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Abstract 

 

Avrami’s model describes the kinetics of phase transformation under the assumption of 

spatially random nucleation. In this paper we provide a quasi-exact analytical solution 

of Avrami’s model when the transformation takes place under continuous heating. This 

solution has been obtained with different activation energies for both nucleation and 

growth rates. The relation obtained is also a solution of the so-called Kolmogorov-

Johnson-Mehl-Avrami transformation rate equation. The corresponding non-isothermal 

Kolmogorov-Johnson-Mehl-Avrami transformation rate equation only differs from the 

one obtained under isothermal conditions by a constant parameter, which only depends 

on the ratio between nucleation and growth rate activation energies. Consequently, a 

minor correction allows us to extend the Kolmogorov-Johnson-Mehl-Avrami 

transformation rate equation to continuous heating conditions. 
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1. Introduction 

 

Phase transitions are among the most important topics in materials science. 

Crystallization of amorphous materials and other solid state transformations usually 

involves nucleation and growth. These transformations are generally described by 

Kolmogorov-Johnson-Mehl-Avrami [1-5] model. A solution of Kolmogorov-Johnson-

Mehl-Avrami’s model under isothermal conditions can be obtained assuming that 

nucleation and growth rates are time independent [5] 

])(exp[1 1+−−= mktα      (1) 

where α is the transformed phase fraction, k is the overall rate constant that generally 

depends on temperature, while m+1 is usually known as Avrami’s exponent ant t is 

time. For the rest of the paper eqn. (1) will be referred to as the Kolmogorov-Johnson-

Mehl-Avrami (KJMA) relation. Differentiation of eqn. (1) results in the well known 

JMA rate equation: 

[ ] 1)1ln()1()1( +−−⋅−+= m
m

km
dt
d ααα    (2) 

Although this equation is obtained from the isothermal solution (eqn. (1)), it constitutes 

the basis for analyzing non-isothermal experiments [6-8]. This is because the 

transformation rate “seems” to depend only on temperature (through k) and on the 

transformed fraction. However, depending on the thermal history (e.g. the heating rate), 

a given value of α will correspond to a different state and consequently it will evolve at 

a different rate. Indeed, the KJMA rate equation is valid for non-isothermal 

transformations only when very particular conditions are met (see Section 3.a). Despite 

these severe limitations, non-isothermal experiments are commonly interpreted within 

the KJMA rate equation. As pointed out by several authors [7-10], analytical methods 

based on the KJMA rate equation have been developed regardless of its validity. In 

particular, the widespread Kissinger method [11] can be applied to any transformation 

described by the KJMA rate equation [6]. Even though one would expect erroneous 

conclusions from this incorrect use of the KJMA rate equation, the fact is that good 

agreement with other exact methods is often obtained. This is a strong indication that 

many properties of the exact solution are shared by the KJMA rate equation. 

 

In this work a “quasi-exact” solution of Avrami’s model for the continuous heating case 

is obtained by imposing only an Arrhenian temperature dependence for both nucleation 
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and growth rate. Our solution proves to be the exact solution of a KJMA rate equation 

in which the kinetic constant, k, is slightly modified with respect to the isothermal case. 

So the validity of the KJMA rate equation is extended beyond the severe limitations of 

the isothermal KJMA rate equation. 

  

2. The isothermal KJMA rate equation 

 

For the transformations involving nucleation and growth and assuming that the nuclei of 

the new phase are randomly distributed, Avrami [2,3] obtained the following relation 

]exp[1 exαα −−=      (3) 

where αex is the extended transformed fraction, i.e. the resulting transformed fraction if 

nuclei grow through each other and overlap without mutual interference 

∫=
t

ex dtvNt
0

),()()( τττα         (4) 

N is the nucleation rate and v(τ,t) is the volume transformed at time t by a single nucleus 

formed at time τ 

( )mt dzzGtv ∫= τστ )(),(      (5) 

σ is a shape factor (e.g. σ =4π/3 for spherical grains), G is the growth rate and m 

depends on the growth mechanism [7,9,12] (e.g. m=3 for three dimensional growth).  

