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ABSTRACT 

The dynamics of gas fluidization is investigated by means of multiresolution analysis. 

Empirical mode decomposition (EMD) and the Hilbert-Huang transform approach 

applied to the signals of pressure fluctuation of the bed have been used for this 

purpose, operating in bubbling and slugging regimes. To elucidate the different 

components of the different scales, recurrence plots (RP) and recurrence quantification 

analysis (RQA) have been used. These techniques can distinguish the three different 

scales of gas fluidization: micro-scale, meso-scale and macro-scale, and classify every 

mode on its scale. Three modes from the EMD have been related to each dynamic 

component: particle interaction, local bubble dynamics and bed oscillation, showing 

evidence of this relationship. To show that the complexity of the modes matches with 

their characteristics, two measures have been computed: the apparent entropy and 

Lemped-Ziv complexity. 
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1. Introduction 

Although gas fluidization has been industrially used for over a century, it remains a 

complex technique that still attracts researchers aiming to improve control and 

performance operation. It is recommended when good gas-solid contact is needed, 

improving mass and heat transfer. Also, its peculiar “fluid-like” dynamics greatly 

facilitates the handling and processing of solids in industrial processes. It is well known 

that particulate fluidization is desired for an optimal contact between the phases, but 

aggregative fluidization is quite common in industrial applications. Furthermore, for 

deep beds the bubbling fluidization can evolve to slugging fluidization, which is not 

convenient because then part of the gas bypasses the solid contact. 

Gas fluidization is a complex dynamic system characterized by non-linearity and non-

equilibrium. The complexity of its dynamics is due to the interaction of the phases 

involved at different scales in the heterogeneous flow structure. Complex systems are 

characterized by a multi-scale structure nature with respect to space and time, showing 

dissipative structures by non-linear and non-equilibrium interactions and exchanging 

energy, matter and information with their surroundings (Li, 2000; Li and Kwauk, 2003; 

Li et al., 2004). 

Also, gas fluidization is a typical dissipative structure consisting of a non-equilibrium 

system with particle and fluid self-organization. A considerable amount of the total input 

energy is dissipated to maintain the two phase heterogeneous structure. Nevertheless, 

all the phenomena that take place in gas fluidization are the result of the nonlinear 

interaction between the particles and the fluid with their own individual movement 

tendencies. The dissipative structure in fluidized systems has been found to show 

multi-scale characteristics and the sum of individual processes does not properly reflect 

the dynamics of the system. Therefore, different scales must be considered for a 
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detailed analysis. The system can be structured into three basic scales: micro-scale 

(individual particle and fluid scale), meso-scale (cluster and dilute phase scale, or 

“bubble and emulsion”) and macro-scale (effect of the equipment) (Li, 2000). This 

approach through different structures involving the fluidized bed is crucial to better 

understand the behavior of the bed dynamics and the influence of the different 

structures in the bed. 

Among the techniques used to characterize the fluidization, the pressure fluctuations 

analysis is perhaps the most popular one because it is easy to implement and 

inexpensive, especially in industrial installations. Other techniques allow for more and 

better information, but their implementation is much more complex. In spite of the 

limited information provided by the pressure fluctuations of the fluidized bed, when 

properly threated, it may be a consistent and valuable source of information. It has 

even been considered to be the fingerprint of the system. The pressure fluctuations 

have been analyzed by means of time and frequency domain techniques (Fan et al., 

1991; Johnsson et al., 2000; Llop and Jand, 2003; Sasic et al., 2007). However, given 

the complexity of multiphase flow and its nonlinear behavior, the analysis by nonlinear 

techniques has been introduced (van den Bleek and Schouten, 1993; Zijervelt et al., 

1998, Johnsson et al., 2000, Llauró and Llop, 2006, Llop et al., 2012). 

Several researchers have applied wavelet analysis to the experimental time series of 

pressure fluctuations for multiscale resolution (Lu and Li, 1999; Zhao and Yang, 2003, 

Shou and Leu, 2005; Wu et al., 2007, Tahmasebpour, 2015). To a lesser extent, 

Empirical Mode Decomposition (EMD) of the signal has been used to extract intrinsic 

mode functions (IMF) with different frequencies, which can be related to the different 

scales. The signal analysis approach has attracted the attention in several research 

fields. Briongos et al. (2006) used the multiresolution analysis EMD to study the 

hydrodynamics of a gas-solid fluidized bed. 
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Wavelets can handle non-stationary signals due to the nature of wavelet functions and, 

although they are basically suited for linear signals, they have been used successfully 

in non-linear systems. EMD is suitable for nonlinear and non-stationary systems and 

makes it possible to simultaneously obtain the real time and the instantaneous 

frequency and can classify time or frequency dependent information with more 

accuracy. 

