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Abstract

Monte Carlo techniques have been widely used in rendering algorithms for local integration. For example, to
compute the contribution of a patch to the luminance of another. In the present paper we propose an
algorithm based on Integral geometry where Monte Carlo is applied globally. We give some results of the
implementation to validate the proposition and we study the error of the technique, as well as its complexity.

1. INTRODUCTION

Monte Carlo methods in radiative heat transfer, and thereafter in radiosity, can be classified in two: those
that ignore the form-factor matrix and only need a final solution, and those which explicitly give the form
factor matrix and solva posteriori the equations system. [Shamsundar73], [Pattanaik92] and [Shirley90]
fall into the first category, while [Weiner65] belongs to the second. The first category is more suitable for a
quick solution, while the second allows the possibility of changing the problem’s initial conditions of
illumination. As [Siegel81] puts it: "...unless a parametric study of the interchange of radiant energy within
an enclosure with specified characteristics is being carried out, it may be easier to directly compute the entire
radiative flux distribution by Monte Carlo. This would be simpler than computing configurations factors by
Monte Carlo and then using an auxiliary program to calculate energy exchange by means of these factors.”
We could then speak of non-parametric and parametric methods, where the parameters are, of course, which
patches are light sources and their initial luminance.

We could draw the same distinction between non-Monte Carlo methods: one type of method makes
use of progressive radiosity [Cohen88], and the other ones calculate explicitly the form factor matrix, and
then solve the system of equations. Following [Baum89], we have Full-Matrix methods (F-M), and
Progressive Radiosity methods (P-R).

The difference in cost between the two types of methods stems from the fact that the calculation of
form factor matrix is quadratical in the number of patches (Recently [Hanrahan91] presented an algorithm
with time less than quadratical in some circunstances, and worst time quadratical). There is also another
difference, that of the storage cost of the form factor matrix.

In fact, the cost in time of progressive radiosity should be the same as the Full-Matrix, the main
difference being that we have almost at once an usable image of the scene, while in Full-matrix we have to
wait until all the form factors are calculated: we can stop the iterations at some level, without a full
convergence, and so balance time with precision.

There is, therefore, a dilemma: speed versus reusability. This paper addresses this dilemma and
presents a Monte Carlo method based on Integral Geometry for finding form factors lineal in time with
respect to the number of patches. The proposed method takes an approach that could be termed as global
integration, versus local integration, that is one patch at a time, of previous methods.

In the next section we present an overview of the proposed algorithm. In section two we present
three possible estimators for the form factor. Section three discusses the errors introduced in the computation
of both, form factors and visibility. In section four we study the complexity of the algorithm. Finally, we
present the results in section five as well as our conclusions and proposed future work in section six.



2. PROPOSED METHOD

Integral Geometry [Rey-Pastor51, Santal676] allows us to study and measure sets of lines, for example how
many lines intersect a convex body, how many intersect a surface, what proportion of lines intersecting a
convex body will also intersect a second body contained in the first. Radiosity [Goral84, Greenberg86]
studies the transfer of energy between the diffuse surfaces of a scene, and its equilibrium. Energy is
transfered through light rays, and obeys Lambert's cosine law [Meshkov81].

On the other hand, lines are passing through a surface in every direction, and Integral Geometry
teaches us that the flux or line density going off a differential doeia direction @is given bycos 6d o dw,
the same law as Lambert’s.

If we integrate over the whole surface S (supposing it is a planar one), we get as the measure of the
total number of lines intersecting7ifA , where A is the area of S. In consequence, the fraction of this total
going from S to surface S’ will be the quotient

Jcos6dodw/ A
where the integral extends for evellyg to the solid angle projected by S’, add goes over the whole
surface S. This formula, as it should be, is the same found in Radiosity with the name Form Factor between
surface S and S’qwis also found asos@’ do’/ r2, where do' is an area differential in surface %, is the
angle formed by segmenjoining both area differentials with the normaldo’).

Making use of the Laplace Rule then we interpret the form factor as a probability , and use
indistintly the methods of Integral Geometry or its related topics, geometric probabilities. We take a random
sample of the lines intersecting a surface, see what other surfaces are first intersected, and by simply
counting the intersections for every surface and dividing by the total we estimate the form factors of the first
surface respective to the others.

