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Summary

The tragedy of the commons is a concept used in environmental economics to highlight
the conflict between individual and collective rationality. The tragedy occurs when
a natural resource is easily available to all users and every user tries to reap the
greatest short-term benefit from the resource. In situations of this kind, demand
greatly outweighs replenishment and eventually the natural resource will be unavailable
for the users. From the 1990s onwards, scholars have found many examples that suggest
that agents are capable of overcoming the tragedy of the commons and sustaining
the natural resource. Examples include resource property rights and community
management through collective action. This thesis focuses on collective action and
the determinants of cooperation. At the community level, many factors impacting
cooperation (i.e., trust, communication, social pressure) are very dependent on the
underlying structure of social interactions, often formalized by a social network. The
aim of this thesis is to assess social networks and their explicit role in the emergence
and maintenance of cooperation in resource use. This is done by coupling resource stock
dynamics with social dynamics concerning compliance to a cooperative norm prescribing
the socially optimal use of the natural resource. Among the single aspects analyzed
in the literature, cohesiveness and the share of norm-complying agents (compliers)
stand out. The definition for cohesiveness is most frequently based on links between
agents. However, in the case of cooperativeness or the exercise of social pressure,
not only are the links between agents important, but so too are the agents’ chosen
strategies. If two compliers are linked, one can expect they will experience greater
social pressure than if every complier were linked to a defector but not linked between
them. For this reason, we propose a new connectivity measure that is based on links
and the strategy chosen. We have called it “local cohessiveness of compliers” as it
considers the links between the compliers in the neighborhood of an agent. As such
it is a “small-world or micro” characteristic of the social network and is different
from more “large-world or macro” characteristics such as the degree, size or density.
Although the share of compliers is often seen as the most important driving force for
cooperativeness, it is independent of the network size and density. As such, its indicative
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power to foresee a possible propagation of compliers within social networks is likely
to be limited. The asymmetry and irregularity of real social networks suggests that
merely focusing on a single aspect of the network does not offer a reliable instrument
to accurately analyze the range of cooperativeness. For these reasons, we analyze
the underlying forces of cooperation by evaluating to what extent macro and micro
characteristics of the structure of social interaction support social norms. In our
models, macro and micro characteristics of social interaction lead to social pressure
that depends on the share of compliers, the local cohesiveness of compliers and the state
of the natural resource. The consideration of monetary or non-monetary punishment
leads to a second important question. In particular, it allows analyzing the question
to what extent pro-social behavior can be induced by informal enforcement (social
pressure) or by legal enforcement (taxes or subsidies). Our analysis shed new light on
this question by determining the conditions where only legal enforcement is able to
induce cooperativeness and the conditions where informal and legal enforcement are
both able to support cooperativeness. Likewise, it offers a concept to measure their
substitutability. How to best design network-orientated policies to promote cooperation
within the community remains an interesting topic for future research. Apart from
addressing policies-related questions this research contributes to the understanding
of drivers of cooperation in relation with social networks in several ways: (i) we link
dynamic economic decision problems with different classes of social networks to study
their effect on the decision problem, (ii) our study offers a metric for the cohesiveness of
compliers – as opposed to social ties – and determines its influence on cooperativeness
between the agents, and (iii) our models offer an equilibrium concept and determine
the possible equilibria as a function of different classes of social networks, the evolution
of a stock variable and dynamic strategy choices by the agents.
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Resumen

La tragedia de los comunes es un concepto utilizado en economía ambiental para
destacar el conflicto entre racionalidad individual y colectiva. La tragedia ocurre
cuando un recurso natural está ampliamente disponible para todos los usuarios y cada
usuario trata de obtener a corto plazo su mayor beneficio del recurso. En este tipo
de situaciones, la demanda supera ampliamente el reabastecimiento y, con el tiempo,
los recursos naturales dejan de estar disponibles para los usuarios. Desde la década
de 1990 en adelante, los académicos han encontrado numerosos ejemplos que sugieren
que los agentes son capaces de superar la tragedia de los comunes y mantener el
recurso natural. Los ejemplos incluyen derechos de propiedad de los recursos y gestión
comunitaria a través de la acción colectiva. Esta tesis se centra en la acción colectiva
y los determinantes de la cooperación. A nivel comunitario, muchos factores que
repercuten en la cooperación (por ejemplo; la confianza, la comunicación o la presión
social) dependen en gran medida de la estructura subyacente de las interacciones
sociales, a menudo formalizadas por la red social. El objetivo de esta tesis es evaluar
las redes sociales y su papel explícito en el establecimiento y mantenimiento de la
cooperación en el uso de los recursos. Esto se hace mediante el estudio conjunto de
la dinámica del stock del recurso natural con la dinámica social en relación con el
cumplimiento de una norma cooperativa que prescribe el uso socialmente óptimo del
recurso natural. Entre los factores analizados en la literatura, destacan la cohesión y
la participación de los agentes que cumplen con la norma (cumplidores). La definición
de cohesión se basa en los vínculos entre los agentes. Sin embargo, en el caso de la
cooperación o la presión social, no solo son importantes los vínculos entre los agentes,
sino también las estrategias elegidas por estos. Si se relacionan dos cumplidores, se
puede esperar que estos ejerzan una mayor presión social que si, por ejemplo, cada
cumplidor estuviese vinculado a un desertor pero no vinculado entre ellos. Por esta
razón, proponemos una nueva medida de conectividad que se basa en los vínculos y la
estrategia elegida. A esta medida la llamamos “cohesión local de cumplidores” ya que
considera los vínculos entre los cumplidores en la vecindad de un agente. Como tal,
es una característica de “mundo pequeño o micro” de la red social y es diferente de
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otras características de “mundo grande o macro” como el grado, tamaño o densidad.
Aunque la participación de los cumplidores se considera a menudo como la fuerza
motriz más importante para la cooperación, es independiente del tamaño y la densidad
de la red. Así, es probable que su poder indicativo para prever una posible propagación
de cumplidores dentro de la comunidad sea limitado. La asimetría e irregularidad
de las redes sociales reales sugiere que enfocarse en un solo aspecto de la red no
ofrece un instrumento fiable para analizar con precisión el rango de cooperación. Por
eso, analizamos las fuerzas subyacentes de la cooperación al evaluar hasta qué punto
las características macro y micro de la estructura de la interacción social respaldan
las normas sociales. En nuestros modelos, las características macro y micro de la
interacción social conducen a una presión social que depende de la participación de los
cumplidores, la cohesión local de los cumplidores y el estado del recurso natural. La
consideración de castigo monetario o no monetario conduce a una segunda pregunta
importante. En particular, permite analizar la pregunta de en qué medida la conducta
pro-social puede ser inducida por el refuerzo informal (presión social) o por el refuerzo
legal (impuestos o subsidios). Nuestro análisis arroja nueva luz sobre esta cuestión al
determinar las condiciones en las que solo el refuerzo legal puede inducir la cooperación
y las condiciones en las que los refuerzos informal y legal pueden apoyar la cooperación.
Asimismo, ofrece un concepto para medir su sustitución. La mejor forma de diseñar
políticas orientadas a la red social para promover la cooperación dentro de la comunidad
sigue siendo un tema interesante para futuras investigaciones. Además de abordar
cuestiones relacionadas con políticas económicas, esta investigación contribuye a la
comprensión de los factores que inducen a la cooperación en relación con las redes
sociales de varias maneras: (i) vinculamos problemas dinámicos de decisión económica
con diferentes clases de redes sociales para estudiar su efecto sobre el problema de
decisión, (ii) nuestro estudio ofrece una métrica para la cohesión de los cumplidores,
en oposición a los vínculos sociales, y determina su influencia en la cooperación entre
los agentes, y (iii) nuestros modelos ofrecen un concepto de equilibrio y determinan los
posibles equilibrios como función de las diferentes clases de redes sociales, la evolución
del recurso natural y las estrategias tomadas por parte de los agentes en cada instante.
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Resum

La tragèdia dels bens comuns és un concepte utilitzat en economia ambiental que
destaca el conflicte entre racionalitat individual i col·lectiva. La tragèdia es produeix
quan un recurs natural està àmpliament disponible per a tots els usuaris i cada usuari
tracta d’obtenir a curt termini el seu major benefici del recurs. En aquest tipus de
situacions, la demanda supera àmpliament l’abastiment i, amb el temps, els recursos
naturals deixen d’estar disponibles per als usuaris. Des de la dècada de 1990 endavant,
els acadèmics han trobat nombrosos exemples que suggereixen que els agents són
capaços de superar la tragèdia dels bens comuns i mantenir el recurs natural. Els
exemples inclouen drets de propietat dels recursos i gestió comunitària a través de
l’acció col·lectiva. Aquesta tesi es centra en l’acció col·lectiva i els determinants de
la cooperació. A nivell comunitari, molts factors que repercuteixen en la cooperació
(per exemple, la confiança, la comunicació o la pressió social) depenen en gran mesura
de l’estructura subjacent de les interaccions socials, moltes vegades formalitzades per
la xarxa social. L’objectiu d’aquesta tesi és avaluar les xarxes socials i el seu paper
explícit en l’establiment i manteniment de la cooperació en l’ús dels recursos. Això
es fa mitjançant l’estudi conjunt de la dinàmica del stock del recurs natural amb la
dinàmica social en relació amb el compliment d’una norma cooperativa que prescriu
la utilització socialment òptima del recurs natural. Entre els factors analitzats en la
literatura, destaquen la cohesió i la participació dels agents que compleixen amb la
norma (complidors). La definició de cohesió es basa en els vincles entre els agents.
No obstant, en el cas de la cooperació o la pressió social, no només són importants
els vincles entre els agents, sinó també les estratègies escollides per aquests. Si es
relacionen dos complidors, es pot esperar que aquests implementen una major pressió
social que si, per exemple, cada complidor estigués vinculat a un desertor però no
vinculat entre ells. Per aquesta raó, proposem una nova mètrica de cohesió que es
basa en els vincles i la estratègia triada. A aquesta mesura l’anomenem “cohesió local
dels complidors” ja que considera els vincles entre els complidors en l’entorn d’un
agent. Com a tal, és una característica de “món petit o micro” de la xarxa social i
és diferent d’altres característiques de “món gran o macro” com el grau, tamany o
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densitat. Tot i que la participació dels complidors es considera sovint com la força
motriu més important per a la cooperació, és independent del tamany i de la densitat
de la xarxa. Així, és probable que el seu poder indicatiu per preveure una possible
propagació de complidors dins de la comunitat sigui limitat. La asimetria i irregularitat
de les xarxes socials reals suggereix que enfocar-se en un únic aspecte de la xarxa no
ofereix un instrument rellevant per analitzar amb precisió el rang de cooperació. Per
això, analitzem les forces subjacents de la cooperació al avaluar fins a quin punt les
característiques macro i micro de la estructura de la interacció social avalen les normes
socials. En els nostres models, les característiques macro i micro de la interacció social
condueixen a una pressió social que depèn de la participació dels complidors, la cohesió
local dels complidors i l’estat del recurs natural. La consideració de càstig monetari o no
monetari condueix a una segona pregunta important. En particular, permet analitzar
la pregunta de en quina mesura la conducta pro-social pot ser induïda pel reforçament
informal (pressió social) o pel reforçament formal (impostos o subsidis). El nostre
anàlisi llança nova llum sobre aquesta qüestió al determinar les condicions en què només
el reforçament legal pot induir la cooperació i les condicions en què els reforçaments
informals i legals poden recolzar la cooperació. Així mateix, ofereix un concepte per
mesurar la seva substitució. La millor forma de dissenyar polítiques orientades a la
xarxa social per promoure la cooperació dins de la comunitat segueix sent un tema
interessant per a futures investigacions. A més d’abordar qüestions relacionades amb
polítiques econòmiques, aquesta investigació contribueix a la comprensió dels factors
que indueixen a la cooperació en relació amb les xarxes socials de diverses maneres: (i)
vinculem problemes dinàmics d’economia de decisions amb diferents classes de xarxes
socials per estudiar el seu efecte sobre el problema de la decisió, (ii) el nostre estudi
ofereix una mètrica per a la cohesió dels complidors, en oposició als vincles socials, i
determina la seva influència en la cooperació entre els agents, i (iii) els nostres models
ofereixen un concepte l’equilibri i determinen els possibles equilibris com a funció de les
diferents classes de xarxes socials, l’evolució del recurs natural i les estratègies preses
per part dels agents s cada instant.
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Chapter 1

Introduction

1.1 Motivation
In economics, natural resources are considered common-pool resources. Common-
pool resources are characterized by high exclusion costs related to establishing and
maintaining private rights and rivalry; which, in turn, means exploitation by one party
reduces the availability of the resource for others. These two characteristics create
management vulnerabilities when the benefits of exploitation are privatized and some
of the costs are socialized. The dilemma here is that if each economic agent takes
as much as they can, inevitably the resource will be depleted. The prediction that a
community of agents exploiting a natural resource leads to its inevitable overuse, the
so-called “tragedy of the commons”, is based on a model that assumes an open access
regime (non-excludability), and that all agents are selfish, norm-free, and maximizers
of short-term benefits. However, predictions based on this model are supported neither
in field research nor in laboratory experiments. When agents are able to communicate,
exclude others, or make rules, cooperation appears as an efficient solution to overcoming
the tendency of agents to overuse the resource in question. Most of the examples
observed of successful management involve local natural resources that are managed
by a relatively large community who can restrict the access to the resource (common
property regime). A significant characteristic of common property regimes is that the
community either lacks the legal power to enforce social norms (cooperative norms) or
it is too costly to rely on any kind of formal contract. However, those agents complying
with the social norm may be able to place social pressure (e.g. social shunning or
rejection) on those who do not adhere to it. Furthermore, in terms of sanctions,
research finds that cooperation is higher when there is a threat of being excluded
from the group. At the community level, many factors that influence cooperation
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(i.e., trust, communication, social pressure) are very dependent on the underlying
structure of social interactions, often formalized by a social network. Although the
existing literature has recognized the importance of property rights in natural resource
management, little attention has been paid to the types and patterns of interaction
between the agents and the role they play in adherence to the social norms.

1.2 Aim of the research
The aim of this research is to assess social networks and their explicit role in the
emergence and maintenance of cooperation in resource use. Moreover, the research also
aims to contribute to the valuation approaches of intangible goods. Environmental
economics contributed to the general economics with the foundation and formalization
of methods to measure the value of intangible goods and services, for example, scenic
value or existence value. In this work, we aim to extend the literature by defining a
method to evaluate, in monetary terms, the effects social pressure has within a social
network.

In particular, this research aims to answer the following research questions:

1. How can the value of the intangible good (social pressure) be measured? (Q1)

2. Are network effects able to trigger/sustain the socially optimal use of the resource?
(Q2)1

3. How should traditional policy instruments be designed when network effects are
taken into account? (Q3)

4. When is it best to apply the different policy options (network policy versus
traditional policy instruments)? (Q4)

1.3 Methodology
Although cooperation is increasingly being recognized as a key determinant for over-
coming the tragedy of the commons, there is much to be done in developing more
sophisticated models that help us analyze the influence a network structure has on an
agent’s behavior and to design efficient policies that promote cooperation.

1The combination of Q1 and Q2 can be utilized for the formulation and specification of network-
orientated policies.
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In view of these considerations, this thesis suggests a new framework that combines
the distinctive aspects of the three strands of the literature, i.e., an evolutionary
game-theoretic approach based on the solutions to the differential games employed
within a social network that accounts for the complexity of the interaction between
agents.

With respect to the social network, we describe the structure of connections and
analyze to what extent network effects support social norms in order to conserve
natural resources. We focus on local commons and ask whether network effects are
able to sustain the socially optimal use of the resource or at least to moderate or avoid
the tragedy of the commons, i.e., the overuse or depletion of the natural resource.
The characteristics of local commons (Ostrom [1990]) that may be important for
management are:

1. Natural resources that are geographically bounded on an local or regional scale
(i.e., coastal fisheries, forests, aquifers).

2. The community of agents exploiting the commons is often very large in size,
ranging from several thousand or tens of thousands of agents.

3. The commons are degraded through intentional action. This means, resource use
is conscious purpose because the resource provides major portion of livelihood.

4. Common property regime. The natural resource is owned by a community of
agents. Access, use, and exclusion are controlled by the joint agents.

5. If the agents cooperate they can obtain cooperative benefits that cannot be
obtained by non-cooperative behavior. However, the cooperative benefits can
only be realized after a long and sustained period of cooperation while the
non-cooperative benefits are immediate.

6. Learning from concrete experience is a feasible management strategy. It is
feasible because the depletable resources regenerate on a short enough time scale
to make learning possible and because the relevant properties of the resource are
reasonably stable on that time scale.

We start from the observation that many social networks have common topological
properties. However, traditional network generative models fail in one way or another
when reproducing the observed topological properties of social networks. To quantify
the exact influence a network structure has on cooperation, this research provides a new
algorithm to generate comparable and realistic networks. The decision to comply with
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the social norm is voluntary since resource rights are shared and the community has
no legal power to enforce the social norm, however, the compliers may exercise social
pressure (social shunning, social rejection) on members of the community that do not
adhere to the social norm. Social pressure is applied by the compliers themselves, (i.e.,
without the presence of the authorities), and depends heavily on their structure and
patterns of interaction. However, in some situations we observe that social pressure
cannot maintain adherence to the social norm. Alternatively, or in combination with
network policies (i.e., strategies that employ the characteristics of the network to
achieve higher adherence to the social norm), the community may decide to employ
traditional policy instruments such as taxes or subsidies. This research allows for policy
options favoring the sustainable management of natural resources to be identified and
targeted.

1.4 Main results
The main results of this thesis are:

1. New network generative model to simulate more realistic social networks. (R1)

2. Identification and ranking of factors impacting agent disposition to comply with
a social norm. (R2)

3. Determination of resource management strategies that induce cooperation (com-
munity approach) and policies that improve the conservation of natural resources
(policy approach). (R3)

4. Valuation, in monetary terms, of social pressure under variable social and envi-
ronmental conditions. (R4)

1.5 Review of the literature

1.5.1 Social networks and their potential role in natural re-
source management

In many economic decision-making problems (i.e., decision-making in natural resource
management), agent’s acts are influenced by the group. Private outcomes dependent on
group behavior are often referred to as peer effects (Ballester et al. [2006]). In situations
of this kind, an extended model for rationality (Acemoglu et al. [2011]; Lamberson



1.5 Review of the literature 5

[2009a]; Szabó and Fáth [2007]) is that agents not only take decisions depending on
the payoff their given choice may yield, but also on the peer effects. A community
of agents exploting a natural resource can be represented by a social network whose
nodes are the economic agents and whose links represent their social interactions.
The community is often very large in size, ranging from several thousand or tens of
thousands of agents and links. Empirical observations (Barábasi and Albert [1999];
Clauset et al. [2009]; Faloutros et al. [1999]; Muchnik et al. [2013]; Newman [2003a];
Redner [1998]) have shown the complex structure of such social networks. Within the
community, agents interact only with a subset of other agents (their peers), and peers
tend to be heterogeneous across the members of the community. This results in agents
having incomplete and asymmetric information about how all the other agents are
acting which, in turn, means agents have to make assumptions and inferences about
others’ beliefs and what they are doing. As a consequence of its complex structure and
an intricate decision-making process, collective behavior is difficult to predict.

Given the influence social interactions have on an agent’s behavior, correctly
understanding and describing social networks poses an important scientific challenge
for the near future. In this direction, two new disciplines are attracting attention
in the discussions concerning natural resource management, namely network science
and economics of networks. Network science is well-suited to describe sociality in
mathematical terms (Hyvonen et al. [2008]). Its strength lies in the inherent ability
of networks to discard unnecessary details and capture the essence of social systems:
the interactions between agents. The economics of networks (Bramoullé et al. [2014,
2016a]; Goyal [2007]) is a new field of network science that studies economic activities
meditated by social relationships. Two important areas (Currarini et al. [2016]) here
are (i) the emergence of a complex network structure as a result of agents’ interaction,
and (ii) the influence this underlying structure has on the collective behavior as a
whole. The first question addressed here is related to what the incentives agents have
to form a network by creating/modifying their interactions are. The second question
appears to be a well-known characteristic of many economic problems, i.e. the role
the network structure plays in the evolution of cooperation or the diffusion of new
technologies.

Fortunately, social networks are observable phenomena that can be measured and
analyzed using quantitative techniques. Advances in social networks analysis highlight
that network structure cannot be characterized merely by the individual properties of
agents, i.e. centrality. Most recent studies into social networks document patterns of
interaction in the form of statistical properties (Newman [2002]). Interestingly, the
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networks observed fall between the regularity of completely ordered lattices and the
randomness of random networks (Erdős and Rényi [1960]). This finding reveals that
there are mechanisms guiding social interactions and, ultimately, network formation.
Furthermore, some statistical properties appear to be common in social networks:
small-world effect, scale-free, assortativity, transitivity and modularity2.

These properties play an important role in the economics of networks and the
ways in which this discipline is linked to natural resource management. For example,
small-word refers to topological distance. If a network is connected, there is a sequence
of intermediate agents, or a path, between any two agents in the network. Small-
world indicates that most pairs of agents within the network are connected by a short
path. This property has direct implications on social learning, i.e. learning about the
profitability of an innovation or how to use a new technology is predicted to be easier
and faster in small-world networks. Scale-free implies few agents with a high number of
links, often called hubs, and many other agents with a small number of links. In social
networks, hubs have multiple alternative ways of finding information and thus they are
relatively more advantaged (i.e., for innovation or learning). Assortativity is the result
of homophily, or the tendency of agents to connect with similar agents. In the literature,
this property usually refers to the level of interconnectivity between agents with similar
number of links. Assortativity gives us information about network resilience. If a
number of agents leave the network, the path length will increase, and ultimately some
other agents that are still in the network will become disconnected. Isolated agents
do not share information with the rest of network members. Disassortative networks
are less resilient to such agent removal because hubs are more widely scattered across
the network and many paths depend on them. Hence, assortativity has important
implications on how communication flows and, finally, on the evolution of social
learning. Transitivity (or local cohesiveness) sheds light on network formation. Unlike
random networks, agents in social networks show transitive relations: “a friend of my
friend tends to be my friend”. The tendency of agents to tie in with closer agents
breaks the network up into separate dense homogeneous subgroups. In the language
of social networks, to be embedded within subgroups generates trust between the
members. Trust promotes risk sharing and resource pooling, but also redundant
information and negative lock-in. Subgroups are loosely connected to each other
trough an excess of closure behavior. Cooperation, which is important in times of
uncertainty or rapid change, can be accelerated by transitive relations, however, high

2An extensive explanation about statistical properties of social networks and how to measure them
is given in Chapter 2.
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levels of decentralization (modularity) slow down collective action within the network.
High levels of separation between subgroups in the network can foster an attitude
of “us against them”, limiting their common ability to cooperate. Note that, with
increasing decentralization, agents occupying bridging positions play an important role
in cooperation.

The influence single aspects of a social network have on cooperation, such as the
total number of cooperators, the density or size of the network, and the connectivity
between agents, has been analyzed as isolated elements (Currarini et al. [2016]; Tavoni
et al. [2012])3, however, the influence and dynamics of a realistic network and its many
facets has, as yet, not been studied in depth.

1.5.2 The evolution of social norms: Games played on net-
works

Natural resources and social norms are intrinsically dynamic. New approaches to natural
resource management, such as adaptive management (Holling [1978]), cooperative
management (Jentoft [2000]; Muse [1990]), collaborative management (Wondolleck
et al. [2002]), and adaptive co-management (Olsson et al. [2004]), among others, share
the same idea that social systems and natural systems are coupled and co-evolve
in time. Berkes and Folke (McCarthy [2000]) develop the idea that the integrated
social-ecological system must be the key analytical unit. This is because of the mutual
feedback between the evolution of the social norms, the network structure, and the
dynamic of the stock (Berkes et al. [2003]). In consonance with new approaches, we
should describe natural resources as stocks whose laws of motion are affected by both
natural factors and social behavior (Currarini et al. [2016]). On the other hand, one
would expect that cooperative behavior not only spreads through the community
according to social dynamics, but also according to stock dynamics. Consequently,
cooperators would increase/decrease their pressure on non-cooperators in accordance
with stock dynamics. However, the effects of stock dynamics on social pressure, and
finally on cooperation, have not been thoroughly analyzed.

A first attempt to analyze the interplay between the emergence of cooperation
and social networks was based on the evolutionary-game-theoretic approach. In its
initial phase, the evolutionary game-theoretic approach was based on the premise
that every agent can randomly meet any other agent, i.e., all agents are directly

3Factors other than the elements of a social network, but which favor disposition to comply with
social norms, have been studied intensively in economics and other social sciences (Wenegrat et al.
[1996], Hanaki et al. [2007]).
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linked to each other. In terms of a social network, one would talk about a complete
network. While this approach (Bowles [2004]) helped to understand the driving forces
behind the emergence and preservation of cooperation, it does not take full account
of the complexity, vicinity and segregation patterns that occur between agents when
interacting in realistic social networks. For this reason, (Nowak and May [1992])
and (Szabó and Fáth [2007]) introduced a simple spatial structure where agents can
interact only with their immediate neighbors. This new framework demonstrated that
cooperation is evolutionarily viable within a narrow window of the specified parameters
of the game. Nevertheless, this approach neglects empirical evidence (Amaral et al.
[2000]; Jackson et al. [2017]) showing that agents are grounded in strongly heterogeneous
networks with a great diversity among their neighborhood structure. To overcome the
topological identity of the agents and to break up the underlying symmetry of the
network structure, Santos et al. (Santos and Pacheco [2005]; Santos et al. [2006, 2012])
analyzed the emergence of cooperation in non-regular networks. Their results show
that scale-free networks actively support the emergence of cooperation within a simple
economic context.

In contrast to traditional ways of economic thinking, the evolutionary-game-theoretic
framework assumes that the agents’ rationality is limited and individual decisions
are taken by comparing payoffs. The proportion of individuals choosing a particular
behavior increases when the payoff for that behavior exceeds the average payoff in the
population, and decreases when the reverse is true. Hence, behavior that performs
badly from the individual’s point of view is weeded out, while behavior that reaps
benefits is imitated (Osés-Eraso and Viladrich-Grau [2007]; Sethi and Somanathan
[1996]). Within the evolutionary-game-theoretic framework, little attention has been
paid to how payoffs are determined. Payoffs could be based on short-term or long-term
perspectives, depending on the degree of individual commitment to the interests of
the collective. In a short-term perspective individual interests predominate, whereas
a long-term perspective reflects the welfare of the collective. In the latter case, the
payoff can be calculated as the outcome of a differential game. Finally, determining
the optimal strategic response to, let us say, thousands of other agents (each of whom
occupies a unique position in the social network) could, because of the complexity of
the strategic decision problem, stretch the assumption of rationality beyond its limits.
Therefore, the assumption of limited rationality seems reasonable to us if the social
network is large and topologically complex.

Alternatively, economists have studied the behavior of agents constituting part of a
social network within the framework of repeated games (Bramoullé et al. [2016b]; Haag



1.6 Outline 9

and Lagunoff [2006]). This strand of the literature establishes that cooperation can be
maintained throughout the game if the defecting agents are sanctioned and excluded
from cooperative benefits forever. The infinitely repeated games are framed as bilateral
or multilateral prisoner dilemmas. While the results of these studies are interesting,
their applicability to real life situations is limited because equilibrium is only found on
the basis of grim trigger strategies within the set-ups of infinitely repeated prisoner
dilemma type games (Bramoullé et al. [2016b]). Examples of successful cooperation
(Sethi and Somanathan [1996]), however, show that these social networks are not based
on grim strategies at all. Such repeated games are the repetition of static games and do
not consider the evolution of a stock variable. Consequently, neither do they allow for
the tragedy of the commons, where the evolution of a natural resource is a fundamental
element of the problem being analyzed.

1.6 Outline
After this introduction (Chapter 1), the thesis is divided into three main chapters
(Chapters 2-4) that address the research objectives, and a concluding chapter (Chapter
5). The four research questions (Q1-Q4) and the four main results (R1-R4) mentioned
above, suggest the matrix shown in Table 1.1. Table 1.1 shows where each question
and result are placed in the thesis. We now introduce the individual chapters.

In Chapter 2, “Influence of Fitness and Interaction Costs on Social Networks”, we
propose an efficient method for generating comparable and realistic networks. These
networks will act as substrates for the evolutionary games proposed in Chapters 3 and 4.
The aim of Chapters 3 and 4 is to analyze the influence social pressure within a network
structure has on cooperation. Hence, in order to determine the exact influence network
effects have on cooperation, we need to first generate an ordered sequence of realistic
and comparable networks. In terms of realism, we observed that the complex structure
of social networks is difficult to reproduce artificially and while traditional network
generative models are recommended for analyzing the influence single properties of
networks have on cooperation, they are, however, limited in terms of realism. In this
chapter, we examine the mechanisms that determine how to generate realistic networks
correctly. In terms of comparability, we propose an algorithm to simulate the evolution
of social networks in time. The algorithm is based on homophily, or the tendency
of agents to connect with similar agents (similar socioeconomic attributes). The
resulting networks are scale-free networks with an increasing level of link correlations
(assortativity, transitivity and modularity).
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Chapter 3 is entitled “The Tragedy of the Commons and the Economics of Social
Pressure”. In this chapter, we study the effectiveness social sanctioning (social pressure)
of resource overuse has in promoting sustainable extraction. Two types of agents,
compliers (those who decide to follow the norm) and defectors (those who extract above
the social norm) interact in realistic networks with increasing levels of link correlations
(in accordance to Chapter 2). Both types of agents update their strategies based on
utility differences. Compliers can reduce the utility of defectors using social pressure,
and social pressure varies depending on the share of compliers in the neighborhood
of agents, stock levels, and the level of cohesiveness between compliers. To quantify
both network and stock effects in monetary terms, social pressure is multiplied by the
extra benefits the defector gains as a result of incompliance. We refer to the economic
loss compliers inflict on the defectors as social punishment. Social punishment allows
us to analyze to what extent network effects contribute to overcoming the tragedy of
the commons. It also allows us to determine the magnitude of error of a traditional
“first-best” policy when network effects are not taken into account. Furthermore, our
results suggest that one-time payments may help to overcome the tragedy of the
commons.

Once factors and practices favoring cooperation have been identified, our aim is
to answer the question of when different practices can be best applied. In Chapter 4,
entitled “Tragedy of the Commons: Traditional Policy Instruments versus Network
Policy”, we study the three regimes of the stationary state of evolutionary dynamics:
(i) all-defector equilibrium, (ii) all-complier equilibrium and (iii) the mixed equilibrium
where both types of agents coexist; and how policies that disfavor defectors may
lead to a stable cooperative stationary points. We use some representative types
of networks (complete, scale-free and random networks) and identify three different
policy corridors: (i) “no-policy”, (ii) “network policy” and (iii) “traditional policy
instruments”. Corridors help us to determine the regions where different practices
should be best applied. “Network policy” relates to initiatives that enhance the positive
effects of social pressure, i.e., increasing the cohesiveness of compliers through seminars
or workshops. “Traditional policy instruments” refers to traditional economic analysis
(i.e., taxes or subsidies). Unlike network policy, economic incentives are focused on
direct intervention in the form of initiatives that reduce/increase the payoff of a given
choice. Results show large regions where both policies coexist, in other words, they can
be applied indistinctly or in combination. The corridor “no-policy” means that there
are sufficiently high levels of cooperation in the community to maintain sustainability.
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Finally, Chapter 5 concludes by discussing the implications of this study and further
research for the future.

Table 1.1 Framework of the thesis.

Questions Chapter 2 Chapter 3 Chapter 4
Q1: Economic value of social pressure R1 R4 R4
Q2: Network policy R2 R2
Q3: Traditional policy instruments R3
Q4: Policy options R3





Chapter 2

Influence of Fitness and Interaction
Costs on Social Networks

Summary

Many social networks exhibit power law degree distribution with different levels of link
correlations. Correlations are essential to understand spreading of information, trust or
social pressure. However, the emergence of correlations is not well understood yet and
thus there are no perfect network generative models reproducing the observed topology
of social networks. In this study, we use socioeconomic information (fitness) of agents
to drive their incentives for interaction. The distribution of fitness can be derived
easily from empirical data where the parameter gamma of a power law cannot be
observed. Thus, the study opens a door for modeling networks that can be empirically
justified. In particular, we analyze the classes of fitness distribution over which a
desired power law holds. We obtain that heavy-tailed fitness distributions generate
power law networks efficiently. Moreover, existing links may be destroyed and new
links may be created. If links are costly, one would expect that interaction costs would
be lower between similar than dissimilar agents, implying that homophilous relations
would be more stable and should be last longer. With our definition of link stability
we provide new arguments to simulate the evolution of homophily in social networks.
This study shows that homophily increases the levels of link correlations over time.

Keywords: Cost-directional rewiring; Evolving Networks; Fitness-based models
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2.1 Introduction
Recent years have witnessed a burst in research on economics of networks (Bramoullé
et al. [2014, 2016a]; Goyal [2007]), a new promising field of economics that analyzes the
influence of social structure in economic activities, and how complex structure emerges
in social systems (Currarini et al. [2016]).

The first question appears to be a prominent characteristic of many economic
problems, i.e., evolution of cooperation or adoption of new technologies. The simplest
way to represent the structure of a social system is the social network, whose nodes
are the economic agents and links are their social interactions. Given that agents are
involved in a wide variety of interactions, the totality of links in the social network
characterizes the complex structure of the social system. Advances in network sciences
have allowed to define social structure in the form of statistical properties of networks
at different scales. At the macro-scale, the participation of an agent in the organization
of the network is the most significant unit of analysis. The level of participation
of an agent is often referred as her status, and measured by her degree (number of
distinct links in the social network). Empirical observations (Barábasi and Albert
[1999]; Clauset et al. [2009]; Faloutros et al. [1999]; Muchnik et al. [2013]; Newman
[2003a]; Redner [1998]) have shown the power law pattern in the degree sequence of
social networks. Contrary to random networks where most agents have comparable
degree, in social networks a few highly connected agents (also called hubs) coexist with
a large number of agents with small degree. At the micro-scale, some link correlations
are observed. Agents tend to be linked to others who have closer characteristics, such
as similar attributes (measured by assortativity1 (Newman [2002])), and/or structural
proximity (measured by transitivity (Newman [2003a])). Moreover, it has also been
shown (Dorogovtsev et al. [2002]; Szabó et al. [2003]) an inverse proportionality between
transitivity and degree, which means that hubs tend to have lower transitivity than the
rest of agents. This inverse proportionality is often known as hierarchical clustering
(Ravasz and Barabási [2003]). At the meso-scale, the tendency of agents to tie in with
closer agents breaks the network up into separate dense and homogeneous communities
(measured by modularity (Newman [2006])). The economic consequences of each of
these properties can be reviewed in Jackson et al. (Jackson et al. [2017]).

The second question is motivated for the observed mode of organization. Social
networks are in between the regularity of lattices and the randomness of random
networks (Erdős and Rényi [1960]). This finding reveals the existence of distinct

1Assortativity, transitivity and modularity metrics are given in Appendix C.
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ordering mechanisms behind complex structure, such as (i) network evolution, implying
that social networks are not static and then agents may add/remove links to the network
continuously in time; and (ii) microscopic dynamics, representing agent’s preferences
to connect to others with either high-attractive attributes or closer characteristics.
Unfortunately, economics of networks has not yet given a satisfactory answer to the
question of how complex structure emerge in a social system. As a consequence,
traditional models of network formation fail in one way or another to reproduce at least
one of the observed statistical properties. These models are useful tools for quantifying
the influence of social structure in economic activities because artificial networks can
be used for comparative purposes, however, they are limited in terms of realism.