  

Eqns. (3-5) show the kinetics of the transformation under very general assumptions 

about the rate constants (any time or temperature dependence) and for any thermal 

history. The KJMA relation (eqn. (1)) is the particular solution for isothermal conditions 

provided that both G and N do not depend on time. The overall rate constant is given by: 
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In most practical situations it is possible to assume an Arrhenian temperature 

dependence for both N and G [12,13] 

)/exp(and)/exp( 00 TKEGGTKENN BGBN −=−=   (7) 

where EN and EG are the activation energies for nucleation and growth respectively, and 

KB is the Boltzmann constant. Substitution of eqn. (7) into eqn. (6) gives  
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where we have defined the overall activation energy as: 

1+
+

≡
m

mEEE GN      (9) 

As mentioned in the introduction, differentiation of eqn. (1) leads to eqn. (2) which will 

be referred to as the isothermal KJMA rate equation for the rest of the paper.  

 

3. The non-isothermal case 

 

Although non-isothermal experiments can use any arbitrary thermal history, the most 

usual experiments performed in thermal analysis involve heating at a constant rate, 

β=dT/dt. Therefore, and for the rest of the paper, we will deal with this particular non-

isothermal condition. 

 

3.a The isokinetic case (EN=EG). 

 

The KJMA rate equation can be applied to the non-isothermal case when the 

transformation rate depends exclusively on temperature and on the degree of 

transformation [6,8,9] and not on the thermal history. This condition is fulfilled in 

particular cases such as “site saturation”, where nucleation is completed prior to crystal 

growth [9,14], or the singular “isokinetic” situation where N and G have the same 

activation energy [2].  

 

For a constant heating rate, introducing eqn. (7) into eqn. (5) gives the volume 

transformed by a single nucleus: 
m
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where T=T0+βt, T’=T0+βτ, (T0 is the initial temperature) and the function p(x) is 

defined as (see Appendix A): 

∫
∞ −

≡
x

du
u

uxp 2
)exp()(      (11) 

Accordingly, the extended transformation fraction, αex, can be deduced after substituting 

eqn. (10) into eqn. (4), and assuming that the transformation rate is negligible at T0: 
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where TKEx BG /≡ . This integral can be solved analytically when EN=EG (isokinetic 

case). Indeed, by substituting eqn. (A.3) into eqn. (12) one obtains  
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and, substituting αex into eqn. (3) gives, finally, the transformed fraction: 
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Derivation of eqn. (14) with respect to time shows that it is an exact solution of the 

isothermal KJMA rate equation. Consequently, this equation is valid for non-isothermal 

conditions provided that EN=EG (isokinetic case). The literature shows [10,15] that the 

solution, α(t), for the “site saturation” case also obeys the isothermal KJMA rate 

equation (eqn. (2)). 

 

3.b The general case (EN≠ EG). 

 

When EN≠ EG, the integral of eqn. (12) has no analytical solution. For most experiments 

E/KBT>>1, thus p(x) is usually approximated by its first term in a series of 1/x [7,10,16-

21] (see Appendix A): 

2
)exp()(

x
xxp −

≈      (15) 

with this first order approximation, a number of authors [18-21] obtained an identical 

solution of eqn. (12). 

 

We will follow a different approach to solve the integral of eqn. (12). The fact that the 

arguments of the exponential functions and p(x) are different makes it impossible to 

solve it analytically. We overcome this problem by replacing these arguments by a 

common averaged argument (see Appendix B). With this approximation, eqn. (12) can 

be solved and the corresponding transformed fraction is (see Appendix C): 
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where C is a constant that depends on m, EN and EG: 
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 It is worth noting that our approximate solution coincides with the exact isokinetic 

solution (eqn. (14)), except for the constant C. As a consequence, the approximate 

solution for the general non-isothermal case is also a solution of the isothermal KJMA 

rate equation with the overall rate constant k multiplied by the constant C: 

[ ] 1)1ln()1()1( +−−⋅−⋅⋅⋅+= m
m

kCm
dt
d ααα    (18) 

In the rest of the paper, we will refer to eqn. (18) as the non-isothermal KJMA rate 

equation. As expected when EN=EG, C reduces to unity and our solution (eqn. (16)) 

coincides with the exact solution for this particular limit (eqn. (14)). 