2.1 Overview of the algorithm

A suggestive idea to make the most of ray casting is as follows: Inscribe the scene in a sphere, and take on
the sphere two random points. Intersect the scene with the line through those two points. The surfaces will be
intersected in pairs, one for every body intersected. Sort the intersections by distance from one of the points
(see Figure 1). If we cast r random lines, at the end we’ll have r sorted lists of intersections from which we
may derive n visibility lists where n is the number of patches of the scene. These visibility lists were
previously used in [Buckalew89], but the rays were not cast randomly. In the present method, the rays cast in
a random manner are used not only for visibility purposes but also to compute form factors. Each line drawn
may contribute to the computation of several form factors. So, instead of locally tracing lines for each pair of
patches, we trace lines for the whole environment, each shot contributing to several patches.
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Fig.1 If we order according to the distance frorh, @e get list (P1, P2, P3, P4) , from which we
conclude P1 and P2 both see one another, and the same with P3 and P4, the path between P2 and P3 being in
the interior of some body bounded by (among other patches) P2 and P3. So we add P2 to the list attached to
P1, P1 to the list attached to P2, P3 to the list attached to P4, and P4 to the list attached to P3.

We could summarize the method in the following algorithm:



Initialize visibility lists
Repeat until no more rays to cast
Begin
Put intersections list to empty
Cast a random ray
For every surface in scene do
Begin
Look for intersection
If intersected do
Find patch
Add to list
End if
End;
Sort list
Update visibility lists
Update number of intersections of each patch
End;

A visibility list records how many times a pair of patches see one each other. So, how many lines
intersect both.

2.2 Estimation of form factors.

The average of the number of lines intersecting a patch with areaNh ismes 2A/4TR2, where R is the

radius of the surrounding sphere and Nr is the number of rays cast. This formula comes from Integral
Geometry, which states that the measure of a set of lines intersecting a convex bodyeasof the

body / 2. In the case of a spherequZIZ . We have seen above that the measure of lines intersecting a
planar surface igiA (we could also consider a prism with base our patch and infinitesimal lrejgimd so

the measure of the set of lines crossing the body will(BA+¢)/2 , or A in the limit) . Then, dividing, we

get 2A/4TR? as the probability that a line that crosses the sphere also intersects the patch. If we now multiply
by the total number of lines, we have our expected value. The number of lines intersecting a patch follows a
binomial distribution, with parametensr and 2A/4TR2 | that we may approximate by a normal distribution.

If, for example, the average for a patch were 100 lines then the probability of, suppose, less than 70 lines
intersecting the patch is about 0.001. We cannot conclude that 1/1000 of the patches will have received less
than 70 lines, because the distributions of a patch with respect to any other one are not independent, but we
believe that there is little deviation. So the cost of drawing more intersecting lines for those patches is
minimal, but we must provide a method for doing so, especially if those patches are emissors or highly
reflectant. What we do is cast more lines, imposing on them the condition of having to intersect the specific
patch, their number depending upon some preestablished threshold. The same would be true for those very
small patches with a low average number of lines.

2.3. Three form factors estimators

We have at hand three estimators for the form factor between surface iRgndrhe first one, and most
obvious, is to divide the number of lines crossing the two surfaces atrgnayided by the total of lines
crossing surface ). That is

F=rj/n

The second one is as follows: We determine first the expected number of lines passing through
surface i, say\, and then;

Fi=rj/A

The value forA is : m 2A// Sspherewherem is the total of lines cas§spherethe surface of the
surrounding sphere ayg the area of surface i.



We still have a third estimator: In the denominator, in place of n, as the first estimatoasan the
second, we place a ponderated valumandn’ , the total of lines crossing surface j. Specifically, our new
denominator igAj n+ Ay n" )/ 2 Aj. Then:

2A; 1
Ajn + Ain'

In order to test experimentally the three estimators, we devised a test scene: a cubical enclosure
where each face is divided in nine equal patches, that is, 54 total patches. For this scene, we calculated the
analytical values for the form factors from [Siegel81] and [Hsu67]. We give the values for the mean square
guadratical error with the solutions obtained for the three estimators. The initial conditions were initial
luminance 1 for patch 42 (in the middle of an edge), and reflectivities {0.11, 0.12, 0.13, 0.14, 0.15, 0.16} for
the six faces. The best estimator was the ponderated one, followed by the first one, and worst was the second
one. The mean square quadratical errors are given in table 1.

Fj =

Estimator 1 Estimator 2 Estimator 3
0,00212457 0,0023735 0,0019243
Table 1. Mean square quadratical errors

We show in figure 4 the luminances over the 54 patches, obtained with the exact or analytical form
factors and the three estimators just defined.

