) 

In the thermogram of Fig. 1 the power evolved,
•

Q , is plotted as a function of the temperature 

for hydrogenated amorphous silicon [2]. The weak unstructured signal detected at low 

temperatures is due to structural relaxation whereas the intense sharp peak corresponds to 

crystallization. Similar thermograms have been measured for other amorphous materials, such 

as ball milled silicon [3], metallic powders [4] and supercooled alloys [5, 6]. The 

characteristic unstructured signal of structural relaxation is also found in crystalline materials 

with a high concentration of non-equilibrium point or line defects: cold worked metals [7] and 

irradiated materials [8]. In these cases the low-temperature transformation is known as 

recovery. 

 In this paper, we will show that it is possible to obtain information about the kinetics 

of structural relaxation from thermograms similar to that of Fig. 1. The main difficulty lies in 

the fact that, in contrast to crystallization, structural relaxation does not occur around a peak 

temperature. When a structural transformation gives a well defined peak in the thermogram, 

its thermal activation is usually described by a reaction rate constant that follows an Arrhenius 

temperature dependence: 

   RTE
TpTp

TpeTk /)( −=ν ,      (2) 

where νTp is the pre-exponential constant, ETp the activation energy and R the gas constant 

(the need for the subindex Tp will become clear below). The usual way to determine νTp and 

ETp consists of measuring the peak temperature at different heating rates. The transformation 

rate tends to zero at low and at high temperatures because of the dependence of kTp on T and 

because the transformation has reached completion, respectively. Consequently, when the 

kinetics is governed by a single activation energy, the reaction rate reaches a maximum value 

at an intermediate temperature, T = Tp, and gives a characteristic peak in the thermogram. The 

peak temperature increases with the heating rate and, for most kinetic models, the Kissinger 

equation [9]: 
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is accurate enough in a large range of conditions and is used to extract νTp and ETp from the 

experiment. In Eq. (3) kp is the value of kTp(T) at the maximum of the transformation peak. 

  Owing to its structural disorder, a distribution of atomic configurations coexists in any 

amorphous material. Consequently, we will consider that a superposition of independent 

microscopic processes with different activation energies contributes to the structural 

relaxation [1, 10]. In the inset of Fig. 2 this assumption is applied to explain the calorimetric 

signal. Every microscopic component contributes with a peak centered approximately at a 

value of T = Tp determined by νTp and ETp through the Kissinger Eq. (3). Therefore, the 

thermogram can be calculated as the convolution of the peak temperature distribution, n(Tp), 

by the “peak shape”, TpR (T): 

  pTppp dTTRTnThVTQ )()()()(
0
∫
∞•

= ,     (4) 

where V is the material volume; n(Tp)dTp is the number of states (or defects) per unit volume 

with peak temperatures between Tp and Tp+dTp and h(Tp) the heat evolved when one of these 

states is transformed (specific enthalpy). The “peak shape” is the probability per unit time that 

a given microscopic state is transformed when the material is heated at constant rate. The 

condition that any state will be transformed at the end of the heating ramp imposes the 

normalization condition: 

    β=∫
∞

dTTRTp )(
0

.      (5) 

The integration of Eq. (4) is straightforward if h(Tp)n(Tp) is a slowly varying function and we 

obtain: 

    )()(/)( TnThVTQ ≈
•

β ,    (6) 

i.e., the calorimetric signal is a measure of the peak temperature distribution (in fact, the 

activation energy distribution) modulated by the specific enthalpy. 

 In Section II.1 we will show that it is possible to determine the νTp and ETp values of a 

particular individual component by analyzing the decay of the calorimetric signal when an 

isotherm at T = Tp is reached after a heating ramp. This means that, in contrast with many 

analyses [11, 12] where νTp is taken as a constant for any component and ETp is obtained from 

the relaxation rate at a given temperature through Eq. (2), we will obtain both νTp and ETp 

from the experiment.  The reliability of our results will be tested in Section II.2 with the 

analysis of a complementary experiment consisting of a heating ramp after an isothermal 
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annealing of the material. In this case, the shift of the signal threshold with the annealing time 

will deliver νTp and ETp.  

 The degree of relaxation can be quantified through the total heat evolved,  

   dtQP
ft

∫
•

=Δ
0

,       (7) 

where tf is the duration of the anneal. Gibbs et al. [1] demonstrated that, during isothermal 

annealing, PΔ  is proportional to RT·Ln(t). This prediction has been experimentally observed 

in a variety of materials for which a given property follows the Ln(t) dependence [1, 11, 13, 

14, 15, 16]. However, the proportionality with RT is not obeyed; on the contrary, the slope of 

the curve “Property vs Ln(t)” usually varies slowly [11] or is independent [14] of T. As we 

will point out in Section II.1, during an isotherm the relaxation rate, 
•

Q , depends on the 

heating rate, β, of the previous heating ramp [17]. Our approach allows us to show clearly 

under which conditions the proportionality with RT holds. In addition, by including the 

heating ramp, the divergence of the relaxation degree at t = 0 inherent in the logarithmic 

dependence is solved (Section II.3). 

