
Sequence Unification Through Currying⋆

Temur Kutsia1, Jordi Levy2, and Mateu Villaret3

1 Research Institute for Symbolic Computation (RISC),
Johannes Kepler University of Linz, Linz, Austria.

http://www.risc.uni-linz.ac.at/people/tkutsia/
2 Artificial Intelligence Research Institute (IIIA),

Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
http://www.iiia.csic.es/~levy

3 Departament d’Informàtica i Matemàtica Aplicada (IMA),
Universitat de Girona (UdG), Girona, Spain.

http://ima.udg.es/~villaret

Abstract. Sequence variables play an interesting role in unification and
matching when dealing with terms in an unranked signature. Sequence
Unification generalizes Word Unification and seems to be appealing for
information extraction in XML documents, program transformation, and
rule-based programming.
In this work we study a relation between Sequence Unification and an-
other generalization of Word Unification: Context Unification. We in-
troduce a variant of Context Unification, called Left-Hole Context Uni-
fication that serves us to reduce Sequence Unification to it: We define
a partial currying procedure to translate sequence unification problems
into left-hole context unification problems, and prove soundness of the
translation. Furthermore, a precise characterization of the shape of the
unifiers allows us to easily reduce Left-Hole Context Unification to (the
decidable problem of) Word Unification with Regular Constraints, ob-
taining then a decidability proof for an extension of Sequence Unification.

1 Introduction

In this work we study a relation between Sequence and Context Unification.
Both problems are generalizations of Word Unification [7, 13, 22, 26, 30]. Word
Unification is the problem of solving equations between terms build up from
letters and word variables. A solution of a word equation is a mapping from
variables to words that when applied to both sides of the equation the result is
the same word.

Sequence Unification is the problem of solving equations between terms built
up using an unranked signature (aka flexible arity, or variadic function symbols)

⋆ This research has been partially funded by the CICYT research projects iDEAS
(TIN2004-04343) and Mulog (TIN2004-07933-C03-01), by the Austrian Science
Foundation (FWF) under Project SFB F1302, and by the EC Framework 6
Programme for Integrated Infrastructures Initiatives under the project SCIEnce
(026133).

and sequence and individual variables. Sequence variables are instantiated with
finite sequences of terms, while individual variables instantiate to a single term.
Sequence Unification is decidable and infinitary [15, 16].

Solving equations with sequence variables has quite a broad range of appli-
cations. The rule-based programming language of Mathematica [31] relies on
a pattern matching mechanism, which supports sequence variables and flexible
arity function symbols. It can do matching modulo certain equational theo-
ries as well. Solving equations with sequence variables form a basis for schema
transformation operations [3, 27] used in synthesis and transformation of logic
programs. Other applications include knowledge engineering and artificial intel-
ligence [8, 11, 12], automated reasoning [2, 9, 25], rewriting [10], functional logic
programming [1]. The ISO standard proposal for Common Logic [6] has nota-
tion for sequence variables (called there sequence markers). Recently there have
been developments in XML querying and transformation that model XML doc-
uments with terms over an unranked signature and use sequence matching and
unification techniques [15] for querying, transforming, and verifying them [4, 5].
Obviously, we can not give an exhaustive overview of all the applications here.

Context Unification is the problem of solving equations between terms built
up using ranked signatures and with first-order and context variables. The latter
occur as monadic function symbols and denote contexts, i.e. terms with exactly
one hole. When the ranked signature considered is restricted to not contain sym-
bols of arity greater than one, the problem is equivalent to Word Unification.
When allowing one single binary symbol, its decidability is still unknown [21].
Nevertheless several fragments and variants are known to be decidable [18, 19,
28]. The main application field of Context Unification is computational linguis-
tics, mainly in compositional semantics of natural language [14, 19, 24].

Combining sequence and context variables in a single framework and equip-
ping it with regular constraint solving methods makes the framework more flex-
ible, with many potential applications [17, 23].

The goal of this paper is to look in depth into relations between Sequence
and Context Unification. Throughout curryfication we define a translation from
sequence unification problems into context unification problems over a signature
consisting of constants and a single binary function symbol @ (curried context
unification problems), in addition, sequence variables are “encoded” into context
variables while individual variables become first-order variables. The translation
preserves solvability in one direction: If the sequence unification problem is solv-
able, then the corresponding context unification problem is solvable. To preserve
solvability in the other direction, we have to restrict possible solutions of the
curried context unification problems, which leads to a new variant of Context
Unification that we call Left-Hole Context Unification. We prove that Left-Hole
Context Unification is a decidable variant of Context Unification. We do it by
reducing Left-Hole Context Unification to Word Unification with Regular Con-
straints that is known to be decidable [30]. The reduction transforms context
equations into word equations on the postorder traversal of the terms. Regu-

2

lar constraints are required to filter the solutions of the word equations that
correspond to traversals of terms. This reduction is based in some ideas of [20].

With these reductions we get a new decidability proof for Sequence Unifi-
cation, easier than the one in [16]. In addition we also get decidability for an
extension of Sequence Unification. Moreover, this translation also allows us to
use the complexity results for context matching of [29] to characterize complexity
of sequence matching.

The paper proceeds as follows: Section 2 defines the two main problems: Se-
quence and Context Unification, Section 3 introduces the currying encoding and
shows its soundness, in Section 4 decidability of Left-Hole Context Unification
is shown, Section 5 discusses some extensions of Sequence Unification thanks to
the currying process, Section 6 is the conclusion.