3. ERRORS
3.1 Error in form factor

Our theoretical study of error is simply based on the fact that we are estimating a prdpeetisse the first
estimator defined in subsection 3,3and accordingly we use the corresponding formulas for the error,
[Freund80, Weiner65]. The error will depend on the number n of lines passing through the patch, and we
take as a typical value n=10.000. This is in accordance with the values used in ray casting methods to
calculate form factors. Considering the normal distribution approximation to binomial, we have with

probability (1&)
2V 6(1-6)
[ - A —

6 being the proportion to be estimated (in our case, the form factor to be estimatel),taad
estimated value. A bound for relative errof-§ |/ 6 with probability (1-a) will then be

/@8
0-0 %\ g

6 Vn
The value for g/2 is found in the tables of normal distribution. In Monte Carlo methods [Sobol76]
0=0.5, and then the value forgzo is 0,675. The so obtained error bound is the probable error, because the
probability of getting an experimental error lower than this bound is equal to the probability of getting an
error greater than this bound. Table 2 show the relative errors for distinct values of form factors (or equally,
distinct values o, i.e. the proportion of lines that going off first surface land in the second), for n=10000 ,
and in table 3 we have the caBe= 0.001 tabulated with Poisson distribution:

0 z=0,675
0.2 1,35%
0.1 2,03%
0.05 2,94%
0.01 6,72%
0.005 9,52%

Table 2. The first column lists the form factor, the second the probable error for n=10000



0 probability= 1-a relative error <=
0.001 P(8<=x<=12)= 0,5946 20%

Table 3. The first column lists the form factor, the second the probability of the relative error being less or
equal than the value appearing in third column. That is, the third column is an upper bound for relative error
with probability described in the second column. Variable “x” represents the number of lines passing through
both patches.

To test the method experimentally, we devised the following test scene: Consider two unit squares,
with a common edge. If we vary the angle between them, we can compare our solution with the analytical
one [Spencer90].

We cast 100.000 rays on a sphere centered in (0,0,0) and radius 4. One of the squares is in plane
z=1, with vertices (0,0,1), (1,0,1), (0,1,1), (1,1,1), and the second has common vertices (0,0,1) (0,1,1) and
inclined an anglég3 with the first one (see Figure 2).

Table 4 gives the form factors obtained by dividing the lines passing through both squares by the
total number of lines passing through the first square. This total is between parenthesis, and from it we have
calculated the probable relative error, given in the last column.

Inclination angle analytic solution our method relative error pr.relative error
300 0.6190 0,6066 (1009) 2,01% 1,7%

60° 0.3709 0,3872 (997) 4,38% 2,8%

90° 0.2000 0,2163 (957) 8,15% 4,36%

120° 0.0866 0,0904 (1007) 4,35% 6,9%

Table 4. The second column gives the analytical solution, the third the calculated form factor from the first
square respective to the second (between parentheses the total lines intersecting the first square), the fourth
column the relative error, the fifth the probable error. The expected lines through each square is 995.

3.2 Error in visibility

Let us suppose we want to use our method to determine only the visibility, that is, to build a visibility graph.
To know how much we are mistaken, we can find the probability that, if a form factor is non null, we give

zero as its value. This probability ({§-0)"" because the event is just “line going off the first surface and not
intersecting the second one” repeated n times. This value may also be approximated, using Poisson

distribution, aseM®. Table 5 give the results for 10000 lines.

0 visibility
0.2 100%
0.1 100%
0.05 100%
0.01 100%
0.005 100%
0.001 100%
0.0001 63,21%

Table 5. In first column we have the form factor, in the second one the visibility, or probability of estimating
as non null the form factor, for n=10000

Another question relating to visibility is that the proposed method allows for a patch that partially
sees another patch. This partial vision is reflected in the value of the form factor. In Figure 3, the form factor
from P1 to P2 is between 0 and the value it should have supposing there was not occlusion byoP3 , say
That is, moving P3 between P1 and P2 will continuosly vary the form factordftord and viceversa.