In this work the multiscale resolution of bubbling and slugging regimes has been 

studied, decomposing the pressure fluctuations in the bed by EMD while, using the 

Hilbert-Huang transform method, the intrinsic frequency has been extracted. With the 

aim to analyze the different modes obtained with EMD, Recurrence Plots (RP) and 

Recurrence Quantification Analysis (RQA) have been used. The modes extracted have 

been related with the particle, bubbles and bulk structures in the fluidized bed. To 

analyze the structure and to be able to discuss the behavior of the modes generated 

with the EMD two measures of the complexity have been used: approximate entropy 

(ApEn) and Lempel-Ziv (L-Z) complexity, which are very useful parameters to 

characterize spatiotemporal patterns. 

 

2. Theoretical Background 

2.1. Empirical Mode Decomposition (EMD) 

Wavelet analysis has been used for the decomposition of the pressure fluctuation 

signal in different levels of resolution, and related to the three scales associated to the 

fluidization dynamics: micro-scale, meso-scale and macro-scale. Zhao and Yang 

(2003) studied the fractal behavior of resulting levels from Daubechies wavelets with 

the Hurst exponent. Lu and Li (1999) used the discrete wavelet transform to analyze 
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the pressure signal in a bubbling fluidized bed and related the bubble size with the 

average peak value of level 4 and the bubble frequency with the peak frequency of this 

level. Tahmasebpour et al. (2015) decomposed the pressure signals by means of 

Daubechies wavelets in three sub-signals representing the three scales of fluidized bed 

dynamics and analyzed them by means of Recurrence Plots and Recurrence 

Quantification Analysis. 

Both the Fast Fourier Transform (FFT) and the Wavelet Transform (WT) can analyze 

nonstationary signals but have limited accuracy when used to classify time or 

frequency dependent information. The Hilbert-Huang Transform (HHT) is a time-

frequency analysis method developed for the analysis of non-stationary and non-linear 

time series introduced by Huang et al. (1998), particularly suited for nonlinear 

processes. The result is a combination of an empirical approach with a theoretical tool, 

which has been successfully used in several fields of research like meteorology, 

seismology, multiphase flow, etc. The HHT is based on the Empirical Mode 

Decomposition (EMD), which decomposes the signal in several oscillatory modes, 

named Intrinsic Mode Functions (IMF). The EMD is based on the sequential extraction 

of energy associated with the intrinsic mode functions of the signal, from finer temporal 

scales (high frequency modes) to coarser ones (low frequency modes). 

The algorithm of extraction proposed by Huang (Huang et al. 1998) generates upper 

and lower smooth envelopes enclosing the signal. These envelopes are generated by 

the identification of all local extrema, which are connected by cubic spline lines. A new 

function is obtained by subtracting the running mean of the envelope from the original 

data signal. If this function has the same number of zero-crossing points and extrema, 

the first IMF is obtained, which contains the highest frequency oscillations in the signal. 

Otherwise, the process must continue until an acceptable tolerance is reached. To 

extract the following IMF, the previous IMF is subtracted from the original signal. The 
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difference will be treated like the original data and the process is applied again until the 

above mentioned condition is fulfilled. The process of finding the several modes is 

carried out until the last mode (the residue) is found. The original signal is the sum of 

the different modes generated, 
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Where Ci is every mode extracted and rn is the residual part of the signal. 

Once the modes have been extracted, a second process must be done. The 

instantaneous frequency is computed by applying the Hilbert transform to every mode 

so that the time-frequency distribution of the signal energy is obtained. Each mode 

function Ci(t) is associated with its Hilbert Spectral Analysis Hi(t):  
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and the combination of Ci(t) and Hi(t) gives the analytical signal )(tZi  with complex 

component: 
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Where )(tAi  is the amplitude of the signal and i(t) is the phase of the oscillation mode 

“i”. Hence, the original time series, neglecting the residual part, can be expressed as: 
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Re meaning the real part. The amplitude  tAi
 and the phase i(t) times series can be 

computed by:
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The instantaneous frequency (fi) can be obtained by differentiating the phase angle: 

dt
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For each mode, the Hilbert spectrum can be defined as the square amplitude  

),(),( 2 tfAtfH        (9) 

The spectrum provides an intuitive visualization of the instantaneous frequencies of the 

signal in the time scale, showing where the energy is concentrated in time and 

frequency space. This method has been proved as an efficient procedure to distinguish 

the signal trend from its small scale fluctuations. 