2 Preliminary Definitions

2.1 Unranked Signatures

Given an unranked signature ΣU (i.e., a finite set of function symbols that have
flexible arity), a countable set of individual variables VI, and a countable set of
sequence variables VS, we define unranked terms over ΣU and V = VI ∪ VS by
the following grammar:

r ::= v | V | f(r1, . . . , rn)

where v ∈ VI, V ∈ VS, f ∈ ΣU, and n ≥ 0. The sets ΣU, VI and VS are mutually
disjoint. We will abbreviate terms of the form f() by f . The set of unranked
terms over ΣU and V is denoted by T (ΣU,V), or simply by TU when the signature
and the set of variables are unimportant. The letters f, g, a and b will be used
for function symbols, v and u for individual variables, V and U for sequence
variables, w for individual or sequence variables, and r and l for unranked terms.
We call unranked terms from T (ΣU,V) \ VS the individual terms.

A substitution for individual and sequence variables (IS-substitution for
short), is a mapping from individual variables to individual terms, and from se-
quence variables to finite sequences of unranked terms such that all but finitely
many individual variables are mapped to themselves, and all but finitely many
sequence variables are mapped to themselves considered as singleton sequences.1

We use the Greek letters σ and ϑ to denote IS-substitutions.
The composition of two IS-substitutions σ and ϑ, written as σ ◦ ϑ, is defined

by (σ ◦ ϑ)(r) = σ(ϑ(r)). Given an IS-substitution σ, we represent it as [v1 7→
σ(v1), . . . , vn 7→ σ(vn), V1 7→ σ(V1), . . . , Vm 7→ σ(Vm)] where v’s and V ’s are all
those variables for which σ(v) 6= v and σ(V) 6= V .

The application of an IS-substitution σ to an unranked term r, denoted σ(r),
is defined by

σ(r) :=

{

σ(w) if r = w
f(σ(r1), . . . , σ(rn)) if r = f(r1, . . . , rn)

1 We do not distinguish between a singleton sequence and its sole member.

3

Similarly, σ can be applied to a sequence of unranked terms 〈r1, . . . , rn〉:
σ(〈r1, . . . , rn〉) = 〈σ(r1), . . . , σ(rn)〉. For the sake of readability, we put
sequences between angular brackets, that are later flattened: if σ =
[u 7→ a, V 7→ 〈f(b), c〉] then σ(f(u, V)) = f(a, 〈f(b), c〉) = f(a, f(b), c). We call
σ(r) (resp. σ(〈r1, . . . , rn〉)) an instance of r (resp. of 〈r1, . . . , rn〉) under σ. Note
that the set of unranked terms is not closed under IS-substitution application:
An instance of a sequence variable is an unranked term sequence that in gen-
eral is not an unranked term. However, an instance of an individual term is
always an individual term. An IS-substitution σ1 is more general than σ2 with
respect to a set of variables W , written σ1 �W σ2, if there exists ϑ such that
(ϑ ◦ σ1)(w) = σ2(w), for each w ∈ W .

A sequence unification problem (SU problem) is a set of equations (unoriented
pairs) of individual terms, denoted {l1

?= r1, . . . , ln
?= rn}. IS-Substitutions ex-

tend to equations and unification problems: σ(l1
?= r1) = σ(l1)

?= σ(r1) and
σ({e1, . . . , en}) = {σ(e1), . . . , σ(en)}. A unifier of a sequence unification prob-
lem Γ is an IS-substitution σ such that σ(l) = σ(r) for each l ?= r ∈ Γ , and Γ is
solvable if it has a unifier. A unifier σ of Γ is called ground, if σ(Γ) contains no
variables. A unifier σ1 of Γ is more general than another σ2, if σ1 �vars(Γ) σ2.
A unifier σ is most general, if any other unifier σ′ satisfying σ′ �vars(Γ) σ also
satisfies σ �vars(Γ) σ′.

2.2 Ranked Signatures

A ranked signature ΣR is a finite set of fixed arity function symbols. We assume
that ΣR contains the 0-ary symbol •, called the hole. Given ΣR, a countable set
of first-order variables XF, and a countable set of context variables XC, we define
ranked terms over ΣR and X = XF ∪ XC by the following grammar:

t ::= x | X(t) | f(t1, . . . , tn)

where x ∈ XF, X ∈ XC, f ∈ ΣR such that f is n-ary and with n ≥ 0. When
n = 0, we omit the parentheses and write just f . The sets ΣR, XF and XC are
mutually disjoint. Constants are 0-ary function symbols. The set of ranked terms
over ΣR and X is denoted by T (ΣR,X) or simply by TR when the signature and
the set of variables are unimportant. A context is a ranked term with exactly
one occurrence of the hole. A context C may be applied to a ranked term t,
written C[t], and the result is a ranked term over ΣR and X obtained from C
by replacing the hole with t. The letters x and y will be used for first-order
variables, X and Y for context variables, z for first-order or context variables, a
and b for constants, f for function symbols and s and t for ranked terms. The
size of a term t, noted by |t|, is defined as its number of symbols.