P3

0,1,1) (1,1,1)

P2
P1
0.0.1) (1,0,1)

Fig.2. Two test square$ will be given values Fig.3. P3 partially occludes P2
30°, 60°, 90° y 120°

3.3 Error in luminance

What we are interested in is not the error in form factor, but to what extent this error determines the
luminance error. Interestingly, one can give an upper bound for the error in the luminance of any patch that
does not depend upon the values of the form factor calculations [Sbert93]. That isyitréd aase bound

Assume that the sum of all calculated factors for a given patch is at most 1, that the same calculated factors
fulfill AiFij=AjFji  for any two patches i,j , and that all reflectivities are less than 1. Then we can give the
bound for the luminancei of any patch i with reflectivity Ri and initial luminandg© , where the
maximum is taken from all patches.

0
Li )+ Lio

Li < R max;

For the error irLi we have the upper bound:

Ljo )
1-R;

But for our Monte Carlo method we can give a much better error estimation, that is, a variance, if
we limit ourselves to the study of the error in the first iteration when solving the radiosity n equations
systems by an iterative method [Sbert93]. Suppose there are only two emitting patches, r and s. Then the
variance is:

Ri max;

Var(L{) =R? ((LP)2 %F") + (LY @ -2 LPLS%

If we suppose that the two emitting patches have the same Iumirtqsﬁy,then

Var (L) =R?(Lf (Fr +Fel (- (Fr +F5)

and from the point of view of patch i, there is only ongual patch, with the form factor sum of the
components and the error behaving accordingly. We will use this result in section 4.

The only bound for the error in radiosity we have so far encountered is from Shirley [Shirley91],
and specifically, is a bound for the variance, or Monte Carlo error. And to establish the bound we need to
know the maximum of radiosity in scene, that is, & igosteriori bound, while in ours it ia priori bound.



3.4 Further remarks about the error

We have to make an important distinction between local or form-factor errors and global or luminance error
in Monte Carlo methods. We will show an example where the global error diminishes in the Monte Carlo
method (more specifically, in our Monte Carlo method), but enlarges in any other method. We suppose that
in other methods the error in form factor is a biased one, that is, there is always an error by default or by
excess (see for instance the error curves in [Wallace89]). Taking into account this supposition, and to get the
same final precision, we need to have the values of form factors in non Monte Carlo methods with an
accuracy at least three times that of a Monte Carlo one.

Take a cubical box, all the form factors are 0.2. There are about 1000 lines through every face,
which makes a probable error (thatds;0.5) in the form factor of 0.0085. Take now a form factor of 0.197,
which makes an error of 0.003, that is, about one third of the probable error. Suppose all form factors are
0.197. On the other side we have a matrix of Monte Carlo form factors. Let the reflectances equal
{0.5,0.3,0.5,0.2,0.3,0.3}, and the initial luminances {0,0.5,0,1,0,0}. We are going to compare the results of
the first iteration for the two given form factors and the results for the real ones (0.2).

We have in table 6 the results of the first iteration with the corresponding relative error, and

the converged solution also with relative error:

Patch Method First iteration | Relative error | Converged solutio Relative error

1 Proposed |0.142487 5.00% 0.206658 3.26%
Other 0.14775 1.5% 0.208987 2.17%
Exact 0.15 - 0.213629 -

2 Proposed | 0.5591 0.16% 0.602331 0.39%
Other 0.5591 0.16% 0.602156 0.42%
Exact 0.56 - 0.604712 -

3 Proposed | 0.144405 3.73% 0.208027 2.62%
Other 0.14775 1.5% 0.208987 2.17%
Exact 0.15 - 0.213629 -

4 Proposed | 1.02096 0.094% 1.05199 0.007%
Other 1.0197 0.023% 1.05044 0.14%
Exact 1.02 - 1.05192 -

5 Proposed | 0.0893072 0.77% 0.131043 1.48%
Other 0.08865 1.5% 0.130057 2.22%
Exact 0.09 - 0.133014 -

6 Proposed | 0.088517 1.65% 0.130382 1.98%
Other 0.08865 1.5% 0.130057 2.22%
Exact 0.09 - 0.133014 -

Table 6. Results of the first iteration with the corresponding relative error, and the converged solution also
with relative error.

Now the remarkable thing is that in non-Monte Carlo methods the @waysincreases, but in our
Monte Carlo method it seems to smooth, which makes big errors decrease and small ones increase. Also note
that with an initial (local) error of about three times, the solution in Monte Carlo is of the same quality. When
we try exceeded form factors (for instance the value 0.203 for all form factors) we obtain the same result.
Had we used ponderated form factors (defined in section 2), we would see that to obtain the same quality
with a biased method, we would have needed afdcrittimes the accuracy.