 The accurate predictions developed in this paper have been possible because simple 

analytical functions describing the peak shape [ )(TRTp  in Eq. (4)] have recently been 

published [18]. We have carried out all the analyses for first and second-order elementary 

processes. For a first-order process, the transformation rate is described by the equation: 

   )1)(( TpTp
Tp Tk

dt
d

α
α

−= ,     (8) 

where αTp is the transformed fraction (0 < αTp <1). For a constant heating rate, the exact 

solution of Eq. (8) can be approximated with good accuracy by [18]: 

   )exp(1)( pu
Tp eT −−=α ,     (9) 

where Tp is the temperature where dαTp/dt is at its maximum and  

 )( p
p

p

p

p

Tp
p TT

k
T

TT
RT
E

u −=
−

≡
β

,      (10) 

where the last term is obtained by applying the Kissinger Eq. (3). The time derivative of Eq. 

(9) leads us to the peak shape for a first-order reaction: 

  )()exp( TReek
dt

d
Tp

uu
p

Tp pp ≡−=
α

.     (11) 

It is necessary to mention here that this analytical solution has been obtained by substituting 

kTp(T) in Eq. (8) by its approximate value: 
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pu
pTp ekTk ≈)( ,    (12) 

which is obtained by linearizing the exponent around the peak temperature Tp. This 

approximation will be used to derive most of the relationships in this paper. 

For a second-order process, 

  2)1)(( TpTp
Tp Tk

dt
d

α
α

−= ,      (13) 

the corresponding approximate solution is [18]: 

   
1
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+

=
p

p
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u

Tp e
eTα  ,     (14) 

and the peak shape 

   )(
)1( 2

TR
e

ek
dt

d
Tpu

u
pTp

p

p

≡
+

=
α

 .    (15) 

In Fig. 2 the peaks of first- and second-order processes are compared. Despite the pronounced 

differences between them, it will be shown in Section II.1 that the signal decay during an 

isotherm is the same for both cases. In addition, in Section II.2 we will show that the shape of 

the relaxation threshold after annealing is also similar. Although these results imply that it is 

difficult to determine the reaction order from these kinds of experiments, in Section II.4 it will 

be argued that, from a formal point of view, a superposition of independent second-order 

components is inconsistent. This conclusion contrasts with a number of authors’ claim that 

structural relaxation in amorphous silicon is due to second-order recombination processes 

[19].  

 The main results obtained in Section II will be applied in Section III to discuss several 

aspects of structural relaxation in amorphous silicon. 

 

II. Theory 

II.1 Isothermal relaxation rate after heating at a constant rate 

During a heating ramp, the convolution integral of Eq. (4) holds. This means that a given 

component will relax in a temperature interval around its peak temperature Tp. If the 

temperature rise does not stop, its transformation rate 
•

Tpα will tend to zero once Tp has been 

surpassed, according to its characteristic peak shape. However, this evolution will change 

drastically when an isothermal period at T = Ta is reached (subindex “a” stands for 

“annealing”). The evolution for first-order kinetics is drawn in Fig. 3. At the beginning of the 

isotherm (t = 0) the transformed fraction αTp(Ta) is given by Eq. (9) with T = Ta. This value is 
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required to solve the transformation rate Eq. (8) which delivers the time dependence of αTp 

during the isotherm: 

 [ ] [ ] tTk
aTpTp

aTpeTt )()(1)(1 −−=− αα       (16) 

and its transformation rate: 

 [ ])(1)()( tTkt TpaTpTp αα −=
•

.       (17) 

The relaxation rate can now be calculated by integrating all the components (0 < Tp < +∞): 

[ ] [ ] pTp
T

aTpaappp
T

TpaTp dTtTkTnThVdTTnThtTkVtQ
pp

)(1)()()()()()(1)()(
00

αα −≈−= ∫∫
+∞

=

+∞

=

•

(18) 

where the approximate expression is correct if n(Tp)h(Tp) is a slowly varying function. The 

integral does not have an exact analytical solution unless we use the approximate value for 

kTp(T) of Eq. (12) and kp is substituted by an average value, pk . Changing the integration 

variable to 

    )( pa
p TT

k
u −≡

β
    (19) 

leads to: 

 [ ] [ ]dutekeeTnTVhtQ u
p

u
Tk

u
aa

ap

−−= ∫
∞−

•

expexp)()()(
/ β

β ,    (20) 

where, according to the Kissinger equation, the upper integration limit is equal to ETa/RTa 

and, thanks to the sharp dependence of the integrand on u, it can be substituted by +∞, 

because for most solid state transformations 60 > ETa/RTa > 10 [20] (even for ETa/RTa as low 

as 5, the relative error is below 10-60). We finally obtain the relaxation rate: 

  
1

)()(),(
+

=
•

tk
TnThVtTQ

p

aa
a

β .      (21) 

Under the same approximations used so far, an identical result is obtained when the 

calculation is carried out for a superposition of second-order processes. 

