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Abstract: This work is devoted to providing patients and physicians with a novel tool to
analyse and extract information for better management of type I diabetes. We use a clustering
methodology based on the normalised compression distance to identify different profiles of days.
The methodology has been validated using data generated by a simulator of virtual patients,
which include an exercise model. Profiling daily data can help physicians and patients cope with
information overload and assist in future planning for improved treatments and self-management

of diabetes type 1.
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1. INTRODUCTION

Type 1 diabetes mellitus (T1D) is a disease resulting from
an autoimmune attack on insulin-producing cells in the
pancreas ([-cells). The nature of this disease influences
every aspect of life. On one hand, patients receive daily
doses of insulin, either by multiple daily injections (MDI)
or by a continuous subcutaneous insulin infusion (CSII).
On the other hand, the management of T1D involves more
than just the ingestion of medication: scheduling meals
carefully, counting carbohydrates, exercising, monitoring
blood sugar levels, and adjusting their day-to-day activity
accordingly. Furthermore, even when patients follow all or-
ders of physicians, the unpredictable nature of the disease
can undermine medication adherence leading to upward
crests in blood glucose (BG) due to stress, or leading
to a higher glycemic variability because of a patient’s
menstrual period.

Over the last decades the emergence of intensive insulin
therapies (MDI and CSII) have improved the quality of
life of diabetic patients by reducing microvascular com-
plications associated with T1D [DCCT Research Group
(1996)], however these therapies have been associated with
an increased risk in hypoglycemia episodes [DCCT Re-
search Group (1997)]. Insulin pumps have proven effective
in glycemic control [Pickup and Keen (2002),Fatourechi
et al. (2009)] and today pumps are globally regarded as
a therapy to reduce the rate of hypoglycemia episodes
[Russell et al. (2014)], especially in those with higher
risk of severe hypoglycemia [Pickup and Sutton (2008)].
Hypoglycemia is the main fear of patients, as it is related to
severe consequences, such as diabetic coma [Cryer (2002)].
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The development and commercialization of continuous
glucose monitoring devices (CGM) supposed a great ad-
vance for the treatment of diabetes. Using these contin-
uous sensors in combination with insulin pumps (CGM-
CSII) demonstrated a concurrent reduction in time spent
in hypoglycemia [Battelino et al. (2012)]. Thereafter, au-
tomation features in CGM-CSII were introduced. The use
of an automatic suspension of insulin delivery significantly
reduced the rate [Ly et al. (2013)] and severity of hypogly-
caemia, thereby avoiding rebound hyperglycemia [Brazg
et al. (2011)]. Later, in Danne et al. (2014) the use of
a predictive low glucose management system reduced the
severity of hypoglycemia beyond that already achieved
by threshold-based suspension algorithms. The recent ad-
vances in CGM have led to more robust and portable
devices which have demonstrated their value in improving
the glycemic control working with closed-loop algorithms
[Doyle et al. (2014), Phillip et al. (2013)]. However, the
limited capacity to process the data extracted from glucose
monitors restricts the ultimate goal in the development

of diabetes management, a true closed-loop artificial pan-
creas (AP).

As we noted above, T1D can become dependent on a
wide range of factors with high variability. Seasons, diet
disturbances, exercise, age, moods, habits, climate changes
or menstrual period and pregnancy in women are some
of these factors. For example, in Ovalle et al. (2008) or
Cramer (1942) the authors show that menstrual period
could affect carbohydrate metabolism (it can even precip-
itate diabetic acidosis and coma), however the disturbance
does not occur in all diabetic women, or even in the
same patient; also, this problem may take place at differ-
ent menstrual periods. Thus, the complexity of modelling
overall algorithms for automated (or semi-automated) hy-
brid systems is accentuated when we have to deal with
disturbances which can arise in the same patient. These
intra-patient variables cause different effects on BG level,
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transforming the usual patterns commonly generated by
patients with T1D. The ability to identify such patterns
allow us to generate different daily profiles of T1D. Profil-
ing intra-patient behaviours provides essential data which
can assist in identifying causes of poor glycemic control
and help in the diagnosis of treatment. Furthermore, the
same methodology could be applied to an AP, resulting
in control algorithms that are able to identify behavioural
changes in patterns generated by BG.

A new tool oriented to information analysis and vi-
sualization of daily diabetes profiles can be useful to
physicians and patients, helping physicians to cope with
the information overload, assisting in future planning
for improved treatments, and assisting patients with the
self-management of the disease. Furthermore, the same
methodology could lead to a real-time classifier providing
tools that are able to identify behavioural changes in
patterns generated by BG. The remainder of the article is
organized as follows. Section 2 describes the methodologies
used. In Section 3, we perform a series of In Silico ex-
periments with virtual patients. Finally, we conclude and
discuss future directions in Section 4.

