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1 Introduction: Daily activity behaviours are compositional by nature 1 

 2 

Physical inactivity is considered to be a major risk factor for non-communicable disease 3 

and premature death.1 A global economic analysis has estimated the health-care system 4 

cost of physical inactivity in 2013 alone to be $ (INT$) 53.8 billion.2 To produce such 5 

economic estimates, physical inactivity is defined as relatively lower amounts of 6 

moderate-to-vigorous-intensity physical activity (MVPA), but underlying analyses fail 7 

to account for the fact that when time in MVPA is reduced, a subsequent and equal 8 

increase in time must be distributed to the remaining behaviour domains: sleep, 9 

sedentary time and light-intensity physical activity (light PA), to represent the finite 24-10 

hours, or 1440 minutes, in any given day. These other non-MVPA behaviours may 11 

themselves have positive or negative effects on health and mortality.3-6 Therefore, the 12 

health and economic burden of physical inactivity per se remains unclear. Similar 13 

estimates for sedentary time 7 are uncertain for the same reason, i.e., they fail to 14 

adequately account for other behaviours. Pedišić 8 argued that studies on health 15 

outcomes of sleep duration and light PA can be put under the same scrutiny. 16 

 17 

Time spent in MVPA represents one of the exhaustive and mutually exclusive 18 

components of an individual’s 24-h day. The non-MVPA time remaining within an 19 

individual’s day can be partitioned into light PA, sedentary time and sleep and all of 20 



 2 

them can be considered as relative contributions to the overall time budget. The defined 1 

behaviours (MVPA, light PA, sedentary time and sleep) are therefore compositional 2 

data, and have important properties that must be respected.9 3 

 4 

Consider a vector 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝐷]  ∈ ℝ𝐷 with positive components, where ∑ 𝑥𝑖 = 𝐶, 5 

and 𝐶 is the closure constant. The sample space of the vector 𝒙 can thus be represented 6 

by the D-part simplex (SD), which is a (D-1)-dimensional subset of the real space (RD) 7 

due to the constant sum constraint of 𝐶. Compositional data are scale invariant9 because 8 

the application of a common factor a to the parts 𝑥𝑖 where  𝑖 = 1,2, … , 𝐷 ensures the 9 

relative difference between the parts is maintained, as ∑ 𝑎𝑥𝑖 = 𝑎 ∑ 𝑥𝑖 = 𝑎𝐶𝐷
𝑖=1

𝐷
𝑖=1 . The 10 

numerical value of the closure constant (e.g., 24 h, one week, one month) is irrelevant. 11 

Daily behaviours could equivalently be measured in hours, minutes or percentages as 12 

the data convey only relative information. The property of scale invariance means 13 

compositional data are in fact elements of equivalence classes of proportional vectors.10 14 

Accordingly, the simplex is the sample space of representatives of compositional data 15 

with a chosen constant sum constraint. Specific properties of compositional data are 16 

followed by a natural geometry, known as the Aitchison geometry.11 The closure 17 

constant representation of compositions imposes perfect multi-collinearity among the 18 

components, causing the covariance structure of the data to be negatively biased.9 19 

Accordingly, traditional statistical methods for unconstrained variables in real space 20 



 3 

(e.g., t-tests, multiple linear regression) are not predicative with respect to the specific 1 

geometry of the simplex sample space, and should not be used for absolute or raw 2 

measures of time spent in daily behaviours.12 3 

 4 

2 The log-ratio approach for compositional data analysis 5 

The invalidity of standard multivariate techniques for analyzing untransformed or raw 6 

compositional data was recognized in scientific fields decades ago,13 and in the 1980s 7 

Aitchison proposed a new methodology for the analysis of compositional data.9 The 8 

methodology is based on the premise that any composition (e.g., an individual’s daily 9 

time budget) can be expressed in terms of ratios of its parts (e.g., duration of sleep, 10 

sedentary time, light PA and MVPA). The expression of compositional data as log-ratio 11 

coordinates transfers them from the constrained simplex space to the unconstrained real 12 

space, where traditional multivariate statistics may be applied.14 The presence of zeros 13 

in a compositional dataset prohibits applying log-ratio coordinates. Several methods 14 

have been proposed to deal with zeros;15 however they are beyond the scope of this 15 

paper.  16 

 17 

A number of log-ratio coordinate systems for compositional data have been described.11 18 

One such coordinate system, the additive log-ratio (alr), has coordinates, 𝒂, defined by 19 

𝒂 = [𝑎1, … , 𝑎𝐷−1] = 𝑎𝑙𝑟(𝒙) = [ln (
𝑥1

𝑥𝐷
) , ln (

𝑥2

𝑥𝐷
) , … , ln (

𝑥𝐷−1

𝑥𝐷
)].      (1) 20 
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However, the alr coordinates are asymmetric, because the components x1,x2,…, xD-1 are 1 

divided by the component xD. Moreover, they are not isometric, i.e., distances and 2 

angles in the Aitchison geometry are violated by using the alr coordinates, limiting their 3 

use in statistical applications. This means that the system of alr coordinates in the 4 

Aitchison geometry is oblique, and traditional statistical methods which assume 5 

orthogonal coordinates therefore cannot be directly applied. Another coordinate system 6 

is the centred log-ratio (clr) coordinate system, 𝒄, defined as 7 

𝒄 = [𝑐1, … , 𝑐𝐷] = 𝑐𝑙𝑟(𝒙) = [ln (
𝑥1

𝑥
) , ln (

𝑥2

𝑥̃
) , … , ln (

𝑥𝐷

𝑥
)],                           (2) 8 

where 𝑥 is the geometric mean of all the D components of the vector 𝒙. The clr are 9 

symmetric and isometric; they produce a singular covariance matrix because ∑ 𝑐𝑗
𝐷
𝑗=1 =10 

0. The clr are, strictly speaking, not coordinates but coefficients with respect to a 11 

generating system. The covariance matrix of clr coefficients is singular, so the clr 12 

coefficients cannot be fully utilized as independent variables in multiple regression 13 

analysis. 14 

 15 

The singularity problem of the clr can be overcome by the use of an isometric log-ratio 16 

(ilr) coordinate system. Isometric log ratio coordinates form an isometric mapping of 17 

the composition from the simplex sample space to the real space.16 To construct the ilr 18 

coordinates, an orthonormal basis coherent with the Aitchison geometry is created in the 19 

(D-1)-dimensional hyperplane of the clr coordinates. Many possible orthonormal 20 
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coordinate systems can be created, however, following Pawlowsky-Glahn et al.,11 one 1 

can define a particular ilr system of coordinates through a partitioning process.16 For 2 

our purposes, specific ilr coordinates based on a sequential partition of one part to the 3 

remaining compositional parts17 is very useful. Such ilr coordinates result in a (D-1)-4 

dimensional real vector, z, defined as 5 

𝒛 = [𝑧1, 𝑧2, … , 𝑧𝐷−1] = 𝑖𝑙𝑟(𝒙) =  [√
𝐷−1

𝐷
 ln (

𝑥1

√∏ 𝑥𝑘
𝐷
𝑘=2

𝐷−1
) , √

𝐷−2

𝐷−1
 ln (

𝑥2

√∏ 𝑥𝑘
𝐷
𝑘=3

𝐷−2
) , …   6 

… , √
𝐷−𝑗

𝐷−𝑗+1
 ln (

𝑥𝑗

√∏ 𝑥𝑘
𝐷
𝑘=𝑗+1

𝐷−𝑗 ) , . . .,
1

√2
 ln (

𝑥𝐷−1

𝑥𝐷
)].     (3) 7 

It can be shown that 8 

𝑐1 = √
𝐷−1 

𝐷
𝑧1,            (4) 9 

 i.e., the first ilr coordinate in this system is directly proportional to the first clr 10 

coefficient. Both 𝑐1 and 𝑧1 can be interpreted in the same way in terms of dominance of 11 

a component (here the first compositional part) to the rest of parts. The remaining ilr 12 

coordinates (z2, z3, …,zD-1) contain no relative information regarding the first 13 

compositional part. If a different compositional part is of interest, e.g., the second part, 14 

it is simply a matter of rearranging the compositional parts so that the part of interest is 15 

in the first place, and then reconstructing the ilr coordinates according to (3).18 16 