 Note that the value at t = 0 is just the DSC signal during the heating ramp [Eq. (6)] as 

it should be. The time dependence of the transient is governed by a single parameter pk  

whose value is approximately [Eq. (3)]: 

   2
a

Ta
p RT

Ek β
≈ ,       (22) 

where ETa means the activation energy of the component with peak temperature Tp = Ta. 

Since, for a given relaxation process, the range of activation energies is restricted within a 
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maximum variation of a factor of 5 (say from hundreds of meV to several eV) and ETa 

increases with Ta, Eq. (22) tells us that the decay rate of the relaxation signal will have a 

smooth dependence on the annealing temperature. 

 The decay of the DSC signal predicted by Eq. (21) has been compared with the 

experiment in Fig. 4. The measurements were done on c-Si amorphized by low-temperature 

ion implantation by Roorda et al. [19]. Three identical samples were heated at 40 K/min from 

room temperature until the annealing temperature was reached (Ta = 200, 350 and 500ºC). 

Good fits for the three transients have been reached. The slight discrepancies observed for 

long times, where the signal becomes small, could be related to slight apparatus instabilities 

or they could reflect a departure from our simple model. A slow monotonous diminution of 

pk  is obtained as Ta is increased: 0.055 and 0.050 s-1 for Ta = 200 and 500ºC, respectively. 

Applying the approximate Kissinger Eq. (22) allows us to obtain the (average) activation 

energy of the components relaxing around Ta and, finally, substituting T for Ta and kTp(T) for 

pk  in Eq. (2) delivers the pre-exponential factor, νTa. These values are detailed in Fig. 4. Note 

that νTa is far from being constant. 

 In the solution given by Eq. (21), pk  is kept constant independent of t. However, the 

experimental results of Fig. 4 indicate that pk  depends on the annealing temperature. In fact, 

the relaxation rate at very long annealing times is due to the transformation of the high 

temperature components which transform with a lower value of pk . Here we will show that, 

for the transients of Fig. 4, pk  is almost constant, time independent. For this, it is necessary to 

determine the relative contribution of each component to 
•

Q  at various elapsed times. This 

contribution is simply the value of the integrand in Eq. (18). For the particular transient at 

350ºC and for first-order processes, the result is the bell-shaped curves shown in Fig. 5. Note 

that, at the beginning of the transient (t = 0), the maximum contribution is that of the 

component with Tp = Ta whereas the relative contribution of the high temperature components 

increases with time.  We see that, at the end of the transient (at 300 s), the maximum has 

shifted around 30ºC above Ta. For the particular case of a-Si analyzed here, this shift would 

represent a negligible variation of pk  lower than 1 %. This result is quite unexpected because, 

despite of the contribution of a broad distribution of energy barriers (approximately from 2.8 

to 3.0 eV for the transient at 350ºC), a simple kinetic constant ( pk ) is enough to describe the 

decay of the relaxation rate. 
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II.2 Threshold of the relaxation rate after an isothermal annealing 

An experiment that can deliver the same information as the previous experiment [i.e. pk  and 

n(Tp)h(Tp)] consists of measuring the heat evolved at a constant heating rate from a sample 

that has been partially relaxed by heating it at the same rate and held at the same temperature 

Ta for t = ta. If the second ramp begins at a low enough temperature then a threshold of the 

DSC signal will be measured at a temperature higher than Ta. This behavior can be easily 

understood with the help of Fig. 5 where the sigmoidal curves are the untransformed fractions 

[1- ),( aaTp tTα ]. For longer annealing times, the components that remain untransformed have 

higher peak temperatures. Consequently, the relaxation signal measured in a subsequent 

heating ramp will have a threshold at a temperature higher than Ta.  

 Since the )(TQ
•

 signal during a heating ramp is the convolution of the [1- ),( aaTp tTα ] 

curves by the peak-shape, according to Eq. (4), calculating the )(TQ
•

 threshold is 

straightforward for first-order kinetics: 

  [ ] pTpaaTp dTTRtTTnThVTQ ∫
∞•

−=
0

)(),(1)()()( α ,   (23) 

where [ ]),(1 aaTp tTα−  is given in Eq. (16) with t = ta, i.e.: 

 [ ]
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and )(TRTp  is given in Eq. (11). No approximations are needed to carry out the integration 

with the following lengthy result: 

1)1(
)()()1(exp1
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where the factor inside the brackets has been neglected because exp( pk T/β) = exp(ETpT/RTp
2) 