In this study, we propose an extension of traditional models that helps to generate
any number of realistic networks2 which preserve the power law degree distribution
and the hierarchical clustering, but present an increasing level of link correlations
(assortativity, transitivity and modularity). To this extent, we revisit two popular
approaches of network formation: preferential attachment (Barábasi and Albert [1999];
Price [1976]) and directional rewiring (Xulvi-Brunet and Sokolov [2004]). These
approaches usually share a common trait; local rules for interaction are based on a
macro-scale property (degree of agents) of networks. However, we argue that degree
is a consequence and not a cause of network dynamics. In addition, we show that
more flexible models can be constructed when local rules for interaction are based on a
micro-scale property (fitness of agents) of networks.

The motivation behind our approach arises from the idea that fitness captures
socioeconomic information of agents and may drive their incentives for interaction.
Fitness is a numerical value that represents a large number of independent attributes
of agents and its distribution within the population may be approximated by any
statistical distribution. In our model, the original network is generated according to
individual preferences to connect with higher fitted agents (preferential attachment)
and then we perform successive link reconfigurations based on a cost function (cost-
directional rewiring). Each of these reconfigurations generate a new network. The cost
function is defined as the euclidean distance between fitness of linked agents, implying
that links between similar agents (similar fitness) are more stable in time than links
between dissimilar agents. In terms of stability, high-cost links have more probability
to get cut and replaced. As a result of a dynamic process governed by the fitness of

2The term realistic is used to indicate that our model is able to generate artificial networks with
statistical properties similar to those of real-world networks.



16 Influence of Fitness and Interaction Costs on Social Networks

agents and the stability of links, the model generates comparable networks with an
increasing level of link correlations.

Fitness-based network generative models are widely known in economic of networks
literature (Bianconi and Barabási [2001]; Bianconi and Barabási [2001]; Caldarelli
et al. [2002]; Nguyen and Tran [2012]; Servedio et al. [2004]), but little attention has
been given to the necessary conditions to generate social networks efficiently. In this
study, we analyze the range of densities (total number of links in the network) and
the classes of fitness distribution over which the desired power law degree distribution
holds. Once the classes of fitness distributions are identified, we analyze the effects
of increasing fitness asymmetry in statistical and computational terms. A correct
understanding of the restrictions of fitness distributions not only gives some insights on
the microscopic dynamics that govern network evolution, but also allow us to improve
the computational performance of network generative models. With our definition of
link stability, we aim to provide new arguments to simulate the evolution of homophily
(“like to associate with like”) in a social system.

The study proceeds as follows. We discuss the related work in section 2.2. We
describe the details of the model in section 2.3. The simulation results and possible
applications are presented in section 2.4. We provide concluding remarks in section 2.5.

2.2 Related work
Since Price (Price [1976]) and Barabasi-Albert (Barábasi and Albert [1999]) models
were published, it is commonly accepted that the power law degree pattern in social
networks emerges as a result of a dynamic process in where networks grow monotonically
and agents are involved in some sort of competition for links. The definition of social
system as competitive system is motivated by the existence of hubs in social networks.
In contrast to random networks, individual preferences for interaction seem to be
biased3, hence, not all agents are equally successful in acquiring links (Adamic and
Huberman [2000]).

Althought competition is a good explanation for the emergence of the power law
pattern, degree-based individual preferences lead to a correlation between the age4

3Similarly to biological systems, some agents seem to be more adapted to the social context. Those
agents are more attractive to others. In the early models, attractiveness of agents is proportional
to their degree; and the cumulative effects of preferential attachment increase the attractiveness of
an agent because this agent is now more embedded within the network. This phenomenon is called
“rich-get-richer” and induces the emergence of hubs.

4As the probability of selection increases linearly with degree, agents arriving earlier to the network
become into the most attractive agents in the network and, finally, into hubs. Thus, when local
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of the agents in the network and their degree (Krapivsky and Redner [2001]). Due
to this correlation is not always realistic (Adamic and Huberman [2000]), different
generalizations of the Barabasi-Albert model have been proposed during last years.
One of the most interesting extensions of the model is the introduction of a fitness
function that tries to represent the ability of agents to attract other agents. Thus, in
this extension (Bianconi and Barabási [2001]; Bianconi and Barabási [2001]), fitness
and degree jointly determine the preference of agents for interaction. However, further
extensions (Caldarelli et al. [2002]; Nguyen and Tran [2012]; Servedio et al. [2004])
argue that often the information of agent’s degree is hidden to agents or, when available,
it is quite implausible that agents use this information when making connections. It
is reasonable to expect, thus, there are many situations where link formation only
depends on fitness5.

High levels of assortativity, transitivity and modularity are usually observed in
social networks, however, competition leads to dissortative networks. This means that
competition is a necessary but not a sufficient driving force to generate more complex
networks. To understand how link correlations appear in a social network one may
think there are different types of agents in a population (high-attractive attributes,
closer characteristics). Thus, the probability of interaction between agents depends not
only on the attractiveness of agents but also on the individual preferences to connect
with closer agents. However, link correlations do not clearly reflect the behavior of
agents. Suppose the pair (φi,φj) represents the attributes of two linked agents i and j,
for example, beliefs of climate change. In this case we cannot distinguish easily between
different behaviors: (i) homophily (Jackson et al. [2017]) or link forming as a result
of the pair (φi,φj) being similar, or (ii) social influence or the pair (φi,φj) becoming
more similar as a result of the link. When attributes are either not malleable or else
do not change appreciably on the time scale of interest, homophily is a good indicator
of link formation (McPherson et al. [2001]). But, as recent studies (Bramoullé et al.
[2012]; Jackson et al. [2017]) pointed out, we have an incomplete understanding of how
homophily impacts network formation.

In absence of socioeconomic information, degree is a statistical property that is
always available for every network (Newman [2003b]). Moreover, homophilous behavior
based on degree has been proven as an efficient approach (Catanzaro et al. [2004];

rules for interaction are based on degree, the “rich-get-richer” phenomenon is equivalent to the
“faster-get-richer” phenomenon.

5Following the analogy of biological systems, fitness represents the attributes of agents that are
more associated with adaptation, i.e., experience. When attractiveness is proportional to fitness, the
“rich-get-richer" phenomenon turns into the “fitter-get-richer" phenomenon. In this context, degree of
agents has to be seen as a mere consequence of network dynamics.
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Newman [2003b]) to increase the assortativity of networks. The downside is that
these models fail when representing real transitivity trends (Liljeros et al. [2001]). For
example, in Brunet et al. (Xulvi-Brunet and Sokolov [2004]) the rewiring step (Farkas
et al. [2004]) produces networks with very small transitivity values, while Catanzaro
et al. (Catanzaro et al. [2004]) cannot reproduce the power law degree distribution
together with hierarchical clustering (Ravasz et al. [2002]).

On the other hand, correlation among nearby links (transitivity) is difficult to
reproduce. The basic assumption when modeling cluster formation is closure behavior,
an attempt to capture the evolution of agent interactions with structural constraints.
This approach argues that the strong effect of individual preferences is mitigated in
instances where agents are already proximate and then more available for interaction.
Hence, the position of agents within the network may affect the ways in which they
interact and this position depends in turn on choices they have made in the past.
Note that structural proximity can be interpreted in different ways, (i) the shortest
path length connecting agents or (ii) the “social interaction foci” (Feld [1981]) (group
membership) that facilitates social interactions. In the simplest models, transitive
relations arise by adding a “triad formation step" (Holme and Kim [2002]; Jin et al.
[2001]) once the network has been constructed. If there exist a link between the pair
of agents i and j, then one more link is added from i to a randomly chosen neighbor of
j. Although triadic closure increases global transitivity of networks and allows closure
of cycles greater than three (Kossinets and Watts [2009]), other aspects of closure
behavior cannot be captured well (Jackson et al. [2017]). For example, link forming as
a result of a chain of referrals or link forming as a consequence of group membership.
The most important limitation in tiradic clousure models is that the power law degree
distribution becomes increasingly weaker by adding new links to the network.

The interdependence between network properties, while non-trivial, may suggest
that both homophilous and closure behavior are good candidates to explain community
structure. However, high assortativity and/or transitivity values are not prerequisites
to the existence of community structure, at least when considering modularity as an
indicator of community structure.

Even though modularity optimization and other clustering techniques (Lancichinetti
et al. [2008]) are efficient at discovering meaningful partitions within the network,
there still is a disagreement on the necessary and sufficient conditions for the existence
of community structure (Orman et al. [2013]). Thus, a formal definition of what a
community is, and its possible identification in a specific network, will help to disclose
unobservable mechanisms envolved in link formation.



2.3 The model 19

This review focuses on limitations of some representative approaches to network
formation suggesting that, while certainly useful, behavior of agents may have fea-
tures that cannot be captured by the mechanisms described above. To this extent,
Sendiña-Nadal et al. (Sendiña-Nadal et al. [2016]) recently proposed a new network
generative model in which network structure emerges from exclusively microscopic
growing assumptions, but individual preferences for connection are still based on degree.

2.3 The model

2.3.1 Network representation
Let (N, ω) be a link-weighted network, where N = (A, L) is a simple connected
network, and ω : L → R is a weight function. The network N consists of the finite set
A = {1, ..., n}, n ≥ 2, of agents and the set L of links, which are unordered pairs of
elements of A. Link-weighted networks are widely used representations for numerous
optimization problems, i.e., routing. One can find analogies to these networks when the
stability of social interaction depends on a cost function. Even if it is not possible to
derive a realistic cost function, heuristic considerations can be introduced to describe
the ongoing cost of maintaining links. Let Φi be the fitness of any agent i ∈ A, ω(i, j)
represents the cost of interaction between any pair of linked agents i and j, such that
ω(i, j) =: ωij =

√
(Φi − Φj)2 = |Φi − Φj|, (i, j) ∈ L. Note that we are assuming that

the cost of interaction is proportional to the social distance (measured as the euclidean
distance) between connected agents. By definition, simple networks are undirected so
that ωij ⇔ ωji. Moreover, agents are not linked with themselves (self-loops) and there
is not more than one link between agent i and j (uniqueness of the link). For each
agent i, N (i) denotes her neighborhood and |N (i)| = ki her degree. If network N is
connected, then for any pair of agents i and j there exist a finite sequence of agents
a1, ..., aM such that a1 = i, aM = j and am+1 ∈ N (am) for m = 1, ..., M − 1.

2.3.2 The power law degree distribution
Many social networks (Clauset et al. [2009]) are characterized by a degree distribution
that can be approximated by the power law distribution, pk = k−γ, with scaling
parameter 2 < γ < 3 and k representing the degree of agents6. Despite the ongoing
debate about the nature of the distribution that offers the best fit to empirical data, the

6In the reminder of this chapter, we use the term scale-free regime to mean that γ is in the range
(2, 3)
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power law pattern has arose much interest for its mathematical properties and physical
interpretations. Among other distributions, the power law provides an attractive
mathematical framework that helps to understand complex networks in simpler ways.
Some properties of social networks, i.e., the ultra-small-world effect (Cohen and Havlin
[2003]) and the degree differences between agents can be studied theoretically using
the power law distribution because of their dependence to the scaling parameter and
the size of the network.

Our model generates scale-free networks when the underlying fitness distribuion in
the population is selected properly. We start from the observation that agent’s attributes
are an important factor for link formation (Jackson et al. [2017]). These attributes
consist of biological and socioeconomic factors like gender, age, race, nationality,
income, etc. The S attributes of each individual, denoted by Φi, can be expressed as a
numerical value that falls within the interval of positive real numbers (0, ∞]. According
to competition, the value of Φ can be understood as the ability of agents to attract
links. Every agent i has individual attributes so that many agents differ from each
other and form a heterogeneous population. In a heterogeneous population not all
agents are equally attractive to others, which means agents with higher fitness tend to
have higher degree7.

The social network is generated link by link and the formation of a new link
is decided by a stochastic decision rule. In contrast to other methods this network
generation process has the advantage that it is endogenous, i.e., it depends on underlying
distribution of the agents’ attributes. As such it does not hamper the design of the
micro-level structure of the network and provides sufficient freedom for variations at
the micro-level structure as sought by this study.

The network generation process based on fitness is implemented by the following
five steps:

1. Let N0 be the initial (small) network which can be any network, and |A0| = n0.

2. Define as 0 < v ≤ n0 the number of agents to whom a newcomer j may connect
when she joins the network, and let kj = 0 be the initial degree of a newcomer j.

3. At each step t of generation, 0 ≤ t ≤ n − n0, an agent i already present in the
network is selected with a uniform probability Pi = 1

n0+t that is independent of
agent’s i fitness Φi. If the newcomer j is already linked with agent i, repeat step
3.

7As it will be shown, degree of agents is very sensitive to: (i) the class of fitness distribution, (ii)
the asymmetry of the fitness distribution, and (iii) the time at which agents arrive to the network.
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4. With probability Pi = Φi
Φmax

agent i connects to the newcomer j, where Φmax =
max{Φi}n0+t

i=1 denotes maximal value of the fitness of all agents in the network
(t ≤ n − n0). Let us assign the value 1 to the decision to connect the newcomer
to the existing network and 0 otherwise. For all randomly generated probabilities
that are less than Pi the newcomer should be connected and otherwise not. To
transform this decision rule into an operation rule we define the Bernoulli variable
X that results from

X =
⎧
⎨

⎩
1 if r ≤ Pi

0 if r > Pi

where r is randomly drawn number from the uniform distribution with r ∈
[0, 1]. This method is commonly known as the inverse transform method and is
comparable with a forge coin where the probability to show up head (1) is Pi

and tail (0) is 1 − Pi. In case of rejection (X = 0), steps 3 and 4 are repeated.
Likewise, steps 3 and 4 are repeated in case of acceptance in order to establish
as many links as defined by v, i.e., until kj = v.

5. Selection stops when t = n − n0.

Although this algorithm is widely known, some requirements related to the outcomes
have been less evidenced in the traditional models. Next, two complementary and
necessary conditions are provided in order to generate networks according to the
scale-free regime: (i) the sparsity of links, and (ii) the level of competition.

The sparsity of links

The choice of the parameter v allows defining the network density, d, and the average
degree of the network, ⟨k⟩, since both parameters depend on v. More precisely, these
properties are defined by d = 2(l0+v(n−n0))

n(n−1) and ⟨k⟩ = 2(l0+v(n−n0))
n , where l0 = |L0|

corresponds to the initial length of the set of links at t = 0. If the initial network is
complete, it holds that l0 = n0(n0−1)

2 . As we are assuming that all agents add links
at a constant rate v, it holds that d = 2v

n−1 and ⟨k⟩ = 2v. Each newcomer starts in
the network with degree kj = 0, however, as the network grows new links may be
added so that the initial degree can be modified. Note that, at increasing v above a
certain threshold the power law pattern becomes increasingly weaker. This threshold
bounds the maximal number of links to be added at a constant rate by newcomers,
vmax, and can be estimated using the natural cutoff of power law networks. Denote
by F (k) = Pr(K ≥ k) the cumulative distribution function (CDF) of a power law
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distributed variable, where again k represents the degree of agents. For instance, in
the continuous case

F (k) =
∫ ∞

k
p(k)dk =

(
k

kmin

)−γ+1

(2.1)

and the integral of p(k) over two different degrees

F (k) =
∫ k2

k1
p(k)dk (2.2)

provides the probability that a randomly chosen agent has degree between k1 and k2.
To calculate kmax we assume that in a network of n agents we expect at most one
agent whose degree exceeds kmax, then

F (k) =
∫ ∞

kmax

p(k)dk =
(

kmax

kmin

)−γ+1

= 1
n

(2.3)

this yields
kmax = kminn

1
γ−1 (2.4)

and by inverting eq. 2.4 in the limits, 2 ≤ γ ≤ 3, we obtain
⎧
⎪⎪⎨

⎪⎪⎩

kmax
n = kmin if γ = 2

kmax√
n = kmin if γ = 3

(2.5)

Neither self-loops nor multiple links are allowed in our network so that kmax < n. Let
kmax = n − 1 represent the extreme case in where all agents are connected to the
highest-fitted agent (except herself). Let us assume that in a heterogenous population
there always exist an agent with fitness very low and thus her ability to attract links
nears zero. This agent with minimum degree has exactly v links, so kmin = v in the
network. Introducing kmax = n − 1 and kmin = v in eq. 2.5, the number of links to be
added at a constant rate by newcomers before power law becomes weaker falls into the
range

1 ≤ v <
√

n (2.6)

In other words, if we want 2 < γ = ln(n)
ln

(
kmax
kmin

) + 1 < 3, we need 1 ≤ kmin = m <
√

n.

Notice that 1 < kmax < n. When kmax nears the network size, kmax → n, the CDF of
the degree sequence does not follow the power law distribution, however, it serves to
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define the upper limits of density. As we can observe, scale-free networks are sparse
networks with density very low 2

n < d < 2√
n .

The level of competition

The number and size of hubs are determined by the level of competition in the
population. Without loss of generality, we use v = 1 at each time step; increasing v

(within the range v ∈ [1,
√

n) would just result in higher density, neither changing the
level of competition nor the emergence of power law pattern. By introducing v = 1 in
eq. 2.5 we obtain that √

n < kmax < n and eq. 2.4 shows the larger a network, the
larger the degree differences between the agent with the smallest degree kmin and the
largest hub kmax.

Our first interest is in the largest hub satisfying kmax >
√

n. Note that an increasing
level of competition makes the hubs smaller and less numerous, consequently the degree
sequence {k1, k2, ..., kn} leaves the scale-free regime, γ > 3. The size of the hub is
affected by the level of competition because the probability of highest-fitted agents
being selected decreases as fitness becomes similar in the population. It results in
agents having similar degrees and kmin ∼ kmax in the network. As described before,
the probability of selection of any agent i in a single attempt equals Pi = Φi

n′Φmax
, where

n′ = n0 + t denotes the number of agents in the network at a given time step, however,
several first attempts might fail thus we need to compute selection in unsepecified
number of attempts as suggested in (Lipowski and Lipowska [2012])

Pi = Φi

n′Φmax
(1 + τ + τ 2 + ...) (2.7)

where τ = 1
n′

∑n′

i=1 1 − Φi
Φmax

= 1 − ⟨Φ⟩′

Φmax
is the rejection probability and ⟨Φ⟩′ =

∑n′

i=1 Φi

n′

is the average fitness in the network. Due to convergence (0 < τ < 1) we can compute
the probability of selection of any agent i as

Pi = Φi
∑n′

j=1 Φj

= Φi

n′ ⟨Φ⟩′ (2.8)

Define by Ψi = Φi

⟨Φ⟩′ the intensity of attraction of agent i with respect to the others.
When agents are equally fitted, we obtain Ψ = 1 for all agents and this value is
constant over time. In this situation, the population is under symmetrical competition.
The system behaves similarly to random networks and Pi follows the harmonic series
Pi = ( 1

T , ..., 1
n−1), 0 < Pi ≤ 1, where T is the arriving time, in other words, the time at
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which agent i joins the network. When network grows, t > T , the probability of being
selected decays proportionally to the network size. The expected degree of agent i,
E(ki), is a sum of n − T independent but non-identical Bernoulli distributed variables
that follows the Poisson’s binomial distribution with mean and variance (Wang [1993])

E(ki) = E
⎡

⎣
n∑

t=T +1
Xt

⎤

⎦ =
n∑

t=T +1
E [Xt] =

n∑

t=T +1
Pt

Var(ki) =
n∑

t=T +1
Pt (1 − Pt)

(2.9)

Hence, we can estimate E(ki) as the sum of the harmonic series such that E(ki) =
∑n

t=T +1
1
t ≃ ln

(
n−1

T

)
. Relative to T , agents with similar fitness but higher age (higher

n − T range) increase their probabilities to acquire more links.
Symmetrical competition cannot generate power law networks. The expected degree

of any agent i in the population is E(ki) ≃ v because the expected arriving time for
any agent is Ti = n

2 , and thus Pi ≈ 0 at each time step. The expected largest degree
is E(kmax) ≃ ln(n − 1) because agent arriving at T = 1 maximizes her probabilities
for kmax. The resulting degree sequence follows the exponential distribution with
kmax <

√
n.

At the other extreme, when only agent i compete for links, there is complete
asymmetrical (monopolistic) competition. In the monopolistic model, the expected
largest degree is E(kmax) ≡ Ek(Φmax) ≃ n

2 v = n
2 , where Ek(Φmax) represents the

expected degree of the highest-fitted agent in the population. Although the size of the
largest hub satisfies kmax >

√
n, the degree sequence does not follow the power law

distribution because the rest of agents have degree k = v = 1.
It has been shown that fitness (Φ) and the arriving time (T) jointly determine

degree and that, in contrast to degree-based models, in our approach it may occur that
the later selected agents gain more links compared with the initially selected agents.
Thus, fitness-based models reduce the positive correlation between age and degree in
the network. The above examples of competition represent two ends of a continuum
along which one can find a variety of dynamics influenced by the underlying fitness
distribution that generates different number and size of hubs.

To determine the level of competition in any social system, we focus on the
higher fitted agents in the population and when they join the network. Let us define
Q = {q1, ..., ql}, Q ⊂ A, as the subset of higher fitted agents in the population. Each q

agent is called attractor or potential leader. Let ξ be the number of time steps required
for an attractor to join the network (success), then the probability that the t − th time
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step is the first success is Pr(ξ = t) = (1 − p)t−1p, each with success probability p. The
average number of time steps required for first success is the expectation value of ξ

E(ξ) =
ξ∑

t=1
t(1 − p)t−1p = p

(
1
p2

)

= 1
p

(2.10)

and p = F (Φ), where F (Φ) is the CDF that represents F (Φ) = Pr(Φ > Φ′), Φ′ is a
threshold fitness, in any probability distribution ρ(Φ). In other words, and depending
on the distribution, p may represent the fraction of outliers in ρ(Φ).

Let {ξ1, ξ2, ..., ξl} be the number of time steps to different q successes. Each ξq is a
geometric variable with success probability p = F (Φ). So, E(ξq) = 1

p for each q. Now
let Y be the number of the l − th success, where Y = ∑l

q=1 ξq, then

E(Y ) = E
⎛

⎝
l∑

q=1
ξq

⎞

⎠ =
l∑

q=1
E (ξq) = l

p
(2.11)

Attractors are expected to arrive to the network at a constant rate t = (T, 2T, ..., lT ),
T = E(ξq) = 1

p . Given that scale-free regime requires few hubs coexisting with a large
number of agents having small degree, our interest is in asymmetrical competition
with 1 < l << n attractors. According to this, we can say that any particular
fitness distribution ρ(Φ) supports the scale-free regime if and only if its outliers
become hubs sufficiently large and numerous to have a significant impact on the degree
sequence. While outliers represent a small fraction of the population, their number
and attractiveness to others depend on the nature and restrictions of ρ(Φ).

Note that, moving away from the monopolistic model, k̂max ≡ E(kmax) < n
2 , and

according to eq. 2.5 and eq. 2.6, parameter v is being reduced and thus 1 ≤ v <
k̂max√

n =
√

n
2 . This means that density is also reduced 2

n < d < 1√
n .

2.3.3 Increasing link correlations in the network
Based on homophilous behavior, Xulvi et al. (Xulvi-Brunet and Sokolov [2004])
proposed a method to generate networks with increasing correlation patterns. In their
original algorithm, directional rewiring is drived by agent’s degree and, at each time
step, two links are selected in the network at random. With probability P , rewiring is
applied only if it increases assortativity. Otherwise, with probability 1 - P , rewiring is
random. However, this method generates small transitive relations and destroys the
hierarchical clustering in the network.
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Alternatively, we suggest that homophily would be related to a cost-link-minimization
condition. According to Leenders (Leenders [1996]) and Kossinets (Kossinets and Watts
[2009]) works, one would expect that the ongoing cost of maintaining connections
would be lower between similar than dissimilar agents, implying that homophilous
relations would be more stable and should be last longer. Lower costs are related to
the fact that similarity of attributes simplifies the process of communicating with and
predicting the behavior of others (Hamm [2000]).

In our algorithm, the social distance of connected agents helps us to define the
cost of interactions and drive homophilous behavior. Cost-directional rewiring is
applied after preferential attachment because competition leads to power law and
dissassortative networks. In such networks, most of the links are connecting agents
with large fitness differences (large social distance) and therefore have associated high
costs of maintenance. At each time step, we simulate the tendency of agents to reduce
their connection costs in the network over time. When two links are selected, there
exist three possible configurations for rewiring. Denote by Cκ = {(iκ, jκ) : iκ < jκ},
κ = {1, 2, 3}, the set of all possible link configurations. We order them with respect to
their aggregate cost eCk

, where eCκ =
√∑

(iκ,jκ)∈Cκ
(Φiκ − Φjκ)2.

Cost-directional rewiring is an extension of (Xulvi-Brunet and Sokolov [2004]) work
in which we propose two main modifications from the original algorithm: (i) instead of
stochastic acceptance, our algorithm selects the configuration of links C∗

κ that minimizes
the aggregate cost function e∗ = min{eC1 , eC2 , eC3} of the selected agents; and (ii)
homophilous behavior is based on fitness, not in degree, so the more similar the pair
(Φi,Φj) the lower the cost function is.

Starting from the original power law network, cost-directional rewiring (Fig.2.1)
works as follows:

1. At each rewiring step, two links connecting four different agents are selected with
uniform probability 1

|L|=l .

2. The original configuration of links is denoted by C1 and its aggregate cost by eC1 .
The algorithm evaluates the other two alternative configurations, eC2 and eC3 ,
and selects the configuration with lowest aggregate cost e∗. After rewiring, C∗

k

represents the most stable distribution of connections between agents such that
the higher fitted agents are connected and the lower fitted agents are connected.
In the case that one or both links already existed in the network, step 2 is
discarded and step 1 is repeated.

3. Rewiring stops when the desired level of link correlations has been reached.
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Fig. 2.1 Cost-directional rewiring.

Reconfiguration of links that reduces preferential attachment and increases the stability of
connections. The plot shows all possible configurations (C1, C2, C3) of two links connecting

four agents (1, 2, 3, 4). The first configuration C1 corresponds to the pair of links with
highest costs in the network. The other two configurations (C2, C3) are the alternatives for

rewiring. Each configuration has associated an aggregate cost of connections
eC1 = 274.02, eC2 = 255.48, eC3 = 227.01. We select the configuration of links that
minimizes that cost. In the example, the minimum aggregate cost is eC3 = e∗ thus

configuration C3 = C∗
k is selected.

Let θ = ∑ℓ
u=1 ωu be the global cost function in the network, where ℓ = |L|

is the total number of links. The evolution of θ over time can be described as
θ(t + 1) = θ(t) − ∆e(t + 1), and ∆e(t + 1) = eC1(t) − e∗(t). As we are minimizing the
cost of interactions, we obtain that ∆e(t + 1) ≥ 0 and then θ is a decreasing function
θ(t + 1) ≤ θ(t). Assuming there are no local minima, we have that θ(0) = max {θ}t′

t=0
and θ(t′) = min {θ}t′

t=0, where t′ represents the time at which the algorithm stops.
This means we are obtaining more stable interactions in the network over time. The
parameters t′ and θ can also be used to stop the algorithm.
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In section 4 we show that repeated application of cost-directional rewiring step leads
to networks with increasing assortativity, modularity and transitivity. This process
does not change the density and the degree pattern in the original network.

2.4 Simulation results

2.4.1 Influence of fitness distribution in competition
Following our model, we investigate the restrictions on the classes of fitness distribution
which support the power law degree pattern. To measure the effect of fitness choices,
n = 10000 random numbers are drawn from desired distributions. These numbers
represent the fitness of agents and are used to generate the network. We perform
10000 repetitions of each desired distribution according to Appendix A, and generate
the corresponding 10000 networks according to section 2.3.2. Once networks have
been constructed, we anaylze statistically whether the resulting degree sequences can
be succesfully fitted by the power law distribution. The statistical framework for
quantifying the power law approximation is briefly presented in the Appendix B of this
paper. Results are shown in Table 2.1 for the normal, uniform, exponential, stretched
exponential, truncated normal, log normal and power law distributions.

Although network analysis provides guidance to the modeler, it is computationally
very demanding, thus, we propose a complementary method to estimate the level of
competition in a social system. The method proceeds as follows: for a given distribution,
we select the agent î with the highest probability to become the largest hub in the
network and use eq. 2.9 to make predictions, such that E(kmax) ≈ Ψîln

(
n−1
Tî

)
if

Ψî < Tî; otherwise E(kmax) ≈ Ψîln
(

n−1
Ψî

)
+ (Ψî − Tî). To evaluate the quality of our

predictions, the intensity of attraction and the arriving time of agent î are averaged
over 10000 repetitions of each fitness distribution. Once ⟨Ψî⟩ and ⟨Tî⟩ are obtained
from the entire population, the corresponding expected degree E(kî) is compared to
the average degree of the largest hub, ⟨kmax⟩, obtained from network simulations.

The selection of agent î depends on the nature of the fitness distribution, however,
the ratio Ψî is always fluctuating while network is being constructed (n′ < n). For
the sake of simplicity, we prove that those fluctuations are small and decreasing with
network’s growth (n′ → n) and, thus, our predictions are not significantly affected.
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Symmetric distributions

Many classes of fitness distributions display symmetry, such as normal, Cauchy, uniform
or logistic distribution. Symmetric distributions have in common that they are never
skewed distributions, thus, the intensity of attraction of all agents is of the same order of
magnitude and competition is always close to be symmetrical too. In such distributions,
agents can only increase their degree by decreasing their arriving time. Next, we study
the normal distribution or, in other words, the effects of symmetry about the mean on
competition. Normal distribution offers good economic interpretation of fitness values.
We started assuming that fitness Φi of any agent i was defined by a reasonably large
variety of socioeconomic arguments acting independently of one another. If additive
effects on fitness are considered, then Φi will be normally distributed irrespective of the
manner in which the individual arguments are distributed. The fitness can be written
as Φi = ∑S

s=1 φs, ∀i ∈ n and φs ∈ R+. Arguments describe attributes like educational
level, nationality, socioeconomic status, age, etc.

In the normal distribution, the majority of fitness values fall within two standard
deviation of the mean. Moreover, in our model the fitness is restricted to be a positive
real number, Φ ∈ R+, such that the intensity of attraction of all agents is approximately
bounded within the interval, Ψ ∈ (0, 2], because Φmax ≃ 2 ⟨Φ⟩. According to the fitness,
agents with fitness about the mean are more numerous in the population and, thus,
the first agent arriving to the network is likely to be one of those agents. According
to the arriving time, the agent who arrives first to the network has on average higher
probabilities to become the largest hub8. Fig.2.2 shows that degree of agents is not
positively correlated to the fitness in the normal distribution. As expected, agents with
fitness about the mean have larger degree.

8Note that, under symmetrical competition, the probability of being selected Pi is very sensitive
to the size of the network and thus degree of agents is basically increased at early stages when the
network is small (n′ << n).
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Fig. 2.2 Effect of fitness on degree.

Each data point gives the fitness of agents and their corresponding degree after the network
has been constructed. The plot shows all data from 10000 simulations with the same fitness

distribution (Norm(µ = 50, σ = 10)). A trend is observed that degree of agents reaches
maximum values when fitness of agents are about the mean. Read line indicates there is not
positive correlation (r2 ≃ 0.05) between the micro-level (fitness) and macro-level (degree)

properties of networks.

To make predictions9, we select the first agent arriving to the network as our agent
î, such that Ψî ≈ 1 and Tî = 1, and therefore E(kmax) ≡ E(kî) ≈ ln (n − 1).

9The restriction Φ ∈ R+ bounds Ψ and makes the standard deviation of the population small.
Consequently, the standard error of the mean, SE⟨Φ⟩ = σ√

n′ , is also small even at early stages
(n′ << n). Let σ denote the standard deviation of the population and n′ the number of agents
already in the network once the key agent î joins the network. Even when n′ = 1, if σ is small,
SE⟨Φ⟩ is also small. This means that fluctuations around the ratio Ψî = Φî

⟨Φ′⟩ are of no significance
because ⟨Φ′⟩ ≈ ⟨Φ⟩ at each time step. Note that fluctuations decrease as network grows because
SE⟨Φ⟩ decreases at each time step (n′ → n).
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To test our predictions, we start generating 10000 normal distributions. We then
choose every first agent in the list of numbers emulating how agents arrive to the
network. As an example, we use ρ(Φ) = Norm(µ = 50, σ = 10), and obtain that
⟨Ψî⟩ = 0.99, which in turn results in E(kmax) ≈ 0.99ln (9999) = 9.12 ± 2.85.

After that, we generate 10000 power law networks according to our network genera-
tive model. Table 2.1 shows the results of our model when fitness of agents follows
the same normal distribution as before, such that ρ(Φ) = Norm(µ = 50, σ = 10). In
Table 2.1, the degree of the largest hub is averaged over 10000 networks and results in
⟨kmax⟩ = 14.5 ± 1.5.

As it can be observed, our predictions and values from networks yield similar results
about the size of the largest hub in the networks. Similar results can be obtained for
other symmetric distributions, i.e., the uniform distribution (Table 2.1). Symmetric
distributions cannot generate power law networks because attractors do not dominate
competition and therefore E(kmax) <

√
n in all the cases.

Exponential distributions

The tail in exponential distributions goes to zero rapidly, which means that attractors
have similar fitness and their fitness is only one order of magnitude higher than the
population mean. Competition is now in a transition regime in where T (faster-get-
richer) and Φ (fitter-get-richer) jointly determine the degree of agents. In this situation,
one may expect that the first attractor joining the network has higher probability to
become the largest hub in the network.

To make predictions10, we first define attractors as the outliers of the exponential
distribution. Their fitness has to be higher than a threshold fitness, which is defined
as Φq > Φ′ = ⟨Φ⟩ + 3σ. Second, we select the first attractor arriving to the network as
our agent î, and estimate the degree of the largest hub as E(kmax) ≈ Ψq1ln

(
n−1
Tq1

)
.

To test our predictions, we start generating 10000 exponential distributions. After
that, we choose every first attractor in the list of numbers, emulating how they arrive to
the network. As an example, we use ρ(Φ) = Exp(λ = 100), and obtain that ⟨Ψq1⟩ ≈ 5
and ⟨Tq1⟩ = 55, which in turn results in E(kmax) = 26.1 ± 5.1. After that, we generate
10000 power law networks according to our network generative model. Table 2.1 shows
the results of our model when fitness of agents follows the same exponential distribution.

10Like in the normal distribution, the standard error of the mean SE⟨Φ⟩ is still small because σ
although higher is still small. Again, fluctuations over the ratio Ψî are of no significance and decreasing
with time.
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In Table 2.1, the degree of the largest hub is averaged over 10000 networks and results
in ⟨kmax⟩ = 31.0 ± 5.7.

As it can be observed, our predictions and values from networks yield similar results
about the degree of the largest hub in the networks. Similar results can be obtained
for the normal truncated distribution (Table 2.1). Our results suggest that none of
those distributions can generate the desired networks because again E(kmax) <

√
n.