 17 
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The ilr coordinates can also be constructed using a sequential binary partition (SBP) as 1 

described by Egozcue and Pawlowsky-Glahn.16 The first step in the SBP process 2 

requires division of the full composition into two subgroups of parts, where one 3 

subgroup will form the numerator and the other the denominator of the first ilr 4 

coordinate. In the subsequent steps, each of these two subgroups is further split into new 5 

subgroups to create the remaining ilr coordinates. For example, based on prior 6 

knowledge of the nature of the behaviour components, the numerator could be selected 7 

to consist of inactivity-related behaviours (sleep and sedentary time) and the 8 

denominator could be activity-related components (light PA and MVPA). The second 9 

SBP then divides the numerator of the first ilr coordinate to form the second ilr 10 

coordinate, with sleep as the numerator and sedentary time as the denominator. The 11 

final SBP divides the denominator of the first ilr coordinate, with light PA as the 12 

numerator and MVPA the denominator of the third ilr coordinate.  13 

 14 

As the ilr coordinates defined in (3) are orthogonal, the columns of the design matrix 15 

are linearly independent. This avoids the previous issue of a singular covariance matrix 16 

in the multiple linear regression fit. The regression parameters estimated for the first ilr 17 

coordinate in the model represent the effect on an outcome when the first component 18 

(numerator) is changed in relation the geometric mean of the remaining parts 19 

(denominator). To examine the influence of the other compositional parts (relative to 20 



 7 

the geometric mean of the respective remaining parts), a total of D models are fitted, 1 

with each model including a set of ilr which iteratively has a different compositional 2 

part as the numerator of the first ilr coordinate (and the remaining parts as the 3 

denominator). The constant term, and other external covariate terms, as well as the 4 

quality of fit, are invariant to the choice of ilr basis.11 5 

 6 

3. Compositional data analysis in the field of sleep, sedentary and physical activity 7 

research 8 

The log-ratio approach for compositional data analysis is well established in many 9 

scientific fields (e.g., geology, biology, hydrology, ecology and economics), and is 10 

considered the gold-standard for analyzing compositional data.11 However, this 11 

methodology has only recently been used in health research, with researchers applying 12 

compositional data analysis to nutrition,19 epidemiology20  and microbiome data.21 13 

Furthermore, the compositional nature of daily activity data (sleep, sedentary time, light 14 

PA and MVPA) was not acknowledged until 2014, when Pedišić 8 warned that 15 

traditional analyses within the field were undermined due to the use of inappropriate 16 

and invalid statistical procedures, and called for a paradigm shift towards a 17 

compositional approach. Subsequently, Chastin et al. 18 and Carson et al. 22 18 

demonstrated the feasibility of estimating the relationship between the complete daily 19 

behaviour composition and health outcomes using the ilr methodology outlined above. 20 
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However, the interpretation of log-ratio regression coefficients is not straight-forward.23 1 

As daily activity data have a meaningful total, i.e., 24-hours or 1440 minutes, regression 2 

coefficients can be interpreted on a meaningful scale.  3 

 4 

The ilr multiple linear regression model for 𝑛 compositional observations 5 

 (𝒙𝒊, 𝑦𝒊), 𝑖 = 1,2, … , 𝑛,  where 𝒙𝒊 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷]  with  ∑ 𝑥𝑖𝑗
𝐷
𝑗=1 = 1, is 6 

𝑦𝑖 = 𝛽0 +  ∑ 𝛽𝑗𝑧𝑖𝑗 + 𝜀𝑖
𝐷−1
𝑗=1        (5) 7 

where 8 

𝑧𝑖𝑗 = √
𝐷−𝑗

𝐷−𝑗+1
 ln (

𝑥𝑖𝑗

√∏ 𝑥𝑖𝑘
𝐷
𝑘=𝑗+1

𝐷−𝑗 ) for  𝑗 = 1,2, … , 𝐷 − 1, 9 

with intercept 𝛽0, regression parameters 𝛽1, 𝛽2, … , 𝛽𝐷−1 and 𝜀𝑖~𝑁(0, 𝜎2) independently. 10 

The regression coefficient 𝛽1 represents the change in the response variable when the 11 

first ilr coordinate is changed while the remaining ilr coordinates are all kept constant 12 

and the total sum is maintained, i.e., ∑ 𝑥𝑖𝑗
𝐷
𝑗=1 = 1. When the component in the 13 

numerator of the first ilr coordinate is increased by one factor, all the components in the 14 

denominator can simultaneously be decreased by another factor to maintain the constant 15 

total. For example, ilr1 for a 4-part composition becomes 16 

√
3

4
ln (

𝑥1

√(𝑥2∙𝑥3∙𝑥4)
3

 ∙  
1+𝑟

1−𝑠
).                                                (6) 17 
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The remaining ilr coordinates are then all kept constant, as they contain only the 1 

components from the denominator of the first ilr coordinate which are all decreased by 2 

the same proportion. Continuing with the example above, the remaining ilr coordinates, 3 

i.e., ilr2 and ilr3, respectively become 4 

√
2

3
ln (

𝑥2

√(𝑥3∙𝑥4)

∙
1−𝑠

1−𝑠
) and √

1

2
ln (

𝑥3

𝑥4
∙

1−𝑠

1−𝑠
).                                 (7) 5 

The estimated change in an outcome (𝑦̂) when the first component (x1) of a 6 

composition of interest (e.g., the mean composition for a particular population group) is 7 

multiplied by 1+r (other coordinates are kept constant as each remaining compositional 8 

part is simultaneously multiplied by 1-s) can be calculated as 9 

𝑦̂ =  𝛽̂1  ∙  √
𝐷−1

𝐷
∙ ln (

1+𝑟

1−𝑠
)     (8) 10 

where −1 <  𝑟 <
1−𝑥1

𝑥1
 and 𝑠 = 𝑟 ∙

𝑥1

1−𝑥1
. 11 

The derivation of Equation (8) above, the corresponding 100(1-α)% confidence interval 12 

and the effect of including additional predictor variables into the ilr multiple linear 13 

regression model is provided in Supplementary file 1. 14 

 15 

To facilitate the translation of research findings to clinical practice, it is of interest to 16 

estimate the health effects related to a meaningful quantum change (in minutes or hours) 17 

of one part of the activity behaviour composition (relative to compensatory change – to 18 
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maintain a total of 24 hours – of the geometric mean of the remaining compositional 1 

parts). The next section illustrates a novel, meaningful interpretation of ilr beta 2 

coefficients from regression analysis of a specific type of data: compositional, and 3 

constrained to a meaningful constant sum (24 h or 1440 min), using an epidemiological 4 

dataset as an example.  5 

 6 

4 Example: daily activity and adiposity 7 

The examples use data from the International Study of Childhood Obesity, Lifestyle and 8 

the Environment (ISCOLE), a large international study of children aged 9-11 years, 9 

conducted between 2011 and 2013.24 Children were from urban and suburban centres in 10 