>> 1 and  

    )( a
p

a TT
k

u −≡
β

.     (26) 

Finally, the shift of the relaxation threshold can be easily quantified from Eq. (25) by 

calculating the temperature at which 
•

Q  reaches half its maximum value: 

   )1(2/1 ap
p

a tkLn
k

TT ++=
β .     (27) 
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 For a given value of Ta and ta, the shape of the threshold can be easily calculated by 

introducing the value of the only free parameter, pk , that is, the average of kp over the 

components that contribute to the threshold. We have fitted the corresponding experiments of 

Roorda et al. [19] who annealed the a-Si samples during 45 min at 150, 230 and 300ºC after 

heating them at 40 K/min. The calculated curves fit the experimental points quite well (Fig. 6) 

and the values of pk  thus obtained are close to those obtained in the previous section (inset of 

Fig. 6). We do not know the reason for the observed small discrepancies. 

 Again, the calculations have been carried out for second-order kinetics (see Appendix 

A). Although the fit to the experimental points are reasonably good, the values of pk  thus 

obtained are much higher than those extracted from the isothermal decay (inset of Fig. 6). 

This discrepancy indicates that, probably, the relaxation signal of a-Si is not the superposition 

of second-order components. 

II.3 The degree of relaxation after isothermal annealing 

To interpret the evolution due to structural relaxation of certain material properties during 

isothermal annealing, the classical model by Gibbs et al. [1]  assumes that 1) the 

transformation of any microscopic component makes an equal contribution to the property 

change, ΔP, independently of its activation energy. In addition, 2) this model simplifies the 

integration of the components by substituting the smooth evolution of αTp(T) (Fig. 2) by a step 

function and 3) considers that the preexponential constant is the same for any component. 

This model leads to a logarithmic evolution of ΔP: 

  )(tLnRTAP a+∝Δ .       (28) 

According to this solution, the slope of ΔP versus Ln(t) should be proportional to Ta. 

 With our formalism, we can also predict ΔP. The first assumption of Gibbs et al. is 

equivalent to considering that Vh(Tp)n(Tp) is constant during the isotherm. Consequently, 

with this assumption, ΔP is formally equivalent to the “degree of relaxation” defined in Eq. 

(7). We can calculate ΔP through the integration of 
•

Q  [Eq. (21)]: 

 )1(),0()1(),0(),(
2

++Δ=++Δ=Δ tkLn
E
RTCPtkLn

k
CPtP p

Ta

a
p

p

ββββ , (29) 

where C is constant, ΔP(0,β) is the relaxation degree just after the heating ramp and the last 

expression is obtained by using Eq. (3). For the particular case where νTp is independent of Tp, 

it can be demonstrated that Tp is proportional to ETp [20] and the temperature dependence of 

Gibbs [Eq.(28)] is obtained. However, in general νTp will depend on the particular component 



 10

and, consequently, different temperature dependencies are expected. For the particular case of 

a-Si, the experiments analyzed in Sections II.1 and II.2 indicate that pk  is almost constant, 

independent of Ta (inset of Fig. 6). Consequently, our Eq. (29) predicts that, for pk t>>1, the 

slope of ΔP versus Ln(ta) (i.e. pk/β ) should be almost independent of the annealing 

temperature. Measurements of the electrical conductivity evolution at different temperatures 

made by Shin et al. [11] confirm our prediction (the slope only doubles its value from 77 to 

573 K). 

 Concerning the argument of the Ln function, our solution tends to that of Gibbs when 

pk t>>1. In fact, Gibbs calculated the relaxation of a material that at t = 0 is already at the 

annealing temperature with all its components still untransformed. In our formalism, this 

corresponds to taking [1-αTp(Ta)] = 1 in Eq. (16). With this change, the calculated DSC signal 

is proportional to 1/t and )(tLnP ∝Δ . Consequently, the Ln(ta) dependence of the Gibbs 

solution can be understood as a) the asymptotic behavior of our more general solution for 

long annealing times (i.e., for a time that is long enough for the initial conditions or the 

particular heating rate to be irrelevant) or, alternatively, as b) the solution for an instantaneous 

heating ramp. Since most isothermal annealing experiments are carried out after heating at a 

finite rate (like those in Section II.1) our solution represents a clear improvement with respect 

to that of Gibbs. In particular, it allows the kinetic parameter pk  to be obtained from the 

evolution of an appropriate property during the annealing. This important information is 

completely lost for the conditions in which the Gibbs solution is valid.  

II.4 Formal argument against a distribution of independent second-order processes 

We have seen in Section II.2 that the fits of the experimental threshold to a superposition of 

second-order components deliver unreliable values of kp. However, since the work by Roorda 

et al. [19], many other authors [11, 12, 21] have assumed that the structural relaxation of a-Si 

is due to second-order components. The underlying microscopic mechanism is that structural 

relaxation was driven by the recombination of structural defects. Here we will show that, from 

a formal point of view, a superposition of second-order processes is not possible. 