 

3.c Accuracy of the non-isothermal KJMA rate equation 

 

We will analyze the accuracy of our solution by comparing it to the exact solution that 

results from the numerical integration of Avrami’s model (eqn. (3-5)). We will also 

show that it is much more accurate than: (a) the solution of the isothermal KJMA rate 

equation (eqn. (2)) with E= (EN +mEG)/(m+1) and; (b) that of Vazquez et al. [18] and 

other authors [19-21] (eqn. D.1), which consists in replacing p(x) by its first order 

approximation exp(-x)/x2 in eqn. (16) (see Appendix D). In fact, one can easily state that 

the relative error in calculating αext with respect to the exact solution for the 

aforementioned solutions only depends on two parameters: the ratio EN/EG and the value 

of E/KBT. When this error is small (say <0.2), the same conclusion applies to the 

relative error of α. A linear expansion of eqn. (3) provides the relation between the 

relative error of α (Δα/α) and that of αex (Δαex/αex): 
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In Fig. 1, Δα/α has been plotted versus EN/EG for different “normalized” temperatures 

(KBT/E). From Fig. 1 it can be concluded that in any condition our solution is the most 

accurate one. For α=0.5, Fig. 1 tells us that the relative error of our solution is lower 

than 0.07 for E/KBT greater than 20. The absolute error ∆α is thus lower than 0.035. In 
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most practical situations E/KBT is greater than 30, thus ∆α would be even lower (<0.01). 

We conclude that with the accuracy of experimental data, our solution can barely be 

distinguished from the exact solution. It is worth mentioning that Fig. 1 fails to give the 

correct result for the isokinetic case (EN/EG=1), even though the approximation of 

Vázquez et al. (curve b) is more accurate than the solution of the isothermal KJMA rate 

equation (curve a).  

 

In the limit where EG >> EN, nucleation takes place before growth [13] and the “site 

saturation” approximation is the most appropriate description. Conversely, when EN >> 

EG either heterogeneous nucleation dominates and the “site saturation” approximation is 

also the appropriate description, or crystallization is driven by epitaxial growth.  

 

Another way to test the accuracy is by plotting the crystallization rate as a function of 

temperature. This has been done for the particular G and N values of amorphous silicon 

crystallization [22]. The result has been plotted in Fig. 2. It is clear that our solution and 

the exact solution are practically indistinguishable (the shift of the peak temperature is 

less than 0.1 ºC). Moreover, although the isothermal KJMA rate equation is not an 

accurate solution, it predicts the correct peak shape since the only difference with 

respect to the non-isothermal KJMA rate equation is a constant factor. 

 

4. Kinetic analysis of phase transformations under conditions of a constant heating 

rate  

 

Most of the analyses of thermoanalytical experiments are based on the isothermal 

KJMA equation [6-8,17] (eqn. (2)). Since our solution obeys a formally identical 

equation (eqn. (18)) for the non-isothermal case, this means that these analyses can also 

be applied to non-isothermal experiments provided that the overall rate constant k of the 

isothermal KJMA rate equation is modified by the constant factor C. 

 

A common feature of most thermoanalytical techniques is the identification of two 

parameters which produce a straight line when plotted against each other. The activation 

energy E and the transformation order are obtained from this representation. In general, 

most methods are isoconversional, i.e. these two parameters are related to determining 

the temperatures at which an equivalent state of conversion is reached.   



 8

 

The most widespread method is the Kissinger method [11] where )/ln( 2
PTβ  is plotted 

versus 2/1 PT  (TP is the peak temperature, i.e. 02

2

=
PTdt

d α ). The Kissinger plot relies on 

the linear relationship; 

B
T
A

T PP

+=2ln β      (20) 

The activation energy can be obtained from A, whereas B contains information about the 

pre-exponential factor of the kinetic constant. For the non-isothermal KJMA rate 

equation it can be shown that (Appendix F): 
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and ( )PP Tαα = . The value of Pα  can be obtained for the non-isothermal KJMA rate 

equation (eqn. (18)) after calculating the second derivative of its exact solution (eqn. 