A substitution for first-order and context variables, or an FC-substitution in
short, is a mapping from first-order variables to hole-free ranked terms, and
from context variables to contexts such that all but finitely many first-order
variables are mapped to themselves, and all but finitely many context variables
are mapped to themselves applied to the hole. We use the Greek letters ϕ and
ρ to denote them. Composition is defined as above.

4

Given an FC-substitution ϕ, we represent it as [x1 7→ ϕ(x1), . . . , xn 7→ ϕ(xn),
X1 7→ ϕ(X1), . . . , Xm 7→ ϕ(Xm)], where x’s are all first-order variables such that
ϕ(x) 6= x, and X ’s are all context variables such that ϕ(X) 6= X(•).

The application of an FC-substitution ϕ to a ranked term t, denoted ϕ(t), is
defined by

ϕ(t) :=







ϕ(x) if t = x
ϕ(X)[ϕ(s)] if t = X(s)
f(ϕ(s1), . . . , ϕ(sn)) if t = f(s1, . . . , sn)

A context unification problem (CU problem) is a set of equations (unoriented

pairs) of ranked hole-free terms, denoted {s1
?

≈ t1, . . . , sn
?

≈ tn}. A unifier of a
context unification problem ∆ is an FC-substitution ϕ such that ϕ(s) = ϕ(t),

for each s
?

≈ t ∈ ∆, and ∆ is solvable, if it has a unifier.
The notions of a more general and most general FC-unifier are defined in the

same way as for IS-unifiers.

3 Currying Terms

In this section we define the curryfication transformation that will serve us to
transform sequence unification problems into (a variant of) context unification
problems.

We firstly thought that this reduction was solvability preserving: a sequence
unification problem is solvable, if, and only if, its transformation into a context
unification problem is solvable. However, although the implication to the right is
almost trivial (Lemma 2), while trying to prove the other direction shows us that
there are solutions of the context unification problems that, when interpreted as
solutions for sequence unification problems, are not valid. We find out what is
the kind of solutions that we need to consider in order to get the left implication.
This characterization leads us to make the reduction, not directly to Context
Unification but to a variant of it, called Left-Hole Context Unification.

We assume that for each f ∈ ΣU there exists a unique and distinct constant
af ∈ ΣR \ {•}. The set of these constants is denoted by ΣC

0 . We also assume
that ΣR contains a binary function symbol @ and define ΣC

2 = {@}. Then, the
set ΣC

U
= ΣC

0 ∪ ΣC
2 is called the curried signature corresponding to ΣU.

Similarly, we associate to each v ∈ VI a unique and distinct first-order variable
xv ∈ XF, and to each V ∈ VS a context variable XV ∈ XC. The set of such first-
order and context variables is denoted by VC and is called the curried set of
variables corresponding to V .

Definition 1. The currying function C : T (ΣU,V) → T (ΣC

U
,VC) is defined

recursively as follows:

C(f) = af

C(v) = xv

C(f(r1, . . . , rn, V)) = XV (C(f(r1, . . . , rn)))

C(f(r1, . . . , rn)) = @(C(f(r1, . . . , rn−1)), C(rn)), where n > 0, and rn /∈ VS.

5

We also define C(s ?= t) as C(s)
?

≈ C(t) and extend it to unification problems.

Using this definition we get C(f(b, V, f(v))) = @(XV (@(af , ab)), @(af , xv)).

The currying function can be extended to transform sequences of unranked
terms into contexts. To do so, we extend ΣU by a flexible arity function symbol
⋄, ΣC

U
by the hole •, define C(⋄) = •, and then define the currying function

for a sequence of unranked terms (that do not contain ⋄) as C(〈r1, . . . , rn〉) =
C(⋄(r1, . . . , rn)). For instance, we get C(〈V, a, f(a, b)〉) = C(⋄(V, a, f(a, b))) =
@(@(XV (•), aa), @(@(af , aa), ab)).

We can use this extension to currify IS-substitutions to FC-substitutions: For
an IS-substitution σ the corresponding C(σ) is defined as the substitution that
maps each variable C(w) to C(σ(w)) and any other variable to itself. For instance,
currying σ = [v 7→ f(a, V), u 7→ g(b), V 7→ 〈U, a, b〉, U 7→ V] gives C(σ) = [xv 7→
XV (@(af , aa)), xu 7→ @(ag, ab), XV 7→ @(@(XU (•), aa), ab), XU 7→ XV (•)] (as-
suming XU 6= XV).

Remark 1. It is interesting to notice that currying sequences of unranked terms
produces contexts. Moreover the “shape” of these contexts will play a crucial
role to prove the final result. In fact, the instantiations of context variables that
we will consider must correspond to “curry forms” of sequences. This fact will
allow us to prove that minimal solutions of the context equations resulting from
curryfication process are rab and Strahler-bounded (see Lemmas 6 and 7 in next
section), and prove that context unification restricted to this kind of unifiers is
decidable.

Definition 2. Given a term t ∈ T (ΣC

U
,VC), we say that it is well-typed (w.r.t.

ΣU), if C−1(t) is defined, i.e. if there exists an r ∈ T (ΣU,V) such that C(r) = t.

Given a context C ∈ T (ΣC

U
∪{•},VC), we say that it is well-typed (w.r.t. ΣU),

if C−1(C) is defined, i.e. if there exists a sequence 〈r1, . . . , rn〉, ri ∈ T (ΣU,V),
1 ≤ i ≤ n, such that C(〈r1, . . . , rn〉) = C.