 Consider a crystalline material with N identical defects per unit volume. Their 

recombination will be described through second-order kinetics, i.e.: 

   2Nk
dt
dN

N−= ,       (30) 
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where kN is the recombination probability and is given in s-1m3. This probability is 

independent of the initial defect concentration N0 and, for a crystalline material, has a well 

defined activation energy value. 

 For an amorphous material, a continuum of activation energies arises and the state of 

the material will be described by the distribution of defects along their activation energy, 

n(E). If the recombination were restricted to defects with identical activation energy, the 

recombination rate would be negligibly small. This is so, because N in Eq. (30) should be 

replaced by n(E)dE (i.e. the concentration of defects around E) and, consequently, 

dn(E)/dt∝ dE. In other words, defects with different activation energies (dE ≠ 0) should 

mutually recombine to obtain a finite recombination rate. However, this condition contradicts 

one of the basic assumptions of our description of the relaxation process. Namely, the 

components with different activation energies must relax independently. We conclude that, 

although recombination of defects does occur in amorphous materials, it cannot be described 

by a superposition of second-order processes. 

II.5 Kinetics of the mutual recombination of structural defects 

When defects with different activation energies mutually recombine, their recombination 

kinetics is far from being simple (see, for instance, the attempt developed in ref. [22]). Here 

we will show that, in some instances, defect recombination can be described by a 

superposition of first-order processes. This could be the case of dangling-bonds (DB) in a-Si. 

Consider a pair of DB with very different activation energies for diffusion. At any 

temperature, the DB with a lower activation energy will follow a random path while the other 

DB will remain essentially at a fixed site. This implies that their mutual recombination will be 

governed by the lowest activation energy. Now, take N dangling bonds distributed along a 

continuum of activation energies. Owing to their higher mobility, the DBs with the lowest 

activation energies will recombine first, according to a first order process, i.e.: 

    
)(·)( EnNk

dt
Edn

N−=
.     (31) 

An interesting feature of this model is that the distribution of defects along their activation 

energy [n(E) in Eq. (31)] is an ‘apparent’ distribution related in a simple way with the real 

distribution just before relaxation begins (see Appendix B). The first-order equation (31) is 

obtained under the simplification that the only mobile defects are those with the minimum 

activation energy. However, there exists a finite range of energies above this minimum value 

with defects mobile enough to contribute appreciably to recombination. This simplification 
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could explain the observed discrepancies between experiment and theory (Figs. 4 and inset of 

Fig. 6). 

 

III. Discussion: structural relaxation of a-Si 

III.1 Defect recombination and bond-angle strain 

Since calorimetry was first used to detect structural relaxation in pure a-Si [23], many papers 

have been published to elucidate the main microscopic changes and mechanisms involved. In 

particular, the role of defect annihilation has been stressed [11, 12, 19, 21, 24] and most 

authors have assumed a superposition of bimolecular second-order components. However, it 

is well known that structural relaxation of a-Si also involves reducing bond-angle strain, as 

revealed by Raman spectroscopy [25, 19] and microscopic models of a-Si [26, 27]. Thus, the 

question arises concerning the relationship between defect recombination and bond-angle 

strain reduction and the contribution of both processes to the heat evolved during relaxation. 

 A critical review of the literature [28] has led us to conclude that the heat of relaxation 

is mainly due to the reduction of bond-angle strain and that defect annihilation only makes a 

minor contribution. This conclusion is further reinforced by the results of several authors 

summarized in Fig. 7. Coffa et al. [12] and Shin et al. [11] used electrical conductivity 

measurements to deduce the number of structural defects that recombined at a given 

temperature (in Fig. 7, EF means that we refer to the defects located near the Fermi level). In 

particular, Coffa et al. [12] predicted high heat release during relaxation from 100 K to room 

temperature due to defect recombination. The DSC experiments by Mercure et al. [21] gave 

an unexpectedly flat signal in this temperature range. In addition, although both the DSC 

signal and defect recombination diminish above room temperature, the decrease is much 

lower for the calorimetric signal (Fig. 7). According to Eq. (6), this means that the heat 

released per defect [h(T)] increases with the temperature. In this section we will solve the 

apparent contradiction between the calorimetric and electrical results. 

 We assume that the DSC signal is mainly due to the reduction of bond-angle strain 

[28]. Without the contribution of structural defects, bond rearrangement by thermal annealing 

leading to lower bond-angle strain is very difficult because it would entail the simultaneous 

bond-breaking and rearrangement of a large number of bonds. However, the process is much 

easier when the bonds break and rearrange due to the random path of the structural defects. 

Therefore, the kinetics of structural relaxation is governed by defect recombination. 