Heavy-tailed distributions

The tail in heavy-tailed distributions decays slower that in exponential distributions,
and one often encounters agents characterized by very large fitness values. Fig.2.3
shows that fitness of the highest-fitted agent in the log normal distribution is several
order of magnitude higher than the population mean. Competition is now dominated
by the fitter-get-richer phenomenon and, thus, the higher the fitness of agents the
higher the probability is they become hubs, even when T is large. In this case, we
use the highest-fitted agent in the population as the key agent î, such that E(kmax) ≡
Ek(Φmax) ≈ Ψmaxln (2), because the expected arriving time for this agent is T = n

2 .
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Fig. 2.3 Transition from symmetrical to monopolistic competition.

In log normal distribution, the higher σ (measured in log scale) the higher the ratio Ψ is,
however, we decrease the fraction of attractors (l). When Ψmax > n

2 and l too small (σ ≥ 5),
the system behaves as expected in the monopolistic model. On the other hand, when

Ψmax ∼ 1 (σ ≤ 0.5), the system behaves as expected in symmetrical competition.

In this study, we analyze three of the most representative heavy-tailed distributions:
the log normal, the power law and the stretched exponential. We will focus on the
log normal distribution because this distribution offers good economic interpretation
of fitness values. Again, we assume that fitness Φi of any agent i is defined by a
reasonably large variety of socioeconomic arguments acting independently of one
another. If multiplicative effects on fitness are now considered, then Φi will be log
normally distributed, irrespective of the manner in which the individual arguments
are distributed. The fitness can be written as Φi = ∏S

s=1 φs, ∀i ∈ n and φs ∈ R+.
Arguments describe attributes like educational level, nationality, socioeconomic status,
age, etc.
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When fitness is distributed according to ρ(Φ) = Lognorm(µ = 0, σ = 2.5) we obtain
that the intensity of attraction of the highest-fitted agent is on average ⟨Ψmax⟩ ≈ 830.6,
and her expected degree is E(kmax) ≡ Ek(Φmax) ≈ 584.1±22.7. Likewise, when ρ(Φ) =
Lognorm(µ = 0, σ = 3.5), we obtain that ⟨Ψmax⟩ ≈ 2340.4 and E(kmax) ≈ 1622.2 ±
32.9. These values are averaged over 10000 repetitions. Similar values are obtained
analytically for the same distributions, such that ⟨kmax⟩ ≈ 792.3±607.4(2093.9±1324.3).
The degree of the largest hub is averaged over 10000 networks. Identical predictions
can be done for the other two distributions.

Table 2.1 shows that these three distributions are good candidates to generate power
law networks because not only the resulting hubs are large enough, E(kmax) >

√
n,

but also the degree sequence can be approximated well by the power law distribution
(Table 2.1 and Fig.2.4A). Once we have identified the classes of fitness distributions
that can produce the desired level of competition in the population, we need to provide
arguments to generate power law networks efficiently.

Table 2.1 Basic parameters of fitness generation and the resulting degree distribution.

Null hypothesis (H0) is power law a plausible fit to the degree distribution. Data show
the results over 1000 simulations. We follow the methodology described in Clauset et al.
(Clauset et al. [2009]), where high p − values indicate that the null hypothesis is likely
to be correct. The hypothesis is accepted only when 2 < ⟨γ⟩ < 3 and ⟨p − value⟩ > 0.1.
For the case of the truncated normal distribution (NormT (µ, σ, lower, upper)) one can
use the formula of normal distribution described in Table 2.2 (Appendix A) and then
accept or reject random numbers if they falls in lower ≤ r ≤ upper or not respectively.
Repeating the process until a number is accepted gives Φ with the appropriate distribution.

ρ(Φ) ⟨σk⟩ ± σ ⟨kmax⟩ ± σ ⟨kmin⟩ ± σ ⟨γ⟩ ± σ ⟨p − value⟩ ± σ H0

Exp(100) 1.87 ± 0.03 31.02 ± 5.73 7.33 ± 2.35 4.22 ± 0.64 0.42 ± 0.34 Rejection
ExpS(100, 0.3) 7.01 ± 1.25 362.73 ± 181.85 2.34 ± 1.42 2.15 ± 0.04 0.21 ± 0.13 Acceptance
Uni(0, 1000) 1.47 ± 0.01 16 ± 1.18 7.33 ± 1.54 6.42 ± 1.40 0.53 ± 0.34 Rejection
Lognorm(0, 1) 2.23 ± 0.14 61.03 ± 26.20 5.63 ± 1.77 3.36 ± 0.28 0.40 ± 0.32 Rejection
Lognorm(0, 1.5) 3.93 ± 0.55 175.29 ± 74.48 2.71 ± 1.57 2.55 ± 0.16 0.29 ± 0.29 Acceptance
Lognorm(0, 2) 7.79 ± 3.10 486.82 ± 376.09 2.34 ± 1.09 2.38 ± 0.12 0.44 ± 0.35 Acceptance
Lognorm(0, 2.5) 12.21 ± 5.38 792.34 ± 607.38 3.48 ± 0.94 2.12 ± 0.05 0.57 ± 0.29 Acceptance
Lognorm(0, 3) 19.03 ± 7.86 1414.45 ± 907.47 3.71 ± 2.20 2.09 ± 0.36 0.57 ± 0.32 Acceptance
Lognorm(0, 3.5) 26.61 ± 11.68 2093.86 ± 1324.27 3.12 ± 1.78 2.41 ± 0.86 0.46 ± 0.37 Acceptance
Pl(1, 1.75) 22.83 ± 13.30 1712.00 ± 11486.33 1.23 ± 0.26 3.18 ± 0.29 0.01 ± 0.00 Rejection
Pl(1, 2) 22.61 ± 13.00 1930.57 ± 1346.62 1.14 ± 0.38 2.77 ± 0.18 0.01 ± 0.00 Rejection
Pl(1, 2.25) 11.62 ± 9.49 948.36 ± 998.39 2.09 ± 0.30 2.81 ± 0.09 0.11 ± 0.08 Acceptance
Pl(1, 2.5) 6.09 ± 4.74 450.06 ± 515.01 3.25 ± 0.57 2.98 ± 0.07 0.24 ± 0.14 Acceptance
Pl(1, 3) 2.66 ± 1.82 147.17 ± 203.64 4.44 ± 0.64 3.58 ± 0.13 0.49 ± 0.27 Rejection
Norm(50, 10) 1.41 ± 0.01 14.46 ± 1.49 7.27 ± 1.32 6.98 ± 1.38 0.51 ± 0.32 Rejection
NormT (0, 125, 0, 1000) 1.63 ± 0.02 20.5 ± 2.24 7.79 ± 1.8 5.611 ± 1.37 0.50 ± 0.35 Rejection
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Fig. 2.4 Analysis of the power law hypothesis.

(A) CDF of the resulting degree sequence after preferential attachment. Fitness distribution
follows the lognormal distribution with zero mean and variance of 2, Lognorm(0, 2). Blue
solid line represents the fitted discrete power law distribution with estimated parameters

kmin = 20 and γ̂ = 2.37 according to the method described in Clauset et al. (Clauset et al.
[2009]). The goodness-of-fit test, via bootstrapping procedure, generates a p-value = 0.507
(greater than 0.1), thus the power law is a plausible fit to the data. (B) The figure compares
the CDF of hierarchical clustering in the original network (black dots) to the latest network

after rewiring (red dots). The figure shows that transitivity of low-fitted agents is being
increased as rewiring is repeated.

2.4.2 Influence of fitness asymmetry in competition
We investigate statistically and computationally the impact of varying the asymmetry
(skewness) of heavy-tailed distributions in competition. In order to unambiguously
correlate the influence of fitness asymmetry in competition, we have kept all parameters
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fixed except the parameter σ, γ, or β in log normal, power law and stretched exponential
respectively. These parameters control the fitness differences in the corresponding
distributions. Again, we focus on the log normal distribution.

Fig.2.3 shows that parameter σ can be used to generate different levels of competition
in the population. By increasing σ (measured in log scale) we increase asymmetry,
in other words, the ratio Ψmax increases but the fraction of attractors (l) decreases.
When σ is very small (σ ≤ 0.5), agents have similar probability to obtain links and
system behaves as expected in symmetrical competition. On making σ large enough
(σ ≥ 5), we can see how only few agents compete for links (l nears zero) and system
behaves as expected in the monopolistic model (Ψmax very large).

Note that, when n = 10000 and σ ≥ 5, Ψmax ≥ E(TΦmax) = n
2 . We use this

argument to define monopolistic competition. Competition is monopolistic when the
intensity of attraction of the highest-fitted agent in the population is greater than
her expected arriving time. As Ψmax increases, parameter gamma of the power law
decreases, such that γ → 2.

As shown in Fig.2.3, the transition from symmetrical to monopolistic competition
is not discontinuous. Between the two extreme cases (0.5 < σ < 5) the level of
competition seems to be adequate to generate power law networks. Thus, for each
value of σ in the range (0.5, 5) we generate 10000 networks and the corresponding
degree sequences are approximated by the power law distribution. Fig.2.5 shows the
fitting exponent γ̂ and the goodness-of-fit (p-value) as a function of σ only when the
scale-free property is observed.



2.4 Simulation results 37

Fig. 2.5 Influence of increasing fitness asymmetry in competition.

According to the log normal distribution, Lognorm(0, σ), with zero mean, µ = 0, and
tunable variance 1 ≤ σ ≤ 3.5 we increase the order of magnitude differences in fitness
between the lowest-fitted agent Φmin and the highest-fitted agent Φmax. The resulting

degree distribution is approximated by the power law. We generate n = 10000 networks for
each value of σ. Dark violin plots represent the estimates of the scaling parameter γ̂ for the

power law degree approximation. We are interested in variances that generate scale-free
regime. Light violin plots represent the goodness-of-fit between the resulting networks and
the power law approximation. If the p-value is greater than 0.1 (dotted line) the power law
is plausible hypothesis for the model, otherwise is rejected. In both cases, white points inside

the violin plots indicate the median values of the 10000 simulations.

Results are not shown for the cases σ < 1 and σ > 3.5. In the first case, (σ < 1),
because there is a transition from power law to exponential distribution when σ ∈
(0.5, 1]. In the second case, (σ > 3.5), because there is a transition from power law
to monopolistic competition when σ ∈ [3.5, 5). As a consequence of the transitions,
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there is an increase in the fluctuations seen at exponent γ̂ (represented by violin plots),
which means that only a small fraction of the resulting networks are consistent with
the scale-free regime. It is important to remark that when the scale-free regime is
observed (1 ≤ σ ≤ 3.5), the median values (represented by white points inside the
violin plots) are monotonically decreasing with parameter σ.

Based on statistical analysis, our results suggest that networks generated with
parameter σ in the range [1.5, 3] are suitable for our interest11. In this range, the fitting
exponent is scale-free (2 < γ̂ < 3) with p-values greater than 0.1 (represented by a
dotted line in Fig.2.5), which means that the power law approximation is plausible
hypothesis for the resulting degree sequences. A wider range σ ∈ (1, 3.5) is obtained
by Nguyen et al. (Nguyen and Tran [2012]), but they do not analyze their results
statistically.

Additionally to statistical analysis, we provide a computational argument that
helps to improve the performance of fitness-based network generative models. This
argument refers to the increasing complexity of the algorithms when σ is increased.
Similarly to eq. 2.7, we can calculate the average number of attempts λ needed for a
single selection of any agent (Lipowski and Lipowska [2012]) as follows

λ = 1
n

n∑

i=1

Φi

Φmax
(1 + 2τ + 3τ 2 + ...) = Φmax

⟨Φ⟩ (2.12)

Complexity is linked to the level of competition in the population in such a way
λ = Ψmax if the highest-fitted agent is already in the network, which is expected to
be at T = n

2 . Before that moment the algorithm runs faster because the intensity
of attraction of agents already in the network is smaller than Ψmax. As we have
seen in Fig.2.3, the higher σ the higher λ = Ψmax and consequently computational
performance is decreased. The algorithm is on average 10 times more efficient when
we use σ = 1.5 (λ ≡ Ψmax ≈ 100) rather than σ = 2.5 (λ ≡ Ψmax ≈ 1000) to generate
networks. According to complexity, we recommend the choice of parameter σ in the
range [1.5, 2.5] for the case of log normal distribution when n = 10000.

In the interest of simplification, our examples consider fitness as fixed but the model
allows fitness variations. For efficiency, we recommend fitness variations to be of the
same orders of magnitude. However, efficiency is very sensitive to network size (n)
because the ratio Ψmax does not increase linearly with n when generating the fitness

11In this case, the standard error of the mean is SE⟨Φ⟩ = σ√
n
2

but now fluctuations strongly depend
on the asymmetry of ρ(Φ). In the optimal range σ ∈ [1.5, 3] we observe that fluctuations are small
and therefore our predictions are not significatively affected.
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distribution. We can easily prove that our first condition Ek(Φmax) ≈ Ψmaxln (2) >
√

n

is not satisfied when network is very large (n >> 10000) and the optimal range
σ ∈ [1.5, 2.5] is maintained. In those situations, we need to select fitness distributions
with greater asymmetries or reduce the arriving times for attractors.

Although we have focused on log normal fitness distribution for its economic
interpretation, similar analysis can be done for power law and stretched exponential
fitness distributions to generate social networks efficiently.

2.4.3 Cost function as a driving mechanism for homophily
We next analyze to what extent our definition of link stability helps to simulate the
evolution of homophily in a social system, and the consequences in social structure.

Fig.2.6 shows how the statistical properties of networks and the type of attachment
(from preferential attachment to similar attachment) change as more and more agents
are disconnected and reconnected, such that the new connection decreases the value of
the cost function. As a consequence, the cost of maintaining links in the whole network
is reduced monotonically as homophily evolves. Fig.2.6 also shows that cost-link
minimization leads to increasing values of assortativity, modularity and transitivity,
and a positive relation between them. Only assortativity shows an stationary behavior
after repeated rewiring, suggesting that reconnection among hubs are more frequent
at first steps. Hubs are connected more intensely than low-degree agents thus the
probability of selecting links pointing to a hub is very high.
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Fig. 2.6 Structural properties and global cost function evolution.

The figure shows assortativity, modularity, transitivity and link costs after repeated
application of rewiring. All networks are scale-free and have 7500 agents with average degree

of 15.

Given that agents with higher fitness tend to be hubs and hubs are a small group
(Fig.2.3), links among hubs represent the most stable distribution of connections when
rewiring is applied. In their study, (Xu et al. [2010]) demonstrate that values of
assortativity are largely controlled by connections among hubs. Thus, when a new link
connects two hubs the global assortativity is increased significativelly more as it does
when a link connects two agents with low fitnesses.

While dissortative networks may present community structure (Orman et al. [2013]),
we observe how modularity of networks increases as assortativity and transitivity
increases. Unlike assortativity, transitivity is increased more in the last rewiring steps.
This dynamic suggests that transitivity is very dependent on low-low connections.
Low-fitted agents tend to have small degree thus their neighborhoods are close to be
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complete after many reconnection. Note that our algorithm does not change degree of
agents but it does change the connections within their neighborhood. This result is
confirmed by Fig2.4.B which shows how hierarchical clustering increases as rewiring
is repeated. In heavy-tailed distributions low-fitted agents are numerous but fitness
differences are very small, this means low-low connections are unstable compared to
high-high connections. In Fig2.6, the evolution of the global cost function θ confirms
the trends. In the early steps, θ is rapidly decreased suggesting that high-cost links are
cut. These links can only represent connections between hubs and low-fitted agents.
In the last steps, θ remains practically constant indicating that low-low connections
are being cut and replaced. In this case, rewiring is less significant in terms of costs
but it is important for increasing transitivity of networks.

2.5 Concluding remarks
Network generative models may help us to understand how social interactions shape
agents’ behavior.

This study shows that fitness of agents can be used to generate realistic networks
with power law degree distribution, hierarchical clustering and high levels of link
correlations (assortativity, transitivity, modularity). In contrast to traditional network
generative models, in our model the individual preferences for interaction are based
exclusively on fitness. Hence, network structure emerges as a consequence of two
ordering mechanisms: (i) network grows according to individual preferences to connect
with highest-fitted agents (preferential attachment); and (ii) network evolves following
a cost-link minimization condition (cost-directional rewiring). In absence of realistic
cost functions, we use the euclidean distance between fitness of connected agents to
determine the ongoing costs of maintaining links. Link stability is based on homophily,
implying that links connecting similar agents (similar fitness) are more stable and
should be last longer. Lower costs between similar agents can be explained by the
fact that similarity of attributes increases trust and thus simplifies the process of
communicating with neighbors. As a result of a dynamic process governed by the
fitness of agents and the stability of links, the model generates comparable networks
with tunable levels of link correlations.

In this study, we provide a useful tool for generating comparable networks that can
act as substrates for games, i.e., evolutionary games played on networks. An ordered
sequence of networks help us to quantify to what extent network properties affect
agents’ behavior in games.
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Although fitness-based network generative models are widely known in the literature
of networks, little attention has been given to the necessary conditions to generate
realistic networks efficiently. In this study, we prove that power law networks are always
sparse networks with density 2

n ≤ d ≤ 1√
n . Moreover, we prove that only heavy-tailed

fitness distributions support the power law degree pattern. When fitness of agents
follows other statistical distributions, such as symmetric or exponential distributions,
attractors are less numerous and do not dominate competition. It means that hubs are
not sufficiently large to generate the power law degree distribution.

When competition is very asymmetrical, we provide an argument to define whether
competition is monopolistic or not. Concretely, if the intensity of attraction of the
highest-fitted agent in the population is higher than her expected arriving time, we
define competition as monopolistic.

Finally, we have shown that the complexity of our algorithm is linked to the
level of competition in the population, thus, we provide statistical and computational
arguments for the selection of optimal levels of asymmetry in heavy-tailed distributions.
In particular, we recommend the selection of parameters σ, γ, β for log normal, power
law and stretched exponential respectively according to the size of the network. For
example, if the size of the network is n = 10000 we have shown that the optimal range
of asymmetry for the case of log normal distribution is σ ∈ [1.5, 2.5]. If n increases, we
need to increase σ, or alternatively arriving time of attractors may be reduced.
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2.6 Appendices

2.6.1 Appendix A: Generating Random Fitness with Speci-
fied Distributions

In this study, we have used independent fitnesses drawn from desired distributions
(exponential, normal, etc.) to test how accurate we can generate scale-free networks
with a particular scaling parameter. In most cases we use the inverse transform method
for continuous distributions.

Let F (x), x ∈ R+, denote any continuous cumulative distribution function (CDF).
Define F : R → [0, 1] as continuous, non-negative and non-decreasing (monotone)
function such that F (∞) = 1 and F (0) = 0. We want random deviates Φ distributed
as F thus Pr(Φ ≤ x) = F (x). Let F −1(r), r ∈ [0, 1], be the generalized inverse of F .
As F is continuous, the F is invertible which means F −1(r) = min{x : F (x) = r} is the
ordinary inverse function. In general it holds that F (F −1(x)) ≤ x and F (F −1(r)) ≥ r.
As F −1(r) is a non-decreasing (monotone) function in r, it is possible to find a simple
method for simulating random deviates Φ distributed as F .

Proof : Define Φ = F −1(r) and let Pr denote the underlying probability. r ∼
Unif(0, 1) means Pr(r ≤ y) = y for 0 ≤ y ≤ 1. Then,

Pr(Φ ≤ x) = Pr(r ≤ F (x)) = F (x).

For the case of the exponential distribution, F(x) is given by F (x) = 1 − e−λx,
where λ > 0 is a constant. Solving the equation r = 1 − e−λx for x in terms of
r ∈ [0, 1] yields x = F −1(r) = − 1

λ ln(1 − r). This yields Φ = − 1
λ ln(1 − r). Note that

(1 − r) ∼ Unif(0, 1) since r ∼ Unif(0, 1) and thus we can simplify the equation as

Φ = − 1
λ

lnr (2.13)

This simplification can be done for other F(x), i.e., power law distributions (Table 2.2).
The algorithm for generating an exponential Φ at a given rate λ works as follows

• Define A = {1, ..., n} as the set of agents in the network and a value for λ

• Generate r ∼ Unif(0, 1)
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• Set Φi = − 1
λ lnr, where Φ(i) =: Φi : A → R+ represents the fitness of an agent

i ∈ A.

• Repeat the process n times such that each agent in the network have an associated
fitness drawn from the exponential distribution.

A standard approach to generate random deviates according to the uniform distri-
bution is provided by multiplicative linear congruential generators (MLCG). A linear
congruence sequence is a series of integers n1, ..., nm based on the relation

ni+1 = ani mod m (2.14)

where m is called the modulus, a is called the multiplier and n0 the seed. Numbers
ri ∈ [0, 1] are defined by ri = ni

m , ∀i ∈ m. Note that ri are periodic in the cycle
[1, m − 1]. Since this method is deterministic and entirely reproducible, a longer cycle
length allows for sequences that appears more random because there is no immediately
discernible pattern. If nature of the method is to be stressed, one refers to ri as
pseudo − random numbers in the range (0, 1).

The inverse transform method can also be used to generate random deviates from
other distributions, i.e. power law or stretched exponential distributions, though not
all, since in normal and log normal distributions there are no closed-form expressions
neither for F nor for its inverse F −1. For both cases we apply a standard transformation
method in R2, also known as Box-Muller transformation. Note that we modify the
usual algorithm to produce non unit-variance normal and log normal distributions.
Typically, the algorithm converts a two-dimensional uniform distribution (r1, r2) to a
normal distribution (Φ1, Φ2) with zero mean and unit variance

Φ1 =
√

−2lnr1sin(2πr2)
Φ2 =

√
−2lnr1cos(2πr2)

We modify the algorithm as follows

Φ̂ = Φσ + µ

setting µ = 0 again, we obtain

Φ̂1 =
√

−2lnr1sin(2πr2)σ
Φ̂2 =

√
−2lnr1cos(2πr2)σ
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In Table 2.2 we recall (Φ̂1, Φ̂2) as (Φ1, Φ2) and show only one of the two possible
random deviates generated with this method.

Table 2.2 Formulas for generating random fitness Φ drawn from continous distributions.

Fitness of agents is generated given a source of random numbers
r following the uniform distribution in the range 0 < r < 1.

Distribution Notation CDF Transformation method
Exponential Exp(λ) 1 − e−λx Φ = − 1

λ lnr

Stretched exponential ExpS(λ, β) 1 − e−λxβ Φ =
[
− 1

λ lnr
] 1

β

Log normal Lognorm(0, σ) 1
2

[
1 + erf

(
lnx−µ√

2σ

)]
Φ = e

√
−2lnr1sin(2πr2)σ

Power law Pl(γ)
(

x
xmin

)−γ+1
Φ = Φminr

−1
γ−1

Normal Norm(0, σ) 1
2

[
1 + erf

(
x−µ√

2σ

)]
Φ =

√
−2lnr1sin(2πr2)σ
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2.6.2 Appendix B: Fitting power law to empirical data

Our simulation study was based on the algorithm described above using Python
to generate the networks and the library poweRlaw developed in R to test the results.
The fitness of agents was generated according to the following distributions: uniform,
exponential, stretched exponential, normal, truncated normal, log normal and power
law. Following the model, we generated 10000 networks for each distribution, all having
n = 10000 agents. Without loss of generality, we assumed that the number of links
added at each time step was v = 1, increasing v would just result in higher density,
not changing the power law pattern. Each distribution has an associated parameters
for generating random fitness. By tuning the parameters according the transformation
method described in Table 2.2, we wanted to investigate the impact of the nature of
fitness and its restrictions on the power law degree pattern.

Once the fitness of agents has been generated and after the network has been
constructed, we validate and quantify statistically whether power law is a good ap-
proximation to empirical results. According to (Clauset et al. [2009]) the first step is
to estimate γ and kmin. Before calculating the scaling parameter γ, we need to select
the scaling region in the tail by discarding all values {kj} = {k1, .., kn} that are under
the lower bound kj < kmin. kmin is the smallest value for which the power law holds.
If kmin is too small, we will be trying to fit a power law to any other distribution. If
kmin is too large, we will be increasing the statistical error on the scaling parameter.
Choosing kmin means minimize discrepancy between the fitted model and the empirical
distribution and it is measured as follows which results in

k̂min = argmin
kmin

D(P (k|γ̂, k̂min), S(k)) (2.15)

where D is the Kolmogorov-Smirnov (KS) statistic that measures the largest deviation
in cumulative density functions between the theoretical model (P (k|γ̂, k̂min)) and the
empirical data (S(k)). This step is repeated for each data point and stored in a
vector. Finally, we select the minimum value of D from the vector and designate
the corresponding ki to be the parameter kmin. For a given value kmin, the scaling
parameter is estimated numerically optimizing the logarithm of the likelihood

γ̂ = 1 + n
∑n

i=1 ln
(

ki
kmin

) (2.16)
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where ki > kmin and the standard error is computed as follows

σ̂ = (γ̂ − 1)√
n

+ O
( 1

n

)
(2.17)

Since it is possible to fit a power law distribution to any empirical data, as suggested
in (Clauset et al. [2009]), we use a statistical hypothesis test to determine whether the
power law is a plausible fit to the data. The selected approach to answer the question
is the goodness-of-fit tests via bootstrapping procedure. Such approach is based on
repeated Kolmogorov-Smirnov (KS) tests between synthetic data and empirical data.
A large number of synthetic data is generated with the chosen k̂min and γ̂. The test
generates a p − value that can be used to quantify plausibility of the hypothesis. Null
hypothesis assumes data is generated from a power law distribution. If p − value

is greater than 0.1, we fail to reject the null hypothesis and conclude that power
law is a good fit. Otherwise, another distribution may be more appropriate. With
the purpose of deriving robust results we perform 5000 KS tests and evaluate the
cumulative estimate of the p − value and its standard deviation.
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2.6.3 Appendix C: Assortativity, Transitivity and Modularity
metrics

To compute the assortativity of a network, we use the Pearson correlation coeffi-
cient between the degrees of agents joined by a link (Newman [2002]):

r =
l−1 ∑

i jiki −
[
l−1 ∑

i
1
2(ji + ki)

]2

l−1 ∑
i

1
2(j2

i + k2
i ) −

[
l−1 ∑

i
1
2(ji + ki)

]2 (2.18)

where l = |L| is the number of links in the network, and ji and ki denote the agent
degree of the two agents connected by the ith link. The measure lies in the range
−1 ≤ r ≤ 1, where 1 means maximal assortativity. For random networks, since agent
interaction is placed at random without mixing behavior, it follows that r = 0 when
networks are large, n → ∞.

Transitivity or local cohesiveness coefficient τi measures how close the neighborhood
N (i) of agent i is to be a complete network. If agent i has ki neighbors, there can exist
at most

(
ki

2

)
= ki(ki−1)

2 links connecting agent i neighbors. If we define a transitive
relation in the neighborhood of i as ∀i ∈ A, ∀u, v ∈ N (i) : (uRi ∧ iRu) ⇒ uRv, where
N (i) = {au : liu ∈ L ∨ lui ∈ L}, the local clustering can be quantified as.

τi = 2 |{luv : au, av ∈ N (i), luv ∈ L}|
ki(ki − 1) (2.19)

Transitivity lies in the range τi ∈ [0, 1] with the upper limit attained only a fully
interconnected neighborhood, in where everyone knows each other. The network
clustering coefficient τ ≡ ⟨τi⟩ is defined as the average of τi over all agents in the
network:

τ = 1
n

n∑

i=1
τi (2.20)

When τ = 1, all possible links exist and the network is a clique. On the contrary, when
τ = 0 there are not triangles in the network, i.e. n-agent cycles usually represented by
Cn.

Given a partition P, the network N is divided in m communities, N ′ = (A′, L′),
embedded within the network such that ∀i, j ∈ m, N ′

i ⊂ N and N ′
j ⊂ N , and

A′
i ∩ A′

j = 0. Let us define a m × m symetric matrix e, the element eij represents
the fraction of links connecting agents in community i to agents in community j.
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The fraction of intra-community links is ∑
i eii. Let ei+ = e+i be the fraction of links

connecting at least one agent from community i. (Newman and Girvan [2004]) proposed
modularity as a measure to quantify the community structure based on the difference
between eii and the expected such fraction in a network with the same community
divisions if links were distributed at random. The modularity of the network given
partition P is defined as:

QP =
m∑

i=1
(eii − e2

i+) (2.21)

To approximate the best partition and largest Q∗
P = Q, an information-based algorithm

is performed. If the number of intra-community links is not higher than random, we
get Q = 0, and values approaching Q = 1 indicate strong community structure. Note
that, if network is connected, communities are not totally isolated from others and
therefore Q < 1.

While not clear definition for high values, in practice social networks show consid-
erably higher assortativity, transitivity and community structure than those obtained
in random networks.





Chapter 3

Tragedy of the Commons and the
Economics of Social Pressure

Summary

This chapter revisits the problem of the tragedy of the commons. We analyze the
influence the interaction between agents has on their behavior and determine the
economic value of social pressure. For a socially optimal management of the resource,
an initially high share of compliers is necessary but is not sufficient. The analysis
shows the extent to which the state of the resource, the share of compliers and the size,
density and local cohesiveness of compliers of the network contribute to overcoming
the tragedy of the commons. It also determines the magnitude of how imprecise a
single aspect of the network is for predicting cooperativeness. Likewise, it shows the
magnitude of error if a “first-best tax” on the extracted amount of the resource is
applied without fully taking into account the interaction between the agents involved.
The study suggests that the origin of the problem – short-sighted behavior - is also
the starting point for a solution in the form of a one-time payment. A numerical
analysis of a social network comprising 7500 agents and a realistic topological structure
is performed using empirical data from the Western La Mancha Aquifer in Spain.

Keywords: Natural resource management; evolutionary game; social network; social
punishment; one-time payment
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3.1 Introduction
The tragedy of the commons (Hardin [1968]) is often explained by the fact that a
natural resource is exploited by many agents and they all have open access to the
resource. However, such social trap is not inevitable when property rights are shared by
the members of a community and cooperative behavior is promoted efficiently within
the community (Ostrom [1990]). At the community level, many factors impacting
cooperation (i.e., trust, communication, social pressure) are very dependent on the
underlying structure of social interactions (Bodin and Crona [2009]), often formalized
by a social network.

For a better understanding of underlying forces of the tragedy of the commons we
analyze to what extent macro and micro characteristics of social networks support
social norms that help to conserve natural resources (Jackson et al. [2017]). In our
model, macro and micro characteristics of social networks lead to social pressure that
depends on the share of compliers, the state of the resource and the local cohesiveness
of compliers.

This study analyzes agents’ behavior by taking into account that they are interacting
in a large, complex network that is close to real social networks. This requires, among
other elements, that the network structure is highly asymmetric, that the distribution
of the number of the agent’s links follows a power law, and that there is a large
number of agents. Among the single aspects analyzed in the literature, cohesiveness
and the share of compliers stand out. The definition for cohesiveness is most frequently
based on links between agents. However, in the case of cooperativeness or the exercise
of social pressure, not only are the links between agents important, but so too are
the agents’ chosen strategies. If two compliers are linked, one can expect they will
experience greater social pressure than if every complier were linked to a defector but
not linked between themselves. For this reason, we propose a new connectivity measure
that is based on links and the strategy chosen. We have called it “local cohesiveness
of compliers” and it considers the links between the compliers in the neighborhood
of an agent. The share of compliers is another single aspect that is often seen as an
important driving force behind the dynamics of the network. That said, the share of
compliers is independent of network size and density. As such, its indicative power
to foresee a possible propagation of compliers within social networks is limited. The
previous arguments suggest that merely focusing on the single aspects of the network
does not offer a reliable instrument to accurately analyze the tragedy of the commons.
The results of the study confirm this supposition and determine the magnitude of
imprecision. Likewise, the study shows the magnitude of error if a “first-best tax” on
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the amount of the resource extracted is applied without fully considering the effects
the social network has.

The results of a numerical study based on empirical data from the western La
Mancha aquifer show that a critical level of the initial share of compliers is necessary
to achieve a more socially-optimal management of the resource. Yet, our calculations
demonstrate that the range of the critical level of share of compliers is between 0.31
and 1. Given this wide range, the share of compliers alone is not a good indicator
of cooperativeness in the community. The results show to what extent the critical
level depends on the size and density of the network, the state of the resource and
the strength of local cohesiveness of compliers. Thus, one may find that a certain
initial share of compliers is necessary, but not sufficient, to overcome the tragedy of the
commons. While a higher network density may contribute to greater acceptance of the
social norm, this increase in density is only relevant if the additional links strengthen
local cohesiveness of compliers, otherwise they are redundant. The fact that new links
might be redundant demonstrates that density alone is a poor indicator of the network
characteristics that support cooperation. Moreover, if all other characteristics are equal,
then the analysis shows that large networks are less capable than smaller networks in
engendering adherence to a social norm. Yet, this shortcoming may be redressed by
favoring the creation of new connections between compliers. New strategy-dependent
links can be supported when workshops are organized, meetings or courses are run
or new institutions, such as complier associations, are set up. Another policy option
to secure higher cooperation may consist of a one-time payment to defectors if they
change their strategy. The rationale for a single payment is the fact that defectors
are short-sighted. Once they have changed sides, the increased number of compliers
hampers them from reverting. In this respect, although short-sightedness of defectors
is often considered as the origin of the tragedy of the commons, it also offers a starting
point for its solution.

Environmental economics contributed to general economics by establishing a founda-
tion for and formalizing methods to measure the value of intangible goods and services,
such as nature’s aesthetic values or a particular environmental resource’s existence
value. This work aims to contribute to the literature by analyzing the monetary value
of social pressure using the case of the western La Mancha Aquifer in Spain.

The reminder of this study is structured as follows: section 3.2 introduces the
different elements of the economic model based on an integrated social-ecological
system. In Section 3.3, we define a concept for equilibrium and analyze possible
equilibria. Then, in Section 3.4, we analyze the economics of social pressure and discuss
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policy instruments for overcoming the tragedy of the commons. In Section 3.5, to
analyze the effect the social network has on the tragedy of the commons, we present
a numerical analysis for our groundwater resource case. The study then closes with
some concluding remarks (section 3.6).

3.2 The economic model
The economic model is based on three different components: the social network that
defines the interaction between agents, the resource demand strategies and the agent’s
chosen strategy. In the following, we present the three components.

3.2.1 A social network as a graph
Our interest is in the interaction between different members of a social network
that can be described by a simple graph N = (A, L) which consists of a finite set
A = 1, ..., n, n > 2 of agents and a set L of links that are the unordered pairs of
elements from A. The elements in set L consist of the values of the indicatrix link
function l : A × A → {0, 1}:

l(i, j) ≡ lij =
⎧
⎨

⎩
1; (i, j) ∈ L

0; (i, j) ∈ L

For any pair of agents, i and j, the expression lij = 1 indicates that the two agents are
neighbors, otherwise lij = 0, i.e., they know and relate to each other. By definition,
simple graphs are undirected so that lij = 1 ⇔ lji = 11. If every agent is connected to
all other agents, N forms a complete network. For each agent i, N (i) denotes their
neighborhood, i.e., the set of all neighbors. The degree kN(i) = ki = ∑

j lij of an
agent i is the number of links at i, i.e., the number of neighbors i has. Denote by
P (K = k) = pk the degree distribution of N , that is the probability that an agent i in
N chosen uniformly at random has exactly k neighbors. If the links of all the agents
were formed assuming the same probability p, we would obtain a random network
whose degree distribution approximately follows a Poisson distribution. However,
empirical studies (Jeong et al. [2000]; Liljeros et al. [2001]) have shown that the
degree distribution of large social networks does not follow a Poisson distribution and
therefore recent research (Barábasi and Albert [1999]; Clauset et al. [2009]) has focused

1Moreover, agents are not linked to themselves (self-loops), i.e., lii = 0, and there is no more than
one link between agent i and j (uniqueness of the link).
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on scale-free topology. These networks are characterized by a degree distribution that
follows the power-law pk = k−γ with 2 < γ < 3 (Nguyen and Tran [2012]). Scale-free
networks have more weight in the tails than do random networks where there are
few central agents of high degree and many other agents of small degree and thus
offer a better match with the social networks observed (Jackson [2008]). Finally, and
very importantly, compared to random networks, scale-free networks allow for some
organizing principles to be considered (Réka and Barabási [2002]).