Let ϕ be an FC-substitution such that ϕ(z) ∈ T (ΣC

U
∪{•},VC) for all z ∈ VC.

We say that ϕ is well-typed (w.r.t. ΣU), if ϕ(z) is well-typed for all z ∈ VC.

Lemma 1. For any IS-substitution σ and for any unranked term (or sequence
of unranked terms) r over ΣU and V, we have C(σ)(C(r)) = C(σ(r)).

Proof: By structural induction on r.

Lemma 2. If the sequence unification problem Γ over ΣU and V is solvable,
then the context unification problem C(Γ) over ΣC

U
∪{•} and VC is also solvable.

Proof: Let σ be a unifier of Γ . Then, by Lemma 1, it is easy to prove that C(σ)
is a unifier of C(Γ).

In fact with the previous lemmas we have proved a stronger result: given a unifier
σ of l ?= r, we can find a unifier C(σ) of C(l ?= r) that satisfies the property

6

C(σ(l)) = C(σ)(C(l)). This property is represented by the commutativity of the
following diagram:

l ?= r
C

- C(l ?= r)

===
C
⇒

σ(l)

σ

? C
- C(σ)(C(l))

C(σ)

?

Unfortunately, although we can currify a unifier of a sequence unification prob-
lem Γ to obtain a unifier of the context unification problem C(Γ), the con-
verse is not true: f(V) ?= g(f) is trivially unsolvable, but its curry form,

XV (af)
?

≈ @(ag, af), is solvable: the substitution [XV 7→ @(ag, •)] solves the

context equation but there is no unifier for f(V) ?= g(f). In general, solvabil-
ity is not preserved by currying, i.e. the currying function is injective, but not
surjective.

Example 1. The sequence unification problem

f(V1, V2)
?= f(f(a, V2), f(V2, a), b)

has these two unifiers:

σ1 = {V1 7→ 〈f(a), f(a), b〉, V2 7→ 〈 〉}
σ2 = {V1 7→ 〈f(a, b), f(b, a)〉, V2 7→ 〈b〉}

When currying the problem we get the context unification problem:

XV2
(XV1

(af))
?

≈ @(@(@(af , XV2
(@(af , aa))), @(XV2

(af), aa)), ab)

that has the following four solutions:

ϕ1 = {XV1
7→ @(@(@(•, @(af , aa)), @(af , aa)), ab), XV2

7→ •}
ϕ2 = {XV1

7→ @(@(•, @(@(af , aa), ab)), @(@(af , ab), aa)), XV2
7→ @(•, ab)}

ϕ3 = {XV1
7→ @(@(@(af , @(•, aa)), @(af , aa)), ab), XV2

7→ •}
ϕ4 = {XV1

7→ @(@(@(af , @(af , aa)), @(•, aa)), ab), XV2
7→ •}

It is easy to see that solutions ϕ1 and ϕ2 correspond respectively to σ1 and σ2:
ϕ1 = C(σ1) and ϕ2 = C(σ2), while ϕ3 and ϕ4 do not have any such “correspond-
ing” solutions.

In the previous example, substitution for variable XV1
in solutions ϕ3

and ϕ4 are not “well-typed”, i.e. they are not the curry form of any se-
quence of unranked terms. In ϕ1 the variable XV1

is mapped to the con-
text @(@(@(•, @(af , aa)), @(af , aa)), ab) that is the curry form of the sequence
〈f(a), f(a), b〉, whereas in ϕ3 the variable XV1

is mapped to the context
@(@(@(af , @(•, aa)), @(af , aa)), ab), that would be the curry form of some-
thing like f(〈a〉, f(a), b) which is not a sequence. In fact, C−1 is not defined

7

for @(@(@(af , @(•, aa)), @(af , aa)), ab). Thus, we can not assert that we can al-
ways reconstruct a unifier for the original problem from the unifier that we get
for its curry form, we will need these unifiers to be well-typed.

Slightly abusing the notation, for a well-typed FC-substitution ϕ we denote
by C−1(ϕ) the IS-substitution defined as follows: (C−1(ϕ))(w) = C−1(ϕ(C(w))),
for each w ∈ V .

Lemma 3. Let Γ be a sequence unification problem over ΣU and V, and let
C(Γ) be its curried form. Assume ϕ is a well-typed (w.r.t ΣU) unifier of C(Γ),
then C−1(ϕ) is a unifier of Γ .

Proof: Let C(l)
?

≈ C(r) ∈ C(Γ). Then ϕ(C(l)) = ϕ(C(r)). Since ϕ, C(l), and C(r)
are well-typed, we get that ϕ(C(l)) and ϕ(C(r)) are well-typed as well. There-
fore, C−1(ϕ(C(l))) and C−1(ϕ(C(r))) exist and C−1(ϕ(C(l))) = C−1(ϕ(C(r))).
From this, by definition of C−1 for FC-substitutions we obtain (C−1(ϕ))(l) =
(C−1(ϕ))(r), i.e., C−1(ϕ) is a unifier of l ?= r ∈ Γ .

Thus to preserve the set of solutions and ensure soundness in our transformation,
i.e, to make the diagram commute, we can only consider well-typed unifiers. Now,
we want to characterize these unifiers. As we have already argued in Remark 1,
to be able to obtain a sequence from a context with C−1, the contexts must have
a certain “shape”.