According to Sections II.4 and II.5, structural defects probably recombine following first-

order kinetics. However, the important fact is that, as the temperature increases, the remaining 
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density of defects [N in Eq.(31)] diminishes and, consequently, the path followed by any 

defect until it recombines increases. This provides more opportunities for the Si-Si network to 

rearrange. Therefore, in agreement with the experiment (Fig. 7), the heat released per defect 

will increase with temperature. On the other hand, since the power released by bond 

rearrangement is proportional to the number of defects that change their position per unit 

time, which is in turn proportional to the number of mobile defects [n(E) in Eq. (31)], then the 

calorimetric signal will be the superposition of first-order processes [Eq. (31)]. 

 This model agrees with the correlation found by Stolk et al. between the bond-angle 

dispersion and the concentration of defects after isothermal annealing [24]. These authors 

implicitly assumed that recombination of defects follows first-order kinetics. 

III.2 The kinetic parameters of a-Si relaxation 

In Fig. 8 we summarize the activation energies, ETp, and pre-exponential constant rates, νTp, 

obtained by fitting the isothermal DSC transients (Fig. 4) and the relaxation threshold 

measured at 40 K/min by conventional DSC [19] and at ≈ 4 104 K/s by nanocalorimetry [21]. 

Despite the error bars and the dispersion of points, it is clear that νTp is not independent of 

ETp. This is in contrast with all the analyses concerning a-Si published so far, where a constant 

value of 1013 s-1 was assumed. The exponential increase of the preexponential factor with the 

activation energy is usually known as the Meyer-Neldel or compensation effect. Although its 

microscopic origin is under debate [29], it is formally interpreted as arising from an entropic 

barrier, ΔS: 

  RS
Tp e /

0
Δ=νν        (32) 

where ν0 would be the atomic vibration frequency (≈1013s-1 for Si). The values of ΔS thus 

deduced are detailed in the right hand axis of Fig. 8.  

 The values of Fig. 8 allow the distribution of activation energies, G(ETp), to be 

calculated from the defects that recombine at a given temperature, G(Tp): 

    
Tp

p
pTp dE

dT
TGEG )()( = .    (33) 

Although, as pointed out by several authors [11, 12], dTp/dETp would only change slightly if 

νTp were increased by several orders of magnitude, this is not the case for the range of 

activation energies. Our results indicate that at ≈500ºC, relaxation is governed by components 

with activation energies as high as 3.5 eV, whereas an upper limit of 2.5-2.8 eV was obtained 

with νTp = 1013 s-1 [11, 12].  

 In addition, if the defect annihilation mechanism proposed in Section II.5 is valid, the 

measured G(ETp) distribution has to be interpreted as the “apparent” distribution because the 
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ETp component entails the mutual recombination of the defects with this energy and defects 

with higher activation energies (see Appendix B and its Fig. 10  for details). 

III.3 Structural relaxation under pulsed laser annealing 

We will show here that the kinetic parameters of Fig. 8 are still valid when relaxation is 

induced at the very high heating rates achieved with pulsed lasers. Grimaldi et al. [30] 

measured the dependence of the melting temperature of a-Si on the relaxation degree. Before 

laser irradiation, one sample was relaxed by thermal annealing at 450ºC during 60 min and 

another sample was left unrelaxed. When these samples were irradiated with pulses of 20 ps, 

the unrelaxed sample melted at a lower pulse energy, which indicates that its melting 

temperature is around 160 K lower than that of the relaxed sample. This result confirmed the 

theoretical predictions [31] and indicates that structural relaxation did not occur during laser 

heating. In contrast, nearly the same melting temperature was deduced for both samples with 

30 ns laser pulses, which indicates that, under these conditions, relaxation occurred during 

laser heating. 

 In Fig. 9 we sketch our predictions concerning these experiments. We have plotted the 

peak temperature of the components that, at 40 K/min, relax at 100, 300 and 500ºC that 

(according to Fig. 8 and the Kissinger equation) correspond to the following pairs of (νTp, ETp) 

values: (5 1016 s-1, 1.3 eV), (2 1018, 2.2) and (5 1022, 3.7). These components are referred as 

the “initial”, “intermediate” and “final” stages of relaxation. According to the Kissinger Eq. 

(3), Tp increases with the heating rate. This evolution of the three components is compared in 

Fig. 9 with the melting temperature of unrelaxed a-Si, TM. Since TM is around 1300 K, the 

heating rate achieved with laser pulses will be around 100/Δt < β < 1000/Δt (K/s), where Δt is 

the pulse duration. When the energy per pulse is increased, the maximum temperature 

achieved is higher; however, the heating rate remains essentially the same. From Fig. 9 it is 

clear that, for picosecond laser pulses, TM is reached before the material has relaxed 

appreciably. However, when TM is reached with nanosecond laser pulses, relaxation is almost 

complete. This prediction agrees with the results by Grimaldi et al. [30] and also with those of 

Stolk et al. [24] who observed, for nanosecond pulses, a progressive relaxation as the laser 

energy increased.  