12 countries (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, 11 

Portugal, South Africa, England, and the United States). Ethical approval for ISCOLE 12 

was obtained from the Institutional Review Board of the Pennington Biomedical 13 

Research Center in Baton Rouge, Louisiana, USA, and site-specific ethical approval 14 

was also received at each participating study site. Parental written informed consent and 15 

child assent were obtained as required by local review boards. Daily activity was 16 

measured by 7-day 24-hour accelerometry.25 Nocturnal sleep duration was estimated 17 

using a fully automated algorithm.26, 27 Once total sleep time and awake non-wear time 18 

(any sequence of ≥20 consecutive minutes of 0 activity counts) were removed, data 19 

were processed in 15-s epochs to determine sedentary time (≤25 counts per 15 s), light 20 
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PA (26-573 counts per 15 s), and MVPA (≥574 counts per 15 s), congruent with 1 

Evenson’s cut-points.28 For analysis, each component of 24-h time use (sleep, sedentary 2 

time, light PA and MVPA) was accumulated, weighted for weekdays:weekend days at 3 

5:2. No zero values were present among the compositional daily activity behaviour data. 4 

Adiposity was represented by body mass index (BMI) from measured weight and height 5 

(BMI= weight [kg]/height [m2]). Note that BMI is a positive real random variable with 6 

an absolute scale. Participant BMI was converted to z-scores using age- and sex-specific 7 

World Health Organization (WHO) reference data.29 After its transformation, zBMI can 8 

take on positive and negative values, satisfying the assumption that the response 9 

variable has support on the real line. The analyses included 5828 children (2633 boys, 10 

3195 girls), with mean zBMI= 0.45 (SD=1.26). 11 

 12 

First, the relationship between zBMI and the four-part daily activity composition (sleep, 13 

sedentary time, light PA, MVPA) was examined. Table 1 shows the results of the 14 

compositional multiple linear regression models, which included the ilr coordinates and 15 

terms for sex, highest parental education, number of parents, number of siblings, and 16 

study site. The ilr coordinates were calculated using (3) in which x represented 17 

proportions of time spent in sleep, sedentary time, light PA and MVPA. Four sets of ilr-18 

coordinate systems were constructed, each time rotating the sequence of activity 19 

behaviours, so that each behaviour was iteratively represented as the first compositional 20 
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part. Each of these ilr-coordinate systems was used in a multiple linear regression 1 

model, where the regression coefficient of the first ilr-coordinate contained all the 2 

information regarding the first activity component, relative to all the remaining 3 

components. Therefore, only the regression coefficients corresponding to the first ilr-4 

coordinates are displayed in Table 1.  5 

 6 

Table 1. Multiple linear regression analyses of the relationship between first isometric 7 

log-ratio (ilr) coordinates and Body Mass Index (BMI) z-scores (Compositional 8 

models). 9 

ilr regression models 𝛽̂ SE t-value p 

Model 1: ilr1  ln(Sleep : 

geometric mean of remaining 

behaviours) 

-0.82 0.13 -6.22 <0.001 

     

Model 2: ilr1  ln(Sedentary time : 

geometric mean of remaining 

behaviours) 

0.35 0.10 3.30 <0.001 

     

Model 3: ilr1  ln(Light PA : 1.34 0.10 13.19 <0.001 
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geometric mean of remaining 

behaviours) 

     

Model 4: ilr1  ln(MVPA : 

geometric mean of remaining 

behaviours) 

-0.87 0.05 -16.11 <0.001 

ilr: Isometric log ratio, BMI z-score: Body Mass Index transformed to z-score using 1 

age- and sex-specific World Health Organization (WHO) reference data, 𝛽̂: 2 

unstandardized regression coefficient estimate, SE: Standard error, Light PA: Light-3 

intensity physical activity; MVPA: Moderate-to-vigorous-intensity physical activity. 4 

All models adjusted for sex, highest parental education level, number of siblings, 5 

number of parents and study site. Adjusted R-squared = 0.11. 6 

 7 

Adiposity (zBMI) was positively related to the relative time spent in sedentary time and 8 

light PA, and negatively related to the relative time spent in sleep and MVPA. Figure 1 9 

shows the association effect-size from the linear models further interpreted to 10 

meaningful parameters. To create the plot, the estimated differences in zBMI related to 11 

difference in one activity relative to the remaining activities (with the mean activity 12 

behaviour composition of the sample as the reference, or starting composition) were 13 

calculated using (8) for 15 min time interval increments ranging from 0 to 60 min 14 
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(MVPA) or 0 to 120 minutes (sleep, sedentary time, light PA). Worked examples are 1 

presented in Supplementary file 2. The R functions to estimate differences in zBMI are 2 

available freely at https://github.com/tystan/deltacomp. From Figure 1, it can be seen 3 

that estimated zBMI is lower by about 0.33 units with 30 min higher relative MVPA, 4 

and zBMI is higher by about 0.60 units with 30 min lower relative MVPA, compared to 5 

zBMI at the mean composition. The non-linear/non-symmetrical nature of the estimated 6 

zBMI response curves can be seen in Figure 1. The figure can also be used to assess 7 

equivalence of activity behaviours in the relationship with zBMI; for example, a 8 

horizontal line drawn at a zBMI -0.1 shows that this estimated difference in zBMI is 9 

associated with either 48 min more sleep (relative to the remaining behaviours), 108 10 

min less sedentary time (relative to the remaining behaviours), 21 min less light PA 11 

(relative to the remaining behaviours) or 8 min more MVPA (relative to the remaining 12 

behaviours) than the mean activity behaviour composition. The minute values can be 13 

calculated from the linear models, as detailed in Supplementary file 2. 14 

 15 
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 1 

Figure 1. The Relationship Between Daily Behaviours and zBMI, Estimated by 2 

Compositional Linear Regression Models.  3 

BMI: Body Mass Index; SED: Sedentary Time; LPA: Light-Intensity Physical Activity; 4 

MVPA: Moderate-to-Vigorous-Intensity Physical Activity. 5 

Difference in Minutes Modelled Around the Population Mean Composition of 6 

(min/day): Sleep=539; SED=525; LPA=320; MVPA=57, and Mean zBMI of 0.45. 7 

 8 



 16 

The relationship between zBMI and the activity behaviour composition was further 1 

investigated using an SBP approach, with ilr coordinates constructed according to 2 

procedures outlined in Egozcue & Pawlowsky-Glahn.16 The first partition separated the 3 

behaviour components into two groups; inactivity-related behaviours (sleep and 4 

sedentary time), and activity-related behaviours (light PA and MVPA). The second 5 

partition was between sleep and sedentary time, and the final partition was between 6 

light PA and MVPA. Table 2 presents the results from the ilr log-ratio multiple linear 7 

regression model based on this SBP. 8 

 9 

Table 2. Multiple linear regression analysis of the relationship between the isometric 10 

log-ratio (ilr) coordinates obtained from a sequential binary partition and Body Mass 11 

Index (BMI) z-scores (Compositional model). 12 

  𝛽̂ SE t-value p 

 ilr1  ln(geometric mean of Sleep & 

Sedentary time : geometric mean of 

Light PA & MVPA) 

-0.41 0.08 -5.33 <0.001 

     

 ilr2  ln(Sleep : Sedentary time) -0.72 0.13 -5.29 <0.001 
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 ilr3  ln(Light PA : MVPA) -1.35 0.08 -16.26 <0.001 

ilr: Isometric log ratio, BMI z-score: Body Mass Index transformed to z-score using 1 

age- and sex-specific World Health Organization (WHO) reference data, 𝛽̂: 2 

unstandardized regression coefficient estimate, SE: Standard error, Light PA: Light-3 

intensity physical activity, MVPA: Moderate-to-vigorous intensity physical activity. 4 