 

2.2. Recurrence Quantification Analysis 

In the phase space the time evolution of the variables of a dynamic system can be 

represented with a trajectory. If the trajectory is attracted to a region of the space, this 

is called an attractor. The trajectory can be derived from the differential equations 

which define the system but, when the variable under study comes from experimental 

data included in a time series, the attractor can be reconstructed from the experimental 

data and copies delayed in time as postulated in the “embedding theorem” (Takens, 
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1981). Several invariant parameters can characterize the attractor, probably the most 

popular are: the Kolmogorov entropy, the correlation dimension and the largest 

Lyapunov exponent. But the attractor can also be characterized by means of 

Recurrence Plots (RP) and Recurrence Quantification Analisys (RQA) (Marwan et al., 

2002, Tahmasebpour et al., 2015; Llop et al., 2015). Many dynamic systems, especially 

the nonlinear systems, exhibit recurrence behavior. The recurrence of states takes 

place in the system phase space and can be the source of relevant information 

(Marwan et al. 2007). The RP is the tool that measures and visualizes recurrences of a 

trajectory in phase space. However, for attractor reconstruction the appropriate 

embedding dimension ‘m’ and time delay ‘’ must be chosen, according to the 

embedding theorem. 

With Recurrence Plots (RP’s) it is possible to analyze the time series without having to 

care too much about these parameters, since it can be considered that both take the 

value of one (March et al., 2005 and Zbilut and Webber, 2006). Moreover, if the 

dimension is higher than three, obviously, the state space trajectory is very difficult to 

visualize. In contrast, the phase state trajectory can be visualized in a two dimension 

plot by the Recurrence Plot because this one is independent of the trajectory 

dimension (Eckmann et al. 1987). The recurrence occurs when a point of the trajectory 

repeats itself. The term repetition means that a point of the trajectory is close enough to 

another one within a distance suitably selected in advance. 

The RP of a signal is generated from the reconstructed attractor computing the matrix, 

)(, jiR , whose mathematical definition is: 

    NjiyyR jiji ,,3,2,1,, 
     (10) 
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N is the number of states in the space state, iy


 and jy


 
dR  are two different points of 

the space trajectory,  is a threshold distance of neighborhood, ·  represents the norm 

and   is the Heaviside function    00;01  hhh . Once generated the NN   

matrix with zeros and ones, the two dimensional graphical representation of Rij can be 

plotted by assigning a white dot to the value zero and a black dot to the value one. The 

graphical representation is named Recurrence Plot (RP). The qualitative patterns of RP 

give information about some characteristics like homogeneity, periodicity, drifting, 

disruption, etc. (Marwan et al. 2002). Furthermore, the RP’s can give information about 

the influence of the micro-scale and macro-scale in the fluidization dynamics (Babaei et 

al. 2012, Llop et al. 2015). Although the plots yield very useful information, there must 

be a quantifiable criterion to detect a transition in the system dynamics. Zbilut and 

Webber (1992) and Webber and Zbilut (1994) introduced a methodology to quantify the 

plots named Recurrence Quantification Analysis (RQA) extended later by Marwan et al. 

(2002). RQA is a set of parameters conceived to describe the complex structure of the 

RP. These parameters quantify the complexity of the system and their computation is 

based on recurrence point density and on diagonal and vertical lines in the structure of 

the plot. Although the embedding dimension and the delay are not critical parameters 

to reconstruct the attractor, the suitable choice of a threshold distance () is crucial. For 

too small values of , no recurrences are identified and no information is extracted. 

Conversely, if  is too large the consecutive points of the trajectory will be considered a 

recurrence. Several criteria have been proposed for the threshold distance choice 

(Marwan et al. 2007). One of the simplest criteria is to choose  in the scaling region of 

the recurrence point density parameter (RR) of RQA (Webber and Zbilut, 2005). 