3.2.2 Evolving networks
To analyze the effects of network structure on social pressure, and finally on coop-
eration, a game will be played on comparable and realistic networks. Each of these
networks corresponds to a sequence of weighted networks with an increasing level of
homophily (see Chapter 2). More precisely, let {N [v]}V

v=1 =
(
A, {L[v]}V

v=1, {ω[v]}V
v=1

)

be the sequence of weighted networks evolving in discrete time. Here, the number of
agents and links, |A| = n and |L| = ℓ, are fixed but the evolution in time is given
by the change in the configuration of the set of the links, L[v], and the corresponding
weights, ω[v]. With this notation, the sequence of networks is an ordered sequence
of time points {tv}V

v=1 in such a way the level of homophily in the network in tv−1 is
lower than the level of homophily in tv. Let θ(tv) = ∑ℓ

u=1 ωu be the global level of
homophily in the network at time tv. The evolution of θ over time can be described as
θ(tv+1) = θ(tv) + △θ(tv+1), where △θ(tv+1) ≥ 0 such that θ(tv+1) ≥ θ(tv).

3.2.3 Resource demand strategies
Each member of the social network has access to a common property resource. However,
extraction based on the maximization of each member’s private net benefits would,
in the long-run, lead either to the depletion of the resource or to very low annual
private net benefits. To overcome the tragedy of the commons, the members of
the social network have reached a common understanding of the characteristics of a
sustainable extraction path. Let us interpret this common understanding as a social
norm. Adherence to the social norm is voluntary and every member of the social
network may choose to follow the sustainable extraction path or not. Let us label the
behavior of the agents that follow the sustainable extraction path as compliers and
the behavior of all other agents as defectors.

Each member or agent either employs the extracted resource as the input to produce
a single good or commercializes it on the market. Let wi(t) denote the amount of
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the resource extracted at calendar time t by agent i. The available amount of the
resource is denoted by s(t) with s(0) = s0. We assume that all members adjust all
other inputs to the extracted amount of the resource such that their net benefits are
maximized. Adherence to the social norm by agent i will support sustainable extraction,
whereas non-adherence will lead to a non-sustainable extraction path. Non-coordinated
individual behavior would result in a sustainable extraction path if all members were
to consider stock dependent costs when determining the privately optimal extraction
path. These costs will be fully considered if all the agents have a private planning
horizon of an infinite length. Consequently, we define compliers, denoted by C, as
far-sighted agents with an infinite planning horizon of T → ∞ years, whereas defectors,
denoted by D, are short-sighted and their planning horizon is T → 0 year. We assume
that the underlying reason for this short-sightedness is related to socioeconomic factors
(e.g. age, personal commitment to the community, risk aversion etc.). Each agent
determines the privately optimal extraction path (resource demand function) based on
the solution of the following decision problems. The resource demand function at time
t is given by:

wK
i (t, T, s(ξ)) = arg max

wK
i (ξ)

∫ T

t
e−rξπK(wK

i (ξ), s(ξ))dξ, K = C, D (3.1)

where r denotes the private inter-temporal discount rate and π the private net benefits
of the agent. We assume that compliers and defectors differ only in respect to the
length of their planning horizon, but not to their private discount rate. For the case of
compliers equation (1) is also subject to

ṡ(ξ) = g(s(ξ)) −
cn∑

i

wC
i (ξ) −

n∑

cn+1
wD

i (ξ), s(ξ) = st (3.2)

where a dot over a variable denotes the operator d
dt , c the share of compliers within

the population of all agents and g(s(t)) is the reproduction or growth function of the
resource. We assume that the compliers’ expectation of the defectors’ future extraction
at time t, w̄D

i , is based on their current level of extraction, i.e., w̄D
i = wD

i (t). The
resource demand function (eq. 1) is the solution to an open-loop strategy. Based on
the circumstance that agents can frequently observe the level of stock remaining, we
propose that they are allowed to modify their extraction profile after T − t. In other
words, the agents determine a new open-loop extraction profile based on the amount
of the natural resource they observe. This profile is maintained until the next revision
period when new information about the level of the remaining stock is obtained. Since
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compliers take account of the stock dependent costs in terms of inter-temporal or user
costs, denoted by η(t), their marginal extraction costs are higher than those of the
defectors. Thus, it holds for a given stock s(t) that defectors extract at least as much
as compliers and their net benefits are never less than those of the compliers, i.e.,

wD
i (t, T, s(t)) ≥ wC

i (t, T, s(t))

and
πD(wD

i (t), s(t)) ≥ πC(wC
i (t), s(t))

3.2.4 Strategy choice - an evolutionary game-theoretic ap-
proach

Given our focus on the interaction between agents, we analyze how an arbitrary
initial distribution of compliers and defectors evolves over time and how this changing
distribution affects the evolution of the resource. At every moment of time, agents can
change their strategy, i.e., from complier to defector, or vice versa. Strategy choice is
based on the evolutionary game-theoretic approach (Osés-Eraso and Viladrich-Grau
[2007]; Sethi and Somanathan [1996]). We assume that this decision is influenced by
the following factors:

• the difference between the net benefits of a defector and a complier (i.e., the
defector’s extra benefits) and

• the interaction with other agents (network effects)

In the case of the first point, we assume that the larger the difference is between the
maximal net benefits of complying with the strategy, given by πC(wC

i (·), s(t)) and not
complying with the strategy, given πD(wD

i (·), s(t)), the greater the chance at moment
a complier will become a defector and a defector will not become a complier. The
difference between πD − πC is not only important for the agent’s strategy, but also
presents the magnitude of the loss defectors inflict on those members of the network
who are adhering to the social norm. In the absence of an institution that is technically
and legally in a position to punish defectors, compliers may retaliate for the defectors’
abstraction of the common property resource through social shunning (ostracism) (Ali
and Miller [2016]).

In terms of social pressure, we assume that all agents are perfectly informed about
the strategy choice their neighbors have made (complete monitoring) and that there is



58 Tragedy of the Commons and the Economics of Social Pressure

no time delay between detecting non-compliance and retaliation2. To concentrate on
the first-order dilemma of public goods (provision of cooperation), we suppose that
retaliation is costless for the compliers. In doing so, we avoid the second-order dilemma
of public goods since compliers do not have to agree on how to divide the costs of
retaliation among themselves.

Social pressure and social punishment

If an agent defects, they will be exposed to social pressure from the compliers3.
However, making use of the social network suggests that social pressure on defector
i depends on the number of compliers and defectors within their local neighborhood
N (i). Let us define the set of compliers within the neighborhood N (i) by NC(i).
Thus, the share of compliers in the neighborhood of agent i, ci, can be defined by
ci = |NC(i)|

|N (i)| . This relationship is considered an important factor in determining social
pressure because it measures the direct influence the neighborhood has on defector i

(Haag and Lagunoff [2006]; Jackson et al. [2012]). The higher the number of compliers
of neighborhood N (i) is, the greater the social pressure on agent i. However, not only
is the share of compliers, ci, important in determining social pressure, but so too is the
relationship between the agents who form part of the set NC(i). In the case that none
of these agents is linked to another agent in this set, one can assume that the social
pressure on defector i will not be as high as when each and every agent in set NC(i)
is linked. In the first case, local cohesiveness between the agents in set NC(i) would
be zero, whereas in the latter it would be one. Let us denote the cohesiveness among
the compliers in the neighborhood by τci ∈ [0, 1] (see Appendix E of Chapter 4). This
measures the degree of connectivity between the compliers in set NC(i). (Haag and
Lagunoff [2006]) and (Jackson et al. [2012]) employed a different metric, independent
of the agents’ strategy choice, for connectivity. However, we used a more stringent
measure of connectivity since the cohesiveness of compliers is important to analyze
the tragedy of the commons. We denote the connectivity of all agents (compliers and
defectors) in the neighborhood of agent i by τi ∈ [0, 1] (also known as transitivity).
This measures how close the neighborhood of agent i is to a complete network. Thus,
if, τi = 1, all neighbors of agent i are connected to each other. Alternatively, the
measurement of cohesiveness for nodes or agents can also be measured on a network
level. On this scale, we define average transitivity or average local cohesiveness, as the

2Social pressure is the application of the principle of reciprocity as the response to non-compliance
of the social norm by defectors.

3Instead of the male and female possessive pronoun we use plural form to facilitate the reading.
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average value of local cohesiveness, i.e., τ̄ = 1
n

∑n
i τi. Finally, we assume, if the resource

is abundant, the set of compliers NC(i) will exert less social pressure on defector i than
if it were scarce.

Once the three key elements of social pressure have been introduced, we can then
write the social pressure function as ω(s(t), ci(t), τci(t)) ≥ 0. As explained above, an
increase in the stock reduces social pressure (i.e., ∂ω

∂t < 0), an increase in number of
compliers in the neighborhood of defector i increases social pressure (i.e., ∂ω

∂ci
> 0), and

an increase in the strength of social ties between compliers in the neighborhood of
defector i raises social pressure (i.e., ∂ω

∂τci
> 0).

In line with (Tavoni et al. [2012]) we model social pressure, ω, using a Gompertz
growth function. This asymmetric sigmoid function is given by ω̃(c) = ae−de−gc . The
social pressure function is limited above by the parameter a (i.e., 0 ≤ ω ≤ a), the
slope can be adjusted by the parameter g, and the social pressure function can be
displaced along the origin by the parameter d. The parameter d indicates the minimum
threshold for the responsiveness of defectors to social pressure. Since the strength of
social pressure exerted highly depends on the specification of the function ω we suggest
introducing a more flexible specification and allow to consider irregular networks. For
this purpose we substitute the share of compliers in the network, c, for the share
of compliers in the neighborhood of agent i, ci and the parameters a and g with
the functions a(τci) and g(s), g′(s) < 0, respectively. Hence, the modified Gompertz
function depends on the characteristics of the neighborhood with respect to its share
of compliers, its cohesiveness between compliers and the depth of the water table, and
is given by

ω(s, ci, τci) = a(τci)e−de−g(s)ci (3.3)

We assume that social punishment is directly related to the difference between the
net benefits of the defector and the complier πD − πC . Since these extra benefits
present the loss defectors inflict on compliers, any social punishment can be viewed as
redemption for the privation suffered by the compilers. However, social punishment is
not independent of social interaction among the agents and, therefore, we assume that
the loss defectors inflict on the compliers is attenuated or aggravated by the strength of
social pressure ω(s, ci, τci). More precisely, the social pressure produced and the extra
benefits the defector gains as a result of incompliance, define the social punishment
imposed and is written as:

ω(·)(πD(·) − πC(·)) (3.4)
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Agent utility and a probabilistic model of strategy choice

We assume that the utility of agent i adhering to the social norm at moment t

is given by:
UC(t) = πC(·), (3.5)

and the utility of the same agent i not adhering to the social norm at moment t is
given by:

UD(t) = πD(·) −
[
ω(s(t), ci(t), τci(t)(πD(·) − πC(·)))

]
(3.6)

Eq. 3.5 indicates that the utility of a complier is equal to their private net benefits4.
This depends on the amount of the extracted resource and the level of the stock.
Eq. 3.6 shows that the utility of a defector consists of the net benefits from resource
exploitation minus social punishment and, likewise, depends on the amount of the
resource extracted and the stock levels. However, it also depends on the position the
defector holds within the social network and the characteristics/topology of the social
network within their neighborhood.

At each time step, every agent decides whether to maintain their current strategy or
not. For this purpose, every agent i compares the utility associated with their current
strategy U(t) with that of the alternative strategy U ′(t). The utility of a complier is
independent of their position in the network or the characteristics/topology of the
social network within their neighborhood. However, the decision to maintain or to
change their current strategy depends on these very elements as they influence the
alternative strategy’s utility. The agent will probably adopt an alternative strategy if it
proves more beneficial, U ′(t) > U(t), whereas if U ′(t) ≤ U(t), the agent will maintain
their current strategy. These inequalities also form our tie-breaker rule in the reminder
of the study. In mathematical terms, the probability of a change in the current strategy
adopted by agent i for a given level of stock, is considered proportional to the difference
in the utilities. Let the probability that agent i changes from complier to defector be
denoted by pC

i (t) given by:

pC
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UD(t)−UC(t)
max{UD(t)−UC(t)} , if UD(t) − UC(t) > 0

0 , if UD(t) − UC(t) ≤ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (3.7)

4Although this formulation implies that agents are risk neutral, we opted for this specification to
simplify the model and to concentrate on the interaction between agents in a social network.
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and let the probability that agent i changes from defector to complier be denoted pD
i (t)

given by:

pD
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UC(t)−UD(t)
max{UD(t)−UC(t)} , if UC(t) − UD(t) > 0

0 , if UC(t) − UD(t) ≤ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (3.8)

The denominator of eq. 3.7 and 3.8 refers to the maximal difference between the utility
of the different strategies for a given level of stock at time t. Since the value of UC is
independent of the neighborhood and varies only with the level of stock, UD(t) − UC(t)
is maximal if UD is maximal. For a given level of stock, the maximum of UD transpires,
if social punishment is zero. In other words, there are no compliers in the neighborhood
and consequently local cohesiveness is zero and UD = πD. The decision to maintain
the current strategy or to adopt the alternative one is a 0 − 1 decision in probabilities.
For this purpose, using the inverse transform method we generated a random number
that takes only the values of 0 or 15. If the random number drawn is a 1, the defector
will change their strategy. Otherwise they will not.

All agents simultaneously decide which strategy to choose based on the current
distribution of compliers and defectors within the social network, with the probability
being pC

i or pD
i (i.e., see eq. 3.25 in Appendix B). We assume that agents do not act

strategically, i.e., they do not consider the possible strategy choices of their neighbors
when deciding on their own. Given the large size of the social network and the
resulting huge set of possible constellations each player needs to consider to make a
strategic choice, it would seem to be more realistic to base individual strategy-choice
on non-strategic behavior as in (Gale and Kariv [2003]).

3.3 Equilibrium concept
For the dynamics of a resource and a non-structured population, (Sethi and Somanathan
[1996]) and (Osés-Eraso and Viladrich-Grau [2007]) identified equilibrium conditions.
In the absence of a natural resource, (Santos and Pacheco [2005]; Santos et al. [2006,
2012]) used Monte Carlo techniques to identify a window of parameter values for an
equilibrium of the dynamics of a population embedded in an asymmetric social network.

5A number u is drawn randomly from the uniform distribution Uni(0 ≤ Pi ≤ 1). If u is less than
or equal to Pi, the outcome is associated with a 1 or with a 0 otherwise. This method is comparable
to a forged coin where the probability of landing heads up (1) is Pi and tails up (0) 1 − Pi. Put simply,
if Pi = 0.8, there is an eighty percent probability this method will generate a 1 and a twenty percent
probability it will generate a 0.
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Proposition 1: (Equilibria conditions):

Any steady state equilibrium concept requires the following three equilibria, a) equilib-
ria with respect to the dynamics of the resource, b) changes in the choice of strategy
adopted by the agents and c) the demand the agents make of the resource must be
incentive-compatible with the equilibria with respect to the dynamics of the resource.

Equilibria a) demands that ṡ(t) = 0 which, in turn, requires that

g(s(t)) =
c∑

i

wC
i (t) +

n∑

c+1
wD

i (t) (3.9)

Additional to eq. 3.9, none of the agents change their strategy, or the share of compliers
c is constant must also hold6. Hence, an equilibrium b) in expected values is achieved
if:

cn∑

i

pC
i −

n∑

cn+1
pD

j = 0. (3.10)

Finally, equilibrium c) holds if there is a wC
i (t) and wD

i (t) that satisfies eq. 3.1, and 3.9.
In other words, the amount of extracted resource required satisfies the balance between
reproduction and extraction (eq. 3.9) also has to be optimal from an economic point
of view for compliers and defectors, i.e., none of the agents changes their strategy.

Hence, an equilibrium is defined by eq. 3.1, 3.9 and 3.10. Given the great number of
agents and the large degree of freedom to satisfy conditions 3.9 and 3.10, an equilibrium,
if it exists, is likely to be not unique and stable. In this case, while it is possible that
the number of compliers and defectors is maintained for a certain period of time, the
new constellation in some neighborhoods will induce agents to change their strategies.
Thus, the equilibrium is likely to be only temporary.

From a social point of view, the all-defector equilibrium or any mix equilibrium
would not be efficient because the social optima can only be achieved with the all-
complier equilibrium. Therefore, the more compliers there are, the more efficient the

6The share of compliers can be kept constant if none of the agent changes, i.e., pC
i = 0, pD

j =
0, ∀i, ∀j, i ̸= j, i ∈ I : {1, ..., cn}, j ∈ J : {cn + 1, ..., n}. Moreover, there may be a dynamic equilibrium
if pC

i ̸= 0, pD
j ̸= 0, pC

k = 0, pD
l = 0, ∀i, ∀j, ∀k, ∀l, i ∈ I, k ∈ I, i ≠ k, j ∈ J, l ∈ J, j ≠ l and the share of

compliers of all agents is constant. This implies that strategy changes from compliers to defectors, or
vice versa, cancel each other out for agents i and j, meanwhile agents k and l maintain their current
strategy. None of these two equilibria are necessarily steady state equilibria.



3.4 Economics of social pressure 63

resource management is. Consequently, low probabilities of the all-defector equilibrium
or any mix equilibrium must be evaluated positively from a social point of view7.

3.4 Economics of social pressure
Assume now that an equilibrium is not achieved by the bioeconomic system on its
own. For instance, if the number of compliers is low, then little social pressure can be
exercised. Hence, there is a strong likelihood that the number of defectors will rise
and the biophysical system will drift along an unsustainable path which may lead to
inefficient equilibrium or resource depletion.

3.4.1 Traditional policy instruments
As a first-best policy instrument economists would traditionally advocate for imposing
a tax on the amount of the resource extracted by the defectors. According to economic
theory, this tax θ̂ should be equal to the socially optimal path of the user costs η∗(t)
(Perman et al. [2011]), i.e.,

θ̂ = η∗(t). (3.11)

However, since the traditional approach does not consider the social interaction between
the agents the tax θ̂ is inefficient. The first-best policy instrument where social
interactions are taken into account is defined by the resource-extraction tax θi that is
given by

θi = η∗(t) − ω(s, ci, τci)(πD
i − πC

i ) = η∗(t) − a(τci)e−de−g(s)ci (πD
i − πC

i ). (3.12)

This takes into account the state of the resource, the local cohesiveness of the compliers
and the share of compliers in the neighborhood of agent i. Eq. 3.12 differs from previous
literature about network effects and pigouvian taxes where only a single aspect of
the network, like the share of compliers among all the members of the community in
question, c, is taken into account (Greaker and Midttømme [2016]). Instead, eq. 3.12
shows, in particular, that taking account of a single aspect of the structure of social
network, like c, may actually lead to a poor approximation of the first-best policy

7One should bear in mind that the interpretation of equilibrium employed in evolutionary game
theory is different from that employed in non-cooperative game theory. In the latter, equilibrium
provides guidance for the agent with respect to the choice of the strategy. In evolutionary game
theory, however, an equilibrium simply describes a temporary or permanent steady state without
offering directions for the choice of the strategy.
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instrument. Depending on the value of the local cohesiveness of the compliers and the
state of the resource, the use of a single aspect of the network may magnify or diminish
the error of the tax θ̂. In Section 3.7 we determine the quality of the approximation of
social interactions by using the single aspect c. In particular, we determine the lower
and upper limit of indefiniteness of the share of compliers for its future evolution. The
size of the interval indicates that using the single indicator c is likely to introduce a
significant error when calculating the tax θi. Eq. 3.12 also shows that the tax varies
over time and is specific for every agent because the local cohesiveness of the compliers
τci and the share of compliers ci are defined for the neighborhood of agent i which,
together with the state of the resource, changes over time.

The imposition of a personalized and time-dependent tax might be complicated
to implement. In this situation, the community may decide to impose a one-time
payment (νi) on the defector whose behavior has inflicted a loss on the compliers, so
that the number of compliers rises which, in turn, induces more defectors to change
their strategy and adhere to the social norm. Given that there is now a higher number
of compliers, the resource is managed in a more sustainable way.

Proposition 1: (Equilibria conditions):

One-time payments can immediately increase the number of compliers. Likewise, an
increase in the number of links between compliers increases local cohesiveness. Provided
that the number of compliers and/or the increase in local cohesiveness of compliers
resulting from such an action is high enough, the increased social pressure allows for the
new number of compliers to be maintained, thus favoring the sustainable management
of the resource8.

For this argument to be plausible, one should bear in mind that the short-sighted
behavior of defectors obstructs the emergence of cooperative behavior. The short-
sightedness of defectors is the origin of the tragedy of the commons. However, at the
same time it offers a solution. Such short-sightedness enables the number of compliers
to be increased at relatively low costs. Since defectors abandon their strategy as soon
as their utility is less or equal to the one of compliers, only a one-time payment is
required. Further payments are not necessary if enough defectors change sides which,
in turn, increases the element of social punishment and eliminates the incentive to

8Nyborg and Rege (2003) and Blanco et al. (2009), suggested an increase in the number of
compliers such that an all-complier equilibrium can be achieved. However, their proposal does not
consider network effects or determining the one-time payment.
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revert to a defection strategy. If defectors had a planning horizon longer than a year,
the payment would have to be larger to compensate not only for the forgone extra
benefits of the current period, but also for those of future periods. In the case of a
one-year planning horizon a defector is willing to become a complier if their new utility
is greater than before, i.e.,

πD − ωi(s, ci, τci)(πD − πC) < πC + νi, . (3.13)

where νi denotes the minimal one-time payment.
Alternatively, or in combination with a policy aimed at increasing the number of

compliers, the community may employ the characteristics of the network to achieve a
higher adherence to the social norm. In particular, it may aim to increase the number
of links between the compliers, for instance through specific actions such as organizing
workshops, creating institutions, running training courses or providing other additional
benefits exclusively for compliers. Newly created links between compliers, as a result of
these actions, increases local cohesiveness which, in turn, increases social pressure. The
choice of policy to be implemented will depend on the number of compliers and the
strength of local cohesiveness required for the sustainable management of the resource.
How to identify the missing number of compliers and how to determine the additional
strength of cohesiveness that complies with eq. 3.13 is discussed in sub-section 3.7.4.
If the community wants to comply with eq. 3.13 at minimal costs, it will need to
identify the agents with the lowest costs and the neighborhoods with the lowest local
cohesiveness of compliers. For this purpose, the experience gained from designing
reverse auctions as payment schemes for environmental services could be used to target
one-time payments (Schomers and Matzdorf [2013]), along with undertaking surveys
to better target link-building activities.

3.4.2 The economic value of the different elements of social
punishment

As discussed in Section 3.4, individual social pressure, ωi , is often not equal to the
social pressure, ω̄i, needed to support a network equilibrium. Missing or excessive
social punishment could be substituted by a tax or a subsidy so that the sum of each
defector’s social punishment and the amount of an individual tax/subsidy łi is equal to
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the social punishment equilibrium ω̄i(·)(πD − πC)9. Mathematically, the tax/subsidy
is given by

ωi(s, ci, τci)(πD − πC) + ł = ω̄i(·)(πD − πC). (3.14)

Although, as mentioned above, the imposition of an individual tax/subsidy that varies
over time is not a realistic policy option eq. 3.14 is, however, very informative in other
ways as it allows the economic values of a change in the share of compliers in the
neighborhood of agent i, ci, the strength of local cohesiveness among the compliers
in the neighborhood of agent i, τci, and the stock to be determined. Based on a
comparative static analysis, we obtain:

Observation 1: (The marginal economic value of social punishment) An
increase in the share of compliers or local cohesiveness of compliers will
increase the economic value of social punishment, whereas an increase in
stock will lead to a increase or decrease in the economic value of social
punishment.

The mathematical details for Observation 1 can be found in the Appendix A. While
the effect of an increase in the share of compliers or the local cohesiveness of compliers
leads unambiguously to more social punishment, an increase in the stock leads only to
an increase in social punishment if the stock-dependent costs are important. For the
opposite case social punishment decreases with an increase in the stock.

3.5 A numerical analysis based on the groundwater
extraction case

The social-ecological system defined by eq. 3.1 - 3.6, form the basis for the agents’
strategy choice within the social network N = (A, L) which consists of 7500 agents.
All the networks considered are scale-free and have an average degree of 15. The
structure of the social network and its current state enters the system via the social
pressure function ω, which depends on the depth of the water table, the share of
compliers and the cohesiveness of compliers of the neighborhood of agent i. Given
the complexity of this system, it is not possible to provide an analytical solution and
therefore we offer a numerical analysis. For the numerical study, we focus on a case of

9A subsidy would be required if the social pressure is too high so that even a defector that is not
required to change would like to do so. Only a subsidy can compensate for strong social pressure and
make the defector stick to their current strategy.
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groundwater extraction to irrigate agricultural land, more precisely the Western La
Mancha Aquifer (Spain). The two resource demand functions were determined by a
mathematical programming model that was programmed in GAMS (General Algebraic
Modeling System). More details on this part of this model are provided in Appendix
C - Numerical Analysis and Specification of the Functions Employed.

We start our analysis with the limiting cases where i) all agents are compliers or ii)
all agents are defectors. Moreover, we assume that none of the agents change their
strategies over time. In this case, there is no interaction between agents, i.e., there
are no network effects. To analyze the evolution of the water table of the aquifer, the
social-biophysical system is based on eq. 3.1 - 3.6 with ω = 0. Figure 1 presents the
drop in the water table assuming an initial water table depth of 0 m and 135 years as
the hypothetical lifetime of the well.

Fig. 3.1 Evolution of the water table.

Evolution of the water table for different strategies, where AD = all defector population, AC
all compliers population and MX = mixed population.
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Fig. 3.1 shows that the water table declines constantly and if all agents were
compliers, (AC), the aquifer would be depleted in 135 years. Conversely, if all agents
were defectors, (AD), the extraction rate would be higher and the aquifer would be
depleted within 106 years. Finally, if the population of agents consists of compliers and
defectors (case MX) for at least some period of time, the aquifer would be depleted
sometime between 106 and 135 years. Furthermore, our calculations indicate that an
identical qualitative pattern of extraction (not presented in Fig. 3.1) is obtained if
the initial depth of the well were lower and the economic lifetime were 25 years. In
both cases, it is always optimal to decrease the water table constantly until (whichever
comes first) the bottom of the well is reached or the economic lifetime of the well
concludes.

The estimated marginal benefits and the calculated extraction cost (Appendix C)
explain why both types of agents extract down to the full depth of the well. Once the
bottom of the well has been reached, the current social norm cannot be maintained
since natural recharge is not sufficient to satisfy the demand of the agents, even if they
were all compliers10. Thus, the members of the social network need to agree on a shift
in the regime and stipulate a new social norm that allows supply and demand to be
met once the aquifer has been depleted. Alternatively, the members could have defined
a more stringent social norm right from the beginning that would have guaranteed
a sustainable level of extraction at an earlier point in time, i.e., when the level of
water table was higher than the depth of the well. For our analysis, however, these
considerations are not of real importance since we are studying social punishment and
the factors that influence an agent’s decision to comply or not with the social norm.
The factors we consider are related to the structure and state of the social network,
and to an agent’s strategy, but not to the formulation of the underlying social norm.
In this respect, the results of our study are also valid if the social norm were redefined.

3.5.1 Cooperation vs. non-cooperation
Given the specification of the social-biophysical system (eq. 3.1 - 3.6) we start our
analysis for the entire network - the macro-perspective. Fig. 3.2a and 3.2b show the
evolution of the share of compliers c and defectors over time for two different initial
values (0.5 and 0.65) of the share of compliers c0, the two different initial values (15m
and 40m) of the depth of the water table s(0), and three different degrees (0.05, 0.15

10The water table constantly decreases over the entire planning horizon, even if all agents were
compliers. This implies that the natural recharge is always less than the agents’ demand. In other
words eq. 3.9 in general terms or eq. 3.21 from Appendix C cannot be met for the case of the aquifer.
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and 0.35) of the average local cohesiveness of the entire social network τ . Given the
evolution of the share of compliers in Fig. 3.2a and 3.2b, the corresponding evolution of
social punishment ω(·)(πD − πC) can be observed in Fig. 3.2c and 3.2d. Additionally,
the last two figures also show the corresponding evolution of the defector’s extra
benefits (πD − πC) for an average local cohesiveness of 0.3511.

Fig. 3.2 Evolution of the share of compliers

Fig. 3.2a – 3.2b: Evolution of the share of compliers for different degrees of average local
cohesiveness with τ = 0.05, 0.15, and 0.35. Fig. 3.2a: c0 = 0.5, s(0) = 15, Fig. 3.2b:

c0 = 0.65, s(0) = 40. Fig. 3.2c – 3.2d: Evolution of social punishment (SP) and of the
defectors extra benefits for differing degrees of average local cohesiveness with τ = 0.05, 0.15,

0.25 and 0.35. Fig. 3.2c: c0 = 0.5, s(0) = 15, Fig. 3.2d: c0 = 0.65, s(0) = 40.
11While average local cohesiveness does not affect (πD − πC) directly it does indirectly through its

effect on the evolution of the depth of the water table which, in turn, affects net benefits. However,
(πD − πC) is relatively insensitive to changes in the average local cohesiveness and thus, we graph the
extra benefits only for the value of 0.35.
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With an initial value c0 = 0.5 for the share of compliers, Fig. 3.2a shows that even
higher values of average local cohesiveness cannot delay the decrease in the share of
compliers in the network if the initial water depth is 15m. The relatively little scarcity
of groundwater leads to ineffective social punishment of defectors and so compliers
abandon their current strategy and become defectors within 5 years. A reversed result
is obtained in Fig. 3.2b, where the scarcity of groundwater (s(0) = 40), an initial value
c0 = 0.65 and values of average local cohesiveness above 0.05, lead to appropriately
high social pressure that the number of compliers increases over time. Only very
weak average local cohesiveness, τ = 0.05, is not sufficient to accumulate the social
pressure required to maintain and expand the initial number of compliers. Fig. 3.2b
also reveals that even though the share of compliers increases, it does not reach one.
There is always a certain (albeit small) number of defectors that receive no or very
little social pressure. In the cases where the defectors’ neighborhood consists mainly of
other defectors or local cohesiveness of compliers is very low, social pressure is very
weak or does not even exist. In other words, defectors can survive if they live in a
fairly isolated community where compliers are absent or less cohesive. Fig. 3.8a and
3.8d in Appendix D (Evolution of Social Pressure) illustrate this phenomenon since
social pressure does not attain its maximal value. This observation is analogous to a
finding in the non-cooperative game literature where (Bramoullé [2007]) observed that
agents have an incentive to anti-coordinate if they are embedded in a bipartite network.
Although these findings are obtained in very distinct frameworks, the underlying force
in both cases is the social network heterogeneity that leads to segregation. Fig. 3.2a
and 3.2b show that, overall, sufficiently strong network effects and the state of the
resource can modify or even reverse the effect of the share of compliers. Fig. 3.2c
and 3.2d show that as long as the defector’s extra benefits are greater than social
punishment, the agent will likely maintain their strategy. Once this relationship is
reversed, however, the agent will likely become a complier. Thus, the evolution of the
difference between the defector’s extra benefits and social punishment explains the
evolution of the share of compliers observed in Figures 2a – 2b.

Moreover, Fig. 3.2c and 3.2d provide information about the tangible monetary
value of social pressure (social punishment) on the scale of the network. Fig. 3.2c,
for instance, shows that an increase in average local cohesiveness has virtually no
monetary value since the three lines are nearly identical after the first three years.
When comparing the level of social punishment between Fig. 3.2c and 3.2d, the same
degree of average local cohesiveness offers information about the monetary value of a
drop in the water table (from 15m to 40m) and of an increase in the initial share of
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compliers. Thus, the comparison between Fig. 3.2c and 3.2d allows the monetary value
of social punishment attributable to the change in the water table and the initial share
of compliers to be determined. Likewise, the distance between the different trajectories
of the social punishment in each of the four figures allows for the monetary value of the
social punishment attributable to a change in the degree of average local cohesiveness
to be established.

The results can be summarized in the following observation:

Observation 2: (Critical mass of compliers and limited substitutability be-
tween the share of compliers and average local cohesiveness on the macro
level)

Fig. 3.2c and 3.2d show that the resource can only be managed in a sustainable
way if the initial number of compliers in the network exceeds a “critical mass”. The
value of this “critical mass” depends on the strength of the average local cohesiveness
of the network and the depth of the water table. The share of compliers, network effects
and the state of the resource are substitutes within certain limits. Thus, for a given
share of compliers, average local cohesiveness and the state of the resource can be
decisive for the agents’ strategy choice. An all-complier equilibrium does not emerge if
an isolated group of defectors, who are hardly exposed to any social pressure, evolves.

Finally, Fig. 3.2c and 3.2d also illustrate the inefficiency when a traditional “first-best”
tax θ̂ on the extracted amount of the resource by defectors is chosen to be equal to
the socially optimal path of user costs η∗(t) as defined in eq. 3.11. This inefficiency
is quantified in eq. 3.12 and corresponds to the vertical difference between the extra
benefits and the social punishment in Fig. 3.2c and 3.2d. Likewise, this difference
presents the minimum amount of the one-time payment νi as defined in eq. 3.13.

3.5.2 The share of compliers as a catalyst for sustainable man-
agement

The share of compliers as a catalyst for sustainable management Fig. 3.2a and 3.2d have
highlighted the importance of the depth of the water table, average local cohesiveness
and the share of compliers for a sustainable and socially efficient management of the
resource. For the choice of the values of local cohesiveness, however, one has to take to
into account that the share of compliers conditions the maximal magnitude of local
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cohesiveness of compliers. By definition, the fewer compliers in the neighborhood there
are, the lower the maximum value of local cohesiveness of compliers τmax

ci
is, since the

set of compliers in the neighborhood is a subset of the set of neighbors. For this reason,
there is a functional relationship between the share of compliers in the neighborhood
and the maximum local cohesiveness of compliers that can be achieved. It can be
approximated by c2

i ≈ τmax
ci

and is denoted by c2
i ≈ τmax

ci
(ci).