2. MATERIALS AND METHODS

Previous works have attempted to identify modal days
[Bellazzi et al. (2000, 1998)], i.e., the abstraction of the
time series behaviours in the GCM with the aim to identify
the characteristic daily BG patterns of a patient. Instead of
looking for the characteristic day of a patient, we are look-
ing for characteristic profiles of days belonging to the same
patient. With the aim to identify a series following different
patterns despite the seemingly uncorrelated behaviour of
the BG series, we use a data mining procedure, which is
capable of building hierarchical distance trees in a blind
manner for sets of daily time series of BG values collected
by a CSII. We perform this task by an approximation to
the not computable Kolmogorov complexity.

2.1 Clustering and Normalised Compression Distance

To analyse and extract information from time series data
belonging to CGM is a complex task. Data extracted from
CSII not only comprise BG values from the sensor, they
also involve carbohydrates, insulin dosages, BG readings,
events, etc. In this work, we analyse only BG values be-
cause they consist of a larger number of occurrences of
constant periodicity. We use a cluster analysis methodol-
ogy with the aim to understand the macroscopic struc-
ture and relations between the analysed BG time series.
Clustering could be considered the most important unsu-
pervised learning problem; it focuses on segmenting the
complete set of information in homogeneous subgroups.
Specifically, in this work we deal with time series clustering
which requires a clustering algorithm or procedure to form
clusters given a set of unlabelled data objects. Unlike
static data, the time series of a feature is comprised of
values that are changed with time. Clustering time series
is concerned with determined groups of similar unlabelled
time series which are monitoring data collected during
different periods from one or more processes. There are
other techniques applied to time series, however clustering

methodology is one of the most frequently used and a trend
of increasing activity exists.

Time series data are a topic of interest because of its
presence in a large variety of areas, such as medicine,
engineering, business, finance and biology. In the medical
field, clustering methodologies were popularized by iden-
tifying effective treatments, detection of diseases or best
practices. For example, in the field of medicine, time series
clustering methodologies have been used for detection of
the independent components of neuroimaging [Himberg

et al. (2004)].
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Fig. 1. Blood Glucose Ranges: Ranges of blood glucose ap-
plied in this work to discretise the time series of blood
glucose extracted with continuous glucose monitoring.
The recommendation ranges for the standardization
of blood glucose were proposed in Bergenstal et al.
(2013). The lower and upper thresholds are fixed by
the limits of current commercialized systems in 40 and
400 mg/dl.

The relationship between computation, information, and
randomness is studied in the field of algorithmic infor-
mation theory. An important topic in this field is the
Kolmogorov complexity Kolmogorov (1965) of an object,
that is, broadly speaking, the measure of computational
resources needed to describe an object. The idea is that
the complexity of an object can be seen as an absolute and
objective quantification of the amount of information in it.
Since the Kolmogorov complexity is not computable, there
have been raised several approximation measures which
are based on the comparison of lengths of compressions
between the objects and one of the most well-known is the
normalised compression distance (NCD).

The NCD is a compression-based similarity distance that
determines the similarity in terms of information distance
between pairs of objects according to the most dominant
common features. Previous works [see Contreras et al.
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(2014)] have demonstrated that the NCD is a reliable tool
for classification on a large number of domains. Further-
more, NCD has been applied successfully in many areas;
NCD concerns the classification of genomes, pieces of mu-
sic, plagiarism of computer programs, image registration,
letters phylogeny, protein structure comparison, genotyp-

ing, tumour subclassifications, virus detection, etc.[Chen
et al. (2004), Cilibrasi et al. (2004), Bailey et al. (2007)].

In this paper we use a novel version of the NCD to measure
the differences among the time series of BG. The measure
that we use was proposed in Contreras et al. (2014) as
an innovative approach to the Kolmogorov complexity
that exploits the management of the dictionaries used
by a software compressor to reduce the redundancy. The
proposed distance, called mNCD (modified normalised
compression distance), is the following:

mNCD(Y) = N CalDa). Oy Dy Y

where C represents a measurable way to approximate
the Kolmogorov complexity using a compressor program,
C(i) is the compressed size of i and C(i|D;) means the
compression size of ¢ using the compression dictionary of

VE

In the same way that songs of the same music style share
patterns, or malicious software and viruses share common
features, we expect multiple time series of BG could share
patterns that are invisible at usual analysis. In fact, our
approach is based on the assumption that the patterns
formed in scenarios with perturbations, as exercise, are
more similar to each other than patterns formed in other
scenarios. Thus, we expect that patterns shared by two
time series of BG will be translated into a high degree of
similarity.