4. COMPLEXITY

We show in this section that, to the same error bound, the cost is lineal with the nhumber of patches.

First, we have the cost of creating a random ray, let'sksagpecond, the ray must be matched
against every surface in the scene for intersection (suppose we make no use here of coherence). If this cost is
ks andns is the number of surfaces, we have for everykans We include here the cost of picking up the
intersected patch, which is constant because we divide the surface in equally spaced patches.



Next, we must order the intersections list of the ray and increment the array of the intersections. The
average number of intersections for a given ray is computed in this way: if nr is the total number of rays cast,
then for any body i there will b@ nr Si/Sspheréntersections, becausi/Sspheras the probability of
intersecting the body, and as the bodies are convexes they are always intersected at two points. Then we sum
for all bodies and divide by nr, to geit

22 S
: SSpher(

If we consider only the rays intersecting the walls , that is, if we do not include the visibility lists of
zero length, we have nr intersections for the walls, adnr Si/Syg||s for each body within the enclosure.
So the average length of non null lists would®bes Si/Syglls where the sum doesn't include the walls.
Then the average cost of sorting the list of intersections is boundkidnbiog(2ry) the length of
each list is bounded 8/np, because each line can at most intersect all the bodies in the sgenadies).
Finally, the cost of accessing the arralasi.
Then, summing up, we have

Cost of one ray kr + ks ns + ki ni log(2m) + ka ni
and the total cost is, ifr is the number of rays
Cost <nr ( kr + ks ns + ki ni log(2p) + ka ni )

Since, in principle, the cost is not dependent on the number of patches, we could have a big number
of patches ( if memory allows). Unfortunately, the greater the number of patches, the less the number of
intersections per patch, and the bigger the local errors in form factors. We must therefore consider the
increment needed in rays cast (nr) to keep the same amount of error.

We will see how the complexity of the proposed method is, for a given scene and a given error,
lineal in the number of patches. That is, to get the same accuracy, if we double the number of patches, we
must double the number of rays ( we have to remark here that if we had to compute explicitly the form factor
array, dividing every term of every visibility list by the corresponding term of the list of totals of lines, we
would introduce a quadratical term. But we can delay this division until we solve the system).

Suppose we have patch i, and it is divided into equal patches il and i2. Suppose also that luminous
patch j is divided into j1 and j2. If an average of n rays pass through i, then an averdgevif pass
through i1. Then, for the variance i we have two terms coming from the patches j1 and j2, and with
the same Iuminance,j0 . But as we saw in section 3, the error is the same as that of a single patch with the
same luminance, that is, patch j . We should have, then, the same variance as before for patch i were it not for
the fact that now only half the lines intersect patch il. Then, if we double the lines cast we have the same
variance.
var(Ld) = RA(LP P [Fan(Fas) Rz (IFaz) 5 Fias R

n n n
2 2 2

and then
Val‘(L'l):Riz(L'O)z ('Z'JJ1+ Fisz) (1'( Fij, + FlJJz))
. n

11

N

But Fj,+ Fy,=Fij ,and if we double the lines cast

Fi]j(l- F i]j)

varlLi)= RALPP Fall-

that is , the same as the original

var(Lt)= RE(LF FlLF1)



were it not forFilj in place ofFij. Now, if we want comparEilj with Fij we must take into account the
relationFj1j+Fj2j = 2 Fjj . (As the two patches are equalrifj are the lines from il to jij1 the lines
through i1, andj the lines through i, we havgyj+rij =rjj  alsorj1 =rj2 =rif2 . Then Fj1j+Fpj =
(rigj+rigphip =rij/ri/2) =2 Fj ),

If Filj were equal td=i2j, the two variances above would be equal. If not, we can make the
assumption thafilj is of the same order &5 , and then the variances are of the same order. And we could
have a gain on variance 6fl1j, but a loss on variance &i2j. More specifically, if we use the quadratical

errorE21 as a measure of the global error in the first order iteration (or as the first order global variance, an
informal term) then

Ai Var (L)
Elz _ Iz I I

5

we see that the term
Avar(Lt)=a RE(LPE B L-F)

n

will be substituted by the two terms

A Var(L) + A, Var(L)= 2 R (L) i (t'ﬁﬂ) 4 (t'ﬁﬂ)