Model adjusted for sex, highest parental education level, number of siblings, number of 5 

parents and study site. Adjusted R-squared = 0.11. 6 

 7 

Regression parameters suggest that, with increase in inactivity-related behaviours 8 

relative to decrease in activity-related behaviours, zBMI decreases (Table 2). This 9 

finding is explained by the co-consideration of light PA and MVPA as activity-related 10 

behaviours, i.e., the denominator of the first ilr coordinate is the geometric mean of both 11 

light PA and MVPA. As shown in the previous analysis (Table 1), light PA (relative to 12 

all remaining behaviours) has a strong positive association with zBMI. Predicted 13 

increase in zBMI for increase in light PA (accompanied by corresponding decrease in 14 

all other behaviours) was higher than the respective effect sizes for any other behaviour 15 

(relative to the remaining behaviours) (Figure 1). This is because whatever light PA 16 

replaces (sleep, MVPA, and more surprisingly, sedentary time) is associated with lower 17 

fatness. The regression coefficient for the second ilr coordinate from the SBP (Table 2) 18 

implies that the increase in sleep relative to sedentary time is associated with lower 19 



 18 

expected zBMI. The third ilr regression coefficient indicates that an increase in light PA 1 

at the expense of MVPA is associated with higher expected zBMI. The results obtained 2 

from the regression model from the SBP are consistent and complementary to the 3 

results from the previous ilr models. With the SBP we obtain complementary 4 

information about the substitution of time between selected groups of parts. Of course, 5 

with an SBP as presented here, none of the coordinates extract all the relative 6 

information about any of the behaviours. This might be an advantage because of the 7 

danger that the geometric mean of the other components may itself conceal some 8 

unpredictable patterns and potentially affect the interpretability of the first coordinate. 9 

On the other hand, the concrete choice of SBP necessarily entails a substantial amount 10 

of subjectivity and, additionally, the effects of merging information contained in 11 

compositional parts by taking the geometric mean will also influence the interpretation 12 

of the first coordinate. 13 

 14 

To further illustrate the importance of using a compositional approach, we analyzed the 15 

same dataset using standard (non-compositional) regression (Table 3). The purpose of 16 

ensuing analysis is not to compare the findings of standard regression models to 17 

findings of compositional regression models, but to demonstrate the potential pitfalls 18 

and limitations of standard multiple linear regression when analyzing data of a 19 

compositional nature. Raw values of time spent in each behaviour (min/day) were used, 20 
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with zBMI as the dependent variable. It is not possible to include all daily activity 1 

behaviours (sleep, sedentary time, light PA and MVPA) in the regression model as this 2 

would result in a singular covariance matrix. Therefore four models were used, with 3 

each model iteratively excluding a different behaviour, i.e., (1) excluded sleep; (2) 4 

excluded sedentary time; (3) excluded light PA; (4) excluded MVPA. The four analyzed 5 

models represent the most adjusted traditional regression models. Variance Inflation 6 

Factors (VIF) for Models 1 - 3 ranged between 1.9 and 2.4, indicating multi-collinearity 7 

was likely not a concern.30 However, VIF for model 4 were high (between 7.2 and 8 

11.3), suggesting potential instability of regression estimates. Each model was 9 

additionally adjusted for sex, highest parental education, number of parents, number of 10 

siblings, and study site.  11 

 12 

Table 3. Traditional multiple linear regression analysis of the relationship 13 

between raw daily activity data (min/day) and Body Mass Index (BMI) z-scores 14 

(Non-compositional models). 15 

 𝛽̂ SE t-value p 

Model 1     

(Sleep excluded)     

Sedentary time 0.002 0.000 5.27 <0.001 

Light PA 0.005 0.000 11.48 <0.001 
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MVPA -0.011 0.001 -13.17 <0.001 

     

Model 2     

Sleep -0.002 0.000 -5.27 <0.001 

(Sedentary time 

excluded) 

    

Light PA 0.003 0.000 8.33 <0.001 

MVPA -0.013 0.001 -17.32 <0.001 

     

Model 3     

Sleep -0.005 0.000 -11.48 <0.001 

Sedentary time -0.003 0.000 -8.33 <0.001 

(Light PA 

excluded) 

    

MVPA -0.016 0.001 -17.35 <0.001 

     

Model 4     

Sleep 0.011 0.001 13.17 <0.001 

Sedentary time 0.013 0.001 17.32 <0.001 
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Light PA 0.016 0.001 17.35 <0.001 

(MVPA excluded)     

BMI z-score: Body Mass Index transformed to z-score using age- and sex-specific 1 

World Health Organization (WHO) reference data, 𝛽̂: unstandardized regression 2 

coefficient estimate, SE: Standard error, Light PA: Light-intensity physical activity, 3 

MVPA: Moderate-to-vigorous-intensity physical activity. 4 

All models adjusted for sex, highest parental education level, number of 5 

siblings, number of parents and study site. Adjusted R-squared for all models = 6 

0.11. 7 

 8 

The regression estimates from the traditional regression analysis were inconsistent 9 

across the models. This demonstrates that the choice of omitted behaviour may have 10 

substantial influence on the interpretation of the relationships between the remaining 11 

behaviours and zBMI. Moreover, the regression coefficients for sleep and sedentary 12 

time varied from positive to negative, depending on the model. Figures 2 - 5 depict the 13 

inconsistency of the regression coefficients across traditional regression models and 14 

how they differ from the regression coefficients obtained from compositional models. 15 

The inconsistent findings from traditional regression models demonstrate that results 16 

from traditional analyses are unreliable when raw untransformed minutes are used as 17 

activity behaviour inputs.  18 
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 1 

 2 

Figure 2: The Relationship Between Sleep and zBMI: Comparison between 3 

Compositional and Traditional Regression Models. 4 

SED: Sedentary Time; LPA: Light-Intensity Physical Activity; MVPA: Moderate-to-5 

Vigorous-Intensity Physical Activity. 6 

Difference in Minutes Modelled Around the Population Mean Composition of 7 

(min/day): Sleep=539; SED=525; LPA=320; MVPA=57, and Mean zBMI of 0.45. 8 

 9 



 23 

 1 

 2 

Figure 3. The Relationship Between Sedentary Time and zBMI: Comparison between 3 

Compositional and Traditional Regression Models. SED: Sedentary Time; LPA: LPA: 4 

Light-Intensity Physical Activity; MVPA: Moderate-to-Vigorous-Intensity Physical 5 

Activity. Difference in Minutes Modelled Around the Population Mean Composition of 6 

(min/day): Sleep=539; SED=525; LPA=320; MVPA=57, and Mean zBMI of 0.45 7 
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 1 

Figure 4. The Relationship Between Light Physical Activity and zBMI: Comparison 2 

between Compositional and Traditional Regression Models. SED: Sedentary Time; 3 

LPA: Light-Intensity Physical Activity; MVPA: Moderate-to-Vigorous-Intensity 4 

Physical Activity. Difference in Minutes Modelled Around the Population Mean 5 

Composition of (min/day): Sleep=539; SED=525; LPA=320; MVPA=57, and Mean 6 

zBMI of 0.45. 7 

 8 
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 1 

Figure 5. The Relationship Between MVPA and zBMI: Comparison between 2 

Compositional and Traditional Regression Models. SED: Sedentary Time; LPA: Light-3 

Intensity Physical Activity; MVPA: Moderate-to-Vigorous-Intensity Physical Activity. 4 