Definition 3. A left-hole context is a context that has the hole in its leftmost
position, i.e. that can be built with this grammar:

L ::= • | X(•) | @(L, t)

for context variable X and hole-free ranked term t.

Lemma 4. Let ϕ be a ground FC-substitution such that ϕ(z) ∈ T (ΣC

U
∪ {•}, ∅),

for all z ∈ VC. Then, ϕ is well-typed, iff ϕ(X) is a left-hole context, for all
context variable X ∈ VC.

Proof: By structural induction, from Definitions 2 and 1.

Now we define a variant of Context Unification, called Left-Hole Context Unifi-
cation, as follows:

Definition 4. Left-Hole Context Unification (LHCU) is a variant of Context
Unification that requires instances of context variables to be left-hole contexts.

Theorem 1. Sequence Unification is P -reducible to Left-Hole Context Unifica-
tion.

Proof: The proof follows from Lemmas 2, 3 and 4. The C function is polynomial
in the sum of the sizes of the terms of the equations.

8

Hence, currying preserves solvability: Γ is a solvable SU problem, iff C(Γ)
is a solvable LHCU problem. Moreover, from each unifier of a sequence unifica-
tion problem we can reconstruct a unifier of the corresponding left-hole context
unification problem, and from each ground left-hole context unifier we can get a
unifier of the original sequence unification problem. Notice that some non-ground
left-hole context substitutions, like [X 7→ @(•, @(y, a))], are not well-typed. The
currying function is not onto, hence there are LHCU problems that are not the
translation of any SU unification problem (see Section 5). Notice also that we
assume that a LHCU problem is solvable, iff it has a ground left-hole context
unifier. In fact, this is true, if we assume that the signature ΣR contains at least
a constant symbol.

4 Left-Hole Context Unification Decidability

In this section we reduce LHCU to Word Unification (WU) with Regular con-
straints, which is decidable [30]. Therefore, this reduction proves decidability of
LHCU. The reduction is based on some ideas from [20]. There, it is proved (see
Corollary 21) that if the rank-bound conjecture is true, then CU is decidable.
The conjecture (see Conjecture 15) claims that there exists a computable upper
bound for the Strahler number of some unifier of every solvable CU problem. Like
in [20], the reduction will be done via the traversals of the terms that allows us
to encode LHCU equations into WU equations. We need the regular constraints
to make this encoding sound and ensure that the solutions of the WU equations
really encode solutions of the corresponding LHCU problem. Here, we prove that
there exists an upper bound for the rab and the Strahler numbers of minimal
left-hole unifiers (see Lemmas 6 and 7).

In [21] it is proved that context unification is reducible to context unifica-
tion with constants and only one binary symbol. The same reduction applies to
LHCU. Therefore, from now on, we will assume that ΣR only contains constants
and a binary symbol that we represent as @. We also assume that ΣR contains at
least one constant. This is necessary to ensure that any solvable LHCU problem
has a ground unifier. Moreover, we will also assume w.l.o.g. that we have just
one initial context equation.

A naive encoding of a LHCU equation like X(@(a, b))
?

≈ @(a, X(b)) into
a WU equation could be done using a postorder traversal of the terms of the
equation as follows2:

αa αb α@ WX
?=w αa αb WX α@

where αa, αb and α@ are letters corresponding to a, b and @ respectively and WX

is the word variable that encodes the postorder traversal of the instantiation of
the context variable X .

Then, some of the word solutions are:

ϕ1 = [WX 7→ ǫ]
ϕ2 = [WX 7→ α@]

2 We use ?=w to denote word equations.

9

where ǫ is the empty word. Notice that ϕ2(WX) does not correspond to a pos-
torder traversal of a context, while ϕ1(WX) is the postorder traversal of the
empty context •. This forces us to impose regular constraints to this encoding.
In what follows we will show that with regular constraints we can get a sound
encoding.

Definition 5. Given a LHCU problem ∆, we say that ϕ is a minimal unifier, if
there exists a most general unifier ρ such that ϕ = [x1 7→ a, . . . , xn 7→ a, X1 7→
•, . . . , Xm 7→ •] ◦ ρ, where {x1, . . . , xn, X1, . . . , Xm} = vars(ρ(∆)) and a is a
constant of ΣR.

Notice that any solvable LHCU problem has a minimal unifier. The following is
an adaptation of the sound and complete set of rules for Linear Second-Order
Unification [18] to LHCU. Its soundness and completeness proof can be adapted
from [18].

Definition 6. The unification procedure is described by a set of problem trans-
formations, where every transformation has the form

〈∆ ∪ {s
?

≈ t}, ϕ〉 =⇒ 〈ρ(∆ ∪ ∆′), ρ ◦ ϕ〉

and is characterized by a rule s
?

≈ t =⇒ ∆′ and a substitution ρ.

Simplification: a
?

≈ a =⇒ ∅,

@(s1, s2)
?

≈ @(t1, t2) =⇒ {s1
?

≈ t1, s2
?

≈ t2},

x
?

≈ x =⇒ ∅, and

X(s)
?

≈ X(t) =⇒ {s
?

≈ t}, where ρ = [] in the four cases.

Projection: X(s)
?

≈ t =⇒ {s
?

≈ t} and ρ = [X 7→ •].

Imitation: X(s)
?