We have
Fig (1 - Fig ) + Fig (1-Fia ) = Fig + Fig - (F + Fi )
=2Fij-(Fi€_j + Féj + 2 Fiyj Fi2j-2FlliFi2j) =2Fij-(4|:1j2-2F1]j Fisj )

and dividing by 2 ( the denominator Af )
Fij-(2 F|j2' Fiyj Fiyj ) = F 'Fijz'( Fijz' Fiyj Figj )

LR RS
=Fj -Fijz- ((L” -;F'?J) - Ry Fizj) = F - Fijz-(ilzIJJ 2F'2’)

In conclusion

Aiy Var(l_a}) + A, Var(Lé) -A Var(ul) =-AR? (LJO)Z (w)z

and that is the amount by which global erEqn2 decreases. This decrease can be interpreted in this way : It
measures how well the new division of the patches reflects the geometrical visibility of the scene, and the
degree of error in supposing a constant radiosity over the old patch. We see, then, that doubling the number
of patches, if we double the number of rays cast we get the same global error minus a term that measures
how closely we are approaching the non constant radiosity function.

We devised a test: a cubical enclosure is divided first into six patches, one for each face, and after
that into 54 equal patches, nine per face. For these geometries there are exact (analytical) form factors
[Siegel81, Hsu67], and, therefore, exact solutions. We considered a face with initial radiosity 1, and
reflectance 0.5, the other faces had no initial radiosity and a reflectance 0.6. As an estimator of the (final)
variance, we took the quadratical error. The results are summarized in Table 7, and seem to confirm our
theoretical findings.



scene patches average of lines per patghvariance

1 6 977 4.941 10°

2 6 9870 3.49519 1P
3 54 985 3.65268 10
4 54 10475 29414 16P
5 54 104559 3.50088 10/

Table7. Global variance in five test scenes.

From table 7 we can remark: 1) global variance seems inversely lineal to the lines per patch; 2) with more
patches, to keep the same variance we need to keep the same number of lines per patch; 3) with more
patches, with the same number of lines per patch, there seems to be a reduction of variance, as expected
theoretically.

5. RESULTS

Figures 5 and 6 show two result images corresponding to the same scene with different reflectivities. The 24
surfaces of the scene were divided in a total of 1122 patches . There were two equal sources of light, one in
the front wall (not seen), and the other in the left wall. We cast one million rays. The resulting lines per
patch of wall were about 1400, per patch of the bigger cube about 900, and per patch of the other cubes about
600.

6. CONCLUSIONS

We developed a Monte Carlo technique to compute the form factors, based on Integral Geometry. In section
2 we presented three possible estimators and studied their efectiveness. We gave in section 3 a bound for
luminances for whatever method we use in solving the radiosity equations system. We have shown how the
local errors compensate each other in a certain way, and we gave the exact value of variance for the first
order iteration. Also we showed how Monte Carlo methods do need not the same level of initial precision as
other methods, and so are very competitive. In fact, we have found in our test figures that a level of
acceptable quality is about 1000 lines per patch, far from expected if we take into account only local errors.

We proved in section 4 that the proposed method is at worst lineal for every possible geometry (of
convex bodies and planar patches). Furthermore, we showed in what order the global variance or quadratical
error decreases due to the finer discretization of the scene. Shirley [Shirley91] also gives a bound for the
variance in Li, both first order (direct illumination) and final (with interreflections), but not a defined global
variance. Shirley also states that for bounded local variance, that is bounded Var(Li) for all i, the expected
number of rays traced is proportional to the number of patches (or zones in Shirley terminology). We give
here theexact value for the first order variance. And we have found an additional lowering of variance,
though we give it only for the first order global variance. Previous results need to know the radiosity solution
to determine the error bound, because the bound is dependent on the maximum of radiosity in scene.

7. FUTURE WORK

The first future development must be to find a good adaptive refinement strategy suitable to the proposed
algorithm; i.e. a technique which takes advantage of its features. This may be done from the relationship
between the actual form factor and the “full” form factor obtained by means of “removing” occlusions.

The proposed technique deals with perfect diffuse environments. As is well known, this is often a
too strong a restriction. So it will be extended in order to be applied to environments with diffuse and
specular reflections without loss of efficiency.

This efficiency of the algorithm may be easily improved using several types of coherence as
proposed for other techniques. Specifically, a good organization of the scene would increase the efficiency of
the intersection function. This must be done for both the diffuse and the hybrid cases.

Finally, the method will be extended with minor changes to deal with parametrical non planar
surfaces, both convexes and concaves.
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