Fig. 3.2a and 3.2d show, in particular, that initial values of the share of compliers,
the state of the resource and local cohesiveness are driving factors behind the agents’
decision to adhere to the social norm. This echoes the idea that these factors shape
the individual’s incentives to become a complier. One of the critical factors for the
evolution of the resource is the share of compliers. For the values considered for the
state of the resource and local cohesiveness, Fig. 3.2a and 3.2d seem to suggest that
the critical mass of the share of compliers is situated somehow between 0.5 and 0.65.
These critical mass values can be related to the social pressure function as defined in eq.
3.3. If social pressure is equal to 1, the utility of defectors and compliers are identical
and thus, agents have no incentive to change their strategy. However, if the social
pressure is below 1, the defectors obtain extra benefits and consequently compliers
are likely to change their strategy to non-compliance. If the social pressure is above
1, defectors obtain negative extra benefits and are likely to change their strategy to
compliance. The more the social pressure differs from 1, the more likely the agent is to
switch from their current strategy to the alternative one. Thus, a social pressure of 1
allows the critical mass ccrit

i of the share of compliers to be determined.
The minimal-required initial share of compliers denoted by ccrit

i , and which excludes
a decrease in the number of compliers over time for different values of s, is given by
the set

ccrit
i (s) =

{
ω(s, ci, τmax

ci
(ci)) = 1

}
. (3.15)

As illustrated in Fig. 3.3, the set provides for different values of the stock and the
maximum value of the local cohesiveness of compliers (τmax

ci
(ci)) , the minimal initial

number of compliers, denoted as ccrit
i , that allows for a negative evolution of the

population of compliers to be discarded. Likewise, we determine for different values
of the stock and the minimal value of local cohesiveness of compliers, τmin

ci
= 0, the

maximal initial share of required compliers, c̄crit
i , that will lead to a positive evolution

of the number of compliers over time. In other words, if the initial share of compliers
is above c̄crit

i , the number of compliers will increase over time. The critical level of the
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initial share of compliers c̄crit
i is determined by the set

c̄crit
i (s) =

{
ω(s, ci, τmin

ci
= 0) = 1

}
. (3.16)

Hence, we can conclude that the evolution of the share of compliers is always negative
if the initial number of compliers is smaller than ccrit

i , but will always be positive if the
initial number of compliers is larger than c̄crit

i . As shown in 3.3, is equal to one. The two
values, ccrit

i and c̄crit
i , are the limiting values of the critical mass, i.e., ccrit

i ∈ (ccrit
i , c̄crit

i ).
Fig. 3.3 provides a graphical representation of the sets ccrit

i and c̄crit
i . For the sake

of brevity, we have put the mathematical details for the detailed specification of the
social pressure function allowing the sets to be determined in Appendix C (Numerical
Analysis and Specification of the Functions Employed). For a given value of the stock
the initial share of compliers that is above c̄crit

i guarantees a positive evolution of the
share of compliers over time, whereas values below ccrit

i guarantee a negative evolution.
For any initial share of compliers within the interval ccrit

i ∈ (ccrit
i , c̄crit

i ) the evolution of
the share of compliers is undetermined and depends on the precise values of the local
cohesiveness of compliers. The range of the indeterminacy is depicted by the shaded
area in Fig. 3.3. Although the assumption of τmin

ci
= 0 is extreme, it does allow the

complete range of indeterminacy to be ascertained. In reality, one expects that at least
some compliers are linked to each other and thus for c̄crit

i to be below 1 and slightly
curved downward.
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Fig. 3.3 Maximal and minimal initial share of compliers

Maximal and minimal initial share of compliers that condition either a negative or positive
evolution of the share of compliers.

The size of the interval (ccrit
i , c̄crit

i ) corresponds to the vertical distance between the
two continuous lines and reflects the influence that the strength of the local cohesiveness
of compliers (network effect) has on the evolution of the critical values of the share of
compliers. Likewise, the changes in the vertical distance between the two continuous
lines indicate the influence the depth of the water table exerts on the interval (ccrit

i , c̄crit
i ).

The possible (wide) range of (ccrit
i , c̄crit

i ) also indicates that the share of compliers alone
is an inaccurate indicator of cooperativeness and to be correctly interpreted needs
to be accompanied by other characteristics of the social network such as the local
cohesiveness of compliers or the state of the resource.

The results have, so far, been framed in terms of the neighborhood of agent i. As
far as the neighborhood of agent i is representative of the network, the results can be
generalized. For the case where this condition does not hold, the results cannot be
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carried over directly. In this case, the specific values of the points ccrit
i and c̄crit

i are
likely to be different, but the elements and principal conclusions of the analysis will
not be affected.

Fig. 3.2 shows that a critical mass of compliers is necessary for the sustainable
and efficient management of the resource, however, this is not actually sufficient to
ensure this is so. The population dynamics themselves are important but need to be
accompanied by the dynamics of the network and the state of the resource. Fig. 3.3
highlights these dependencies. In the absence of the local cohesiveness of compliers and
the scarcity of the resource, even an extremely high share of compliers is not sufficient
to prevent the degradation of the resource and the proliferation of defectors over time.
These results are summarized in the following observation:

Observation 3: (Critical mass of compliers, state of the resource and net-
work effects)

3.3 shows that a sufficiently high share of compliers is necessary, but is not suffi-
cient for the sustainable management of the resource. The necessary share of compliers
depends on the state of the resource and the strength of local cohesiveness of compliers.

3.5.3 Social pressure and the density and size of the network
The influence the local cohesiveness of compliers has on the critical mass of compliers
that supports cooperativeness, ccrit

i , is presented more explicitly in Fig. 3.4a for a
given depth of the water table: s = 15. It shows that the critical value decreases as
the network effect increases. The graph is bounded to the right because the local
cohesiveness of compliers is limited by the number of compliers; more precisely by
τmax

ci
= c2

i . Fig. 3.4a is linked to Fig. 3.4b through the strength of the local cohesiveness
of compliers τci which in turn is related to the number of links between the neighbors
(compliers and defectors) of agent i, denoted by τi. An increase in the number of links
(increase in density) between the neighbors can be allocated randomly or directionally.
In the latter case, new links are only formed between the neighbors who are compliers.
Directional formation of new links leads to a one-to-one increase in local cohesiveness.
Hence, the slope of this directional-formation line is 1, along which it holds that τi = τci .
The term τci increases until τmax

ci
is reached. From there on, additional links between

neighbors do not strengthen the local cohesiveness of compliers any further because its
value is limited by τmax

ci
. For the graph in Fig. 3.4b and without loss of generality we

consider a share of compliers of 0.57 as an example so that τmax
ci

is approximately given
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by 0.325. A random allocation of new links between the neighbors of agent i also leads
to an increase in the local cohesiveness of compliers, but requires far more new links for
the same amount of increase. Only if nearly all the neighbors are randomly connected
is the value of τmax

ci
reached. Any value located in the blue area presents links between

defectors and between compliers and defectors that are inefficient with respect to the
local cohesiveness of compliers because the same degree of local cohesiveness could be
achieved with fewer links. Likewise, any value in the red area indicates that links are
redundant because the degree of local cohesiveness has already reached its maximal
value with fewer links.

The fact that links are redundant sheds new light on the findings in the previous
literature (Coleman [1988]; Karlan et al. [2009]), where an increase in τi (denser
networks) favors the compliance to a social norm. Fig. 3.4b shows that an increase in
links only favors compliance to the social norm up to the point where τi is equal to
the value of the maximal local cohesiveness of compliers, τmax

ci
. Beyond this point an

increase in density does not contribute to higher social pressure.
Many authors have highlighted the importance the share of compliers (Osés-Eraso

and Viladrich-Grau [2007]; Sethi and Somanathan [1996]; Tavoni et al. [2012]) has for
the socially efficient management of the resource. However, the share of compliers is
independent of the size of the community, which questions the widespread hypothesis
(Ostrom et al. [1999]) that a small community exercises more social pressure than a
large community does. Fig. 3.4b offers an explanation for this apparent contradiction.
For this purpose, we compare a small and large community where the share of compliers
is identical.

In a small community, it is often the case that agents know each other well and so
the density and local cohesiveness of all neighbors τi is high. For example, consider
a complete network where by definition τ = τi = 1. This equation holds simply
because all agents are connected with each other so that all the agents have the same
neighborhood. Thus, given a share of compliers, for example 0.57, a small community
presented by a complete network is always located in Fig. 3.4b at the point (τmax

ci
, 1).

In more general terms with respect to the network structure, recent research
(Barábasi and Albert [1999]; Clauset et al. [2009]) has shown that agents can only
maintain a limited number of links (k <<< n), which results in a sparse (low density),
scale-free social network as the number of agents n of the network increases. Thus, as
the network grows, the total number of actual links increases to a lower degree than
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the possible number of links12. Consequently the density of the network decreases
with an increase in size13. As the density of the network is reduced, the probability of
transitive relationships between agents is severely constrained. Moreover, for scale-free
networks (Dorogovtsev and Mendes [2002]) and (Szabó et al. [2003]) found that the
local cohesiveness of all neighbors decreases with the degree of agents by approximately
τi ≈ k−1

i , which means that high-degree agents tend to have a low cohesiveness coeffi-
cient. These findings suggest that the probability of having τi ≥ τmax

ci
decreases rapidly

with the network size and degree of the agents. Fig. 3.4b shows that large networks,
characterized by the fact that the density of higher-degree agents is significantly lower
than τmax

ci
, cannot build up sufficient local cohesiveness between compliers to attain

the value of τmax
ci

. In a particular neighborhood, τmax
ci

may be achieved, especially for
agents with small degrees, but not the maximal average local cohesiveness on the scale
of the network.

Observation 4: (Social pressure in relation to the size and degree of the
network)

Given the same size network, denser networks favor compliance to the social norm, but
only up to the point where the maximal strength of the local cohesiveness of compliers is
reached. Beyond this point higher density is redundant. The density of a network is an
imprecise indicator for cooperativeness because it considers not only links that help to
tighten local cohesiveness of compliers but also redundant links. Given the same share
of compliers and same degree, smaller networks with high densities facilitate attaining
the maximal local cohesiveness of compliers, whereas larger networks with low densities
and scale-free structure cannot reach the maximal local cohesiveness.

Observation 4 provides a conceptual interpretation of the oft-cited finding that closely
knit networks favor social norm compliance more than loosely knit networks do. Yet,
this finding has to be considered with caution since it is the type of knit, more than
the tightness of the knit that is important. Likewise, this explains why, given a degree,

12The total number of links increases as a linear function of the number of agents given by
|L| =

∑n
i=1 ki. However, the possible number of links increases with the square of the network size

given by Lmax = n(n−1)
2 . Thus, the network density, d = 2|L|

n(n−1) < 1, decreases with the network size.
13Although the following example is not based on a scale-free network it illustrates the relationship

between density and degree. Assume that every agent knows exactly 100 other agents. Thus, if the
network consists of 100 agents we have a complete network with degree 100. However, if the network
would consist of 1000 agents the agents only knows 10% of all agents and the density of the network
would decrease while the degree remains 100.
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smaller networks comply to the social norm more than larger networks do. Thus, while
the share of compliers is important, so too is the size and density of the network as
these two factors exercise a very significant influence on the strength of social pressure.

Fig. 3.4 Critical share of compliers, density and local cohesiveness

Fig. 3.4a: The critical share of compliers as a function of local cohesiveness of compliers
(level curves) with τmax

ci
= 0.325. Fig. 3.4b: The relationship between density and local

cohesiveness with τmax
ci

= 0.325.

3.5.4 Social punishment and the social network characteris-
tics on the micro level

Our previous analysis focused mainly on the overall structure of the network (i.e., a
macro perspective). For the remainder of the analysis, we concentrate on the structure
of agent i’s neighborhood (i.e., a micro perspective). Fig. 3.2a – 3.2d allowed the
monetary value of social pressure as a function of time, the average local cohesiveness
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of compliers and of the depth of the water table at the macro level to be determined.
Fig. 3.5 provides information about the economic value of the share of compliers and
local cohesiveness of compliers in the neighborhood of agent (i.e., at the micro level).
As explained above, to interpret Fig. 3.5 one should keep in mind that the value of the
share of compliers introduces an upper limit of local cohesiveness of compliers. For
this reason, the part of the ci, τi plane that is not admissible has been left blank.

Based on eq. 3.13, we determine the one-time payment as the difference between
the defector’s and complier’s utility. Thus, if the community were to offer this one-time
payment to a defector, they would abandon their current strategy and would become
a complier. This one-time payment is determined by the solution of the following
equation:

νi = UD − UC = πD − ωi(s, ci, τci)(πD − πC) − πC = (1 − ω̄i)(πD − πC). (3.17)

with respect to the three unknown s, ci, τci. The three-dimensional plane in Fig. 3.5
shows the level curves of social punishment for different values of the share of compliers,
of the local cohesiveness of the compliers at time 0 and given a water table depth of 15
m. The defector’s extra benefits, πD − πC , amount to €316.36 and are presented by
the line in bold. These extra benefits are marked by a straight line because, for a given
moment in time, they depend only on s, and not on ci or τci . If social punishment is
below the line in bold (ωi < 1), the defector’s extra benefit πD − πC , is greater than
social punishment. In this case, a one-time payment of (1 − ωi)(πD − πC) is needed to
offer the agent an incentive to abandon their current strategy and to adhere to the
complier’s strategy. The difference between the defector’s extra benefits πD − πC and
the three-dimensional plane for the monetary value of social punishment determines
the amount required for the one-time payment.

Fig. 3.5 also shows the level-curves of social punishment. The distance between the
level curves indicates an €80 decrease or increase in social punishment. To keep Fig. 3.5
simple, we have only marked the level curve whose value is equal to the defectors’ extra
benefits of €316. The form of the level curves indicates that the substitution elasticity
between the share of compliers and the local cohesiveness of compliers is relatively
close to 0. Only within a small range of the values of the share of compliers and of local
cohesiveness of compliers can both arguments for social punishment substitute each
other. The level curves are not evenly spaced, indicating that the greater the distance
between the level curves, the lower the effect an increase in the share of compliers or
local cohesiveness of compliers has on the social punishment. We also solved eq. 3.17
for s=40m.
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Fig. 3.5 Economic value of Social Punishment

Social punishment as a function of the share of compliers ci and local cohesiveness of
compliers τci with s(0) = 15.

Fig. 3.5 is the result of a snapshot at time 0 and, as such, it does not provide any
information about the evolution of the social punishment over time. Figures 2a – 2d
show the evolution of compliers and of social punishment over time. Thus, the only
missing information to determine the social punishment over time is the evolution of
the defector’s extra benefits. This information is presented in Fig. 3.9a – 3.9d in the
Appendix D (Evolution of Social Pressure).

3.6 Concluding remarks
This study defines a social norm based on the socially-optimal management of a
renewable natural resource owned by a community. In contrast, the non-compliance
of the social norm is linked to short-sighted behavior where agents maximize the net
benefits of the current time period. Based on these two extraction strategies, we define
compliers (in compliance with the social norm) and defectors (non-compliance with the
social norm). Agents can revise their strategy within an evolutionary game-theoretic
approach, i.e., the probability of changing from their current strategy to the alternative
one increases the higher the perspective gains become. Although agents are free
to choose their preferred strategy, we consider the case where compliers exercise a
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social punishment that reduces the defector’s utility. Social punishment depends on
the remaining level of the natural resource, the number of compliers and their local
cohesiveness in the neighborhood of agent i. This formulation aims to answer the
question as to what extent network effects (share of compliers, local cohesiveness of
compliers, size and density) and stock effects (resource) provide incentives for individual
agents to comply with a social norm, to what extent compliance with a social norm is a
self-enforcing process and what exactly are the social and physical conditions required
to either initiate this process or choke it off.

If all equilibrium conditions hold, an overall equilibrium (with respect to the
dynamics of the resource, the network and the resource demand) may emerge. However,
given the asymmetry and complexity of the network, no analytical solution can be
provided. In contrast with the previous literature, the emergence of an all-complier-
network equilibrium is extremely unlikely since isolated communities of defectors
immune to social punishment may emerge.

Given the limitation of an analytical solution, the study analyzes the case of
the Western La Mancha Aquifer in Spain. There, the social network consists of
approximately 7500 farmers. Given the economic conditions and the maximal depth
of the aquifer, an economic equilibrium does not exist. The results show that, while
a sufficiently high share of compliers is required for the efficient management of the
resource this is not sufficient in itself. The magnitude of the critical mass of compliers
depends on the state of the resource, the density, the size and local cohesiveness of
compliers of network. The wide range of the critical mass leads to an indeterminacy
that highlights the fact that the share of compliers or any other single aspect of the
network alone is not a precise indicator for evaluating cooperativeness. To narrow
down the range of indeterminacy additional information about the characteristics of
the social network and the state of the resource is indispensable. For instance, a higher
density is likely to favor cooperativeness but on its own it is an imprecise indicator
for cooperativeness since it does not distinguish between links that tighten the local
cohesiveness of compliers or those that are redundant. The results also show that,
given the same share of compliers and average degree, smaller networks better support
cooperativeness than larger networks do.

Moreover, the analysis allows for practices favoring the sustainable management of
natural resources to be identified and targeted. An example of such a practice would
be the one-time payment to defectors based on the condition that they adopt the
complier’s strategy. As a result of the increase in social pressure, one would expect
defectors not to revert to their former behavior. The critical mass of the initial share
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of compliers indicates how many compliers are needed to implement such a policy.
Moreover, the study allows the magnitude of error to be determined for a traditional
“first-best” tax on the amount of the resource extracted compared to a tax that takes
into account of the interaction between the agents. Finally, the study provides a
monetary valuation of the intangible good – social pressure – in the case of the Western
La Mancha Aquifer.

There seem to be two promising directions in which the analysis of the study could be
extended. First, the current work can be considered as a building block to developing a
metric for the cooperativeness of a social network. This implies analyzing and extending
the relationships between the metrics employed for the different characteristics of the
network. The second line of research is related to changes in the underlying economic
forces. The assumption that social pressure is costless for the compliers or the defector’s
extra benefits are independent of the state of the social network could be revised. A
change in the later assumption, for instance, may lead to an anti-coordination behavior
if the defectors’ extra benefits were to increase as the number of compliers increases.
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3.7 Appendices

3.7.1 Appendix A: Observation 1

Based on eq. 3.14 the analysis shows that

∂łi

∂ci
= −ωi(·)(πD − πC)

∂ci
< 0,

∂łi

∂τci

= −ωi(·)(πD − πC)
∂τci

< 0 (3.18)

Eq. 3.15 indicates that, an increase in the number of compliers in the neighborhood of
agent reduces the tax/subsidy required to maintain the steady state equilibrium pressure.
It also specifies that an increase in local cohesiveness between the compliers within the
neighborhood of agent i leads to a decrease in the proposed tax/subsidy. Since the
tax/subsidy łi in eq. 3.14 is complementary to individual social punishment, a decrease
amounts to an increase in the economic value of social punishment: ωi(·)(πD − πC).
The comparative static shows further that

∂łi

∂s
= −ωi(·)(πD − πC)

∂s
= ∂ωi

∂s
(πD − πC) − ωi

∂(πD − πC)
∂s

<

>
0. (3.19)

The sign of eq. 3.19 cannot be determined unambiguously because ∂ωi
∂s > 0 and

∂(πD−πC)
∂s > 0 have opposite sign14. Yet, if stock-dependent extraction costs are not

important for the overall net benefits, then the second term of eq. 3.19 is not dominant
and ∂łi

∂s > 0.
In this case, social punishment decreases with an increase in stock due to the

complementarity of the tax/subsidy and social punishment. However, if stock-dependent
extraction costs are dominant in eq. 3.19, social punishment will increase with an
increase in the stock. Eq. 3.18 and 3.19 present the marginal monetary values of social
punishment with respect to an increase in the share of compliers, local cohesiveness of
compliers and stock. A comparative static analysis, based on eq 3.14, 3.18 and 3.19
with łi = 0, further reveals that the share of compliers in the neighborhood of agent
i decreases with an increase in the strength of the local cohesiveness of compliers or

14The positive sign of ∂ωi
∂s is based on the assumption that social pressure increases with an increase

in s which implies that the sign of ∂g
∂s is positive. The negative sign of ∂(πD−πC )

∂s is based on the
observation that the lower the stock, the higher the extraction costs for both strategies. Thus, the
difference between the extraction profiles and corresponding net benefits decreases. This hypothesis is
also confirmed by our empirical analysis – see Table B1, Figures C2a –C2d in Appendix C and D
respectively.
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in the stock, i.e., ∂ci
∂τci

< 0, ∂ci
∂s < 0. Thus, the local cohesiveness of compliers and the

state of the resource are substitutes for the share of compliers.
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3.7.2 Appendix B: Methodological and Technical Aspects of
the Implementation of the Social Network

In Chapter 2 we have described the network generative model based on the fitness
of agents. In this appendix, we describe how the game is initialized in the different
networks. We randomly assigned the desired number of compliers and defectors within
the network, simulated the evolution of the network and calculated the social pressure
function after one year. Let us denote that this results in ω̂. However, depending on the
initial distribution of compliers and defectors within the network, the value of ω̂ may
vary greatly. To evaluate the magnitude of this bias, we used the Monte Carlo method
and repeated the calculations for ω̂ n-times. The variance of the n-times repeated
calculations, σn

ω̂, is employed to determine the magnitude of the bias. Following (Vose
[2012]), we determined the required number of repetition n that guarantees that σn

ω̂ is
less than an acceptable error ϕ given a confidence interval (1 − α).15 For a confidence
interval of 95% and an acceptable error of 0.004, the required number of repetitions is
96.04. For this reason, we repeated all our calculations presented in this study with
100 different initial assignments. The results presented throughout the article are the
average values over those 100 repetitions.

One may think that the required number of repetitions is low. However, this can be
explained by the large number of agents (7500) that diminish the effect of the initial
assignment to the final value of ω̂.

The differential equation ṡ = g(s) − ∑cn
i wC

i − ∑n
cn+1 wD

i was solved analytically for
the case of pure strategies: all agents are compliers or all agents are defectors. However,
for the case of mixed strategies, an analytical solution cannot be provided because
the share of compliers c changes over time. Hence, the value of s(t) was determined
numerically by the Euler method at each moment of time.

15It would have been possible to evaluate the social pressure function in later years. However, the
effect of the initial assignment is diluted over the years, thus, limiting the error term of the first year
depicts the stringent test. The formula for the calculation of the necessary simple size is given by
n = (1.96σn

ω̂)2

ϕ2 .
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3.7.3 Appendix C: Numerical Analysis and Specification of
the Functions Employed

As an example of high policy relevance, we focus on the Western La Mancha Aquifer
situated within the upper Guadiana basin (inland region of Castilla La Mancha, Spain)
and extending over 5000km2 (see Fig. 3.6). The constant overdraft of this aquifer has
led to a variety of policy measures designed to curb its deterioration and comply with
the European Union Water Framework Directive (Gutiérrez et al. [2011]).

Fig. 3.6 Geographical location of the Western La Mancha Aquifer

The Western La Mancha Aquifer is the largest aquifer in Spain.

Hydrological model

We start out with the specification of the dynamics of the aquifer, ṡ(ξ) = g(s(ξ)) −
∑cn

i wC
i (ξ) − ∑n

cn+1 wD
i (ξ), s(ξ) = sł. In the case of an aquifer, natural replenishment

is independent of the stock and thus the term g(s(ξ)) is equal to R which denotes
natural replenishment. The stock s(t) indicates the depth of the water table in meters,
and wC

i (t) and wD
i (t) indicate the water extracted in m3/ha. Since the extraction is

measured in m3 and the depth of the water table in m, we introduce the conversion
factor ϕ that expresses the change in the depth of the water table as a result of the
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water extraction. Moreover, a part of the water extracted for irrigation percolates
back into the aquifer. Following (Encarna and Albiac [2011]), we set this return rate,
denoted by ψ, equal to 20%. Thus, the dynamics of the natural resource are now given
by

ṡ(t) = ϕ

(

R − ψ

(
cn∑

i

wC
i −

n∑

cn+1
wD

i

))

. (3.20)

(Encarna and Albiac [2011]) reported that in 2007 the land cultivated for agricultural
production comprised 191,400ha. (Encarna and Albiac [2011]; Esteban and Albiac
[2012]) calculated that the irrigation practices lead to a gross extraction of 1km3 of water
from the aquifer and extended the irrigated area by 62,000ha. Consequently, the water
table dropped by 32m, i.e., a decrease of 2.6666m per year. The gross extraction per
m3 of water per ha is given by 1,000,000.000m3/253400ha= 39,463,299,131.807m3/ha.
To keep the model more manageable, but without losing any important characteristic
related to the hydrological processes, we scaled the aquifer down to 7500 ha which
implies that all agents own exactly one hectare. Hence a drop of 2.6666m per year is
caused by a total extraction of 39,463,299,131.807m3/ha times 7500ha. In other words,
a decrease in the water table in meters per m3 of extraction is given by the conversion
factor 2,66666m/29597474,34885525m3 = 0.00000009009778m/m3. Although we down-
scaled the aquifer, we kept the number of agents approximately identical. However,
we had to adjust the number of stakeholders and so we assume that every agent owns
exactly one hectare.

According to (Encarna and Albiac [2011]), the overall recharge is 0.36km3. Hence,
per cultivated ha we obtain a recharge of 360.000.000/253400=1420,678768m3. This
number links well with the reported rainfall of 415mm/ha (Martínez-Santos et al.
[2008]). In terms of cubic meters, it results in 10,000m2 times 0.415m = 4150m3/ha.

Water extraction costs

We calculated the extraction costs as a function of the overall depth of the well
(annualized construction and maintenance costs) and of the lifting costs. They are
denoted by c(w, s) . Based on average values for the area of the Western La Mancha
Aquifer, the cost of wells with a lifetime of 25 years and a depth of 46.83m are €371
per ha. is €7.94 per lineal meter of the constructed well depth. Assuming an average
price rise of 4% p.a. over 10 years (2013 onwards), the nominal costs per lineal meter
for 2014 are €11.75 per lineal meter. As reported by Llamas and Garrido (2007), it
takes 0.004 kWh to draw 1m3 of water per meter. At €0.12 per kWh, water drawing
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costs per m3 are € 0.00048 per lineal meter.

Net benefits of agricultural production and water demand

(Ortega et al. [2011]) developed a mathematical programming model for four dif-
ferent types of farm characterizing the variety of production systems and farm types
found around the Western La Mancha Aquifer. Using economic, agronomic and policy
constraints, the authors calculated the net income for a farm under different water
allocation schemes. In other words, they calculated the best response the farmer would
make to changes in the amount of water allocated per ha. for the upcoming agricultural
campaign, i.e., the changes in inputs other than water or changes in the type of crop to
be planted (to adjust to allocated water changes) to maximize the farm’s net income.
The best response function with respect to changes in the amount of water is given by
the composite input x∗(w) . The reported results by (Ortega et al. [2011]) allow us to
relate the maximal net income for a farm, with respect to optimal use of the composite
input x∗, as a function of the water assigned per ha, i.e., π(x∗(w)). Optimal farm
income and the water assigned to it are reported in Table 3.1 of their work (Ortega
et al. [2011]). For the empirical estimation of this relationship, we calculated the
weighted average of a farm’s net income and water consumption for the four different
types of farm. Unfortunately, the data that was collected and presented only reflects
the upward sloping section of the farm-net-benefit function. Yet, the same authors
report that prior to water restrictions being implemented at the beginning of the 21st
century, the economic optimum corresponded to extracting 4300m3 of water per ha per
year. By adding this information as a decrease when consumption surpassed 4300m3 in
the farm-net-benefit function, we were able to estimate the net benefits of the farm as
a function of water consumption. Additionally, we incorporated water extraction costs.
The function that best fitted the data was a quadratic function with an R2 adjusted of
0.94. This is given by

π(x∗(w)) = 70, 3547448+0, 5061w−0, 000060w2−7, 94s−11, 75s−0, 00048ws (3.21)

In the next step we need to obtain the solution of the dynamic optimization problem
detailed in eq. 3.1 and 3.2. For this purpose we amend eq 3.1 by introducing the
specification of the term x∗(w) explicitly as defined in eq. 3.21 and substitute the
general resource dynamics ṡ by its specifications given in eq 3.21. Thereafter, the
dynamic solution problem is solved numerically in GAMS. The compliers’ and defectors’
strategies differ by the length of their planning horizon. Compliers adhere to the social
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norm by having a farsighted perspective of 25 years, whereas defectors deviate from it
as they focus on a planning horizon of a mere year.

The choice of a planning horizon of 25 years is obviously debatable, but this period
of time coincides with the current farming generation leaving the farm to the next and
with the economic lifetime of the investment itself16.

The data obtained from the solution the dynamic optimization model provided
for different initial values of s0, allowed us to estimate the water demanded by the
compliers and defectors to maximize their net benefits, wC

i (t, T, s(t)) and wD
i (t, 1, s(t)),

as a function of the depth of the water table. Likewise, the optimal water demand
for each strategy for different initial values of s0 allowed us to calculate the farms’
optimal net benefits, π(x∗

i (wC
i (·), s(t)), wC

i (·), s(t)) , and π(x∗
i (wD

i (·), s(t)), wD
i (·), s(t))

as a function of the depth of the water table17. The results from both estimations are
presented in Table 3.1.

Table 3.1 Water demand and optimal farm net benefits as a function of the depth of the
water table.

Functions Defector Complier
Water demand 4004,032258 - 3,870967742 s(t) 3910,124356 - 18,28383925s(t) + 0,855521467 s(t)2 - 0,012022391s(t)3

Farm net benefit 924,2879956 - 13,86127128s(t) 529,5613916 - 0,989226044 s(t) - 0,81859727s(t)2 + 0,023769413s(t)3 -0,000212445s(t)4

Although the compliers maximize their net benefits over 25 years, both compliers
and defectors may change their strategy at each moment of time. For this purpose, every
agent compares the usefulness of their current of strategy with the effectiveness of the
alternative strategy. The probability of a change in strategies is given by eq. 3.7 and 3.8,
and takes into account, among other elements, a farm’s optimal net benefits πC and πD.

Cooperative behavior and groundwater management

As mentioned above, the social pressure exercised by the compliers is an informal
mechanism to enforce the social norm. It allows compliers to retaliate for the defectors’

16Alternatively, we could have distinguished the behavior of compliers and defectors by the choice
of different time preferences. Yet, the choice of different discount rates would have been more difficult
since there is no natural orientation for its specification like generational succession or economic
lifetime of an investment.

17 For the case of the compliers, we used the average water demand and the farm’s average discounted
net benefits over 25 years. In this way, the compliers’ water demand can be considered as the expected
annual water demand. Moreover, taking the average value moderates the end-value problem toward
the end of the planning horizon.
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higher extraction rates of the groundwater which cause a faster decrease in the water
table level, higher pumping costs and scarcity for all agents.

After having specified the optimal net benefits per farm for each strategy, πC and
πD, we specify social pressure as a function of the depth of the water table, the number
of compliers and the cohesiveness of compliers in the neighborhood N (i) of agent i.
As described in the article, the social pressure function depends on the characteristics
of the neighborhood with respect to its share of compliers, its cohesiveness and the
depth of the water table, and is given by

ω(s, ci, τci) = a(τci)e−deg(s)ci . (3.22)

Fig. 3.7a shows its form as a function of the share of compliers for a given depth of the
water table (15 m and 40 m) and a(τci = 0) = 1. Fig. 3.7b illustrates the scaling factor
that determines the upper limit of the social pressure function. While higher values of
local cohesiveness of compliers lead to higher values of the upper limit (asymptote),
the shape of the social pressure function remains unchanged. The specification of the
functions and parameters is explained in detail below.

Fig. 3.7 The social pressure function

a) Social pressure as a function of the share of compliers for a given depth of the water table
(15m and 40m) and minimal local cohesiveness of compliers τci = 0, b) Upper limits of social

pressure as a function of the share of compliers ci.
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Social pressure is then characterized as incremental sanctioning driven by the four
parameters: the share of compliers in agent i’s neighborhood (ci), the stock levels(s), the
effectiveness of sanctioning (d) and the number of compliers in the agent’s neighborhood
who are connected (τci).

Compliers are well aware of the evolution of the stock and increase their pressure
on defectors as s falls. The function g(s) induces ω to grow faster as the water table s

approaches the maximal depth of the well, smax, in particular if s > smax
2 . The precise

formulation of g is given by

g(s) = A + (B − A)
(

s

smax

)n

. (3.23)

and is bounded between A < g(s) < B. We set the parameter A = 10, B = 20 and
n = 3 so that 10 < g(s) < 20. Higher values of the parameter d displace the social
pressure function to the right so that higher values of ci are needed to exert the same
pressure as before on defectors. Thus, the parameter d describes the ability to exercise
social pressure, i.e., the ability to sanction defectors (Tavoni et al. [2012]). In the
model, we set d = 150 in accordance with the study of (Tavoni et al. [2012]).

Since the function a(τci) defines the upper asymptote, it reflects the maximal social
pressure that compliers can exercise. Provided that agent i is a defector, the social
pressure agent i experiences increases if the compliers in the neighborhood of agent i

coordinate their action against agent i. Thus, the cohesiveness of the compliers in the
neighborhood of agent i is a precondition to their cooperation and is liable to increases
the social pressure placed on defectors. For this reason, we introduced the function
a(τci) which measures to what extent compliers in the neighborhood of agent i are
connected to each other. The specification of the cohesiveness function a(τci) is given
by

a = 1 +
(

τci

τmax

)α

= 1 + √
τci . (3.24)

If all neighbors of agent i were compliers ci = 1 and connected to each other, we
would have τci = τmax = 1. However, if not all neighbors are compliers, it holds that
0 < τci < τmax = 1 and consequently the function a is bounded by 1 ≤ a ≤ 2. Moreover,
we stipulate to set α = 0.5. This choice affects only the behavior of the function within
its boundaries but not the boundaries itself. Given that the term e−deg(s)ci of the social
pressure function is bounded by 0 < e−deg(s)ci ≤ 1, we know that the social pressure
function is limited as well, more precisely by 0 < ω ≤ 2 .



92 Tragedy of the Commons and the Economics of Social Pressure

The defined boundary of the social pressure function is of utmost importance since
it limits social punishment to be at most twice the difference between the benefits of
defectors and compliers, i.e., ω ≤ 2(πD − πC).

Obviously, the choice of the parameters and the specification of the social pressure
function ω is debatable and we cannot defend its choice on the grounds of the literature
or experiments previously conducted. However, the choice of limiting ω to be smaller
or equal to two seems rational in terms of economic reasoning. The main objective of
social punishment is to deter agents from defecting from the social norm. Once social
punishment outweighs the non-compliance benefits it would be best for rational agents
to adhere to the social norm. However, since social punishment of agent i depends on
the structure and state of the network, we allowed 0 < ω ≤ 2 so that effective social
punishment, ω > 1, occurs regardless if all the neighbors of agent i are compliers and
perfectly connected to each other.

The definition of the social pressure function, however, is not only motivated by
economic reasoning but also allows the structure and state of the network to be linked
to the decisions taken by each agent. Finally, the choice of boundaries for ω are also
decisive for limiting the probability of a change from the agent’s current strategy
to an alternative strategy. Denote the utility of the agent’s current strategy by Ui

and their alternative strategy by U ′
i . Thus, based on eq. 3.5 - 3.8, we observe that

the probability of a change in the agent’s current strategy to the agent’s alternative
strategy is given by

pi(t) = U ′
i(t) − Ui(t)

max{UD(t) − UC(t)} = 1 − ω. (3.25)

If U ′
i(t) − Ui(t) ≥ 0, we have 0 ≤ pi(t) < 1 and if U ′

i(t) − Ui(t) ≤ 0, we have
0 ≥ pi(t) ≥ −1. Thus, eq. 3.25 shows that the probability is limited by −1 ≤ pi(t) < 1
and links to the mathematical conception of probability. In eq. 3.7 and 3.8 we set the
probability of a change in strategies equal to zero if it leads to an economic loss, i.e.,
if U ′

i(t) − Ui(t) ≤ 0. Consequently, it will not be realized. Despite this modification,
eq. 3.25 shows the importance of the boundary choice of ω for linking the behavioral
model to the mathematical concept of probability.
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3.7.4 Appendix D: Evolution of Social Pressure

Fig. 3.8a – 3.8d show the evolution of the average social pressure within the network,
ωT . This consists of the social pressure received by all agents, i.e., the social pressure
experienced by defectors and the potential social pressure that compliers would receive
if they decided to abandon their current strategy. Alternatively, we calculate the
average social pressure that only defectors would receive and denote it by ωD. The
graphs show that ωD always decreases over time, suggesting that neighborhoods are
formed where the share of defectors increases.