(16)) and equating it to zero:   
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by substituting p(x) by its first order approximation in the last term, one gets: 
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which tells us that at the peak temperature, αex=1, (compare eqn. (23) with eqn. (16)) 

and consequently:  

632.01 1 =−≈ −ePα      (24) 

The previous result does not depend on any parameter and it was proposed by 

Henderson [6] as a test for the applicability of the KJMA model. Moreover, 

1)(' −=Pg α , so the Kissinger constant term is reduced to ⎥⎦
⎤

⎢⎣
⎡= Ck

E
KB B

0ln . 

 

Deviations of αP from 0.632 are negligible in real situations (E/KBTP > 20) [8]. The 

prediction of the peak temperature for the non-isothermal KJMA rate equation is plotted 
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in Fig. 3 and compared with the exact solution. For a wide range of heating rates 

(1<β<100 K/min), discrepancies vary from 0.11 to 0.14 K. Consequently, within 

experimental accuracy, eqn. (18) can be considered exact. 

 

The Coats-Matusita method [23,24] can be worked out from eqn. (16) by taking twice 

the logarithm: 
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By substituting p(x) by its first order approximation, we obtain 
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It can be easily verified numerically that the plot of ( ))(ln yp  versus y for 20<y<60 

exhibits a clear linear trend: ( ) yyp 051.12813.5)(ln −−≈  [17]. Therefore, eqn. (26) can 

be reduced to: 
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Thus, the plot of [ ])1ln(ln α−−  as a function of reciprocal temperature is linear with a 

slope of -1.051·(m+1)E/KB. Following a similar procedure, we can verify the validity of 

the method developed by Piloyan [25] in which the activation energy E is obtained from 

the slope of the linear relationship between ( )dtd /ln α  and 1/T. 

 

Most of the abovementioned isoconversional methods rely on replacing p(x) at a given 

stage by the first term of its series (eqn. (15)). However, more accurate isoconversional 

methods do not use any mathematical approximation [26] or are based on a more 

precise approximation [8,17,27,28]. Nonetheless, since our solution is an exact solution 

of the KJMA rate equation, their applicability is automatically extended to the general 

non-isothermal case.  

 

Ozawa’s method [29] is a widely used exact method, and can be inferred by taking 

twice the logarithm of eqn. (16) 
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Thus, the slope of the plot [ ])1ln(10 α−−Log  against )(10 βLog at a given temperature 

yields the value of m.  

 

5. Conclusion 

 

 We have obtained the more accurate approximate solution of Avrami’s model 

under conditions of constant temperature scan rate. This solution is also a solution of the 

KJMA rate equation. Indeed, it is the solution of an equation that differs from the 

isothermal KJMA rate equation by a constant factor. As a consequence, most of the 

classical kinetic analysis techniques, which are based on the KJMA rate equation, are 

valid for the general non-isothermal case. In view of this result, one can understand the 

noteworthy success and satisfactory results obtained from methods based on KJMA 

regardless of the fact that they rely on the incorrect assumption of the validity of the 

isothermal KJMA equation for the non-isothermal case. 

 

 Within experimental accuracy, the non-isothermal KJMA rate equation and its 

analytical solution can be considered as a quasi-exact description of transformation 

kinetics. Table I summarizes the main results obtained in this paper. 
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Appendix A: the function p(x) 

 

The function  
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is related to the exponential integral E2(x) [30] according to: 
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In this appendix we will state that relation B.1 is exact for the first order asymptotic 

expansion of p(x), 

 [ ]
1

2

22

2 1
1

)1(
1

1
1)exp()(

++∞

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
⎟
⎠
⎞

⎜
⎝
⎛

+
+

≈
−

= ∫
n

n

n

x

n x
n
nbp

nbbn
nbdu

u
ubupI  (B.1) 