In order to discretize the values representing the daily
time series of BG, and be able to calculate the NCD,
we transformed the information by a symbolic represen-
tation of time series. Therefore, values of glucose will be
transformed into strings of characters by the application
of threshold levels representing the related glucose profiles.
We follow the recommended standardization of glucose
ranges in Bergenstal et al. (2013) analysing the values of
time series by the six intervals showed in the Figure 1.

We perform hierarchical clustering with the intention of
showing the degree of similarity of the time series. Thus,
time series of BG are regrouped in a tree structure in an
automatic and blind manner. The so-called hierarchical
methods produce nested partitions and are represented by
dendrograms. Thus, we consider a set of N time series
to be clustered and a distance matrix (also called dis-
similarity matrix) with N*N measurements. The employed
hierarchical clustering process can be summarized as a
method which builds a binary tree from individual ele-
ments by progressively merging the clusters containing the
two closest elements (according to the distance matrix).
The specific type of hierarchical algorithm chosen in this
work to perform the clustering is the complete linkage
method [Dawyndt et al. (2005)] due to compromise be-
tween simplicity, ease of analysis and its ability to obtain
quality solutions. Although other non-hierarchical meth-
ods are also possible, they will not be discussed.

2.2 In Silico Materials: Virtual Patients

Just as for the design of any complex system of engineer-
ing, computer simulations are a prerequisite for leading
real data tests. Although in silico validation does not guar-
antee in vivo performance, it provides valuable information
about efficiency, limitations and expected behaviour of the
classification algorithm. In order to create scenarios simu-
lating the variability and the possibilities of the daily life of
individuals we used the implementation of different models
extracted from Girona APSim and LabVIEW software
[Leén-Vargas et al. (2013)] where challenging simulated
scenarios are created. A cohort of ten virtual patients from
Dalla Man et al. (2007) were subjected to individualized
circadian variations in insulin sensitivity and sinusoidal
day-to-day variations of 20% amplitude with 19 and 29
h periods in insulin sensitivity and insulin absorption,
respectively. Rate of BG appearance profiles corresponding
to different mixed meals from Herrero et al. (2012) are also
implemented. The exercise model described in Dalla Man
et al. (2009) was included to complete the simulator. The
three scenarios implemented are:

e Basic Scenario: Composed of a set of ten simulation
days with values each minute. Table 1 summarizes the
main variables measured in these simulations.

e Exercise Scenario: The same parameters as the Basic
Scenario with exercise every 2 days, following the
guidelines in Iscoe and Riddell (2011). We use a 45
min exercise at 17:00 with the heart rate progression
present in Figure 2. No corrective actions were per-
formed, resulting in a number of hypoglycemic events.
Table 2 presents a summary of the simulation results.

e Exercise Scenario with corrective measures: The same
features as the Exercise Scenario but adding correc-
tive actions, snacks before and after exercise and a

reduction of basal insulin. The results are summarized
in Table 3.

Tables 1, 2 and 3 summarize the results of the series of
simulations presenting the next variables: minutes with
BG values above 180 and 140, respectively, minutes with
BG values bellow 70 and 50, respectively, total number
of hypoglycemic episodes, average time per hypoglycemic
episode (min) and average blood glucose.

£>180  t>140 t<70 t<50 N hipo min "

glucose
Pl 1957 20,32 0 0 0 0 148
P2 1943 20,18 16 0 2 150 151
P3 373 448 0,11 0 1 20 126
P4 94 10,15 0 0 0 0 136
P5 401 476 0 0 0 0 128
P6 9,62 10,37 0556 0 1 104 128
P7 2331 24,05 248 0 p 232 145
P8 16,14 16,89 1,1 0 2 102 143
P9 10,2 10,95 0,89 0 1 166 143
P10 3583 36,59 0,97 0 3 60 166

Table 1. Results of the ten virtual patient
simulations in the Exercise Basic Scenario.