Difference in Minutes Modelled Around the Population Mean Composition of 5 

(min/day): Sleep=539; SED=525; LPA=320; MVPA=57, and Mean zBMI of 0.45 6 

 7 

5 Comments 8 
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While the statistical issue presented by the singularity of daily activity data has been 1 

acknowledged in previous literature,31-33 there has been little consensus on how this 2 

might be addressed. In fact, previous research has overwhelmingly overlooked the 3 

compositional nature of time use data, and has considered daily behaviours as 4 

individual, absolute quantities. Traditional regression does not account for the closed 5 

nature of time use and the ensuing co-dependence of daily behaviours, and, 6 

consequently, findings may be spurious.8, 13 The incontestable inability to account for 7 

all activity behaviours due to their perfect multi-collinearity is the main limitation of the 8 

traditional (non-compositional) regression models. Omitting one or more behaviours to 9 

be able to run a traditional regression analysis has been a widely used approach that 10 

ignores the true compositional nature of the data and seems to result in inconsistent 11 

regression estimates. The potential for erroneous results from traditional regression was 12 

demonstrated in this study, with estimates for sleep and sedentary time indicating a 13 

positive relationship with zBMI in some models and an inverse relationship with zBMI 14 

in other models. Such inconsistent results have the potential to undermine the credibility 15 

of academic and public health messages. For example, findings from traditional Models 16 

1 and 4 indicate public policy should focus on the reduction of sedentary time in 17 

children, whilst findings from Model 3 indicate higher sedentary time should be 18 

encouraged to potentially reduce adiposity. Model checks (VIF) detected multi-19 

collinearity issues for Model 4, however, VIF values for the remaining models were 20 
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below acceptable thresholds and were therefore unable to explain the inconsistencies 1 

between Model 1 and 3. This suggests that VIF is not an acceptable diagnostic indicator 2 

for compositional data. Uncertainty regarding the role of sedentary time is commonly 3 

observed in contemporary health research, with some studies finding strong associations 4 

with adiposity,34-37 and other studies finding none.38-41 Contemporary confusion 5 

regarding the relationship between activity behaviours and health may be a consequence 6 

of a flawed approach to statistical analysis. 7 

 8 

Findings from the compositional data analysis (based on ilr coordinates) applied in this 9 

study correspond to results obtained from some traditional regression models used in 10 

this study and also some evidence from previous research.42-45 However, because 11 

traditional models are unable to adjust for all remaining daily behaviours, outcomes 12 

may be unreliable, and are not directly comparable to outcomes from the compositional 13 

models. Furthermore, unlike compositional regression, traditional regression models are 14 

unable to detect asymmetry in associations depending on whether a behaviour is 15 

increased or decreased, or whether associations differ at various daily time-use 16 

compositions. Traditional regression can therefore not discern between the importance 17 

of maintaining or increasing a behaviour, or whether change in behaviour has a stronger 18 

association with adiposity for children with differing time-use compositions (e.g. active 19 
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children compared with sedentary children). Such considerations are important for 1 

informing public health messages and potential intervention strategies. 2 

 3 

This study’s intention was primarily to demonstrate compositional data analysis of daily 4 

activity data and interpret the findings in a meaningful manner. Therefore, analyses 5 

were carried out on the complete international dataset, however, it must be remembered 6 

that the data used were cross-sectional, and therefore causality cannot be inferred. To 7 

further investigate the relationship between activity and health, and to guide the 8 

planning of interventions and public health policy, future compositional data analyses 9 

should be performed on longitudinal data, and may be stratified by sex and be country-10 

specific. In addition, compositional data analysis techniques for other statistical 11 

applications should be explored (e.g., isotemporal substitution, cluster analysis, 12 

principal component analysis), and include non-compositional lifestyle behaviours, such 13 

as diet quality. 14 

 15 

The inadequacy of traditional linear regression models for data of a closed, and 16 

therefore relative nature, is well acknowledged. However, in health research, the closed 17 

nature of daily time use has been largely ignored. This study demonstrates the potential 18 

for incorrect outcomes from models commonly applied in the field. The findings imply 19 

that previous studies, including evidence accepted as being high level such as 20 
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systematic reviews, which agglomerate such studies, may be erroneous and cannot be 1 

trusted.  The implications of the application of compositional data analysis to health 2 

research are quite profound. Since almost all previous analyses of the associations 3 

between time use and health outcomes have used methods incompatible with 4 

compositional data, they are all to some extent vitiated, and should be interpreted with 5 

caution. A shift towards an integrated, compositional data analysis approach, where all 6 

daily activity behaviours are considered, should be a priority. Not until robust research 7 

methodologies are implemented can valid estimates of the health associations of daily 8 

activity behaviours be made, and the mortality and economic impact of sleep, sedentary 9 

time, and physical inactivity be assessed.  10 

 11 
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Supplementary file 1 1 

 2 

The model 3 

 4 

As outlined in the main paper, the ilr model for n compositional observations 5 

(𝒙𝒊, 𝑦𝑖), 𝑖 = 1,2, … , 𝑛, where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷)𝑇with ∑ 𝑥𝑖𝑗 = 1,𝐷
𝑗=1  is 6 

 7 

𝑦𝑖 =  𝛽0 + 𝑧𝑖
𝑇𝛽 + 𝜖𝑖  8 

 9 

= 𝛽0 + ∑ 𝛽𝑗𝑧𝑖𝑗 + 𝐷−1
𝑗=1 𝜖𝑖 ,   (1) 10 

where 11 

 12 

𝑧𝑖𝑗 =  √
𝐷−𝑗

𝐷−𝑗+1
 ln (

𝑥𝑖𝑗

(∏ 𝑥𝑖𝑘
𝐷
𝑘=𝑗+1 )

1/(𝐷−𝑗)) for 𝑗 = 1, 2, … , 𝐷 − 1. 13 

 14 

 15 

Note that covariates can be included without transform (subject to the standard 16 

multiple linear regression assumptions) into the ilr multiple linear regression 17 

model without alterations to the derived formula in Equation (8) of the main 18 

paper. For completeness, should there be E covariates for each observation i 19 
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(𝑤𝑖1, 𝑤𝑖2 , … , 𝑤𝑖𝐸) to be added to the ilr multiple linear regression model, the model 1 

would be similarly specified as follows, 2 

 3 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑧𝑖𝑗 + 

𝐷−1

𝑗=1

∑ 𝛽𝐷−1+𝑗𝑤𝑖𝑗 + 

𝐸

𝑗=1

𝜖𝑖 . 4 

 5 

Relative changes in the components of 𝒙𝒊 6 

Consider a relative increase in 𝑥𝑖1by a factor of 1 + 𝑟 with −1 < 𝑟 <  
1−𝑥1

𝑥𝑖1
. Note 7 

that r cannot take a value of  
1−𝑥1

𝑥𝑖1
 (or greater) as 8 

 9 

(1 + 𝑟)𝑥𝑖1 <  1 10 

 11 

⇒ 𝑟𝑥𝑖1 < 1 − 𝑥𝑖1 12 

 13 

⇒ 𝑟 <  
1−𝑥1

𝑥𝑖1
  14 

 15 

To maintain the compositional components’ sum to unity when a relative increase 16 

in 𝑥𝑖1by a factor of 1 + 𝑟 is applied, the remaining components can be reduced 17 

using a factor of 1 − 𝑠. We derive the value of s below. 18 
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 1 