 In contrast with the conclusions drawn from the early relaxation experiments with 

lasers [32], our analysis clearly shows that the relaxation kinetics is essentially the same for 

heating rates spanning many orders of magnitude, 1 ≈ β < 1014 K/s. 

III.4 Structural relaxation and crystallization  
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In contrast with structural relaxation, crystallization is discontinuous: there is a large finite 

energy difference between the initial (a-Si) and final state (c-Si) and it occurs heterogeneously 

with an abrupt interface between them. Its kinetics is governed by the nucleation and growth 

rate constants, with well-defined activation energies. In addition, an incubation time for 

nucleation is usually observed [33, 34]. Since the initial state for crystallization is a particular 

configuration of a-Si reached by structural relaxation, it seems natural to question the 

influence of structural relaxation on crystallization. 

 Very accurate measurements of the growth rate, vg, have been made by monitoring the 

epitaxial crystallization of amorphous layers obtained in c-Si [35, 36]. Lu et al. [36] explicitly 

addressed the question of possible changes in vg in relation to different relaxation degrees. 

One relaxed sample and one unrelaxed sample were heated in about 1 s to the crystallization 

temperature of 630ºC. Since the same value of vg was measured in both samples, the authors 

concluded that vg was independent of the relaxation degree. However, an analysis similar to 

that given in Section III.2 reveals that both samples reached the crystallization temperature in 

an almost fully relaxed state. The same conclusion in reached when analyzing the impressive 

experiments by Olson et al. [35], covering a variation of vg of 10 orders of magnitude. In 

these experiments, the material is fully relaxed after less than 1/1000 of the isotherm duration. 

Thus, we conclude that, as far as we know, all values of vg reported so far are related to the 

crystallization of fully relaxed a-Si. In fact, since vg is very slow compared to the relaxation 

rate, we think it is very difficult to observe the epitaxial crystallization of partially-relaxed a-

Si. 

 Concerning the nucleation rate, we do not know of any experiment devoted to 

analyzing the dependence of the nucleation rate on relaxation. Here we will show that the 

material is fully relaxed after the incubation time, tinc. tinc was measured in the 580-780ºC 

range [33, 36]. At 580ºC, tinc ≈ 105 s, whereas the time needed to relax the component with a 

peak temperature of 500ºC (at 40K/min) was around 0.1 s. At 780ºC, trelax (≈ 10-5 s) is still 

much shorter than the incubation time (≈ 100 s). These calculations show that the material has 

“plenty of time” to reach a highly relaxed state before crystallization (nucleation) begins.  

 This last conclusion raises a very interesting question. Microscopic models of a-Si 

[26] cannot be built with bond-angle dispersion values below Δθ ≈ 7º. Below this value, the 

models are intrinsically unstable and transform quickly into c-Si. It therefore seems 

reasonable to think that the relaxed states of a-Si reached experimentally will approach this 

value. Raman spectroscopy confirms that, at the onset of crystallization, the bond-angle 

dispersion falls around the theoretical value [19, 24, 28]. What is surprising is the fact that 
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relaxation of the bond-angle strain stops at this particular value. Apparently, nothing occurs 

during the time elapsed from the end of the observable effects of relaxation until 

crystallization begins. It seems that the configuration with Δθ ≈ 7º is highly stable against 

relaxation. Since relaxation of Δθ depends on the random path of structural defects, one 

possible explanation would imply that the remaining defects detected after the relaxation 

experiments [24] are not mobile. Another possible explanation would be more intrinsic to the 

structure of a-Si and would imply, as microscopic modeling suggests, that no configuration of 

a-Si exists below Δθ ≈ 7º, which makes further structural relaxation impossible. 

Conclusions 

We have shown that it is possible to extract the kinetic parameters of structural relaxation 

from two simple DSC experiments. Although emphasis has been put in DSC, our results can 

be also applied to any technique able to determine the reaction rate from the evolution of any 

material property that evolves with structural relaxation.  
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Appendix A: Relaxation threshold for second-order components 

Calculating the relaxation threshold for second-order components is more cumbersome than 

the isothermal decay because, unlike first-order processes, the temperature peak of a 

particular component that has been partially transformed during annealing at Ta is shifted to a 

higher temperature. The new peak temperature Tp’ is related, with good accuracy, to the initial 

peak temperature Tp by the equation [20]: 

   
)/(2

))(1(11
'

1

pTp

aTp

ppp RTE
tLn

TTT +
−

≈−
α

 .    (A4) 

where [1-αTp(ta)] is the untransformed fraction after isothermal annealing and is given by Eq. 

(A1). The peak shape of this component during the second heating ramp )(' TRTp  is the 

second-order peak shape )(TRTp  of Eq. (15) with Tp replaced by Tp’: 
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where k’p = kTp(T=T’p).  