Fig. 3.8 Evolution of social pressure ω

Fig. 3.8a: ci = 0.5, s80) = 15, Fig. 3.8b: ci = 0.5, s(0) = 40, Fig. 3.8c: ci = 0.65, s(0) = 15
and Fig. 3.8d: ci = 0.65, s(0) = 40.
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Fig. 3.9 Evolution of defector’s extra benefits

Evolution of the defector’s extra benefits for different degrees of average local cohesiveness
with τ = 0.05, 0.15, 0.25and0.35. Fig. 3.9a: ci = 0.5, s80) = 15, Fig. 3.9b: ci = 0.5, s(0) = 40,

Fig. 3.9c: ci = 0.65, s(0) = 15 and Fig. 3.9d: ci = 0.65, s(0) = 40.



Chapter 4

Tragedy of the Commons:
Traditional Policy Instruments
versus Network Policy

Summary

This chapter revisits the problem of the tragedy of the commons. We analyze the
role of social networks and social pressure as driving forces for the establishment and
maintenance of cooperation in resource use under variable social and environmental
conditions. The social-ecological system is coupled and co-evolve in time. We show the
extent to which social pressure contributes to overcoming the tragedy of the commons.
We find large regions where traditional policy instruments (taxes or subsidies) and
network-orientated polices (the higher the local cohesiveness of compliers the higher
the social pressure is) can be applied indistinctly, and analyze to what extent such
regions depend on the network structure, the state of the natural resource, and the
share of compliers.

Keywords: Natural resource management; cooperation; social network; social pressure;
mean-field theory
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4.1 Introduction
A feature of all societies is that they contain numerous natural resources (i.e., forests,
pastures or fishing grounds) that can be exploited by a large amount of agents. The
management of such natural resources is a challenging situation because each agent has
free access to exploit the natural resource but the use by one agent reduces resource
availability for others. If exploitation is unrestricted, agents are tempted to use the
resource above sustainable levels and eventually individual decisions cumulate to a
tragic overexploitation (Hardin [1968]). The prediction that agents tend to look out
for themselves first inspired a generation of environmental regulations imposed on
agents by external authorities. However, many authors (Holling [1978]; Jentoft [2000];
McCarthy [2000]; Muse [1990]; Olsson et al. [2004]; Wondolleck et al. [2002]) observed
that top-down management is subject to failure in some instances, offering at the same
time new perspectives and paradigms for natural resource management. From the 1990s
onwards, (Ostrom [1990]; Ostrom et al. [1999]) focused on self-governance. The main
characteristics of self-governance are that agents share property rights and management
is controlled by the joint agents. By examining successful cases of self-governance in
practice, Ostrom and her group observed that cooperation is an efficient strategy to
successfully manage natural resources held in common. However, cooperation seems to
contradict traditional economic predictions because cooperators increase the profit of
other agents at a cost of themselves. According to traditional predictions, in absence
of supporting mechanisms, cooperation should decrease and vanish. Thus, the correct
identification of such suppoting mechanisms for cooperation is a significant challenge
in environmental economics. Over the past decades, many mechanisms have been
proposed for the emergence and evolution of cooperation in absence of regulatory
institutions: repeated interaction and direct reciprocity (Axelrod and Hamilton [1981];
Trivers [1971]), punishment (Gaechter and Fehr [1997]), voluntary participation (Hauert
et al. [2002]), spatially structured populations (Nowak and May [1992]), and indirect
reciprocity (Alexander [1987]; Liu et al. [2017]; Nowak and Sigmund [1998]). These
mechanisms are capable of supporting cooperation in evolutionary games. Traditionally,
evolutionary games are Prisoner’s Dilemma games that assume limited rationality,
pairwise interaction and well-mixed populations. While the above mechanisms and
games help us to identify some driving factors for cooperation (i.e., group size, share
of cooperators), we argue that there exist other important drivers for cooperation
on natural resource management that need to be analyzed in depth: the level of
cohesiveness between cooperators, the state of the natural resource, and the underlying
structure of social interactions within the community.
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In view of these considerations, we propose a new framework that combines dis-
tinctive aspects of three strands of the literature: an evolutionary game based on the
solutions to the differential games employed within a social network that accounts
for the complexity of the interaction between agents. In the present study we aim to
analyze a simple model that departs from traditional evolutionary games by placing
emphasis on two driving forces: the asymmetric topology of social interactions, and
the social pressure in the direction of norm compliance. In their studies, (Ostrom
[1990]) also observed that, in absence of external regulation, management is meditated
by social norms of behavior. Cooperators may exert social pressure on agents of the
community that do not follow the social norm, however, in some situations social
pressure is not enough to maintain cooperation. Alternatively, or in combination with
social pressure, the community may decide to employ traditional policy instruments to
promote cooperation within the community.

In our model, we analyze cooperation as the outcome of an evolutionary process with
successful strategies spreading in the community as a result of a process of imitation.
Thus, the higher the social pressure the higher the probability is that agents decide to
follow the norm. If social pressure is costly, the positive effects of sanctioning decrease
and consequently temptation of non-compliance increases. Agents following the social
norms are called compliers. Compliers have long-term perspective because they limit
their resource use to the socially optimal amount. Agents who extract above the
sustainable level are called defectors. Defectors have short-term perspective because
they act in accordance with what they want now, with absolutely no consideration of
how actions might affect them in the future. Both types of agents interact in different
networks: complete, scale-free, and random networks. While not realistic, complete
and random networks allow us to define the upper and lower limits of social pressure
respectively. We begin by defining a discrete model in which each agent interacts
with her neighborhood and updates her strategy according to a probability that is
proportional to utility differences. However, equilibrium is analytically intractable
by the potential for multiple equilibria given the asymmetry and complexity of the
network and the distribution of compliers.

To analyze the regimes of stationary state of the evolutionary dynamics, we employ
an approximation technique from statistical physics known as a mean-field approxi-
mation (Weiss [1907]), which has proven useful for study network dynamics in several
contexts (Lamberson [2009b]; López-Pintado [2008]; Newman et al. [2000]; Pastor-
Satorras and Vespignani [2001]). We prove that this approximation leads us to a
continuous model based on the 2-strategy replicator dynamics. Unlike traditional
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replicator equation, our model allows for different network topologies. We prove that
predictions based on complete networks are often optimistic specially when compared
to more realistic networks, i.e., scale-free networks.

According to our replicator equation, we identify stable states and derive conditions
for policy options to guarantee cooperation. We then proceed to analyze how equilibrium
levels of cooperation depend on the parameters of social pressure, specifically the
cohesiveness of compliers, the level of the stock, and the share of compliers.

The study proceeds as follows. In section 4.2, we introduce the different elements
of the economic model based on an integrated social-ecological system. In section 4.3,
we define a concept for equilibrium and analyze possible equilibria. Then, in section
4.4, we identify policy corridors for the concrete determination of policy options. The
study closes with some concluding remarks (section 4.5).

4.2 The economic model
The economic model is based on three different components: the social network that
defines the interaction between agents, the resource demand strategies and the agent’s
chosen strategy. In the following, we present the three components.

4.2.1 A social network as a graph
Our interest is in the interaction between different members of a social network
that can be described by a simple graph N = (A, L) which consists of a finite set
A = 1, ..., n, n > 2 of agents and a set L of links that are the unordered pairs of
elements from A. The elements in set L consist of the values of the indicatrix link
function l : A × A → {0, 1}:

l(i, j) ≡ lij =
⎧
⎨

⎩
1; (i, j) ∈ L

0; (i, j) ∈ L

For any pair of agents, i and j, the expression lij = 1 indicates that the two agents are
neighbors, otherwise lij = 0, i.e., they know and relate to each other. By definition,
simple graphs are undirected so that lij = 1 ⇔ lji = 11. If every agent is connected to
all other agents, N forms a complete network. For each agent i, N (i) denotes their
neighborhood, i.e., the set of all neighbors. The degree kN(i) = ki = ∑

j lij of an
1Moreover, agents are not linked to themselves (self-loops), i.e., lii = 0, and there is no more than

one link between agent i and j (uniqueness of the link).
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agent i is the number of links at i, i.e., the number of neighbors i has. Denote by
P (K = k) = pk the degree distribution of N , that is the probability that an agent i in
N chosen uniformly at random has exactly k neighbors.

In this work we will analyze the influence different network topologies have on social
pressure and finally on cooperation. In particular, we will focus on some representative
types of networks (Appendix B): complete networks, random networks and scale-free
networks. In complete networks, agents are fully connected such that ki = n − 1 for
all agents in the community. Social pressure in complete networks is expected to
be effective because compliers know each other and thus they can share on average
more information and experiences. However, in large communities agents are only
connected with a subset of the population and then social networks are not complete.
If the links of all the agents were formed assuming the same probability p, we would
obtain a random network whose degree distribution approximately follows a Poisson
distribution. In random networks, agents have similar (small) degree with low number
of transitive relations. Unlike complete networks, compliers in random networks tend
to share little amount of information and consequently social pressure is much less
effective. However, empirical studies (Jeong et al. [2000]; Liljeros et al. [2001]) have
shown that the degree distribution of large social networks does not follow a Poisson
distribution and therefore recent research (Barábasi and Albert [1999]; Clauset et al.
[2009]) has focused on scale-free topology. These networks are characterized by a degree
distribution that follows the power-law pk = k−γ with 2 < γ < 3 (Nguyen and Tran
[2012]). Scale-free networks have more weight in the tails than do random networks
where there are few central agents of high degree and many other agents of small
degree and thus offer a better match with the social networks observed (Jackson [2008]).
Finally, and very importantly, compared to random networks, scale-free networks allow
for some organizing principles to be considered (Réka and Barabási [2002]). As shown
in Appendix B scale-free networks present a wide variety of network topologies, ranging
between random and complete networks. The wide range of topologies in scale-free
networks allow us to design network-orientated policies that may help to promote
cooperation when the community either lacks the legal power to enforce the social
norm or it is too costly to rely on any kind of formal contract.

Our interest in both random and complete networks is because they can serve as
a basis for understanding the limits of social pressure. While complete networks will
help us to define the upper limits for social pressure, random networks will help us to
define the lower limits for social pressure in a community of agents.
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4.2.2 Resource demand strategies
Each member of the social network has access to a common property resource. However,
extraction based on the maximization of each member’s private net benefits would,
in the long-run, lead either to the depletion of the resource or to very low annual
private net benefits. To overcome the tragedy of the commons, the members of
the social network have reached a common understanding of the characteristics of a
sustainable extraction path. Let us interpret this common understanding as a social
norm. Adherence to the social norm is voluntary and every member of the social
network may choose to follow the sustainable extraction path or not. Let us label the
behavior of the agents that follow the sustainable extraction path as compliers and
the behavior of all other agents as defectors.

Each member or agent either employs the extracted resource as the input to produce
a single good or commercializes it on the market. Let wi(t) denote the amount of
the resource extracted at calendar time t by agent i. The available amount of the
resource is denoted by s(t) with s(0) = s0. We assume that all members adjust all
other inputs to the extracted amount of the resource such that their net benefits are
maximized. Adherence to the social norm by agent i will support sustainable extraction,
whereas non-adherence will lead to a non-sustainable extraction path. Non-coordinated
individual behavior would result in a sustainable extraction path if all members were
to consider stock dependent costs when determining the privately optimal extraction
path. These costs will be fully considered if all the agents have a private planning
horizon of an infinite length. Consequently, we define compliers, denoted by C, as
far-sighted agents with an infinite planning horizon of T → ∞ years, whereas defectors,
denoted by D, are short-sighted and their planning horizon is T → 0 year. We assume
that the underlying reason for this short-sightedness is related to socioeconomic factors
(e.g. age, personal commitment to the community, risk aversion etc.). Each agent
determines the privately optimal extraction path (resource demand function) based on
the solution of the following decision problems. The resource demand function at time
t is given by:

wK
i (t, T, s(ξ)) = arg max

wK
i (ξ)

∫ T

t
e−rξπK(wK

i (ξ), s(ξ))dξ, K = C, D (4.1)

where r denotes the private inter-temporal discount rate and π the private net benefits
of the agent. We assume that compliers and defectors differ only in respect to the
length of their planning horizon, but not to their private discount rate. For the case of
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compliers eq. 4.1 is also subject to

ṡ(ξ) = g(s(ξ)) −
cn∑

i

wC
i (ξ) −

n∑

cn+1
wD

i (ξ), s(ξ) = st (4.2)

where a dot over a variable denotes the operator d
dt , c the share of compliers within

the population of all agents and g(s(t)) is the reproduction or growth function of the
resource. We assume that the compliers’ expectation of the defectors’ future extraction
at time t, w̄D

i , is based on their current level of extraction, i.e., w̄D
i = wD

i (t). The
resource demand function (eq. 4.1) is the solution to an open-loop strategy. Based on
the circumstance that agents can frequently observe the level of stock remaining, we
propose that they are allowed to modify their extraction profile after T − t. In other
words, the agents determine a new open-loop extraction profile based on the amount
of the natural resource they observe. This profile is maintained until the next revision
period when new information about the level of the remaining stock is obtained. Since
compliers take account of the stock dependent costs in terms of inter-temporal or user
costs, denoted by η(t), their marginal extraction costs are higher than those of the
defectors. Thus, it holds for a given stock s(t) that defectors extract at least as much
as compliers and their net benefits are never less than those of the compliers, i.e.,

wD
i (t, T, s(t)) ≥ wC

i (t, T, s(t))

and
πD(wD

i (t), s(t)) ≥ πC(wC
i (t), s(t))

4.2.3 Strategy choice - an evolutionary game-theoretic ap-
proach

Given our focus on the interaction between agents, we analyze how an arbitrary
initial distribution of compliers and defectors evolves over time and how this changing
distribution affects the evolution of the resource. At every moment of time, agents can
change their strategy, i.e., from complier to defector, or vice versa. Strategy choice is
based on the evolutionary game-theoretic approach (Osés-Eraso and Viladrich-Grau
[2007]; Sethi and Somanathan [1996]). We assume that this decision is influenced by
the following factors:

• the difference between the net benefits of a defector and a complier (i.e., the
defector’s extra benefits) and
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• the interaction with other agents (network effects)

In the case of the first point, we assume that the larger the difference is between the
maximal net benefits of complying with the strategy, given by πC(wC

i (·), s(t)) and not
complying with the strategy, given πD(wD

i (·), s(t)), the greater the chance at moment
a complier will become a defector and a defector will not become a complier. The
difference between πD − πC is not only important for the agent’s strategy, but also
presents the magnitude of the loss defectors inflict on those members of the network
who are adhering to the social norm. In the absence of an institution that is technically
and legally in a position to punish defectors, compliers may retaliate for the defectors’
abstraction of the common property resource through social shunning (ostracism) (Ali
and Miller [2016]).

In terms of social pressure, we assume that all agents are perfectly informed about
the strategy choice their neighbors have made (complete monitoring) and that there is
no time delay between detecting non-compliance and retaliation2.

Social pressure and social punishment

If an agent defects, they will be exposed to social pressure from the compliers3.
However, making use of the social network suggests that social pressure on defector
i depends on the number of compliers and defectors within their local neighborhood
N (i). Let us define the set of compliers within the neighborhood N (i) by NC(i).
Thus, the share of compliers in the neighborhood of agent i, ci, can be defined by
ci = |NC(i)|

|N (i)| . This relationship is considered an important factor in determining social
pressure because it measures the direct influence the neighborhood has on defector i

(Haag and Lagunoff [2006]; Jackson et al. [2012]). The higher the number of compliers
of neighborhood N (i) is, the greater the social pressure on agent i. However, not only
is the share of compliers, ci, important in determining social pressure, but so too is the
relationship between the agents who form part of the set NC(i). In the case that none
of these agents is linked to another agent in this set, one can assume that the social
pressure on defector i will not be as high as when each and every agent in set NC(i)
is linked. In the first case, local cohesiveness between the agents in set NC(i) would
be zero, whereas in the latter it would be one. Let us denote the cohesiveness among
the compliers in the neighborhood by τci ∈ [0, 1] (see Appendix E). This measures

2Social pressure is the application of the principle of reciprocity as the response to non-compliance
of the social norm by defectors.

3Instead of the male and female possessive pronoun we use plural form to facilitate the reading.
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the degree of connectivity between the compliers in set NC(i). (Haag and Lagunoff
[2006]) and (Jackson et al. [2012]) employed a different metric, independent of the
agents’ strategy choice, for connectivity. However, we used a more stringent measure
of connectivity since the cohesiveness of compliers is important to analyze the tragedy
of the commons. We denote the connectivity of all agents (compliers and defectors) in
the neighborhood of agent i by τi ∈ [0, 1] (also known as transitivity). This measures
how close the neighborhood of agent i is to a complete network. Thus, if, τi = 1, all
neighbors of agent i are connected to each other. Alternatively, the measurement of
cohesiveness for nodes or agents can also be measured on a network level. On this
scale, we define average transitivity or average local cohesiveness, as the average value
of local cohesiveness, i.e., τ̄ = 1

n

∑n
i τi. Finally, we assume, if the resource is abundant,

the set of compliers NC(i) will exert less social pressure on defector i than if it were
scarce.

Once the three key elements of social pressure have been introduced, we can then
write the social pressure function as ω(s(t), ci(t), τci(t)) ≥ 0. As explained above, an
increase in the stock reduces social pressure (i.e., ∂ω

∂t < 0), an increase in number of
compliers in the neighborhood of defector i increases social pressure (i.e., ∂ω

∂ci
> 0), and

an increase in the strength of social ties between compliers in the neighborhood of
defector i raises social pressure (i.e., ∂ω

∂τci
> 0).

We model social pressure, ω, as a logistic function that is given by ω(s, c, τc) =
Ł

1+smaxe−sd(c,τc) . The social pressure function is limited above by the parameter Ł such
that 0 ≤ ω ≤ Ł, and is displaced along the horizontal axis by the value of the function
d(c, τc). Parameter smax refers to maximum stock level, and parameter s refers to the
remaining stock at current time s ∈ [0, smax].

The function d relates to the willingness of compliers to exercise social pressure. We
propose to specify the function by d(c, τc) = c− (c0 − τc) where c0 − τc fixes the location
of the inflection point of the function ω. It is important to remark here that c0, c, τc

are always bounded 0 ≤ c0 ≤ 1, 0 ≤ c ≤ 1, and 0 ≤ τc ≤ 1. Thus the willingness
to exercise social pressure increases with the share of compliers and the degree of
local cohesiveness of compliers. An increase in the value of s decreases the slope of
the function ω. Since the strength of social pressure exerted highly depends on the
specification of the function ω we propose a flexible specification that is controlled by
the choice of the parameters smax, c0. Moreover, in order to consider irregular networks
we substitute the share of compliers in the network, c, for the share of compliers in the
neighborhood of agent i, ci and the degree of cohesiveness τc by local cohesiveness τci .
Hence, the modified logistic function depends on the characteristics of the neighborhood
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with respect to its share of compliers, the cohesiveness between compliers and the
amount of the remaining stock. It is given by the general expression

ωi(s, ci, τci) = Ł
1 + smaxe−s(ci−(c0−τci )) (4.3)

We assume that social punishment is directly related to the difference between the
net benefits of the defector and the complier πD − πC . Since these extra benefits
present the loss defectors inflict on compliers, any social punishment can be viewed as
redemption for the privation suffered by the compilers. However, social punishment is
not independent of social interaction among the agents and, therefore, we assume that
the loss defectors inflict on the compliers is attenuated or aggravated by the strength of
social pressure ωi(s, ci, τci). More precisely, the social pressure produced and the extra
benefits the defector gains as a result of incompliance, define the social punishment
imposed and is written as:

ωi(·)(πD(·) − πC(·)) (4.4)

Agent utility and strategy choice

We assume that the utility of agent i adhering to the social norm at moment t

is given by:
UC(t) = πC(·), (4.5)

however, defector’s extra benefits represent an incentive that works as a driving force
for compliers against norm violators. Hence, compliers decide to sanction defectors
whenever they detect norm violation. The utility of the same agent i not adhering to
the social norm at moment t is given by:

UD(t) = πD(·) −
[
ωi(s(t), ci(t), τci(t)(πD(·) − πC(·)))

]
+ θi(c)(πD(·) − πC(·)). (4.6)

Eq. 4.5 indicates that the utility of a complier is equal to their private net benefits4.
Eq. 4.6 shows that the utility of a defector consists of the net benefits from resource
exploitation minus social punishment. Unlike the complier’s utility, the defector’s
utility depends on the position the agent holds within the social network and the
characteristics/topology of the social network within their neighborhood. Apart from

4Although this formulation implies that agents are risk neutral, we opted for this specification to
simplify the model and to concentrate on the interaction between agents in a social network.
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the utility obtained from extraction agents may obtain utility from additional benefits
or extra costs as a result of implemented policies. These benefits or costs affect
defectors, compliers or both, and as such they may change with the share of compliers
and may alter the magnitude of the defector’s extra benefits. Hence, they influence
the agent’s strategy choice and are denoted by θi(c)(πD(·) − πC(·)). Examples of
θi(c)(πD(·) − πC(·)) are given by the distribution of the costs of sanctioning among
compliers or by a globally fixed subsidy or fine that has to be shared by compliers or
defectors respectively.

In the discrete model, adherence to the social norm will evolve as follows. At
each time step, every agent decides whether to maintain their current strategy or
not. For this purpose, every agent i compares the utility associated with their current
strategy U(t) with that of the alternative strategy U ′(t). The utility of a complier is
independent of their position in the network or the characteristics/topology of the
social network within their neighborhood. However, the decision to maintain or to
change their current strategy depends on these very elements as they influence the
alternative strategy’s utility. The agent will probably adopt an alternative strategy if it
proves more beneficial, U ′(t) > U(t), whereas if U ′(t) ≤ U(t), the agent will maintain
their current strategy. In mathematical terms, the probability of a change in the
current strategy adopted by agent i for a given level of stock, is considered proportional
to the difference in the utilities.

Let the probability that agent i changes from complier to defector be denoted by
pC

i (t) given by:

pC
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UC(t)−UD(t)
max{UD(t)−UC(t)} , if UC(t) − UD(t) < 0

0 , if UC(t) − UD(t) ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (4.7)

and let the probability that agent i changes from defector to complier be denoted by
pD

i (t) given by:

pD
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

UD(t)−UC(t)
max{UD(t)−UC(t)} , if UD(t) − UC(t) < 0

0 , if UD(t) − UC(t) ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (4.8)

The denominator of eq. 4.7 and 4.8 refers to the maximal difference between the
utility of the different strategies for a given level of stock at time t. This means that
UD(t) − UC(t) is maximal when UD(t) and UC(t) are also maximal. This situation
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occurs in absence of policy and social pressure. In other words, UD = πD and UC = πC .
Based on eq. 4.5 - 4.8 we observe that the probability that agent i changes from
complier to defector is

pC
i (t) = πC(t) − (πD − ωi(πD(t) − πC(t)) + θi(c)(πD(t) − πC(t)))

πD(t) − πC(t) = ωi(·) − 1 − θi(c).
(4.9)

When parameter θi(c) > 0, it represents policies that favor defectors. These policies
reduce the positive effects of social pressure and increase the temptation to defect. On
the other hand, if θi(c) < 0, the parameter represents policies in the form of subsidies
designed to promote cooperation. In this case, subsidies have to be of opposite sign
than policies that favor defectors, which means θi(c) < 0.

We can easily observe in eq. 4.9 that for social pressure to be effective the following
condition θi(c) < Ł needs to be true. We assume there is no time delay from defection
to detection and thus compliers immediately sanction defectors once they have observed
norm violation. Regarding the magnitude of the sanction, we bound ωi above by Ł = 2,
this means social pressure is bounded 0 ≤ ωi ≤ 2 and individual costs of sanctioning
should be lower than Ł such that θi(c) < 2.

As ωi ∈ [0, 2] and θi(c) < 2 the decision to maintain the current strategy or to adopt
the alternative one is limited by −1 ≤ pC

i ≤ 1. Depending on ωi and θi(c), compliers
will decide to maintain their strategy with probability pC

i ∈ [0, 1] (if UC ≥ UD) or to
adopt the alternative one with probability pC

i ∈ (0, −1] (if UC < UD). Note that the
sign of p only indicates the direction of the decision. On the other hand, the value of p

indicates the magnitude of the decision. Analogously, probability pD
i (t) is symmetrical

to pC
i (t) but with opposite sign such that pD

i (t) = 1 + θi(c) − ωi. Again, defectors
will decide to maintain their strategy with probability pD

i ∈ [0, 1] (if UD ≥ UC) or
to adopt the alternative one with probability pD

i ∈ (0, −1] (if UD < UC). All agents
simultaneously decide which strategy to choose based on the current distribution of
compliers and defectors within the social network, with the probability being pC

i or pD
i .

We assume that agents do not act strategically, i.e., they do not consider the possible
strategy choices of their neighbors when deciding on their own. Given the large size
of the social network and the resulting huge set of possible constellations each player
needs to consider to make a strategic choice, it would seem to be more realistic to base
individual strategy-choice on non-strategic behavior as in (Gale and Kariv [2003]).



4.3 Equilibrium concept 107

4.3 Equilibrium concept
For the dynamics of a resource and a non-structured population, (Sethi and Somanathan
[1996]) and (Osés-Eraso and Viladrich-Grau [2007]) identified equilibrium conditions.
In the absence of a natural resource (Santos and Pacheco [2005]; Santos et al. [2006,
2012]) used Monte Carlo techniques to identify a window of parameter values for
an equilibrium of the dynamics of a population embedded in an asymmetric social
network. Given the complexity and irregularity of asymmetric networks the previous
literature employed frequently the concept of pairwise stability. It allows abstracting
from the complexity and irregularity of the network, since it is based on the relationship
between two agents but neither on their position within the network nor topological
characteristics of the network. However, in the presence of a stock variable this concept
is not sufficient for an equilibrium since any change in the stock abrogates the previous
existing pairwise equilibrium. Extending the concept of pairwise stability by an equi-
librium condition for the stock variable offers a straightforward extension but still does
not consider information about the agents’ position within the network or topological
characteristics of the network. Below define a general equilibrium concept that takes
account of the agents’ position within the network and topological characteristics
of the network. The latter two aspects form part of the social pressure function ω

that is a constituting element of the probabilities for a change in agent’s i strategy choice.

Definition 1: (Equilibria conditions):

Any steady state equilibrium concept requires the following three equilibria, a) equilib-
ria with respect to the dynamics of the resource, b) changes in the choice of strategy
adopted by the agents and c) the demand the agents make of the resource must be
incentive-compatible with the equilibria with respect to the dynamics of the resource.

Equilibria a) demands that ṡ(t) = 0 which, in turn, requires that

g(s(t)) =
c∑

i

wC
i (t) +

n∑

c+1
wD

i (t) (4.10)

Additional to eq. 4.10, none of the agents change their strategy, or the share of
compliers c is constant must also hold5. Hence, an equilibrium b) in expected values is

5The share of compliers can be kept constant if none of the agent changes, i.e., pC
i = 0, pD

j =
0, ∀i, ∀j, i ̸= j, i ∈ I : {1, ..., cn}, j ∈ J : {cn + 1, ..., n}. Moreover, there may be a dynamic equilibrium
if pC

i ̸= 0, pD
j ̸= 0, pC

k = 0, pD
l = 0, ∀i, ∀j, ∀k, ∀l, i ∈ I, k ∈ I, i ≠ k, j ∈ J, l ∈ J, j ≠ l and the share of
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achieved if:
cn∑

i

pC
i −

n∑

cn+1
pD

j = 0. (4.11)

Finally, equilibrium c) holds if there is a wC
i (t) and wD

i (t) that satisfies eq. 4.1, and 4.10.
In other words, the amount of extracted resource required satisfies the balance between
reproduction and extraction (eq. 4.10) also has to be optimal from an economic point
of view for compliers and defectors, i.e., none of the agents changes their strategy.
Hence, an equilibrium is defined by eq. 4.1, 4.10 and 4.11.

Corollary:

If the conditions a) and c) of Definition 1 hold and ci = c and ωi = ω = 1 + θi(c) a
steady state equilibria is achieved.

Proof: Eq. 4.5 and 4.6 show for ωi = 1 + θi(c) that UC
i = UD

i + θi(c) which
implies that pC

i = pD
i = 0, i.e., the agents maintain their current strategies that support

the equilibrium level of the stock. Hence, condition b) of Definition 1 is also fulfilled.
!

The conditions that ci = c and ωi = ω hold, are given by all types of networks
that are complete. Likewise, it is given by networks that consist of smaller and inde-
pendent parts that are itself complete. Similarly, these two conditions practically hold
for regular lattices with periodic boundary conditions. While these specifications allow
characterizing the equilibrium the considered types of networks are quite specific and
exclude other networks such as scale-free networks or random networks.

4.3.1 Mean-field analysis
For incomplete or non-regular networks, the great number of agents and the large degree
of freedom to satisfy conditions 4.10 and 4.11 makes it hardly impossible to obtain more
operational equilibrium conditions that allow determining the equilibrium analytically.
Nevertheless, the modern theory of mean-field allows obtaining operational equilibrium
conditions that are based on the average values of the topological characteristics of
the network. The theory of mean-field takes its departure from particle physics where
compliers of all agents is constant. This implies that strategy changes from compliers to defectors, or
vice versa, cancel each other out for agents i and j, meanwhile agents k and l maintain their current
strategy. None of these two equilibria are necessarily steady state equilibria.
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it designates a highly effective methodology for handling a wide variety of situations
in which there are too many particles to permit the dynamics or equilibrium to be
described by modeling all the inter-particle interactions. Instead, the particle interaction
is described by the contribution of each particle to the creation of a mean-field, and
the effect of the mean field on each particle – for example the description of the phase
changes of water to gas by the temperature. A large proportion of types of inter-particle
interactions, though not all, lend themselves to this methodology: the inter-particle
interactions must be sufficiently weak or regular in order for a statistical phenomenon
to emerge (Guéant et al. [2011]). Similarly, mean-field theory is applied in economics
where particles are replaced by agents who mutually interact in socioeconomic and/or
strategic situations (Duernecker and Vega-Redondo [2017]; Galeotti and Rogers [2013];
Guéant et al. [2011]; Jovanovic and Rosenthal [1988]). Like in physics mean-field
approximation of the social interactions of individual agents is legitimate (Guéant
et al. [2011]) if the network is sufficiently large, regular and individual agents are alike
(anonymity of individual agents).

Social equilibrium

Based on the concept of mean-field approximation our interest is in replacing ci by
c and τci by τc, i.e., the network is described by the average share of compliers and
the average local cohesiveness. We start out with the equilibrium condition for the
evolution of the agents (Definition 1, condition b). They are defined in eq 4.11 and the
evolution of the share of compliers is governed by the eq. 4.7 and 4.8. In particular,
our interest is in the evolution of compliers within the community. In eq 4.9 we have
defined the decision rule for compliers in where the difference (ωi −1−θi(c)) determines
the direction and magnitude of the decision at each time step. We have argued that
costs of sanctioning or subsidies θi(c)>

<0 are shared by compliers. If θi(c) is uniform
across compliers we have θi(c) = θ̄(c) for all agents that decide to conform the norm.
Regarding social pressure, ω, in Appendix C we have shown that ci ≈ c, ∀i ∈ n in
irregular networks when compliers are distributed randomly through the community.
Moreover, we proved in Appendix C that the average local cohesiveness in any network
can be approximated by the following expression τ̄c ≈ τ̄c2 (eq. 4.35).

According to these three approximations, we are replacing the interaction of an agent
with her neighbors by an interaction with the average behavior in the community. This
is the mean-field approximation in where every agent in the community is influenced by
remaining others with equal strength. In this case the new decision criteria is governed
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by
p̄ = ω̄ − 1 − θ̄(c), (4.12)

where
ω̄ = Ł

1 + smaxe−s(c−(c0−τ̄c)) . (4.13)

For simplicity, we will use ω instead of ω̄ to refer to the average social pressure in the
network. We departed from a discrete model where agents revise their strategy at
each time step according to a probability that is proportional to the payoff difference.
However, social pressure in a network is rendered analytically intractable by the
potential for multiple equilibria depending on the specifics of the network of connections
and the distribution of compliers and payoffs. For the sake of simplicity, we employ a
mean-field analysis to approximate the evolutionary dynamics. Formally, this leads to
a continuous model that can be simplified by the 2-strategy replicator equation. The
equation is represented as follows

ċ ≈ c(1 − c)(UC − UD) ≈ c(1 − c)
(

πC − (πD − ω(πD − πC) + θ̄(c)(πD − πC))
πD − πC

)

.

(4.14)
That can be reduced to

ċ = (ω − 1 − θ̄(c))c(1 − c), (4.15)

The term (ω − 1 − θ̄(c)) is equivalent to the growth rate of compliers. To concentrate
of the qualitative characteristics of the growth rate we assume that θ̄(c) is given by
γc with γ <

>06. Unlike traditional replicator dynamics, our social networks do not
necessarily represent well-mixed populations, thus, networks are not always complete.
As shown in Appendix C, mean-field approximation works better on regular networks
(even on random networks) than on scale-free networks. However, this approximation
is valuable because it helps us to identify the 3 stationary points in the system:

ċ = (ω − 1 − γc)c(1 − c) = 0 →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = 0

ω(ĉ, s, τ̄ ĉ2) = 1 + γĉ

c̄ = 1

(4.16)

6The admissible value of γ has to be bounded above by 2 in order to guarantee that the growth
rate is always inferior to 3. Higher values of the growth rate may lead to chaotic behavior (May [1976])
of the logistic growth function.
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In the intermediate stationary point we denote by ĉ the critical mass of compliers
needed to obtain ċ = 0. Notice that c < ĉ < c̄.

Proposition 1

There exist at most three stationary points. A lower point c = 0, an inter-
mediate point c = ĉ < 1, and an upper point c = c̄ ≤ 1 . The upper point
can be an intermediate or boundary value of the domain of c.

Proof: If (ω − 1 − γc) < 0 for c < ĉ, the growth rate of compliers is always negative
and the only stationary point is given by c = c = 0. If (ω − 1 − γc) > 0 the growth
rate of compliers is always positive such that the population reaches its upper point
c = ĉ ≤ 1. In the case that the growth rate changes signs as c < c̄ increases we obtain
that an intermediate stationary point is reached. It is given by (ω − 1 − γc) = 0, for
c = ĉ. !

Social equilibria in absence of policy instruments

The consideration of different values of the policy instruments and social pressure
allows identifying a more precise location of these three stationary points. These results
are summarized in Tables 4.1 and 4.2 and are illustrated in Fig. 4.1 and 4.2. The
blue and red lines in Fig. 4.1a) – 4.1d) depict the evolution of the social pressure ω as
a function of the share of compliers given a remaining stock of 45m, 35m, 20m, and
0m respectively. The blue line presents the evolution of social pressure when local
cohesiveness is maximal and the red line when it is minimal. The discontinuous black
line indicates the location where social pressure is equal to the benefits or costs of
policy instruments plus one.