≈ @(t1, t2) =⇒ {X ′(s)
?

≈ t1} and ρ = [X 7→ @(X ′(•), t2)],
provided that X does not occur in t2,

3and

x
?

≈ s =⇒ ∅ and ρ = [x 7→ s], provided x does not occur in s.

Flex-Flex: X(s)
?

≈ Y (t) =⇒ {X ′(s)
?

≈ t} and ρ = [X 7→ Y (X ′(•))],
where X 6= Y .

The transformations are applied starting with 〈∆, []〉 until we get a pair of
the form 〈∅, ϕ〉, or no transformation is applicable. In the first case, ϕ is a unifier
of ∆, and, in the second case, the problem is unsolvable.

Proposition 1. The unification procedure described in Definition 6 is sound:
if 〈∆, []〉 =⇒∗ 〈∅, ϕ〉, then ϕ is a unifier of ∆, and complete: if ϕ is a most
general unifier of ∆, then there exists a transformation sequence of the form
〈∆, []〉 =⇒∗ 〈∅, ϕ〉.4

3 The violation of these provisos leads to an occur-check error in the equations.
4 Notice that, for completeness, unifiers are required to be most general, but, in the

soundness part, we can get non-most general unifiers.

10

Lemma 5. Given a LHCU equation s
?

≈ t, for any minimal unifier ϕ, and any

context variable X ∈ vars(s
?

≈ t), we have ϕ(X) = @(. . . @(•, ϕ(tn)) . . . , ϕ(t1)),
where ti is a subterm of s or of t, occurring as a second argument of an @, for
all 1 ≤ i ≤ n.

Proof: From inspection of the transformation rules of Definition 6, we can see
that right subterms (second arguments of @) are preserved: If 〈∆1, ϕ〉 =⇒∗

〈∆2, ρ ◦ ϕ〉 and t is a subterm of ∆2 occurring as a second argument of an @,
then there exists a subterm t′ in ∆1 such that t′ also occurs as a second argument
of an @, and t = ρ(t′).

Now, by inspection of the transformation rules we can also see that the only
transformation rule that introduces new right-subterms is the imitation rule,
that introduces a right-subterm of the equations as a new right-subterm in the
substitution. Therefore, if 〈∆1, ϕ〉 =⇒∗ 〈∆2, ρ ◦ ϕ〉, and t is a right-subterm of
ρ ◦ϕ(X), for some context variable X , then we can find an imitation step in the
transformation sequence of one of the following forms:

〈∆1, ϕ〉 =⇒∗ 〈∆′, ρ′ ◦ ϕ〉 =⇒ 〈∆′′, [Y 7→ @(Y ′(•), s2)] ◦ ρ′ ◦ ϕ′〉
=⇒∗ 〈∆2, ρ

′′ ◦ [Y 7→ @(Y ′(•), s2)] ◦ ρ′ ◦ ϕ′〉

〈∆1, ϕ〉 =⇒∗ 〈∆′, ρ′ ◦ ϕ〉 =⇒ 〈∆′′, [y 7→ s] ◦ ρ′ ◦ ϕ′〉
=⇒∗ 〈∆2, ρ

′′ ◦ [y 7→ s] ◦ ρ′ ◦ ϕ′〉

where either X = Y , t = ρ′′(s2) and s2 is a right-subterm of ∆′; or Y [or y]
is instantiated after X , and there is a right-subterm t′ in s2 [or s] such that
t = ρ′′(t′). Now, as we have proved, s2 = ρ′(t′′) [or t′ = ρ′(t′′)], for some right-
subterm t′′ of ∆1. Therefore, t = ρ(t′′), for some right-subterm t′′ of ∆1.

Completeness of the transformations ensure that any right-subterm of a most
general unifier is an instance of a right-subterm of the original problem.

Finally, minimal unifiers can be obtained from most general unifiers, ensuring
that instances of context variables have the form stated in the lemma.

The previous lemma allows us to prove that, if ϕ is a minimal unifier of

s
?

≈ t, then the number of times that we can go to the right descending through
any branch of ϕ(s), viewing the term as a tree, is bounded on the number of

subterms of s
?

≈ t.

Definition 7. The number of right accumulated branches (rab) of a ground
term t ∈ T C, noted rab(t), is defined as:

rab(a) = 0
rab(@(t1, t2)) = max{rab(t1), 1 + rab(t2)}

Lemma 6. Let s
?

≈ t be a LHCU equation and ϕ a minimal unifier, then
rab(ϕ(s)) ≤ |s| + |t|.

Proof: Lemma 5 ensures that, if ϕ is a minimal unifier, then for any subterm
t1 of ϕ(s) occurring as a second-argument of an @ there exists a subterm t2 in

s
?

≈ t such that t1 = ϕ(t2). Therefore, since there are |s| + |t| subterms in s
?

≈ t,
and we can not repeat the same subterm in a branch, rab(ϕ(s)) ≤ |s| + |t|.

11

The definition of rab is similar to the definition of the Strahler number of a
term:

Definition 8. The Strahler Number of a term t built up from binary and nullary
symbols, noted Strahler(t), is defined recursively as follows:

Strahler(a) = 0

Strahler(@(t1, t2)) =

{

Strahler(t1) + 1 if Strahler(t1) = Strahler(t2)
max{Strahler(t1), Strahler(t2)} otherwise

for any constant a, and the binary symbol @.