The individual components are adjusted as per below: 2 

 3 

𝑥𝑖1  → (1 + 𝑟)𝑥𝑖1 =  𝑥𝑖1
∗  4 

 5 

𝑥𝑖2  → (1 + 𝑟)𝑥𝑖2 =  𝑥𝑖2
∗  6 

⋮                 ⋮                   ⋮ 7 

𝑥𝑖𝐷  → (1 + 𝑟)𝑥𝑖𝐷 =  𝑥𝑖𝐷
∗  8 

 9 

Note that ∑ 𝑥𝑖𝑗 = 1𝐷
𝑗=1  and ∑ 𝑥𝑖𝑗

∗ = 1𝐷
𝑗=1 . Also note therefore ∑ 𝑥𝑖𝑗 = 1𝐷

𝑗=2 − 𝑥𝑖1. 10 

Now to find an expression for s, consider the following: 11 

 12 

∑ 𝑥𝑖𝑗
∗ = 1

𝐷

𝑗=1

 13 

 14 

⇒ (1 + 𝑟)𝑥𝑖1 + ∑(1 − 𝑠)𝑥𝑖𝑗 = 1

𝐷

𝑗=2

 15 

 16 

⇒ (1 + 𝑟)𝑥𝑖1 + (1 − 𝑠) ∑ 𝑥𝑖𝑗 = 1

𝐷

𝑗=2

 17 
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 1 

⇒ (1 + 𝑟)𝑥𝑖1 + (1 − 𝑠)(1 − 𝑥𝑖1) = 1 2 

 3 

⇒ 𝑟𝑥𝑖1 = 𝑠(1 − 𝑥𝑖1) 4 

 5 

⇒ 𝑠 = 𝑟
𝑥𝑖1

1 − 𝑥𝑖1
 6 

 7 

 8 

Estimated change in the outcome for an increase in the first compositional 9 

part and equal relative reductions in the remaining components 10 

 11 

Consider a new observation 12 

 13 

𝒙0 = (𝑥01, 𝑥02, … , 𝑥0𝐷)𝑇 14 

 15 

and the corresponding ilr coordinates 16 

 17 

𝒛0 = (𝑧01, 𝑧02, … , 𝑧0(𝐷−1))𝑇 . 18 

 19 
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Now let us consider a new set of predictor variables 1 

 2 

𝒙0
∗ = ((1 + 𝑟)𝑥01, (1 − 𝑠)𝑥02, … , (1 − 𝑠)𝑥0𝐷)𝑇 3 

 4 

and the corresponding ilr coordinates 5 

 6 

𝒛0
∗ = (𝑧01

∗ , 𝑧02
∗ , … , 𝑧0(𝐷−1)

∗ )𝑇 7 

 8 

where 9 

 10 

𝑧01
∗ =  √

𝐷 − 1

𝐷
 ln (

𝑥01
∗

(∏ 𝑥0𝑘
∗𝐷

𝑘=2 )1/(𝐷−1)
) 11 

 12 

=  √
𝐷 − 1

𝐷
 ln (

(1 + 𝑟)𝑥01

(((1 − 𝑠)𝐷−1(∏ 𝑥0𝑘
𝐷
𝑘=2 ))

1/(𝐷−1)
) 13 

 14 

=  √
𝐷 − 1

𝐷
 ln (

(1 + 𝑟)

(1 − 𝑠)

𝑥01

(∏ 𝑥0𝑘
𝐷
𝑘=2 )1/(𝐷−1)

) , 𝑎𝑛𝑑 15 

 16 
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𝑧0𝑗
∗ =  √

𝐷 − 𝑗

𝐷 − 𝑗 + 1
 ln (

𝑥0𝑗
∗

(∏ 𝑥0𝑘
∗𝐷

𝑘=𝑗+1 )
1/(𝐷−1)

)  𝑓𝑜𝑟 𝑗 = 2,3, … , 𝐷 − 1 1 

 2 

=  √
𝐷 − 𝑗

𝐷 − 𝑗 + 1
 ln (

(1 − 𝑠)𝑥0𝑗

(((1 − 𝑠)𝐷−𝑗(∏ 𝑥0𝑘
𝐷
𝑘=𝑗+1 ))

1/(𝐷−𝑗)
) 3 

 4 

=  √
𝐷 − 𝑗

𝐷 − 𝑗 + 1
 ln (

(1 − 𝑠)

(1 − 𝑠)

𝑥0𝑗

(∏ 𝑥0𝑘
𝐷
𝑘=𝑗+1 )

1/(𝐷−𝑗)
) 5 

 6 

= √
𝐷 − 𝑗

𝐷 − 𝑗 + 1
 ln (

𝑥0𝑗

(∏ 𝑥0𝑘
𝐷
𝑘=𝑗+1 )

1/(𝐷−𝑗)
) 7 

= 𝑧01. 8 

 9 

That is, there is no change in the ilr coordinates for 𝑗 = 2,3, … , 𝐷 − 1 and 10 

 11 

𝒛0
∗ = (𝑧01

∗ , 𝑧02
∗ , … , 𝑧0(𝐷−1)

∗ )𝑇 . 12 

 13 

The estimated outcome for predictors 𝒙0 is 14 

 15 
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𝑦̂0 = 𝛽̂0 + 𝑧0
𝑇𝛽̂ 1 

 2 

and the estimated outcome for predictors 𝒙𝟎
 ∗ is 3 

 4 

𝑦̂0
∗ = 𝛽̂0 + 𝑧0

∗𝑇𝛽̂. 5 

 6 

Therefore the estimated change in the predicted outcome going from predictors 𝒙0 7 

to 𝒙𝟎
 ∗ is 8 

 9 

∆𝑦̂ = 𝑦̂0
∗ − 𝑦̂0 10 

 11 

= 𝛽̂0 + 𝑧0
∗𝑇𝛽̂ − 𝛽̂0 + 𝑧0

𝑇𝛽̂    12 

 13 

= (𝛽̂1𝑧01
∗ + ∑ 𝛽̂𝑗𝑧0𝑗

𝐷−1

𝑗=2

) −  (𝛽̂1𝑧01 + ∑ 𝛽̂𝑗𝑧0𝑗

𝐷−1

𝑗=2

) 14 

 15 

= 𝛽̂1(𝑧01
∗ − 𝑧01) 16 

 17 

= 𝛽̂1 (√
𝐷−1

𝐷
 ln (

(1+𝑟)

(1−𝑠)

𝑥01

(∏ 𝑥0𝑘
𝐷
𝑘=2 )

1/(𝐷−1)) −  √
𝐷−1

𝐷
 ln (

𝑥01

(∏ 𝑥0𝑘
𝐷
𝑘=2 )

1/(𝐷−1)))  18 
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 1 

= 𝛽̂1√
𝐷 − 1

𝐷
 ln  (

(1 + 𝑟)

(1 − 𝑠)

𝑥01

(∏ 𝑥0𝑘
𝐷
𝑘=2 )1/(𝐷−1)

𝑥01

(∏ 𝑥0𝑘
𝐷
𝑘=2 )1/(𝐷−1)

⁄  ) 2 

 3 

= 𝛽̂1√
𝐷−1

𝐷
ln (

1+𝑟

1−𝑠
) as shown in equation (8) of the main paper. 4 

 5 

 6 

 7 

 8 

Confidence interval for ∆𝒚̂  9 

 10 

The standard error of ∆𝑦̂ 𝑖𝑠 11 

 12 

SE(𝛥𝑦) = 𝜎√
𝐷 − 1

𝐷
𝑙𝑛 (

1 + 𝑟

1 − 𝑠
) √(𝑍𝑇𝑍)(1)

−1  13 

as 14 

 15 

var(∆𝑦̂) =  var ( 𝛽̂1√
𝐷 − 1

𝐷
ln (

1 + 𝑟

1 − 𝑠
))  16 
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=  (√
𝐷 − 1

𝐷
ln (

1 + 𝑟

1 − 𝑠
))