If policy instruments are absent, γ = 0, a stationary point to be interior requires
that the growth rate (ω − 1) is equal to 0. This interior point is denoted by c = ĉ

(case A:1 of Table 4.1, intermediate point). If the share of compliers is below ĉ the
growth rate (ω − 1) < 0 and consequently all agents will become defectors, i.e., c = 0.
However, if the share of compliers is above all agents will become compliers since social
pressure is greater than 1, (ω − 1) > 0, then c̄ = 1. These three stationary points
(c = 0, ĉ, c̄ = 1) are presented in Fig.4.1a) – 4.1d). The precise value of ĉ depends
on the strength of local cohesiveness which in turn influences the strength of social
pressure. If local cohesiveness is maximal (blue line, τ̄max

c ) ĉ varies between 0.41 and
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0.74 for the considered values of the stock. If local cohesiveness is minimal (red line,
τ̄min

c ) ĉ varies between 0.58 and 0.76 for the cases 1b) - 1c). In the case of 1a) does not
exist. In this case the social pressure is always lower than 1, the only stationary point is
given where all agents are defectors, i.e., c = c = 0 (case A:2 of Table 4.1, lower point).
Fig. 4.1a) – 4.1d) illustrates two facets of the growth rate of compliers: the less stock
remains and the higher is the strength of local cohesiveness the lower is the required
share of compliers that conduce to the social optimum (full cooperation). Likewise, Fig.
4.1a) – 4.1d) show that the fewer stock remains the less important is the strength of
local cohesiveness. This conclusion can be derived from the distance between the blue
and red line. It decreases with the remaining stock. In other words, the importance of
the strength of local cohesiveness for social pressure is in part replaced by the scarcity
of the stock.

Table 4.1 Stationary points in absence of policy instruments.

Cases Subcases Growth rate at a stationary point Stationary points
A: γ = 0 (1) ω − 1 = 0 c = 0, ĉ = arg(ω = 1), c̄ = 1
A: γ = 0 (2) ω − 1 < 0 c = 0

Fig. 4.1 Evolution of social pressure as a funtion of the share of compliers.

This figure shows the evolution of social pressure as a function of the share of compliers in
absence of policy instruments, γ = 0: 1a) s = 45, 1b) s = 35, 1c) s = 20, and 1d) s = 0.
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Social equilibria when policy instruments are present

Similarly to Table 4.1 and Fig. 4.1a) – 4.1d) one can analyze the stationary point of the
evolution of compliers when policy instruments are present, i.e., γ ̸= 0. A stationary
point requires that the growth rate (ω − 1 − γc) is equal to 0. The different cases
for stationary points are classified in Table 4.2 and are illustrated in the Fig. 4.2a) –
4.2d). The discontinuous black lines in these figures indicate benefits/costs of the policy
instruments plus one. In case that the policy instrument disfavors compliers, or in other
words it favors defectors (γ > 0 case B:1 and B:2, Table 4.1) the share of compliers
associated with a mixed equilibrium increases. Moreover, if the effect of the policy
is sufficiently large (case B:2,Table 4.1) shows that the all-compliers stationary point
at c̄ = 1 stops to exist and the upper point moves to the left and is converted into a
second intermediate stationary point, c̄ ≤ 1, situated between the all-compliers and the
first intermediate stationary point. If the policy intervention favors the defectors even
stronger the only stationary point is given were all agents are defectors, c = 0 (case B:3,
Table 4.1). Moreover, the latter point is also a stationary point for the cases B:1 and B:2
since the sum of the defector’s overall benefits are always superior to social punishment
at this point. Fig. 4.2a) illustrates for the case of γ = 1 that the only stationary points
are given by c = 0 and c̄ = 1. The intermediate stationary point does not exist. For
γ > 1 only the all-defector equilibrium exists because the defector’s overall benefits
are always superior to the social punishment. Fig. 4.2a) – 4.2d) show for γ ≥ 1 that
as the remaining stock decreases an intermediate stationary points emerges and the
upper stationary point is either given by c̄ < 1, or c̄ = 1. If the policy instrument leads
to extra costs for defectors (γ < 1) a lower, upper and intermediate stationary point
exist. Fig. 4.2a) – 4.2d) also show that the minimum share of compliers necessary
for driving the population of compliers to the upper stationary point increases with a
decrease in the remaining stock. If the local cohesiveness is maximal (τ̄max

c = 1) the
social pressure function is given by the blue line and if it is minimal (τ̄min

c = 0) it is
given by the red line. Like in Fig. 4.1, the higher is the strength of local cohesiveness
the lower is the necessary share of compliers for driving the population of compliers to
its upper stationary points. However, the difference between the blue (τ̄max

c = 1) and
red line (τ̄min

c = 0) decreases with a decrease in the remaining stock.
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Table 4.2 Stationary points when policy instruments are present.

Cases Subcases Growth rate at a stationary point Stationary points
B: 0 < γ < 2 (1) 0 < γ < 1 (ω − 1 − γc) = 0 c = 0, arg(ω = 1) ≤ ĉ ≤ arg(ω = 1 + γc), c̄ = 1
B: 0 < γ < 2 (2) 1 < γ ≤ argmax ∂

∂c

(
ω−1

c

)
(ω − 1 − γc) = 0 c = 0, arg(ω = 1 + γc) ≤ ĉ < c̄ ≤ 1

B: 0 < γ < 2 (3) argmax ∂
∂c

(
ω−1

c

)
< γ < 2 (ω − 1 − γc) > 0 c = 0

C: γ < 0 (1) (ω − 1 − γc) = 0 c = 0, 0 < ĉ < arg(ω = 1), c̄ = 1

Fig. 4.2 Evolution of social pressure as a funtion of the share of compliers.

This figure shows the evolution of social pressure as a function of the share of compliers in
the presence of policy instruments, γ > 0: 2a) s = 45, 2b) s = 35, 2c) s = 20, and 2d) s = 0.

Proposition 2

The lower and upper stationary points c = 0 and c̄ ≤ 1 are stable while
the intermediate stationary point ĉ is unstable.

Proof: A slight increase of the share of compliers above c = 0 cannot be sustained
because social pressure ω is much lower than 1, ω << 1, see Fig. 4.1. Consequently,
the share of compliers decreases up to the stationary point c = 0. Similarly, a decrease
of the share of compliers below c̄ ≤ 1 cannot be sustained because social pressure
ω is close to its maximum ω ≈ Ł and then (ω − 1 − γc) > 0 so that the share of
compliers increases again up to c̄ ≤ 1. In the case of c̄ ≤ 1 an increase of the share of
compliers cannot be sustained since the defector’s extra benefits are superior to social
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punishment, (ω − 1 − γc) < 0, and consequently c decreases again to c = c̄ ≤ 1. The
intermediate stationary point is however different because it presents a crossroad. If
the share of compliers falls below c = ĉ the defector’s extra benefits are superior to
social punishment and thus, the share of compliers continues to decrease up to c = 0.
If the share of compliers rises above c = ĉ the defector’s extra benefits are inferior to
social punishment and thus, the share of compliers continues to increase up to c̄ ≤ 1.
!

As an example for a policy that favors defectors one can think of a regulation
that imposes the cost of social punishment (e.g. monitoring or penalization costs) on
compliers. It increases the defectors’ extra benefits so that γ > 0. In this case the slope
of the line that presents the defector’s benefits plus one, increases and consequently
the intermediate stationary point ĉ increases, or it may even be eliminated if the costs
of social punishment are sufficiently high. In other words, the effect of this regulation
is that the share of compliers necessary to induce cooperativeness increases. At the
maximum it has to increase up to the point of c̄ ≤ 1. If c̄ ≤ 1, the stable upper
stationary point can be achieved by a share of compliers below one. In this case the
introduction of a policy instruments may lead to a stable stationary point that is
supported by a mix of compliers and defectors. Thus, a policy that favors defectors
(punish compliers) may lead to a stable cooperative stationary point with a lower share
of compliers than the corresponding stable cooperative stationary point in the absence
of the policy. This somehow counterintuitive result could be policy relevant if in the
absence of policy instruments, for one reason or another, an all-complier stationary
point cannot be achieved. In this case a policy instrument allows replacing the non-
achievable stable all-complier stationary point by a stable intermediate stationary
point.

In contrast, if the policy intervention disfavors defectors, i.e. it favors compliers
(γ < 0), the intermediate stationary point ĉ moves to the left (case C:1, Table 4.2) in
comparison with the case of γ = 0. An example of such a policy would be the concession
of a subsidy where a fixed amount of a good is distributed among all compliers. The
lower and upper stationary points c = 0 and c̄ = 1 are unaffected. Thus, a policy where
the defector’s extra benefits decrease leads to a lower intermediate stationary point
and as such the share of compliers necessary for inducing cooperativeness decreases.

After analyzing condition b) of Definition 1 we turn our attention to the conditions
a) and c) of Definition 1. We employ some simple specification of the employed
functions that allow us to reduce the three equilibria conditions to one equation with
one variable. Obviously, a more complex specification of the employed functions would
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provide a more realistic formulation but not necessarily more insights. In particular
the simpler formulation allows illustrating the equilibrium concept and relating the
topological characteristics of the network with the stability of the different identified
equilibria. Independent from the realism of the specification the employed equilibrium
concept is valid for any specification of the employed function.

Social-ecological equilibrium

As we have seen in Definition 1, the overall equilibrium of the social-ecological system
not only depend on social dynamics but also on the state of the natural resource. Next,
we treat both systems (social and natural) as coupled and coevolving, and provide
arguments to define the global equilibrium.

Let us assume that the number of agents n = 1000 and their resource demand
functions according to the eq. 4.1 are given by

wc
i = α0 + α1s, wD

i = β0 + β1s, (4.17)

where β0 > α0 and α1 > β1 such that wD
i > wC

i always holds. Moreover, we assume
that the growth function gr(s) is constant and independent from the stock. Let this
exogenous regeneration or recharge rate per agent be denoted by R. With respect to
this rate one can think of groundwater recharge in m3 per ha and the variable stock s

indicates the height of the groundwater measured from the bottom of the well. Other
interpretations are possible; however, for the sake of concreteness we formulate our
analysis along this example. For illustrative purposes we present the two resource
demand functions in Fig. 4.3.
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Fig. 4.3 Demand functions and recharge.

This figure presents the demand functions for defectors (wD(s)) and compliers (wC(s)), and
the regeneration rate R for the values α0 = −7022, α1 = 219, β0 = −2666, β1 = 133,

R = 2000m3/ha.

The resource demand per ha if all agents were defectors wD(s) is depicted by the
dotted dashed line and the one if all agents were compliers wC(s) by the dashed line.
Given the regeneration rate per agent R = 2000m3/ha Fig. 4.3 shows that the stock
sD = 35.1m supports an all defector extraction equilibrium, i.e., where extraction is
equal to regeneration. Equivalently, the stock sC = 41.2m supports an all-complier
extraction equilibrium. Thus, any possible extraction equilibrium ŝ is located between
sD = 35.1m and sC = 41.2m. If the stock is greater than ŝ the optimal resource
demand is higher than the regeneration rate and thus, the stock decreases. If the stock
is smaller than the optimal resource demand is smaller than the regeneration rate and
thus, the stock increases. We indicate a positive or negative sign of the growth rate of
the stock by an arrow to the right or to the left respectively. According to the eq. 4.2
and 4.10 the biophysical equilibrium condition requires that

R = cn(α0 − α1s(t)) + (1 − c)n(β0 − β1s(t)). (4.18)

Solving eq. 4.18 for s allows to formulate the stock as a function of the regeneration
rate, the size of the community, and the share of compliers in the network at time t.
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Let us denote the solution of this biophysical equilibrium by sB. It is given by

sB(R, n, c(t)) = K

M
, (4.19)

where K = R − (c(t)nα0 + (1 − c(t))nβ0) and M = c(t)nα1 + (1 − c(t))nβ1. Eq. 4.19
satisfies condition a) and c) of Definition 1. The condition b) of Definition 1 requires
that agents have no incentives to change their strategies, i.e., ω = 1 + γc, which
translates to the necessary equilibrium condition

ω = Ł
1 + smaxe−s(c−(c0−τ̄c)) = 1 + γc. (4.20)

Utilizing eq. 4.20 provides the stock sN as a function of the share of compliers. It is
given by

sN(c) =
ln

((
Ł

1+γc − 1
)

1
smax

)

c0 − τ̄c − c
. (4.21)

Fig. 4.4 illustrates the argument and value of the function sN (c) as defined in eq. 4.21,
if social pressure is equal to 1 and γ = 0. The continuous line depicts the iso-social
pressure function given a strength of average local cohesiveness of τ̄c = 0.5. If the
initial values of c and s are to the right of this line the share of compliers increases
since social punishment is superior to the defector’s extra benefits. We indicate the
sign of the dynamics of the share of compliers by arrows to the right. If the initial
values of c and s are to the left of this line the share of compliers decreases since social
punishment is inferior to the defector’s extra benefits. The sign of the dynamics of the
share of compliers is indicated in this case by arrows to the left. Moreover, Fig. 4.4
also indicates the function if the strength of local cohesiveness is maximal, τ̄max

c = 1,
(dashed line) and if it is minimal, τ̄min

c = 0, (dotted line). Thus, the grey area between
these two lines indicate all possible locations of the iso-social pressure function that
always presents a separating line with respect to the sign of the changes of the share
on compliers.
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Fig. 4.4 The iso-social pressure function.

This figure shows ω = 1 for different networks (from random to complete networks). As
different networks have different degrees of strength of cohesiveness τ̄c, the grey area

represents the range of variation with respect to c, s and τ̄c.

With respect to the equilibrium Definition 1 conditions a) –c) are satisfied if it
holds that

sB(R, n, c(t)) = sN(c). (4.22)

4.4 Policy corridors
According to the mean-field analysis and the overall equilibrium described in eq.
4.22, we want to identify policy corridors for the concrete determination of policy
options. Concretely, we want to answer the question about when network-orientated
and economic-orientated policies may be best applied. In any case, policies must take
into account the share of compliers in the community, their levels of association and
the state of the natural resource.

A graphical presentation of the eq. 4.19 and 4.21 where policy instruments are
absent(γ = 0) is shown in Fig. 4.5.
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Fig. 4.5 Policy corridors for the concrete determination of policy options.

Presentation of sB(R, n, c(t)) and sN (c) for the values α0 = −7022, α1 = 219, β0 = −2666,
ω = 1, β1 = 133, R = 2000m3/ha. In this figure, the three possible equilibria are represented

by a bold triangle (all-complier equilibrium), colored circles (mixed equilibria when
τ̄c = {0 (blue), 0.5 (bold), 1 (gray)}), and a bold square (all-defector equilibrium). The green

area represents the basin of attraction for the all-complier equilibrium. The red area
represents the basin of attraction for the all-defector equilibrium.

The bold discontinuous line in Fig. 4.5 presents the function sB(R, n, c(t)) as
given in eq. 4.19. The non-bold continuous line presents the function sN(c) given in
eq. 4.21 for τ̄c = 0.5. The intersection of the two functions (eq. 4.22) indicates an
equilibrium that fulfils the conditions stated in Definition 1. Since c = ĉ we observe
a mixed equilibrium denoted by a bold circle E τ̄c=0.5

γ=0 = (ĉ, s) = (0.66, 39.7). Fig. 4.5
also indicates the mixed equilibria for the maximal and minimal strength of local
cohesiveness, given by τ̄max

c = 1 and τ̄min
c ≈ 0 respectively. Accordingly, we obtain

the equilibria E τ̄c=1
γ=0 = (0.55, 39.25), denoted by a gray circle; and E τ̄c=0

γ=0 = (0.93, 41.0),
denoted by a blue circle. In the former case the iso-social pressure function moves
to the left and in the latter case it moves to the right. The resulting functions are
indicated by a dashed and a dotted line respectively. Combining the signs of the growth
rates of the stock illustrated in Fig. 4.3, with the signs of the growth rate of the share
of compliers illustrated in Fig. 4.4 allows visualizing the directions of the growth of
the “stock-share of compliers” system. Fig. 4.5 shows that the basin of attraction for
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the all-defector equilibrium, denoted by a bold square (c = 0, s = sD = 35.1), is given
by the red area; and the basin of attraction for the all-complier equilibrium, denoted
by a bold triangle (c̄ = 1, s = sC = 41.2), is given by the green area. Initial values
located within the red area indicate that the tragedy of the commons cannot be avoided
whereas initial values located in the green would allow overcoming the tragedy of the
commons and achieving the socially optimal outcome. Likewise, Fig. 4.5 shows that
there exists an area marked with vertical lines where the sign of the growth rate of the
system is not sufficient for determining the dynamics of the system. For this area the
precise values of the growth rates are required for the determination of the dynamics
of the system. For the specified functions of our study we show that the growth rate of
the share of compliers dominates the growth rates of the stock (for more details, see
appendix A) such that the marked area also leads to the all-complier equilibrium. In
other words it belongs as well to the green area. Finally, the graphical analysis also
confirms that the intermediate stationary point ĉ is not stable (Proposition 1).

The size of the green area varies with the strength of local cohesiveness. It is
maximal if the strength of local cohesiveness is maximal and thus, an initial share of
compliers slightly above the dashed line is already sufficient for driving the system to
full cooperativeness. However, if the strength of local cohesiveness is minimal likewise
is the size of the green area. In this case, however, the initial share of compliers has
to be slightly superior to the value of the dotted line. The area between the dotted
and dotted dashed lines (transparent corridor) indicates the possible location of the
iso-social pressure function if the value of τ̄c is not given by its boundary values. For
any value of the strength of cohesiveness the iso-social pressure function traces out
a single line located within the transparent corridor. This line presents in arbitrary
small terms the lower limit of the green area and the upper limit of the red area.

The analysis of Fig. 4.5 suggests different options for policy interventions. Since
initial values of c and s located in the green area are sufficient for achieving full
cooperation we refer to the green area as the “no-policy corridor”. The transparent
corridor is very important not only as it bounds the range of possible equilibria as a
function of the strength of local cohesiveness but also because it indicates the maximal
outcome of network policies. The objective of these policies is to improve cohesiveness
between agents. At the maximum they are able to achieve the strength of cohesiveness
of one and thus, at the maximum they are able to reduce the minimum share of
complier for cooperativeness that is exemplified by the dashed line. For this reason we
refer to the transparent area as the “network policy” corridor. Here, one can think of
the foundation of a compliers association or the organization of seminar, workshops
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for compliers. All these initiatives have the objective to improve the cohesiveness
between compliers which in turn leads to higher social pressure on defectors. Initial
values located in the red area lead to social pressure lower than one and thus, the
system will end up in the all-defector equilibrium. Thus, direct policy interventions,
for instance in form of economic incentives, are required if one aims to overcome
the tragedy of the commons. For this reason we refer to the red area as the “policy
instrument” corridor. If the initial values of c and s are located in “policy instrument”
corridor the use of policy instruments is indispensable. These instruments may be
complemented or replaced by network policies based on some cost-benefit analysis for
the different options. The “policy instrument” corridor also includes as a special case
the traditional economic analysis (tragedy of the commons) where networks and social
pressure were not considered. In the absence of social networks the degree of each
agent would be zero and consequently all agents would act independently from each
other. Consequently, the absence of local cohesiveness and the unimportance of the
remaining stock do not activate any social pressure (ω ≈ 0). Thus, the “no-policy”
and the “network policy” corridor would disappear and we are left with the policy
instrument corridor which leads to the all-defector equilibrium in the absence of policies.

Observation 1: The strength of cohesiveness, the size of the stock and the social pres-
sure function allow tracing out “no-policy”, “network policy” and “policy instruments”
corridors.

Fig. 4.6 shows for the maximal degree of cohesiveness, τ̄max
c = 1, that the equi-

librium is given by the point E τ̄max
c

γ=0 . The maximal value of local cohesiveness is always
achieved if the considered network is complete, i.e., if the degree of the agents is always
equal to the number of agents minus 1. Hence in the case of a complete network social
pressure is highest and the transparent corridor in Fig. 4.5 can be narrowed down to a
line so that we can determine the exact value of the equilibrium. This brings up the
question whether information about the type of network allows limiting the strength
of social pressure that narrows down the transparent corridor in general or whether
this only holds for complete networks. The answer to this question is illustrated in Fig.
4.6. It shows that there is a relationship between the type of network and size of the
transparent corridor. Thus, the type of network is not only important for determining
possible locations of equilibrium but also indicates the size of the “network policy”
corridor, i.e. the perimeter of the possible outcome of network policies.
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Fig. 4.6 Influence of the type of the network on the size of the “network policy”.

This figure is connected with Fig. 4.5. If we zoom in the Fig. 4.5, we can observe how
network structures affect social pressure. Again, results are obtained for the values

α0 = −7022, α1 = 219, β0 = −2666, β1 = 133, R = 2000m3/ha. Different types of networks,
CN (Complete Networks), PN (Pseudofractal Networks), and BA (Barabasi-Albert
Networks) are used to represent the size of the “network policy” corridor. Scale-free

networks (SF) may range from BA to PN networks.

In Appendix B we determined the minimum and maximum values of average local
cohesiveness for two types of scale-free networks: the deterministic Pseudofractal
Networks (PF) and Barabási-Albert Networks (BA). Both types are representative for
social networks (Jackson [2008]). While the BA network is a non- extreme scale-free
network, the PF network can be considered as the scale-free network of which strength
of cohesiveness come closest to the one of a complete network. For example, PF
network represents well the strength of cohesiveness in scientific networks. According
to the calculation in Appendix B and the specification of the values of this study,
the strength of cohesiveness of BA networks may range from 0.06 to 0.19 while the
strength of cohesiveness of PF networks is a single value and is equal to 0.8. It is
0.2 below the maximal value of a complete network (CN). Based on these values Fig.
4.6 shows that the “network policy” corridor for scale-free networks may range from
(0, 0.8]. The concrete size of the “network policy” corridor depends on the specific
type of the scale-free network. The smaller “network policy” corridor, the larger is
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the “policy instruments” corridor. Thus, for small “network policy” corridors the
community or regulator has to rely more on policy instruments like taxes, subsidies
or direct regulations in order to induce cooperativeness. Whereas for larger “network
policy” corridors the community or regulator can chose between all policy options.

Apart from the mentioned policy options the community or the regulator may
consider policies that improve the regeneration rate or extend or limit the number of
agents. According to eq. 4.19 we find for an increase in the regeneration rate R that
the curve sB moves upward (∂sB

∂R > 0) and possible equilibria points are characterized
by a higher stock and a higher share of compliers. Consequently the minimal share of
compliers that is necessary for leading the system to full cooperation increases. The
intuition for this result is that a higher regeneration rate would lead to an increase
in the remaining stock and thus, to a decrease in social pressure. In order to offset
this decrease the share of compliers needs to rise. On the contrary, if the size of
the community n increases we find that the curve sB shifts downwards ∂sB

∂n < 0 such
that possible equilibria points are characterized by a lower stock and a lower share of
compliers necessary for inducing cooperativeness.

Fig. 4.5 categorized corridors that identified the available policy options. Yet, the
“policy instrument” corridor in Fig. 4.5 is only helpful for discarding the options “no
policy” and “network polices” if the initial values of c and s lie within the “policy instru-
ment” corridor. For the concrete determination of the effect of policy instruments one
has to take into account that the presence (costs of social punishment) or introduction
of policy instruments like taxes or subsidies alter the compliers’ and defectors’ utility.
Thus, the growth rate of compliers is now given by (ω − 1 − γc) where γ is not any
longer equal to 0. Fig. 4.7 illustrates the consequences of the presence or introduction
of a policy that favors defectors. As before Fig. 4.7 is based on the functions sB, eq.
4.19 and sN , eq. 4.21 and as an example we have chosen γ = 1.2.
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Fig. 4.7 Consequences of the presence or introduction of policy instruments that favors
defectors’ utility.

Presentation of sB(R, n, c(t)) and sN (c) for the values α0 = −7022, α1 = 219, β0 = −2666,
ω = 1, γ = 1.2, β1 = 133, R = 2000m3/ha. In this figure, the three possible equilibria are
represented by a bold triangle (all-complier equilibrium), bold circle (mixed equilibrium

when τ̄c = 0.5), and bold square (all-defector equilibrium). The green area represents the
basin of attraction for the all-complier equilibrium. The red area represents the basin of

attraction for the all-defector equilibrium.

Fig. 4.7 shows for γ > 0 and a strength of social cohesiveness of τ̄c = 0.5 in
comparison with Fig. 4.5 that the curve sN moves to the right and the new mixed
equilibrium and the upper limit equilibrium are given by E τ̄c=0.5

γ=1.2 = (ĉ, s) = (0.79, 40.3),
denoted by a bold circle; and E τ̄c=0.5

γ=1.2 = (c̄, s) = (0.83, 40.5), denoted by a bold triangle,
respectively. For the opposite case where γ < 0 (e.g. additional benefits for compliers)
we observe that the curve sN moves to the left and the new equilibria moves south-west
E τ̄c=0.5

γ=−0.2 = (ĉ, s) = (0.71, 40) (not shown in Fig. 4.7). Thus, less compliers and a lower
level of the remaining stock are necessary for this new equilibrium. Comparing the
mixed equilibrium shown in Fig. 4.5 E τ̄c=0.5

γ=0 = (ĉ, s) = (0.66, 39.7) with the mixed
equilibrium in Fig. 4.7 E τ̄c=0.5

γ=1.2 = (ĉ, s) = (0.79, 40.3) shows that the introduction of a
policy instrument where γ > 0 (e.g. cost of social punishment) leads to an increase in
the share of compliers and the remaining stock. Since γ > 0 the defectors extra benefits
increases and more compliers and a higher stock are necessary for the mixed equilibrium.
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Consequently, the initial share of compliers necessary for achieving cooperativeness
also increases.

Furthermore, the dashed line and the dotted line indicate the values of the function
sN for the case of the maximal and minimal strength of cohesiveness respectively.
The area between these two lines shows as before the “network policy” corridor. It
is reported again in more transparent colors and shows the limits of the effects of
network policies. A comparison with Fig. 4.5 shows for γ > 0 that the “network policy”
corridor has moved to the right and increased in width. This finding suggests for our
study the following observation.

Observation 2: The introduction or presence of policy instruments not only affects
the location of the “no policy”, “network policy” and “policy instruments” corridors but
also their size. For the specification of the functions of this study the perimeter of the
applicability of network policies has increased.

Observation 2 suggests that the evaluation of the policy options should be realized
simultaneously since the stipulation and effectiveness of the policy options are interde-
pendent. Moreover, Fig. 4.7 shows that the upper stationary point c̄ is less than one,
c̄ = 0.83. Thus, there exists besides the mixed equilibrium ĉ another mixed equilibrium
c̄ but an all-complier equilibrium does not exist. Analyzing graphically the sign of the
growth rates of the share of compliers and the stock shows that the mixed equilibrium
ĉ is unstable while the upper limit equilibrium c̄ is stable. Like in Fig. 4.5 the green
area indicates the basis of attraction for the stable equilibrium and the red area the
basin of attraction of the all-defector equilibrium. The area marked by vertical lines is
made up of initial values of c and s where the sign of the growth rates is not sufficient
for determining the basin of attraction. Only with information about the concrete
values of the growth rate of c and s one can determine the trajectory of these variables.
A numerical evaluation for the specified functions of this study shows that the green
area marked by vertical lines belongs to the basin of attraction of the stable mixed
equilibrium and the red area marked by vertical lines to the basin of attraction of the
all defector equilibrium. Finally, Fig. 4.7 also suggests the following observation.

Observation 3: The introduction or presence of policy instruments may favor the
emergence of an upper limit stable equilibrium that is mixed and located within the
“network policy” corridor.
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Observation 2 suggests that the presence or introduction of policies may lead to
a relocation and amplification of the network policy corridor. Within this context
Observation 3 states that network policies may obtain a more prominent role since they
might be able induce the stable equilibrium directly without relying on the dynamics
of the system once the green area is reached.

4.5 Concluding remarks
In this study, we analyze the evolution of cooperation within a community of agents
exploiting a natural resource. The community defines a social norm based on the
socially-optimal management of the natural resource. Two types of agents, compliers
(long-term behavior) and defectors (short-term behavior) interact according to the
underlying structure of the social network. Adherence to the social norm is voluntary
and agents may change their strategy at next time steps. Both types of agents update
their strategy based on utility differences. Concretely, the probability of changing
current strategy to the alternative one is proportional to utility differences. Compliers
can reduce the utility of defectors using social pressure, and social pressure varies
depending on the share of compliers in the neighborhood of agents, the state of the
resource, and the level of local cohesiveness between compliers. However, the utility
obtained from extraction may be reduced/increased from additional benefits or extra
costs as a result of economic-orientated policies. These policies affect defectors or
compliers, and as such they may change with the share of compliers and may alter
utility differences. If policy intervention favors defectors, the positive effects of social
pressure are reduced and thus temptation to defect increases. If policy intervention
disfavors defectors, defector’s extra gains are reduced and thus the probability to
comply with the norm increases.

This formulation aims to analyze what exactly are the social and natural conditions
required to promote cooperation within the community. If all equilibrium conditions
hold, an overall equilibrium (with respect to the dynamics of the resource, the social
network and the resource demand) may emerge. However, social pressure in a social
network is rendered analytically intractable by the potential for multiple equilibria
given the asymmetry and complexity of the network and the distribution of compliers
through the network. Following the theory of mean-field, we employ a mean-field
analysis to approximate system dynamics. Intuitively, this approximation can be
thought of every agent interacting with the average behavior in the community. This
approximation method ignores much of the complexity of the decision-making process.
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Nevertheless, even with this simplified representation we can observe how distinct
network topologies affect cooperation differently. Applying mean-field, we can study
the regimes of stationary state of the evolutionary dynamics in a simpler way. Given
our specifications for strategy choice, we identify 3 stationary points in the system: all-
defector equilibrium (stable), all-complier equilibrium (stable), and mixed equilibrium
(stable or unstable). The stationary points and their stability allow us to identify policy
corridors for the concrete determination of policy options.

The results show that the strength of cohesiveness, the state of the natural resource
and the social pressure allow tracing out 3 corridors for policy options: “no-policy”,
“network policy” and “policy instruments”. Social pressure is undertaken by the compli-
ers themselves without presence of external authorities. When the share of compliers
is sufficiently high within the community, social pressure leads to full cooperation. We
define the area where social pressure is completely effective as “no-policy” corridor. In
some situations social pressure cannot maintain adherence to the social norm. When
the share of compliers is very low and/or the stock is fully available for agents the
temptation to defect is very high. In those situations social pressure will go almost
unnoticed and economic-orientated policies will be indispensable. We define the area
where taxes or subsidies are indispensable as “policy instruments” corridor. However,
there exists an intermediate area in where the influence of network structure is key for
the determination of cooperation. Under this area, the wide variety of network topolo-
gies allows us to define network-orientated policies. Examples of network-orientated
policies are all those initiatives designed to increase the local cohesiveness of compliers.
By increasing local cohesiveness of compliers we increase the sanctioning ability of
the cooperating community. For a complete understanding of the “network policy”
corridor we use representative types of networks: complete, scale-free and random
networks. While not realistic, complete and random networks allow us to define the
upper and lower limits for social pressure respectively. On the other hand, scale-free
networks are more suitable for representing the observed patterns of social interaction
in real-world networks. Thus, the “network policy” corridor is bounded above by the
sanctioning ability of compliers in complete networks, and is bounded below by the
sanctioning ability of compliers in random networks. Hence, complete and random
networks represent two ends of a continuum along with one can find realistic social
networks, i.e., scale-free networks with increasing levels of link correlations.

The results show large regions where both “policy instruments” and “network
policy” corridors coexist, this means different policies can be applied indistinctly or in
combination. However, network policies may be more effective than traditional analysis
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when agents perceive taxes/subsidies as disproportionate or meaningless (Bicchieri and
Muldoon [2014]).

The results also show that the presence or introduction of policy instruments
lead to a relocation of the policy corridors. We observe that the perimeter of the
applicability of network-orientated policies increases with the introduction of policy
instruments. When policy instruments are present, network-orientated policies obtain
a more prominent role since they induce mixed equilibrium to be stable. Moreover,
the stationary point in the mixed equilibrium is located within the “network policy”
corridor.

This study allows for policy options favoring the sustainable management of the
natural resource to be identified and targeted, where the system ultimately converges
depend on the initial conditions of the system and the path followed.
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4.6 Appendices

4.6.1 Appendix A: Equilibrium Points and Basin of Attrac-
tion

The social pressure function ω is sigmoidal and symmetric in c. An equilibrium
point is characterized by the fact that social pressure is identical to the defector’s extra
benefits. This condition is expressed mathematically by

ω = Ł
1 + smaxe−s(c−(c0−τ̄c)) = 1 + γc. (4.23)

By subtracting −1 − γc on both sides of eq. 4.23 we obtain the new function ω − 1 − γc

that we identified as the growth rate of the share of compliers in eq. 4.16. If it is
positive it indicates that social pressure is superior to the defector’s extra benefits
and thus, defectors will become compliers. If it is negative compliers will turn into
defectors. Taking the first and second derivative of the growth rate we obtain that

∂(ω − 1 − γc)
∂c

= Łsmaxse−s(c−(c0−τ̄c))

(1 + smaxe−s(c−(c0−τ̄c)))2 − γ. (4.24)

∂(ω − 1 − γc)
∂s

= Łsmax (c − (c0 − τ̄c)) se−s(c−(c0−τ̄c))

(1 + smaxe−s(c−(c0−τ̄c)))2 − γ. (4.25)

∂(ω − 1 − γc)
∂2c

=
Łsmaxse−s(c−(c0−τ̄c))

(
es(c−(c0−τ̄c)) − smax

)

(smaxe−s(c−(c0−τ̄c)))3 . (4.26)

For the case where γ = 0 we observe from eq. 4.24 that ∂(ω−1−γc)
∂c > 0. Moreover,

we can solve eq. 4.23 directly and obtain the fixed point c = ln(smax)1
sc0 − τ̄c.

Employing this solution in eq. 4.26 shows that ∂(ω−1−γc)
∂2c = 0. To obtain this result it is

sufficient to evaluate the factor es(c−(c0−τ̄c)) −smax in the nominator. Hence, the solution
c = ln(smax)1

sc0 − τ̄c indicates an inflection point and corresponds to Proposition 1
to c = ĉ. If γ ̸= 0 eq. 4.23 cannot be solved analytically and one has to resort to
numerical techniques that we used also for the determination of the equilibria and
iso-social pressure lines in the Fig. 4.1 - Fig. 4.7.

For the evaluation of the area marked with vertical lines in Fig. 4.5 and Fig. 4.7
the basin of attraction could not be determined unambiguously since the signs of the
growth rates of the share of compliers and the stock were not sufficient. To determine
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the magnitude of the changes of the growth rates we evaluate the sign of their difference,
denoted by δ. Thus, δ is given by ∂(ω−1−γc)

∂c − ∂(ω−1−γc)
∂s . If δ is positive we observe

that the growth rate of the share of compliers dominates the growth rate of the stock.
On the contrary if it is negative we see that the growth rate of the stock dominates
the growth rate of the share of compliers. For the specified functions of this study we
obtain that ∂(ω−1−γc)

∂c > ∂(ω−1−γc)
∂s . Note that the sign of δ is positive if it holds that

c > c0 − τ̄c − 1. Since this condition always holds, it shows that a small perturbation
along the function sN leads to an increase in compliers and therefore, the area marked
by vertical lines in Fig. 4.5 and Fig. 4.7 is a basin of attraction for the all-complier
equilibrium. Yet, there is also an area marked by vertical lines beyond the upper
equilibrium, c̄ = 0.83. Since the function sN does not exist beyond the point c̄ = 0.83
we cannot interfere the magnitude of the growth rates of the share of complier and of
the stock. Numerical evaluation however, suggest that in part it belongs the basin of
attraction of the stable mixed equilibrium, and in part to the basin of attraction of the
all-defector equilibrium as indicated by the green and red area.
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4.6.2 Appendix B: Average cohesiveness in different types of
social networks

In this study, we focus on 4 types of networks that are representative of the wide
variety of network structures that one can find in social networks. As before, we define
the social network as the pair of sets N = (A, L), where A refers to the set of agents
and L refers to the set of links. Local cohesiveness, τi, is defined in Appendix E,
and average local cohesiveness, τ̄ , is defined in section 4.2.3 as a topological property
of any network that measures how close is on average the neighborhood of agent i

to be a complete network. Average cohesiveness is bounded between 0 and 1, 0 ≤ τ̄ ≤ 1.