Since, we have Strahler(t) ≤ rab(t), for any term t, we can prove the following.

Lemma 7. Given an LHCU equation s
?

≈ t, all minimal unifiers ϕ satisfy
Strahler(ϕ(t)) ≤ |s| + |t|.

The previous lemma proves the rank-bound conjecture of [20] for a variant
of context unification. Therefore, we can conclude decidability of LHCU from a
small modification of the results of that paper. That proof was based on the use
of traversals of terms, and on traversal equations. These traversal equations were
reduced to word equations with regular constraints. Here, we find an easier way to
constraint traversals of ϕ(s) with regular expressions. These regular expressions
define postorder traversals of terms with a bounded rab and allows us to avoid the
use of traversal equations which can be replaced by simple word equations with
regular constraints. What follows is then an alternative proof for the decidability
of LHCU based on some ideas of [20].

Definition 9. Let Σ0 be the set containing a distinct letter αa, for every con-
stant a ∈ ΣR, and let α@ be also a letter (corresponding to the function symbol
@).5 Let us consider the following family of regular languages

L0 = Σ0

L1 = Σ0 (L0 α@)∗

· · ·
Ln = Σ0 (Ln−1 α@)∗

Lemma 8. The language Ln defines the set of postorder traversals of ground
terms t ∈ T (ΣR, ∅) satisfying rab(t) ≤ n.

Theorem 2. LHCU can be reduced to WU with regular constraints.

Proof: Assume that, apart from α@ and from a distinct letter αa, for every func-
tion symbol a ∈ ΣR, we also have a distinct word variable Wz, for every context
or first-order variable z ∈ X . The reduction uses the following transformation:

R(a) = αa

R(@(t1, t2)) = R(t1)R(t2)α@

R(x) = Wx

R(X(t)) = R(t)WX

5 Notice that from previous assumptions ΣR 6= ∅.

12

The translation is extended to context equations as R(s
?

≈ t) = R(s) ?=w

R(t). We have to add the following regular constraints Wx ∈ Ln, for every first-
order variable x, and αa WX ∈ Ln, for every context variable X , where a is any
of the constants of ΣR, and n = |s| + |t|.

Extending the translation to substitutions, like it is done in the Section 3,
we can prove easily that the translation maps minimal context unifiers to word
unifiers. To prove that word unifiers may be decoded into context unifiers we
need to use the regular constraints and Lemma 8.

Corollary 1. Left-Hole Context Unification is decidable.

5 Back to the Beginning

Now we look back at where we started from: Sequence Unification. Decidability
of LHCU proved in the previous section gives another decidability proof of SU.
Looking at the proof closer, we notice that we prove something more: Decid-
ability of unification for an extension of SU. This extension, denoted ESU, is
obtained if we allow individual variables to occur in functional positions, and a
term to be applied to a sequence of terms. This is motivated by the fact that
LHCU problems may contain terms like, e.g., @(xv, a) that could be obtained if
we had currying defined for v(a). We do not go into formal details here because
of space limitation. The following example can serve for illustrating ESU:

Example 2. Extended sequence unification problem {f(a, V) ?= v(a, b)} has two
mgu’s: σ1 = {V 7→ b, v 7→ f()} and σ2 = {V 7→ 〈U, a, b〉, v 7→ f(a, U)}. Applying
σ2 to v(a, b) gives f(a, U, a, b).

Decidability of ESU can be shown based on decidability of LHCU. The sequence
unification procedure [16] can be easily adapted to obtain a minimal complete
unification procedure for ESU.

Moreover, we can transfer some of the results on complexity of Context
Matching [29] to Extended Sequence Matching (ESM). The counterparts of lin-
ear context matching and varity 2 context matching problems are linear ESM
(LESM) and varity 2 ESM (V2ESM), respectively. Shared-linear context match-
ing gives a fragment of ESM that we call prefix-closed ESM (PCESM). It can be
characterized by the following property: If a sequence variable V occurs in the
subterms f1(r1, . . . , rn, V, . . .) and f2(l1, . . . , lm, V, . . .), where f1, f2 ∈ ΣU ∪ VI,
then f1 = f2, n = m, and ri = li for each 1 ≤ i ≤ n. It means that prefixes of all
occurrences of a sequence variable should be the same. Then we have the follow-
ing theorem, that follows from the analogous results in [29] and the construction
of curry function:

Theorem 3. LESM and PCESM are in P. V2ESM is NP-complete.

It is hard to characterize a fragment of Sequence Matching obtained by inverse
currying from Stratified Context matching. There is no obvious pattern in the
form of such sequence matching problems.

13

6 Conclusion

We study the relation between two generalizations of Word Unification: Sequence
Unification and Context Unification. We introduce a transformation function to
translate sequence unification problems into context unification problems over a
signature with constants and a single binary function symbol. The transforma-
tion preserves solvability in one direction: from SU to CU. To preserve solvability
in the other direction, we add a restriction on the form of solutions of context
unification problems, obtaining the left-hole variant of CU. We prove that a
sequence unification problem is solvable iff the corresponding left-hole context
unification problem is solvable, and the unifiers can be reconstructed in both
directions. Moreover, we prove that LHCU is decidable, reducing it to WU with
regular constraints. This result gives a decidability proof for an extension of SU,
and, in particular, a new proof of decidability of SU. Based on the transforma-
tion, we transfer some complexity results from context matching to sequence
matching.