Nevertheless, the choice of  strongly depends on the considered system under study 

(Marwan et al. 2007). This has been the approach used in this contribution. 
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The RQA parameters used in this work have been: the recurrence rate (RR), the 

determinism (DET), the average length of diagonal lines (L), the entropy (ENT), the 

laminarity (LAM), the trapping time (TT), the recurrence time of first type (RET1) and 

the recurrence time of second type (RET2). A description of these parameters is 

skipped here but can be found in Marwan et al. (2007) or, for a similar case, in Llop et 

al. (2015). 

 

2.3. Complexity of Lempel and Ziv 

The complexity can be measured by different parameters. Some of them come from 

chaos theory such as Kolmogorov entropy, Lyapunov exponents or fractal dimension. 

Nevertheless, these parameters are difficult to estimate and require a long computation 

time and a large amount of data. Lempel and Ziv (1976) introduced a measure of the 

complexity which has proved an excellent tool to characterize spatiotemporal patterns 

(Kaspar and Shuster, 1987). The main feature of the Lempel-Ziv complexity (LZ) is that 

it contains the notion of complexity in the deterministic sense as well as in a statistical 

sense and can be computed more easily with little computation time while being 

unaffected by the external noise. 

The LZ complexity is analyzed by transforming the signal into a sequence P having a 

finite number of symbols. This sequence is monitored and when a new subsequence of 

consecutive characters is found, a counter of complexity increases in a unit thus 

obtaining c(n). Essentially the algorithm is as follows: 

Being the sequence  nsssP ,....., 21 , S and Q  are two sequences of P  and SQ  is the 

union of both. SQ  is the SQ  sequence removing the last character. Being, 
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rsssS ,....,, 21  and 
1 rsQ  then 

rsssSQ ,....,, 21 . Being r the index of the symbol 

analyzed. 

If  SQvQ (vocabulary of SQ ) then Q  is a subsequence of SQ , and not a new 

sequence. Afterwards the subsequence Q  is updated with  21,  rr ssQ  and it is 

checked whether it belongs to  SQv  or not. This step is repeated until  SQvQ . 

So   121 ,......,,  irrr sssQ  is not a subsequence of SQ  and c (n) is incremented by 

one. The next step is to update the sequences S and Q  so that  irsssS  ,......,, 21  and 

  1 irsQ . All these steps are repeated until the last character r = n is reached. In a 

last step, a normalization of the counter c(n) is applied dividing it by the factor 

 nn 2log/ . The objective of this normalization is to obtain a value of complexity 

independent of the length of the time series. The time series has been transformed into 

a symbolic sequence composed of zeros and ones using four symbols, which is 

enough to reconstruct the time series (Wang et al. 2010). 

 

2.4. Approximate entropy 

Pincus developed the approximate entropy (ApEn) as a measure of complexity for time 

series of experimental data, applicable to noisy and medium-sized datasets by 

modifying an exact regularity statistic, the Kolmogorov–Sinai entropy (Pincus, 1991). 

ApEn measures the logarithmic probability that the series of patterns that are close 

remain close in the following incremental comparisons. ApEn is a value that reflects the 

predictability of future values in a time series based on previous values, with larger 

values corresponding to more complexity in the data. 

Being the time series of pressure fluctuations with dimension N 

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Sinai_entropy
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Vector sequences are formed introducing m, 
mX1  through 

m

mNX 1  as 
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m is the length of window to be compared. For each “i” and being “r” the tolerance for 

accepting matches,  rCm

i  is defined as the  1mN  times the number of vectors 

m

jX  within r of m

jX . Introducing  rm  as 
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The Approximate Entropy, then, is 

   rrrmApEn mm 1),(        (14) 

where 𝑟 defines the criterion of similarity between patterns that represents the noise 

filter level. The larger the value of ApEn, the higher the complexity of the tested time 

series. 