 Now, the shape of the relaxation threshold can be calculated by integrating the 

contribution of all the Tp components: 
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∫
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−= α .    (A6) 

Unlike Eq. (21) we have not been able to solve it analytically and, consequently, we have 

solved it numerically for several values of T. The result is plotted in Fig. 6.    

Appendix B.- Evolution of the distribution of structural defects during their mutual 

recombination 

Consider that n(E) is the initial distribution of defects. If the recombination probability is 

independent of the particular activation energies of the defects involved, then at T = Tp the 

distribution will be, approximately (Fig. 10): 

   
Tp

Tp
ETp

TpETp

EEEn
Ef
Ef

En

EEEn

≥=

<=

)(
)(
)(

)(

0)(

min

 .   (B1) 

 When all defects with energy between ETp and ETp+δETp disappear, an equal number 

of defects with ETp > E will recombine with them (see Fig. 10): 

  ∫−=
max )()·(

E

E ETpTpTpETp
Tp

dEEnEEn δδ .     (B2) 

Since, like nETp(E), δnETp(E) is proportional to n(E) [Eq. (B1)], Eqs. (B1) and (B2) lead to: 

 )()()()()()( max

TpTp

E

ETpTpTpTp EIEfdEEnEfEEnEf
Tp

δδδ −≡−= ∫ ,  (B3) 

Integration of Eq. (B3) with the initial condition f(ETp = Emin) = f(Emin), and use of Eq. (B1) 

leads to the desired result: 

   0/)()()( NEIEnEn TpTpTpETp = .    (B4) 

where N0 is the initial defect density, N0 = I(ETp = Emin). I.e. the density of defects that 

recombine following a process governed by ETp is 2nETp(ETp) and not n(ETp). We can thus 

define an apparent distribution as: 

   ∫=≡ max

0/)()(2)(2)(
E

EEap NdssnEnEnEn ,   (B6) 

plotted in Fig. 10 as a dashed curve. nap(E) is measured by experiments and leads to a 

relaxation process formally described by a superposition of first-order components governed 

by Eq. (31) where n(E) should be replaced by nap(E) and N by N(E) ∫≡
max )(

E

E ap dssn .  
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Fig. 1.- Typical DSC thermogram measured in hydrogenated amorphous silicon showing the 
relaxation and crystallization signals. 
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Fig. 2.- Transformation-rate peak-shapes for first- and second-order processes and the 
corresponding untransformed fractions. Inset: sketch of the contribution of a continuum of 
components to the DSC signal.  
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Fig. 3.- Evolution of the transformation rate for a first-order component when an isothermal 
period is reached. 
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Fig. 4.- Decay of DSC signal when the heating ramp (at 40 K/min) reaches an isothermal 
period: points (experimental [19]), lines [best fits to Eq. (21)]. Vertical lines indicate the 
beginning of the isotherm. In the original reference [19], the temperatures of 200 and 500ºC 
were erroneously exchanged.  
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isothermal decay at various annealing times (peaks) and the untransformed fraction of these 
components (sigmoidal curves). ). The pk  and Ta values correspond to one experiment on a-
Si of Fig 4.   
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Fig. 6.- Relaxation threshold of the DSC signal after a preannealing treatment lasting 45 min 
at Ta: points (experimental results [19]), solid lines [best fits to Eq. (22) for 1st order 
processes], dotted lines (best fits to 2nd order processes). Inset: comparison of the pk values 
obtained from the relaxation threshold and from the isothermal decays. Since digitalization of 
the weak DSC signal after the annealing at 400ºC was not accurate enough, the fourth open 
point was obtained from the T1/2 value [Eq. (27)]. 
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Fig. 7.- Comparison of the density of defects that recombine at a given temperature with the 
DSC signal measured by several authors. 
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Fig. 8.- Kinetics parameters obtained from the fitting to a superposition of first-order 
processes of the experimental results of refs. [17] (squares) and [19] (circles). 



 24

8 9 10 11 12 13 14
800

1000

1200

1400

1600

1800

 

 
R

el
ax

at
io

n 
te

m
pe

ra
tu

re
 (K

)

Log(β) (K/s)

initial relaxation

intermediate
fully relaxed

10 ns
pulses

10 ps 
pulses

TM unrelaxed

 
Fig. 9.- Comparison of the relaxation temperatures for several degrees of relaxation 
corresponding to the components that, at 40 K/min, relax at 100 (“initial”), 300 
(“intermediate”) and 500ºC (“fully relaxed”) with the melting temperature TM of unrelaxed a-
Si in the region of heating rates achieved with laser pulses.  
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Fig. 10.- The initial distribution of defects, n(E), evolves with time as the mobile defects 
(defects with low activation energy) disappear. nETp(E) is the distribution when all defects 
with E < ETp have recombined. nap(E) is the apparent distribution measured. 
 
 