2

var (𝛽̂1) 1 

 2 

=  𝜎2 (√
𝐷 − 1

𝐷
𝑙𝑛 (

1 + 𝑟

1 − 𝑠
))

2

(𝑍𝑇𝑍)(1)
−1  3 

 4 

where 𝑍 is the design matrix of the model in (1) and A(1) denotes the first diagonal 5 

element of A. 6 

 7 

Therefore the 100(1 − α)% confidence interval for 𝛥𝑦 is 8 

 9 

(𝛥𝑦 − 𝑡𝛼/2,𝑛−𝐷𝜎√
𝐷−1

𝐷
𝑙𝑛 (

1+𝑟

1−𝑠
) √(𝑍𝑇𝑍)(1)

−1 , 𝛥𝑦 + 𝑡𝛼/2,𝑛−𝐷𝜎√
𝐷−1

𝐷
𝑙𝑛 (

1+𝑟

1−𝑠
) √(𝑍𝑇𝑍)(1)

−1 ).  10 

  11 
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Supplementary file 2 1 

Daily activity composition expressed as isometric log-ratio coordinates 2 

A four-part daily activity composition consisting of: sleep (sleep), sedentary time 3 

(SED), light-intensity physical activity (LPA) and moderate-to-vigorous-intensity 4 

physical activity (MVPA), can be expressed by a set of three isometric log-ratio 5 

coordinates [ 𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3 ] as follows: 6 

 7 

𝑧𝑖1 =  √
3

4
 ln (

𝑠𝑙𝑒𝑒𝑝𝑖

√𝑆𝐸𝐷𝑖∙𝐿𝑃𝐴𝑖∙𝑀𝑉𝑃𝐴𝑖
3 ), 8 

𝑧𝑖2 = √
2

3
 ln (

𝑆𝐸𝐷𝑖

√𝐿𝑃𝐴𝑖∙𝑀𝑉𝑃𝐴𝑖
)  and 9 

𝑧𝑖3 = √
1

2
 ln (

𝐿𝑃𝐴𝑖

𝑀𝑉𝑃𝐴𝑖
).     10 

 11 

 12 

To estimate an outcome (e.g., body mass index z-score [zBMI]), a multiple linear 13 

regression model can be constructed with the above log-ratio coordinates as the 14 

explanatory variables: 15 

 16 

𝑧𝐵𝑀𝐼𝑖 = 𝛽0 + 𝛽1𝑧𝑖1 + 𝛽2𝑧𝑖2 + 𝛽3𝑧𝑖3 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑖 + 𝜖𝑖   17 

 18 
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The coefficient 𝛽1 corresponds to 𝑧𝑖1, which is the log-ratio of 𝑠𝑙𝑒𝑒𝑝𝑖, to the geometric 1 

mean of the remaining behaviours (SEDi, LPAi and MVPAi).  2 

 3 

Permutation of the compositional parts iteratively to place each behaviour as the first 4 

part of the composition, and then applying the above isometric log-ratio coordinates 5 

allows four linear models to be created, with each model’s 𝑧𝑖1 representing the first 6 

(permuted) behaviour in relation to the geometric mean of the remaining behaviours. 7 

 8 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1 =  [𝑆𝑙𝑒𝑒𝑝, 𝑆𝐸𝐷, 𝐿𝑃𝐴, 𝑀𝑉𝑃𝐴] 9 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2 =  [𝑆𝐸𝐷, 𝐿𝑃𝐴, 𝑀𝑉𝑃𝐴, 𝑠𝑙𝑒𝑒𝑝] 10 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3 =  [𝐿𝑃𝐴, 𝑀𝑉𝑃𝐴, 𝑠𝑙𝑒𝑒𝑝, 𝑆𝐸𝐷] 11 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4 =  [𝑀𝑉𝑃𝐴, 𝑠𝑙𝑒𝑒𝑝, 𝑆𝐸𝐷, 𝐿𝑃𝐴 ] 12 

 13 

Predicting change in zBMI using the linear model 14 

The predictive model using Composition 1 becomes: 15 

𝑧𝐵𝑀𝐼̂𝑖 = 𝛽̂0 +   𝛽̂1𝑧𝑖1 + 𝛽̂2𝑧𝑖2 + 𝛽̂3 𝑧𝑖3 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠𝑖 .             16 

 17 

We define the ilr coordinates [ 𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3 ] as described above. 18 

 19 
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As compositional data are relative, the predictions from the model must be made 1 

relative to a starting/reference activity behaviour composition. In our example, we select 2 

the population mean activity behaviour composition as the starting point, expressed as 3 

proportions with a closure constant of 1. 4 

 5 

To predict zBMI for a new composition where our first compositional part (sleep) has 6 

changed, we multiply sleepmean by a constant (1 +/- r) (e.g., to increase sleepmean by 5%, 7 

r = 0.05, and we multiply sleepmean by 1+ r = 1.05). However, due to the constant sum 8 

constraint of daily activity data, the remaining behaviours must be changed accordingly. 9 

The remaining compositional parts are therefore all simultaneously multiplied by 10 

another constant (1 -/+ s), specifically derived to maintain the total sum of all parts to 1 11 

(see Supplementary file 1 for details).  By multiplying all the remaining parts by the 12 

same constant (in our example the remaining parts are decreased, therefore each 13 

remaining part is multiplied by 1 - s), the remaining log ratio coordinates (𝑧𝑖2, 𝑧𝑖3 ) are 14 

kept constant (as both numerator and denominator of the log ratio coordinates are 15 

multiplied by the same amount [1 - s]).  16 

 17 

Therefore, we can use the linear model to predict zBMI for a change in the daily activity 18 

composition by the constant k, 19 

where 𝑘 =  
1+𝑟

1−𝑠
 20 
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and r and s are defined as described in Supplementary file 1. 1 

 2 

The predictive model for our example becomes (N.B.: the following is a worked 3 

example of the proofs given in Supplementary file 1): 4 

 5 

𝑧𝐵𝑀𝐼̂(𝑘) =  𝛽̂0 + 𝛽̂1 √
3

4
 ln (

𝑠𝑙𝑒𝑒𝑝

√𝑆𝐸𝐷∙𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴3 ∙ 𝑘) + 𝛽̂2√
2

3
 ln (

𝑆𝐸𝐷

√𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴
) + 𝛽̂3√

1

2
 ln (

𝐿𝑃𝐴

𝑀𝑉𝑃𝐴
)  6 

 7 

=   𝛽̂0 + 𝛽̂1 √
3

4
 ln (

𝑠𝑙𝑒𝑒𝑝

√𝑆𝐸𝐷∙𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴3 ) + 𝛽̂1 √
3

4
 ln 𝑘 + 𝛽̂2√

2

3
 ln (

𝑆𝐸𝐷

√𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴
) +  𝛽̂3√

1

2
 ln (

𝐿𝑃𝐴

𝑀𝑉𝑃𝐴
)  8 

(𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 𝑢𝑠𝑖𝑛𝑔 log 𝑙𝑎𝑤 ∶ ln(𝑎𝑏) = ln(𝑎) + ln(𝑏)) 9 

 10 

=   𝛽̂0 + 𝛽̂1 √
3

4
 ln (

𝑠𝑙𝑒𝑒𝑝

√𝑆𝐸𝐷∙𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴3 ) + 𝛽̂2√
2

3
 ln (

𝑆𝐸𝐷

√𝐿𝑃𝐴∙𝑀𝑉𝑃𝐴
) +  𝛽̂3√

1

2
 ln (

𝐿𝑃𝐴

𝑀𝑉𝑃𝐴
) + 𝛽̂1 √

3

4
 ln 𝑘  11 

 (𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑖𝑡′𝑠 𝑒𝑎𝑠𝑦 𝑡𝑜 𝑠𝑒𝑒 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑏𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 ′𝑧𝐵𝑀𝐼(𝑘)′) 12 