3. IN SILICO EXPERIMENTS: A PROOF OF
CONCEPT

In the in silico experiments we build a series of hierarchi-
cal trees using the methodology and modelled data-sets



386 Ivan Contreras, et al. / [FAC-PapersOnLine 48-20 (2015) 383-388

£>180 t>140 t<70 <50 N hipo min "
glucose
Pl 11,67 1242 7.65 252 8 179 127
P2 12 12,75 1575 594 9 327 125
P3 1,3 2,05 1599 575 8 374 107
P4 535 6,1 15,77 545 13 227 113
P5 1,47 222 2415 1358 14 322 98
P6 6,66 7,41 13,56 3,82 13 195 112
P7 602 6,76 2875 17,82 13 414 102
P8 606 6,81 2859 1896 12 446 100
P9 688  7.63 639 238 6 199 124
P10 30,2 30,95 917 282 10 171 148

Table 2. Results of the ten virtual patient
simulations in the Exercise Scenario.

£>180 t>140 t<70 t<50 Nhipo (min) "
glucose
Pl 18,36 19,11 0,52 0 1 97 150
P2 24,42 25,16 1,63 0 3 102 150
P3 5,55 6,3 0,15 0 1 28 127
P4 17,53 1827 1,1 0 4 51 51
P5 11,24 11,99 554 0,29 12 86 123
P6 12,63 13,38 1,78 0 3 111 134
P 16,97 17,71 9,26 1,05 15 115 133
PS 17,02 17,77 13,52 1,98 17 148 134
P9 21,76 2251 0,37 0 1 70 150
P10 45,28 46,03 1,16 0,59 3 72 176
Table 3. Results of the ten virtual patient simu-
lations in the Exercise Scenario with corrective
measures.
120 120 1200 J20 120 120 120 120
60 60
TIME{min) =
0 5 10 15 20 25 30 35 40 45

- HP(RPM)

Fig. 2. Heart Rate: Revolutions per minute of heart
patients through the exercise interval (45 min). The
intensity of the exercise is gradually increasing during
the first 5 min and gradually decreasing during the
last 5 min.

explained in the last section. We analyse and visualize the
clustering by undirected graphs using a spring model based
on the force-directed approach (Fruchterman and Reingold
(1991)). The graphs show the results of binary hierarchical
tree building by the mNCD. Each node showed in the
graphs is linked with a specific BG time series. The smaller
the distance between nodes, the greater the similarity be-
tween them. Figure 3 presents the results of clustering tests
in the ten virtual patients in the three modelled scenarios.
Red nodes represent the Basic scenario time series, light
grey nodes the Ezercise scenario and dark grey nodes the
Ezercise with corrective measures scenario.

The results of our clustering experiment in silico scenarios
display significant clusters of two types of series: well-
controlled BG levels and poorly controlled BG levels. For
instance, the graphs of Patients 8, 7 and 5 show clusters
related with the Basic Scenario (red nodes) which in
turn are the most the most poorly controlled with 17,
15 and 12 episodes of hypoglycaemia, respectively (Table

3). We can find misclassified time series of BG in both
types, probably due to the similarity of the curves in some
days; that is because the phase values of the simulator
were fixed for all the used scenarios. Thus, this fact adds
some misclassification errors, while simultaneously shows
us that the methodology is able to extract the information
we seek beyond the apparent similarity of values.

4. DISCUSSION AND FUTURE DIRECTIONS

The hybrid systems CSII-CGM with automation features
are currently considered one of the best ways to achieve
substantial short-term improvements in the quality of life
of patients with T1D. Not only the promise of reducing
the rate of hypoglycaemia, but also the time spent on
hypoglycaemia is a reality being gradually adopted in the
daily lives of T1D patients. The approach towards fully
automatic hybrid AP systems capable of accurately mod-
elling the behaviour of BG is hindered by the high glycemic
variability of T1D. In this work we have analysed the
glycemic variability through the application of clustering
methodologies to time series of BG. The experiments have
shown that it is possible to cluster different behaviour
profiles identifying patterns on different days for the same
patient.

The results of this work encourage us in two ways. On
the one hand, we want to analyse the feasibility of tools
based on this methodology and ability to cope automati-
cally with real data. The automated interpretation of the
knowledge extracted by clustering techniques is essential
to move from the field of data analysis research towards a
user-oriented environment. On the other hand, we want
to validate the extraction of behavioural profiles in a
larger scope. Therefore, our current and future work is
based on the application of clustering methodologies on
easily-labelled data and data extracted from patients with
differentiated BG behaviours, for instance, time series of
BG during menstrual periods or pregnancy.

Finally, as we mentioned in the introduction, closed-loop
algorithms have proven their utility assisting T1D patients
and they are established as one of the most important
strands to reach a true AP. Therefore, the hybrid use of
this methodology with closed-loop algorithms could offer
better control models for T1D patients. The identification
of personalized TD1 profiles would allow the selection
of more suitable controllers for the management of the
disease which in turn may bring us towards a better semi-
automated AP.
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