With the new variable t=(nb+1) u /(n+1), the integral I can be written as 

dtt
nb
n

t
t

nb
bnbp

n
nbI

x
n
nb

n

⎟
⎠
⎞

⎜
⎝
⎛

+
+

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
+

= ∫
∞

+
+ 1

1exp1
11

1
2

1
1

   (B.2) 

Next, we perform the following approximation which is exact for the first term in the 

series expansion of p(x) (eqn. (A.4))  
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then the integral I is approximately 
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bearing in mind relation A.3, the latter integral can be solved and is the right hand side 

term of B.1. 

 

Appendix C: Approximate non-isothermal solution of Kolmogorov-Johnson-Mehl-

Avrami’s model 

 

If we integrate by parts, eqn. (12) becomes: 
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Where a≡EN/EG. After a second integration by parts, αex is expressed as: 
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By substituting the approximation (B.1) one obtains 
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After m times of first integration by parts and if we substitute (B.1) again, αex reduces 

to: 
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If a is replaced by EN/EG the later expression can be rewritten as: 
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Appendix D. Approximate solution of Vázquez et al. 

 

The solution of Vázquez et al. [18]: 
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can be deduced from our solution (eqn. (16)) simply by substituting p(x) by its first 

order approximation: 
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and rewriting C as (see Appendix E): 
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One can easily come to the same conclusion for the solutions obtained by other authors 

[19-21]. 

 

Appendix E. Proof of the identity 
ixi

n

ix

n n

i

i
n

i

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+Π
∑
=

=

1)1(
)(

!
0

0

 

The left hand side term can be developed in simple fractions 
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The identity is then established if we can prove that: 
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Expansion of the right hand side term of (D.1) results in 
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which implies 
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Let’s evaluate the previous relation for x = -i, i = 0, …, n. For each of these values all 

the terms of the sum are equal to zero except one, the only one that contains the factor 

x+i, i.e.: 
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Thus relation D.2 and consequently the identity are proved. 

 

Appendix F. Kissinger plot. 

 

Consider a rate equation with the general form: 
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where g is an arbitrary function. For a constant heating rate experiment ( )tTT β+= 0 , 

the peak temperature TP is determined by the condition: 
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which leads to the relationship: 
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where g’(αP) is the first derivative of g with respect to α evaluated at the maximum of 

dtdα . Equation (F.3) can be easily transformed into a form that is suitable for a 

Kissinger plot: 
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Table 1. Summary of the main results 
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Figure captions 

 

Figure 1. Solid curves: relative error in calculating the transformed fraction from our 

solution (non-isothermal KJMA equation, eqn. (16)) with respect to the exact solution 

(eqn. (12)) for three different values of E/KBT. Dashed curves: relative error in 

calculating the transformed fraction using (a) the isothermal KJMA rate solution (eqn. 

(2)) and (b) the first order solution of Vazquez et al. [18] (eqn. (D.1)) for E/KBT=20. All 

curves have been calculated for a transformed fraction of 0.5. 

 

Figure 2. Three–dimensional crystallization rate of amorphous silicon as a function of 

temperature calculated from: the exact solution (solid curve), our solution eqn. (18) 

(dotted curve), the isothermal KJMA rate equation (curve (a)) and from eqn. D.1 (curve 

(b)) for a heating rate of 40 K/min. Experimental parameters [22]: EG=3.1 eV, EN=5.3 

eV, G0=1.6 107 m/s, N0=1.5 1044 s-1m-3, m=3 and β=40 K/min.  

 

Figure 3. Kissinger plot corresponding to the crystallization of amorphous silicon 

calculated from: the exact solution (solid curve), our solution (dotted curve), the 

isothermal KJMA rate equation (curve (a)) and from eqn. D.1 (curve (b)) for a heating 

rate ranging form 1 to 100 K/min. Experimental parameters [22]: EG=3.1 eV, EN=5.3 

eV, G0=1.6 107 m/s, N0=1.5 1044 s-1m-3 and m=3.  
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