= 𝑧𝐵𝑀𝐼̂ + 𝛽̂1 √
3

4
 ln 𝑘 13 

Therefore, the predicted change in zBMI is 𝛽̂1 √
3

4
 ln 𝑘. 14 

 15 
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Here 𝑘 =
1+𝑟

1−𝑠
, i.e., with an increase in the first behaviour (sleep), sleep is multiplied by 1 

1 + r, and the remaining behaviours (SED, LPA, MVPA), represented by their geometric 2 

mean, are each multiplied by 1 - s. 3 

 4 

As stated earlier, by multiplying each of the remaining behaviours simultaneously by 1 - 5 

s, it is assumed that the log-ratio coefficients 𝑧𝑖2 and 𝑧𝑖3 are held constant. 6 

 7 

The value of 1 - s can be derived from 1 + r, when we consider daily activity data to be 8 

constrained to 𝐶 = 1, i.e., the daily activity components are expressed as proportions. 9 

 10 

The reference/starting daily composition can be expressed as: 11 

 12 

𝑠𝑙𝑒𝑒𝑝 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =  1. 13 

 14 

However, we would like to predict an outcome (zBMI) for a new composition, where 15 

sleep is increased by a factor of 1+r, and remaining behaviours are decreased by a factor 16 

of 1-s. The new composition can be expressed as:  17 

 18 

𝑠𝑙𝑒𝑒𝑝 (1 + 𝑟) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (1 − 𝑠) =  1; 19 

∴ 𝑠𝑙𝑒𝑒𝑝 + 𝑟 ∙ 𝑠𝑙𝑒𝑒𝑝 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∙ 𝑠 = 1 20 
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∴ 𝑠𝑙𝑒𝑒𝑝 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 +  𝑟 ∙ 𝑠𝑙𝑒𝑒𝑝 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∙ 𝑠 = 1. 1 

 2 

As sleep + remaining = 1, therefore: 3 

 4 

(1 + 𝑟)  ∙ 𝑠𝑙𝑒𝑒𝑝 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∙ 𝑠 = 1; 5 

∴ 𝑟 ∙ 𝑠𝑙𝑒𝑒𝑝 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∙ 𝑠 = 0 6 

∴ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ∙ 𝑠 =  𝑟 ∙ 𝑠𝑙𝑒𝑒𝑝; 7 

∴ 𝑠 = 𝑟 ∙
𝑠𝑙𝑒𝑒𝑝

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔
. 8 

 9 

Application to the data presented in the manuscript: 10 

The mean daily activity composition (described by geometric means, closed to 1440 11 

minutes) was:  12 

sleep = 539; SED = 525; LPA = 320; MVPA = 57. 13 

 14 

This can be expressed as a set of proportions [0.374, 0.364, 0.222, 0.040], which are 15 

closed to 1. 16 

 17 

Expressed as a proportion, sleepmean = 0.374, therefore the remaining components 18 

(expressed as proportions) must together equal: 1 (the total day) - 0.374 (sleepmean). 19 

 20 
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If we are interested in change in zBMI when sleep is increased (relatively) by 5% (r = 1 

0.05), we can calculate s, using the formula above. Specifically,𝑠 = 0.05 ∙  
0.374

1−0.374
=2 

0.03. 3 

 4 

We now have our constant r (=0.05) which is the relative increase in sleepmean, and our 5 

constant s (=0.03), which is the relative decrease in each of the remaining behaviours. 6 

Using r and s, we can create k, the constant which is applied to the first log ratio 7 

coordinate (𝑧𝑖1). In our example, 𝑘 =  
1+𝑟

1−𝑠
=  

1.05

0.97
. 8 

 9 

Earlier we showed that predicted change in zBMI was equal to: 10 

𝑧𝐵𝑀𝐼̂ = 𝛽̂1  ∙  √
3

4
∙ ln 𝑘, where 𝑘 =  

1+𝑟

1−𝑠
. 11 

Now, we substitute 𝑘 =  
1.05

0.97
 into our “change” equation, and use the value for 𝛽̂1 =12 

−0.82 from the ilrsleep linear regression model fit (see Table 1 in main paper). 13 

 14 

The change in 𝑧𝐵𝑀𝐼̂ is 15 

𝛽̂1 √
3

4
 ln

1.05

0.97
= −0.82 ∙ √

3

4
∙ ln

1.05

0.97
= −0.056. 16 

 17 

 18 
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Therefore, predicted zBMI has decreased by 0.056 units when sleep is increased from 1 

the reference/starting composition (in this case, the population-mean composition) by 2 

1.05 or 5%, relative to remaining behaviours. 3 

 4 

The change in daily activity composition can be interpreted in minutes. Mean sleep = 5 

539 minutes, therefore a 5% relative decrease in sleep is a decrease of 27 minutes.  6 

 7 

Conversely, if sleep is decreased in relative terms by 5% (r = - 0.05), then 8 

 9 

𝑘 =   
1−0.05

1+0.03
. 10 

 11 

Therefore,  12 

change in 𝑧𝐵𝑀𝐼̂ = −0.82 ∙ √
3

4
∙ ln

1−0.05

1+0.03
= 0.057.  13 

 14 

 zBMI is predicted to increase by 0.057 when sleep is decreased by 5% from the 15 

reference/starting composition, relative to remaining behaviours.  16 

 17 

 18 

 19 
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We can use the linear model to predict how much the first compositional part must 1 

change for a specific change in a continuous outcome (e.g., using the composition 2 

above, we can predict the change in sleepmean associated with a decrease in zBMI of 0.1 3 

units).  To use the model for this prediction, we must first isolate r. 4 

 5 

We have established that: 6 

Δ 𝑦̂ (𝑒. 𝑔. 𝑧𝐵𝑀𝐼) =  𝛽̂1√
3

4
ln 𝑘, 7 

where (for a 4-part composition), y = the predicted variable (e.g., zBMI), 𝛽̂1= the 8 

coefficient of the first log-ratio regression coefficient (one behaviour: remaining day, 9 

therefore contains all relative information regarding 𝑥̅1, the first compositional part of 10 

the mean composition), and k = (1+r)/(1-s), where s = r(𝑥̅1x/1-𝑥̅1x). 11 

 12 

Therefore, rearranging this formula, we can isolate k 13 

 14 

ln 𝑘 =  
∆𝑦̂

𝛽̂1 ∙ √3
4

 15 

 16 

∴ 𝑘 =  𝑒

∆𝑦̂

𝛽̂1∙√
3
4. 17 

 18 
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To calculate r, we can use that k = (1+r)/(1-s), where 𝑠 =  𝑟𝑥̅1/(1 − 𝑥̅1). 1 

 2 

Therefore, 3 

𝑘 =
1 + 𝑟

1 − 𝑟 (
𝑥̅1

1 − 𝑥̅1
)
 4 

 5 

where we can isolate r: 6 

𝑟 =
−1 + 𝑘

𝑘 (
𝑥̅1

1 − 𝑥̅1
) + 1.

 7 

 8 

Now we can calculate r by substituting in k from above, using the 𝛽̂1 from the 9 

regression model, and the ∆𝑦̂ of interest to calculate k. 10 

 11 

To express r as change in minutes from a reference 𝑥1, e.g., 𝑥̅1,  𝑟(𝑚𝑖𝑛𝑢𝑡𝑒𝑠) = 𝑟 ∙ 𝑥̅1 ∙12 

1440.  13 

 14 