 

3. Experimental 

The experimentation was carried out in two different cylindrical columns of diameters 

(Dc) 30 mm and 48 mm, made of PMM to see inside. Bronze particles of two sizes 

were used (99 m and 211 m), with a density of 8770 kg/m3 and the bed heights (Hs) 

were from 80 mm to 108 mm of settled particles. A 2 mm thick perforated plate was 

used for the distributor with a nylon mesh placed above to avoid the weeping of 

particles when the flow was cut. Raschig rings were placed in the calming section 
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below the distributor, in order to increase the uniformity of the gas distribution. The 

fluidization gas was air at ambient pressure and room temperature, driven by a 

compressor. The fluctuations due to the compressor were kept to a minimum since the 

air was driven through an intermediate tank accumulating the sufficient amount of air at 

6 bar with a narrow pressure regulation. The fluidizing gas passed through a pressure 

reducing valve to place it at working pressure. The inlet air flow rate was measured 

under ambient condition using a rotameter manifold and controlled by a needle valve. 

The differential pressure fluctuations in the bed were measured by a probe of 3 mm 

inner diameter, vertically inserted within the bed, close to the distributor. The probe was 

connected to the first connection of a piezoresistive differential pressure transducer 

with a response time of 5 ms (200 Hz). The second connection of the transducer was 

open to the freeboard. The analogic signal generated by the transducer was digitalized 

in a 12 bits A/D converter and stored in a PC with the adequate software to be 

analyzed later. For every run (every gas velocity selected) a time series of 8192 data 

with 100 Hz of sampling frequency was obtained. For the chaotic analysis of time 

series large amounts of data are recommended. Johnsson et al. (2000) used 65000 

data, but other authors have obtained reliable results with less data; Llop et al. 2012 

used 8192 data. On the other hand, the data length is not critical for the analysis with 

RP and the length of the time series used in this work is sufficient (Tahmasebpour et 

al., 2015; Llop et al., 2015). For the frequency sampling (Llop et al. 2015) in RP 

analysis 100 Hz are also enough. The velocity of incipient fluidization was obtained 

plotting the pressure loss through the bed versus the gas velocity while gradually 

reducing it from its maximum. 

 

4. Results and discussion 
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The EMD has been computed for the time series of pressure fluctuations obtained 

experimentally in the fluidized bed for the two sizes of particles used and for bubbling 

and slugging regimes at several velocities. Fig. 1 shows an example of the 

decomposition of the original signal in several IMF and the residual component. For 

every IMF the percentage of energy contribution and the mean instantaneous 

frequency have been computed. Also, the RP has been generated for every IMF and 

the corresponding RQA has been calculated. With this information it has been possible 

to elucidate which IMF are included in the different scales of the fluidization dynamics 

in bubbling and slugging regimes. 

 

4.1. Energy and frequency distribution 

The phenomenon that predominates in the micro-scale is the interaction between the 

particles and between the particles and the bed wall. It is qualitatively obvious that high 

frequency and low energy are associated to it. The meso-scale reflects the bubble and 
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Fig. 1. EMD decomposition of pressure fluctuations for dp=211 m particles at 
u/umf=3.35 (a) for bubbling regime and (b) for slugging regime. 
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Fig. 1. (Continued). 

the bubble-particle interaction (the main cause of pressure fluctuations). Hence, the 

frequency decreases while the energy significantly increases. The macro-scale mainly 

reflects the equipment contribution and is characterized by low frequency and low 

energy. 

The energy distribution for every IMF obtained with the decomposition is shown in Fig. 

2. For bubbling regime the energy increases quickly from the lower mode to the third, 

which has the maximum energy, and afterwards quickly decreases to very low values. 

As the higher contribution to the fluidization energy is due to the bubble dynamics, this 

third mode is, most probably, strongly related to the gas phase. Regarding to the 

frequency, it is very high for the first mode and quickly decreases with the mode 

number. 
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In the slugging regime (Fig. 2 (c)), the energy is very low for the first three modes and 

near constant. It is larger from the fourth to the eight modes with a maximum at the fifth 

mode. This maximum happens at lower frequencies than in the bubbling regime. It is 

quite likely that the maximum is due to the bubble dynamics. Slugging produces large 

bubbles, or a train of large bubbles that rise through the bed, explode on the surface 

and impel the solid particles upstream, which afterwards return to the bed. The 

slugging dynamics causes a strong periodic signal in the pressure fluctuations with a 

lower frequency than in the bubbling regime, because the probe detects fewer bubbles 

in the same period of time. For the bubbling regime the frequency of maximum energy 

is 3.2 Hz (Fig. 2 (b)) while for slugging regime it is 1.7 Hz (Fig. 2 (d)). The bubble 

frequency for slugging regime is lower because the slugs fill the column diameter and 

hence, for the same flow of gas, the frequency of bubble passage is lower. A similar 

behavior has been verified for particle diameter of 96 m (Fig. 3(b) and Fig. 3 (d)). 