1. Complete Networks

A complete network (CN) is a network with |A| = n agents and a link between
every two agents, such that |L| = ℓ = n(n−1)

2 links. In complete networks, all agents are
interconnected and then the number of links grows quadratically with the number of
agents n. However, since links seem to be costly in social networks we observe that the
larger the community, the lower the probability is to find complete network structure.
As all agents are interconnected, the average cohesiveness is maximal, τ̄ = 1.

2. Barabasi-Albert Networks

For large networks, large n, empirical observations (Barábasi and Albert [1999];
Faloutros et al. [1999]; Muchnik et al. [2013]; Newman [2003a]) have shown the high
asymmetry in the distribution of links, which means that a few highly connected agents
(also called hubs) coexist with a large number of agents with small degree. In large
social networks, the degree sequence {k1, k2, ..., kn} can be approximated by the power
law distribution pk = k−γ , with 2 < γ < 3. Networks with power law distributions are
called scale-free networks (SF) because power laws have the same functional form at
all scales.

Since Price (Price [1976]) and Barabasi-Albert (Barábasi and Albert [1999]) models
were published, it is commonly accepted that the power law pattern of social networks
emerges as a result of a dynamic process in where networks grow monotonically and
agents are involved in some sort of competition for links. Competition means that
individual preferences for interaction seem to be biased and not all agents are equally
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connected. The definition of social network as competitive system is motivated by the
existence of hubs in social networks.

To date, the Barabasi-Albert network (BA) is probably the best known model to
generate power law networks. In this model, the network develops following two driving
mechanisms: network growth and preferential attachment. Network growth means
that, at each time step, a new agent is added to the network and creates m links that
connects her to previously added agents. Preferential attachment is a probabilistic
mechanism in where the probability of a new link to end up in an agent is proportional
to her degree, ki, such that pi = m ki∑

j
kj

.
To complete the characterization of the BA model, it has been proven that the

number of links in the network is ℓ = mn, where |A| = n is the number of agents,
and the average degree k̄ is k̄ = 2m. Moreover, it is easy to prove that the average
cohesiveness is independent to the degree of agents and decreases with the size of the
network, τ̄ = m−1

8
(log n)2

n .
Note that, at increasing m above a certain threshold the power law pattern becomes

increasingly weaker. This threshold bounds the maximal number of links to be added
at a constant rate by newcomers, m̂, and can be estimated using the natural cut-off
of power law networks. Denote by F (k) = Pr(K ≥ k) the cumulative distribution
function (CDF) of a power law distributed variable, where again k represents the degree
of agents. Then kmin and kmax represent the minimum and maximum degree in the
social network respectively. For instance, in the continuous case

F (k) =
∫ ∞

k
p(k)dk =

(
k

kmin

)−γ+1

(4.27)

and the integral of p(k) over two different degrees

F (k) =
∫ k2

k1
p(k)dk (4.28)

provides the probability that a randomly chosen agent has degree between k1 and k2.
To calculate kmax we assume that in a network of n agents we expect at most one
agent whose degree exceeds kmax, then

F (k) =
∫ ∞

kmax

p(k)dk =
(

kmax

kmin

)−γ+1

= 1
n

(4.29)

this yields
kmax = kminn

1
γ−1 (4.30)
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and by inverting eq. 4.30 in the limits, 2 ≤ γ ≤ 3, we obtain
⎧
⎪⎪⎨

⎪⎪⎩

kmax
n = kmin if γ = 2

kmax√
n = kmin if γ = 3

(4.31)

Neither self-loops nor multiple links are allowed in our network so that kmax < n. Let
kmax = n−1 represent the extreme case in where all agents are connected to the largest
hub (except herself). Let us assume that in a heterogeneous population there always
exist an agent with ability to attract links very low. This agent with very low ability
to attract links will have exactly m links once the network has been constructed, thus,
kmin = m in the network. Introducing kmax = n − 1 and kmin = m in eq. 4.31, we can
prove that the number of links to be added at a constant rate by newcomers before the
power law becomes weaker falls into the range 1 ≤ m ≤

√
n. In other words, if we want

2 < γ = ln(n)
ln

(
kmax
kmin

) + 1 < 3, we need 1 ≤ kmin = m <
√

n. Notice that 1 < kmax < n.

If kmax nears the network size, kmax → n, the CDF of the degree sequence does not
follow the power law distribution, however, it serves to define the upper limits of m,
this is m̂. Using this information, we can define the limits of the average cohesiveness
in the BA model: 0 ≤ τ̄ ≤ (log n)2

8√
n .

3. Pseudo-fractal Networks

As we have seen, the BA model is a useful tool to generate scale-free networks with
certain degree of cohesiveness; however, this model cannot reproduce well the structure
observed in some social networks, i.e., scientific networks (Foster et al. [2011]). These
networks are scale-free but present a high level of cohesiveness.

To reproduce such network structure we use a deterministic model proposed by
(Dorogovtsev and Mendes [2002]). In their model, they use pseudo-fractal networks
(PN) to generate scale-free networks with strong link correlations. The pseudo-fractal
network is considered a deterministic network because of its growing assumptions (Fig.
4.8). In this model, network properties depends exclusively on t, i.e., at each time step
the number of agents grows according to n = 3(3t+1)

2 , the number of links according to
ℓ = 3t+1, and the average degree of agents results in k̄ = 2 ℓ

n = 4
(1+3−t) .

However, our interest in this model is because of the distribution of local cohesiveness,
that follows another power law distribution that depends on individual degree, such
that τi = 2

ki
. The resulting average cohesiveness τ̄ in the network approximates a
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constant value τ̄ = 4
5 . Compared to BA networks this value is very high, for this reason

we consider this model an effective manner to simulate the upper limit of average
cohesiveness in scale-free networks.

Notice that (Klemm and Eguíluz [2002]) proposed an alternative model to reproduce
scale-free networks with higher average cohesiveness, τ̄ = 5

6 , however, pseudo-fractal
networks are easier to model.

Fig. 4.8 The pseudofractal network.

Starting from a single link connecting two agents (t = 1), at each time step, every link in the
network generates a new agent and the new agent connects to both of the end agents of the

link. In the figure, we show the structure of the pseudo-fractal network at time
t = {2, 3, 4, 5} in where A) t = 2, B) t = 3, C) t = 4 and D) t = 5.

4. Random Networks

In random networks, and contrary to BA model, choices for interaction are inde-
pendent of current network structure. This means all agents have similar probabilities
to be selected by others and, thus, agents have comparable degree. While is very
unlikely that social networks form like this, Random Networks (RN) can help us to
understand interesting properties of social networks such as cohesiveness.

The Erdos-Renyi model (Erdős and Rényi [1960]) is the most popular model for
generating random networks. In the simplest possible model, we start with all isolated
agents, |A| = n, and add links between pairs of agents one at a time randomly. Hence,
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for each of the ℓ possible links, ℓ = n(n−1)
2 , we flip a coin (biased) that comes up “success”

(link connect two agents) with probability p. The random network can be defined as
N = (n, p). In order to compare average cohesiveness between power law and random
networks, we use the same parameter m. For example, if we use p = 2m

n , we obtain
that average agent degree k̄ = p(n − 1) ≈ 2m and density d = k̄n = 2mn are the same
in both cases (power law and random networks). However, average cohesiveness in
random networks is τ̄ = 2m

n . As we want to compare networks, m is bounded as before,
1 ≤ m ≤

√
n, and then the average cohesiveness for random networks falls into the

range 2
n ≤ τ̄ ≤ 2√

n . In most cases (when n > 55 and m > 2) we observe that scale-free
networks are more cohesive than random networks. Note that random networks are
characterized by homogeneous degree between agents,kmin ≈ kmax, and homogeneous
cohesiveness distribution, τmin ≈ τmax.

5. Summary

To sum up, we represent an ordering sequence of average cohesiveness for the 4
types of networks:

τ̄ : {τ̄RN < τ̄BA < τ̄P N < τ̄CN}, (4.32)

where
τ̄RN ∈

[
2
n

,
2√
n

)

, τ̄BA ∈
[

0,
(log n)2

8√
n

)

, τ̄P N = 4
5 , τ̄CN = 1. (4.33)
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4.6.3 Appendix C: The mean-field approximation. Average
local cohesiveness of compliers in any type of network

To calculate the average local cohesiveness of compliers in any network, τ̄c,we need to
find the probability pi that a link connects two compliers in the neighborhood of any
agent i. The size of i’s neighborhood is measured by her degree, |N (i)| = ki. To find
pi we can imagine a box with ki marbles. According to the share of compliers in N (i),
0 ≤ ci ≤ 1, we know that the box contains |Nc(i)| = ciki marbles that are compliers
(green marbles) and the rest are defectors (red marbles). Note that Nc(i) represents
the subset of compliers in N (i), Nc(i) ⊂ N (i), and then |Nc(i)| ≤ |N (i)|. We want to
find the probability of drawing two consecutive green marbles, which is:

pi =
(ciki)!

2!(ciki−2)!
ki!

2!(ki−2)!
= (ciki)!(ki − 2)!

ki!(ciki − 2)! = (ciki)(ciki − 1)
ki(ki − 1) , (4.34)

and can be approximated by pi ≈ c2
i . Let S represent the number of times that a link

connects two compliers (success) in a given N (i). We argue that the variable follows
the binomial distribution X ∼ Binomial(m, p) and S = E[X] = mipi, in where mi

represents the number of attempts in N (i). Note that mi is bounded by the maximal
number of links Mi in N (i), then mi ≤ Mi = ki(ki−1)

2 . If we want to normalize S,
S ∈ [0, 1], we obtain that S = mipi

Mi
. When mi = Mi, the N (i) is complete and S ≈ c2

i .
It is important to remark that the ratio mi

Mi
is nothing but cohesiveness of i, τi = mi

Mi
.

As we are measuring the number of connections among compliers in a given
neighborhood, S also represents the average local cohesiveness of compliers in N (i),
such that S = τ̄ci ≈ τic2

i .
In any network, if compliers are distributed randomly (Fig. 4.10) through the

network we obtain that ci ≈ c, ∀i ∈ n, where c represents the share of compliers in the
whole network. In complete networks ci = c holds. Thus, the probability that one link
connects two compliers is similar in all neighborhoods, such that p ≈ c2. At network
level, the expected number of successes S = τ̄c is calculated as the average number of
attempts, τ̄ , multiplied by the probability of one success, p, such that

S = τ̄c ≈ τ̄c2. (4.35)
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As we are reducing a multi-agent problem to a mean-agent problem, ci ≈ c and τ̄c ≈ τ̄c2

bring the notion of mean-field approximation.

Fig. 4.9 Variability of the share of compliers in the neighborhoods of agents for different
types of networks.

Once complete network structure is broken, the share of compliers ci in the neighborhood of
agents is not constant. This figure shows the values of ci for every agent i in the network.

Results are shown as boxplots after 1000 simulations. The results suggest that variability is
higher in scale-free than random networks or lattices. This means the mean-field

approximation will work better on lattices (and random networks) than on scale-free
networks. However, boxplots show that most neighborhoods have comparable values of ci. In

particular, in scale-free networks c̄ = 1
n

∑n
i=1 ci = 0.8 ± 0.13, and c = 0.8.
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4.6.4 Appendix D: The mean-field approximation. Critical
mass of compliers in mixed equilibrium when policy in-
struments are absent

In absence of policy eq. 4.15 can be reduced to the following expression:

ċ = (ω − 1)c(1 − c), (4.36)

and eq. 4.16 gives us the new 3 equilibria points in the system and their stability:

ċ = (ω − 1)c̄(1 − c̄) →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = 0, stable

ω = 1, unstable

c = 1, stable

(4.37)

We want to compute the critical mass of compliers ĉ needed to obtain ω̄ = 1 for any
type of network (from complete to random networks). Applying mean-field, the average
social pressure in the equilibrium is

ω = Ł
1 + smaxe−s(c−(c0−τ̄c)) = 1. (4.38)

Reordering eq. 4.38, we have that

−ln
(

Ł−1
smax

)

s
= c − c0 + τ̄c. (4.39)

Parameter c0 is constant, and we now know that τ̄c = τ̄c2 (Apprendix C); we use z as
z = −ln( Ł−1

smax )
s + c0. Hence, eq. 4.39 can be expressed in its reduced form

z = c + τ̄c2. (4.40)

And this expression can be solved as follows

ĉ = −1 +
√

1 + 4τ̄z

2τ̄
. (4.41)
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Note that we discard one of the possible solutions of eq. 4.40 because the share of
compliers is always a positive number, then 0 ≤ ĉ ≤ 1. We obtain this way the critical
mass of compliers when ω = 1 for any possible network configuration. The average
cohesiveness, 0 ≤ τ̄ ≤ 1, is a well-known metric in the literature of networks and is
easy to compute.

As a reference, we remark that τ̄ ≈ 0 in random networks and τ̄ = 1 in complete
networks. Scale-free networks are in between 0 ≤ τ̄ ≤ 4

5 . Thus, we can observe how
the critical mass of compliers in the mixed equilibrium ĉ decreases as a consequence of
increasing the average cohesiveness of networks τ̄ .
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4.6.5 Appendix E: Local cohesiveness of compliers

In a network N = (A, L) where A is the set of agents and L is the set of links,
the transitivity or local cohesiveness coefficient τi measures how close the neighborhood
N (i) of agent i is to a complete network. If agent i has ki neighbors, there can be, at

most,
⎛

⎝ki

2

⎞

⎠ = ki(ki−1)
2 links connecting agent i’s neighbors. If we define a transitive

relation in the neighborhood of i as ∀i ∈ A, ∀u, v ∈ N (i) : (uRi ∧ iRu) ⇒ uRv, where
N (i) = {au : liu ∈ L ∨ lui ∈ L}, the local cohesiveness can be quantified as

τi = 2 |{luv : au, av ∈ N (i), luv ∈ L)}|
ki(ki − 1) . (4.42)

Local cohesiveness lies within the range τi ∈ [0, 1]. Likewise, the local cohesive-
ness of compliers coefficient τci measures how close the set of compliers in agent i’s
neighborhood, NC(i), is to a complete network. Its definition is given by

τci = 2 |{luv : au, av ∈ NC(i), luv ∈ L)}|
ki(ki − 1) . (4.43)

The upper value of local cohesiveness τmax
ci

can be approximated by

τmax
ci

= ciki(ciki − 1)
ki(ki − 1) = ci(ciki − 1)

(ki − 1) ≈ c2
i ki

ki
≈ c2

i . (4.44)

Note that τmax
ci

is calculated when τi = 1. Since for this measurement only the share of
compliers in the neighborhood is needed, ki does not need to be considered. In the
other cases, when τi < 1, we can estimate τci by τci ≈ τic2

i (see Appendix C).
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Fig. 4.10 Local cohesiveness of compliers and its influence in social pressure.

This figure represents three different scenarios (A,B,C) in agent i’s neighborhood at a given
stock (s), share of compliers (ci) and local cohesiveness (τi). Local cohesiveness is, in all
three cases, τi = 1

6 and the stock is s = 30 meters. Black dots represent agents who are
defectors and gray dots represent agents who are compliers. In scenarios A and B, the share
of compliers is equal, two defectors and two compliers, so ci = 0.5, and differences in social
pressure ωi depend on the level of local cohesiveness of compliers τci . In scenario A the two
compliers are connected so τci = τi, whereas in scenario B τci = 0 because one defector and
one complier are linked. The link between agents with different strategies do not contribute
to increase local cohesiveness of compliers and, finally, social pressure. Thus, ωi in scenario
A (ωi = 0.9) is greater than in scenario B (ωi = 0.64). Scenario C represents the maximal

social pressure (ωi = 1.4) for agent i at given stock and local cohesiveness levels because all
i’s neighbors are compliers, ci = 1.



Chapter 5

Conclusions and future research

5.1 Main findings
Traditionally economists have studied the interaction between agents in a centralized
and anonymous way where prices are the principal vehicle to coordinate individual
actions. Agents are considered as being rational individuals, whose decisions are not
influenced by the type and patterns of interaction with other individuals. While
this approach seems legitimate for studying many social and economic phenomena
it falls short of explaining the importance of personal contacts or the emergence
of cooperativeness. In these situations, individual behavior cannot be considered
independent of the choices made by other individuals, but rather influenced by the
patterns of connections between individuals. This suggests that the structure of social
interactions may be viewed as an instance of an informal institution that supplements
regulatory institutions in the presence of imperfect or asymmetric information, or
that provides a basis for social cohesiveness and incentives of complying with social
norms. Based on these considerations social networks are gaining attention in natural
resource management discussions. However, several gaps still exist in the literature.
First, while existing studies have identified a number of network properties that are
seemingly important for the sustainable management of natural resources, the way in
which they are linked has been analyzed separately. This may be because traditional
network generative models are limited in terms of realism. Hence, the joint effect of
these properties on cooperation remains largely unknown. Secondly, the concrete role
of stock dynamics in adherence to a social norm has not been thoroughly analyzed,
yet stock dynamics is a fundamental element of management. Finally, although there
is documented evidence that social pressure plays an important role in promoting
cooperation, the monetary value of this intangible good has, as yet, not been studied.
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Thus, this thesis aims to contribute to the existing literature by attempting to fill
in the above mentioned gaps. This is done by modeling the evolution of a social norm
in realistic social networks, and its co-evolution with a stock dynamic. Coupling social
and resource dynamics allows us to determine the stability of cooperation within a
community of agents who share property rights and have free access to the natural
resource. The cooperating community places social pressure on defectors, which
ultimately results in economic losses.

The main findings are specified below following the research questions described at
the beginning of the thesis:

1. To develop a new network generative model to simulate more realistic social networks.

In Chapter 2 we investigate the influence the microscopic properties of networks
(the fitness of agents) have on network formation. We propose that fitness is a combi-
nation of the multiple socioeconomic attributes of the agents that can be expressed
as a single numerical value. According to competitive theories, agents compete for
links and fitness represents the ability of agents to attract links. If the underlying
fitness distribution within the population follows any heavy-tailed distribution, we have
proved that social networks are scale-free. The proposed model allows us to generate
an ordered sequence of realistic networks. Concretely, all generated networks are power
law with increasing levels of link correlations (assortativity, modularity, transitivity).
In contrast to traditional models, we argue that the degree of agents is the consequence
of network dynamics rather than its driving force. The advantages of fitness-based
network generative models are twofold. First, fitness allows multi-scaling networks to
be generated. By increasing the asymmetry of the heavy-tailed fitness distribution, we
decrease the scale of the power law degree distribution. As a consequence of asymmetry,
the level of competition for links decreases in the population and therefore some agents
tend to accumulate a greater number of links. However, modelers face a tradeoff
between multi-scaling and computational performance. We have proved that the higher
the level of competition is, the faster the algorithm is. Second, fitness also can shed
light on homophilous behavior, or the tendency of agents to connect with similar agents.
We introduce a new argument, link stability, to simulate the evolution of homophily in
social networks. We argue that connections between agents are costly and costs are
supposed to be lower between agents with similar fitness. Thus, connections between
agents with similar fitness are more stable and should last longer. According to a
cost-link minimization condition, we observe how the evolution of homophily within
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the population increases the levels of link correlations in the social network.

2. To propose a new theoretical framework that treats the integrated social-ecological
system as the key unit for analyzing collective action.

In Chapters 3 and 4 we investigate the role that network structure and stock dy-
namics play in the evolution of cooperation within a community of agents exploiting
a natural resource. We use a social pressure function to capture both network and
stock effects. Previous studies (Chung et al. [2014]; Tavoni et al. [2012]) have analyzed
similar models of coupled social and resource dynamics, however, results are based on
either complete or simpler social networks (i.e., local cohesiveness of compliers is not
taken into account).

Contrary to what these previous studies observe, our results in Chapter 3 suggest
there is always a certain (small) number of agents that receive no or very little social
pressure. In other words, these agents always become defectors. To understand this
result better, we use Fig. 2.4 and Fig 2.6 in Chapter 2. In Fig. 2.4 we observe
hierarchical clustering in social networks, where the neighborhoods of the hubs are less
cohesive than the rest of the neighborhoods. In Fig. 2.6 we observe that assortativity
values are largely controlled by connections between hubs. This means hubs receive
very little pressure and they are interconnected. In the literature on social networks,
the interconnectivity of hubs is often described as the “rich-club phenomenon”. Because
of this rich-club phenomenon, if all hubs defect to the norm, they can survive even
when the rest of agents within the community are compliers. The observation that
hubs can survive is analogous to a finding in the non-cooperative game literature where
(Bramoullé [2007]) observed that agents have an incentive to anti-coordinate if they
are embedded in a bipartite network. Additionally, anticoordination is also observed in
isolated agents or groups. Agents or groups that are poorly connected to the rest of
the social network tend to receive very little social pressure and, consequently, they
can survive even in high levels of cooperation.

In Chapter 4, we show that predictions based on well-mixed population assumptions
are optimistic. Social networks are not complete networks and therefore the critical
mass of compliers in the mixed equilibrium is always higher than that expected in
complete networks. However, scale-free networks allow for a wide range of possible
topologies. By varying these topologies, we can approach complete cohesiveness, but
even in the best case (pseudo-fractal networks) we are still 20% below complete cohe-
siveness.
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3. To identify and rank the driving factors behind disposition to comply with a social
norm.

Many authors have highlighted the importance the share of compliers (Osés-Eraso
and Viladrich-Grau [2007]; Sethi and Somanathan [1996]; Tavoni et al. [2012]) has for
the socially efficient management of a resource. However, the share of compliers is
independent of the size and the structure of the social network. In Chapter 3 we show
that the share of compliers alone is an inaccurate indicator of cooperativeness and to
be interpreted needs to be accompanied by other characteristics of social pressure such
as the local cohesiveness of the compliers or the state of the natural resource.

We also show that density (the number of total links in the network) does not
necessarily favor compliance with the social norm. There is a large anumber of
redundant links that do not contribute to higher social pressure. The reason is that the
level of local cohesiveness of compliers in a given neighborhood depends on the share
of compliers in this neighborhood. We can calculate the lower and upper limits of local
cohesiveness of compliers for any neighborhood and thus the maximal number of links
needed to increase social pressure. Notice that only links connecting two compliers
are efficient, in other words, contribute to higher social pressure. The fact that links
are redundant sheds new light on the findings in the previous literature (Coleman
[1988]; Karlan et al. [2009]), where an increase in density favors compliance to the
social norm. We show that an increase in links only favors such compliance up to the
point where density is equal to the upper limit of the local cohesiveness of compliers.
Beyond this limit density does not contribute to higher social pressure. The conclusion
is that density of a social network is an imprecise indicator for cooperativeness because
it considers not only the links that help to increase social pressure but also redundant
links.

In terms of the the size (the number of total agents in the network), in Chapter
4 (Appendix B) we have shown that, in the absence of homophily, the average local
cohesiveness decreases with the size of the social network. Thus, given the same share
of compliers in small and large networks, we obtain that small networks tend to comply
to the norm more than the larger networks do. Our results support the widespread
hypothesis (Ostrom et al. [1999]) that a small community can exercise more social
pressure than a large community can.

In Chapters 3 and 4, we model social pressure as a sigmoidal function where
compliers adapt the pressure they exert to defectors according to the remaining stock.
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When the natural resource is fully available for agents social pressure is practically
unnoticed, even with high levels of cooperativeness within the community. In this
situation, agents are likely to defect.

According to our analysis, we propose to study both network and stock effects
holistically and not separately. As we have seen, single properties of networks, taken
separately, are imprecise indicators for predicting cooperativeness.

4. To determine resource management strategies to encourage cooperation (com-
munity approach) and policies to improve the conservation of natural resources (policy
approach).

In Chapter 3, we determine the magnitude of error of a traditional “first-best” tax
compared to a tax that takes into account social interactions and social pressure. Our
results suggest that when shortsighted behavior is the origin of the tragedy of the
commons problem, it is also the starting point for a solution in the form of a one-time
payment. Two types of agents, defectors and compliers, interact within the social
network. Defectors maximize their short-term benefits. On the other hand, agents
complying with a social norm that prescribes conformity to an agreed extraction level
are able to place social pressure on the defectors. Social pressure eventually produces
economic losses to defectors. The difference between the defector’s extra benefits
and the economic losses from social pressure determines the amount required for the
one-time payment. As agents update their strategies according to utility differences,
once defectors have changed their strategy, the increased number of compliers hampers
them from reverting.

In Chapter 4, we have identified policy corridors for the real determination of
policy options. We find large regions where traditional policy instruments and network-
orientated policies can be applied indistinctly or in combination. A significant charac-
teristic of common property resources is that the community lacks the legal power to
enforce social norms; however, social pressure is the driving force for cooperation. In the
case that social pressure cannot maintain adherence to the social norm, the community
may decide to employ regulatory instruments, i.e., taxes or subsidies. Our results
show that when the share of compliers is sufficiently high within the community, social
pressure leads to full cooperation. On the contrary, when the share of compliers is very
low or the stock is fully available for agents, agents are likely to defect. Nevertheless,
we find a large intermediate region where the joint effects of network structure, stock
dynamics and the share of compliers are of fundamental importance for predicting
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cooperativeness. In the intermediate region both types of policies coexist. Where the
social-ecological system ultimately converges depends on the policy decisions adopted.

5. To valuate in monetary terms social pressure under variable social and envi-
ronmental conditions.

In Chapters 3 and 4, we provide a monetary valuation of an intangible good: so-
cial pressure. An extended analysis is provided in Chapter 3 using the case of the
western La Mancha Aquifer in Spain. We refer to the economic losses compliers inflict
on the defectors as social punishment. Social punishment allows us to determine to
what extent network effects and stock dynamics contribute to overcoming the tragedy
of the commons. For the sake of simplicity and to stress that defector’s utility is
directly affected by social pressure, we assume that social punishment is linearly related
to the difference between the net benefits of the defector and the complier. Since the
extra benefits present the loss defectors inflict on compliers, any social punishment can
be viewed as redemption for the privation suffered by the compliers. However, social
punishment is not independent of social interaction among the agents and, therefore,
we assume that the loss defectors inflict on the compliers is attenuated or aggravated by
the strength of social pressure. Concretely, the social pressure produced and the extra
benefits the defector gains as a result of incompliance define the social punishment
imposed.

We analyze the marginal economic value of social punishment. Results show that an
increase in the share of compliers or local cohesiveness of compliers will unambiguously
increase the economic value of social punishment, whereas an increment in stock will
lead to an increase or decrease in the economic value of social punishment.

This result is counterintuitive given that social pressure increases with a decrease
in the remaining stock. However, the lower the stock is, the higher the extraction
costs for both strategies are. Thus, the difference between the extraction profiles and
the corresponding net benefits decreases. Hence, if stock-dependent extraction costs
are not dominant for the overall net benefits, social pusnihment decreases with an
increase in stock. Otherwise, if stock-dependent extraction costs are dominant, social
punishment will increase with an increase in the stock.
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5.2 Implications of the research
Our research has established that network-orientated policies may help to overcome
the tragedy of the commons. A local common is a single but abundant local natural
resource exploited by a large community of economic agents. To moderate or avoid
depletion, the agents in the community need to reach a common understanding of
the characteristics a sustainable extraction path will have. If there is a social norm
prescribing conformity to an agreed extraction path, the social norm allows the resource
use behavior to be defined. Concretely, social pressure is an informal mechanism to
establish and maintain cooperative behavior required to exploit the natural resource
in question. At the community level, the strength of the local cohesiveness of the
compliers, the size of the community, the state of the natural resource, and the share
of compliers allow the size of the region where network-orientated policies can be best
applied to be mapped out.

We have shown large regions where traditional policies and network-orientated
policies can be applied indistinctly or in combination. However, network-orientated
policies may be more efficient that traditional policies when agents perceive taxes or
subsidies as disproportionate or meaningless (Bicchieri and Muldoon [2014]). Tradi-
tional policies are focused on direct intervention in the form of initiatives that reduce
or increase the net benefits of a given resource behavior. However, network-orientated
policies are based on indirect intervention in the form of initiatives that increase social
pressure, i.e., seminars or workshops.

Our results suggest that the presence or introduction of policy instruments lead to
a relocation of policy corridors. We observe that the region where network-orientated
policies are applicable increases with the introduction of policy instruments. In this
situation, network-orientated policies play an important role in policy design since
(i) they induce mixed equilibrium to be stable, and (ii) the stationary point in the
mixed equilibrium is located within the region of applicability of the network-orientated
policies.

Finally, how best to design network-orientated policies to promote cooperation
within a community remains an interesting topic for future research. We can derive
from our results that (i) agents who have a large quantity of links (hubs) receive less
social pressure than the rest of agents in the social network, (ii) agents who have
a small quantity of links (low-degree agents) contribute more to the average local
cohesiveness of social networks, (iii) links connecting agents with similar socioeconomic
attributes seems to be more stable and should last longer, and (iv) links between agents
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complying with the social norm are efficient (increase social pressure), whereas other
links are redundant (do not increase social pressure).

5.3 Limitations of this research and directions for
future research

The results of this research have enabled us to discern general implications about the
role social networks play in natural resource management. Nevertheless, we acknowl-
edge that there are some limitations in the research and suggest how these could be
addressed in the future:

1.Social pressure functions.

In this work, we have studied the effectiveness social pressure has on natural resource
overuse by promoting sustainable extraction paths. In line with previous research
(Chung et al. [2014]; Lindbeck [1997]; Tavoni et al. [2012]), we have modeled social
pressure as sigmoidal functions. In Chapter 3, we use the Gompertz function, which is
an asymmetric sigmoidal function with two growth rates, while in Chapter 4, we use
the logistic function; which is a symmetric sigmoidal function with a tunable inflection
point. In both cases, we have assumed that social pressure is a non-negative, bounded
function that increases along with the number of agents complying with the social
norm. Different parameters allow us to capture the tangible effects network structure
and stock dynamics have on the disposition to comply with the norm. However, these
functions have not yet been calibrated in laboratory experiments. Thus, our results are
theoretical results and they must be contrasted with laboratory experiments and/or
field research. As we have seen, these functions are complex to deal with. Given the
specifications of our models, the regimes of the stationary state of the evolutionary
dynamics are difficult to determine analytically. Nevertheless, other techniques allow
equilibrium conditions to be reached. In Chapter 3 we use numerical analysis, whereas
in Chapter 4 we use mean-field analysis. To validate our assumptions about social
pressure, experimental research would be helpful, i.e., the estimation of the parameters
of the social pressure function.

2.Structural elements of the social network.

In looking towards future research in the area of social networks and natural re-
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source management there is much to be done. In Chapter 2, we focus on the limitations
of traditional network generative models, suggesting that social networks may have
features that cannot be captured by traditional approaches of network formation. In
Newman’s words (Newman [2003b]), “We have as yet no theoretical framework to tell
us if we are looking in the right place. A true understanding of which properties of
networks are the important ones to focus on will almost certainly require to state first
what questions we are interested in answering about a particular network”.

To our knowledge, the metric “local cohesiveness of compliers” has not been consid-
ered before in the related literature. We argue that this property is an important factor
in the willingness to comply with a social norm, and therefore it can be used to design
network-orientated policies, i.e, initiatives designed to create new links among compliers.
However, economics of networks has, as yet, not drawn any clear conclusion about
link stability, especially if new links are created externally through network-orientated
policies. A correct understanding of link formation and link stability in real-world
networks is a challenge for further research.

3.Trust networks and cooperative games.

Based on their extensive field-work, (Ostrom [1990]; Ostrom et al. [1999]) devel-
oped a list of eight design principles for natural resource management to function well.
Many of them, (e.g., communication, monitoring and social sanctions), depend on the
underlying structure of social interactions. In recent years (Berkes et al. [2003]; Jentoft
[2000]; McCarthy [2000]; Olsson et al. [2004]; Wondolleck et al. [2002]) the list has been
extended. For example, (Olsson et al. [2004]) argues that resilience of social-ecological
systems is facilitated by trust among agents.

One of the most important features in a social network is the ability of agents to
share opinions, information or experiences. However, the success of such attempts relies
on the level of trust that agents have with each other. In a social network, the level of
trust can be measured by the nature and quantity of interactions among its agents. The
“nature of interactions” refers to individual confidence (homophily) between pairs of
linked agents, while the “quantity of interactions” refers to direct and indirect interaction
through the network. Direct interaction defines the collective confidence associated with
the group, and can be measured by density or local cohesiveness. Indirect interaction,
on the other hand, can modify collective confidence, i.e., community membership
(measured by modularity) or a chain of referrals (measured by betweeness centrality).
Trust networks are often represented as directed networks.
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Interestingly, trust has been identified as an important factor that influences
cooperation in social dilemmas (Yamagishi [1988]), in other words, trust acts like a
lubricant for social pressure (Parks et al. [2013]). Further research could combine our
framework with trust networks. Again, fitness of agents can be used to define the
properties of trust networks such as social influence and reputation.

Furthermore, cooperative games played on networks is an interesting line for future
research. Network properties (modularity, local cohesiveness) and multi-layer networks
may help to define alliances (coalitions) between groups of agents.

4.Governance of global commons: triggering scaling up.

The management of local natural resources takes place within a national jurisdic-
tion of a particular state designed to serve the needs of the communities. The physical
and technical properties of local commons produce very high institutional costs. These
costs mainly consist of high exclusion costs, which mean that complete privatisation of
rights is economically inefficient and consequently, in situations of this kind, common
property rights are more efficient than individual rights. However, other natural re-
sources are beyond the limits of a single national jurisdiction. For example, forests and
rivers shared by two or more states. Furthermore, the atmosphere cannot be privatized
nor it can be expropriated by any state.

In economics, supranational and international natural resources are considered
global commons (table 5.1). Large-scale natural resources are subject to an open
access regime and protecting them is extremely costly. In these cases, solutions to
problems like climate change rely on voluntary cooperation between the various classes
of appropriators.

Table 5.1 Differences between local and global commons.

Characteristics Local commons Global commons
Geographic scale Regional International
Number of resource users Thousands, Tens to thousands Millions to billions
Salience: users’ awareness of degradation Resource use is conscious purpose Actions causing degradation are of low importance for most users
Property rights Common property Open access
Distribution of interests and power Benefits and costs mainly internal to group of appropriators Differences of interest and power among classes of appropriators
Cultural and institutional homogeneity Homogeneous Heterogenous
Feasibility of learning Good Limited
Regenerating of degrading resource Renewable over less than a human generation Regeneration over more than a human generation
Ease of understanding resource dynamics Reasible without extensive scientific training Scientifically complex with limited predictive ability
Stability of resource dynamics Stable, though variable Dynamic systems with changing rules
Ability to learn accross places Possible Difficult
Examples Coastal fisheries, forests, aquifers Atmosphere, polar regions, trans-boundary forests

A promising line of research is to systematically analyze human cooperation from
a local to global scale, and determine the differences between those scales. To date,
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the literature has focused on local and regional cooperation problems but the findings
cannot be directly transferred to the international level (Nyborg et al. [2016]).
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