References

1. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712
of LNAI. Springer, 1999.

2. B. Buchberger, A. Crǎciun, T. Jebelean, L. Kovács, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory exploration. J. Applied Logic, 4:470–
504, 2006.

3. E. Chasseur and Y. Deville. Logic program schemas, constraints and semi-unifica-
tion. In Proc. LOPSTR’97, volume 1463 of LNCS, pages 69–89. Springer, 1998.

4. J. Coelho and M. Florido. CLP(Flex): Constraint logic programming applied to
XML processing. In On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE. Proc. of Confederated Int. Conferences, volume 3291 of
LNCS, pages 1098–1112. Springer, 2004.

5. J. Coelho and M. Florido. VeriFLog: A constraint logic programming approach to
verification of website content. In Advanced Web and Network Technologies, and
Applications, volume 3842 of LNCS, pages 148–156. Springer, 2006.

6. Common Logic Working Group. Common Logic Standard.
http://philebus.tamu.edu/cl/, 2007.

7. V. Diekert. Makanin’s algorithm. In Algebraic aspects of combinatorics on words,
chapter 12, pages 342–390. Cambridge University Press, 2002.

8. M. R. Genesereth, C. Petrie, T. Hinrichs, A. Hondroulis, M. Kassoff, N. Love, and
W. Mohsin. Knowledge Interchange Format, draft proposed American National
Standard (dpANS). Technical Report NCITS.T2/98-004, 1998.

9. M. L. Ginsberg. The MVL theorem proving system. SIGART Bull., 2(3):57–60,
1991.

10. M. Hamana. Term rewriting with sequences. In: Proc. of the First Int. Theorema
Workshop. Technical report 97–20, RISC, Linz, Austria, 1997.

11. P. Hayes and C. Menzel. Semantics of Knowledge Interchange Format.
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf, 2001.

14

12. P. J. Hayes and C. Menzel. Simple common logic. In W3C Workshop on Rule
Languages for Interoperability. W3C, 2005.

13. J. Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
14. A. Koller. Evaluating context unification for semantic underspecification. In 3rd

ESSLLI Student Session (ESSLLI’98), August 17-28, pages 188–199, 1998.
15. T. Kutsia. Unification with sequence variables and flexible arity symbols and its

extension with pattern-terms. In Proc. of Joint Artificial Intelligence, Automated
Reasoning and Symbolic Computation, AISC’2002, Calculemus’02 Conference, vol-
ume 2385 of LNAI, pages 290–304. Springer, 2002.

16. T. Kutsia. Solving equations with sequence variables and sequence functions. Jour-
nal of Symbolic Computation, 42(3):352–388, 2007.

17. T. Kutsia and M. Marin. Matching with regular constraints. In Proc. of LPAR’05,
volume 3835 of LNAI, pages 215–229. Springer, 2005.

18. J. Levy. Linear second-order unification. In Proceedings of the 7th International
Conference on Rewriting Techniques and Applications (RTA’96), volume 1103 of
LNCS, pages 332–346, 1996.

19. J. Levy, J. Niehren, and M. Villaret. Well-nested context unification. In Proc. of
the 20th Int. Conf. on Automated Deduction, CADE-20, volume 3632 of Lecture
Notes in Artificial Intelligence, pages 149–163. Springer-Verlag, 2005.

20. J. Levy and M. Villaret. Context unification and traversal equations. In Proceedings
of the 12th International Conference on Rewriting Techniques and Applications
(RTA’01), volume 2041 of LNCS, pages 169–184, 2001.

21. J. Levy and M. Villaret. Currying second-order unification problems. In Proceed-
ings of the 13th International Conference on Rewriting Techniques and Applica-
tions (RTA’02), volume 2378 of LNCS, pages 326–339, 2002.

22. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik, 32(2):129–198, 1977.

23. M. Marin and T. Kutsia. Foundations of the rule-based system RhoLog. Journal
of Applied Non-Classical Logics, 16(1–2):151–168, 2006.

24. J. Niehren, M. Pinkal, and P. Ruhrberg. A uniform approach to underspecification
and parallelism. In Proc. of the 35th Annual Meeting of the ACL and the 8th Conf.
of the European Chapter of the ACL (ACL’97), pages 410–417, 1997.

25. L. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

26. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Proc. of the 40th Annual Symp. on Foundations of Computer Science, FOCS’99,
pages 495–500, New York City, USA, 1999. IEEE Press.

27. J. Richardson and N. E. Fuchs. Development of correct transformation schemata
for Prolog programs. In Proc. of the 7th Int. Workshop on Logic Program Synthesis
and Transformation, volume 1463 of LNCS, pages 263–281. Springer, 1997.

28. M. Schmidt-Schauß. A decision algorithm for stratified context unification. Journal
of Logic and Computation, 12:929–953, 2002.

29. M. Schmidt-Schauß and J. Stuber. The complexity of linear and stratified context
matching problems. Theory of Computing Syst., 37(6):717–740, 2004.

30. K. U. Schulz. Makanin’s algorithm for word equations – two improvements and
a generalization. In Proc. of Word Equations and Related Topics (IWWERT’90),
volume 572 of LNCS, pages 85–150, Tübingen, Germany, 1990. Springer.

31. S. Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

15