 

a)

 

b)

 

Fig. 2. Energy and mean frequency distribution for the different modes decomposed for 

dp=211·m particles (a) and (b) for bubbling regime (Dc=48mm and Hs=108 mm), and 

(c) and (d) for slugging regime (Dc=30 mm and Hs=80mm). 
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c) d)

 

Fig. 2. (continued) 

4.2. Recurrence plots 

Fig. 4 includes the recurrence plots for dp=211 m of the levels representative of the 

micro, meso and macro-scales in both regimes. For both the bubbling and the slugging 

regime, the first level C1 has been chosen to represent the micro-scale. For bubbling 

regime the detail level C3 has been chosen, and the detail level C5 for the slugging 

regime (both corresponding to the maximum energy). The detail levels chosen for 

macro-scale have been C7 for bubbling and C9 for slugging, which respectively are the 

first levels than can be considered to belong to the macro-scale region. 

a) b)

 

Fig. 3. Energy and mean frequency distribution for the different modes decomposed for 

dp=96·m particles, (a) and (b) for bubbling regime (Dc=48mm and Hs=108 mm) and, 

(c) and (d) for slugging regime (Dc=30 mm and Hs=80mm). 
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c)

 

d)

 

Fig. 3. (Continued) 
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micro structures being more important. The interaction of particles in bubbling regime is 

less intense because their movement extends all along the bed. 

In the meso-scale there is no big difference in LWA or LBA between the two regimes. 

Nevertheless, it has been noticed that its distribution is less uniform in the case of 

slugging regime with zones including more concentration of LBA. This can also be 

attributed to the alternation of slugs and dense phase. 

 

4.3. Recurrence quantification analysis 

4.3.1. Bubbling regime 

Fig. 5 shows the evolution of the RQA parameters with the levels generated by EMD 

decomposition of the pressure fluctuations in the bubbling regime. As can be seen in 

Fig. 5(a) the RR evolution is not affected when changing the gas velocity. Also, the 

evolution of RR is similar for the two threshold values tested. 

On the other hand, it is worth noting that the RR decreases from level C1 to C2 and 

increases from C3 to C10. The increase is done with two different slopes. The first of 

them is rather high except for the relative gas velocity u/umf = 3.35. The second slope, 

slightly lower, includes the levels from C7 to C10. This evolution suggests different 

structures in these level intervals. 

As stated above, micro-scale bed dynamics is originated mainly by particle interaction 

and particle-wall interaction. This movement is done with a certain periodicity so that 

the interactions take place with high frequency. As seen in Fig 2(b), the levels C1 and 

C2 have the biggest frequencies, suggesting that both belong to the micro-scale. On 

the other hand, C1 shows low percentage of energy, which may agree with the collision 

between particles. 
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Fig. 4. RP of the levels of interest for dp=211 m. Bubbling regime (a), (b) 

and (c). Slugging regime: (d), (e) and (f). 
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The RR value of C2 is lower, near to the maximum of energy percentage (C3). 

Considering also Fig. 5(a), the RR of C2 considerably differs from that of C1, but in 

decreasing order, approaching to the value of the C3. The combination of high 

frequency and low energy suggests that C1 and C2 are related to the micro-scale. 

Meso-scale is related to the bubble phase and the interaction of bubbles with particles, 

which are the main contributor to the fluidization energy. For this reason, it can be 

suggested that the meso-scale is located in the zone of medium frequency and high 

energy (Fig. 2 and Fig. 3). Considering Fig. 5 (a), the RR from C3 to C6 follows the 

same trend, but from C7 to C10 the trend slightly changes, decreasing the slope. The 

level interval from C7 to C10 has both very low frequency and energy, which points out 

to equipment interaction. The change of structure of this level is backed by the 

turnaround of the RR value (Fig. 5 (a)). 

The DET has been plotted in Fig. 5 (b) and shows a remarkable different evolution 

depending on the threshold radiuses. For the higher value  =0.05, the DET is 

saturated (constant) from C4 to the end, while for ·=0.005 it is saturated from C7 

onwards, where the trend change appears. This behavior is similar to the evolution 

observed in LAM (Fig. 5 (e)). This suggests that the bigger value of  is not appropriate 

to properly discriminate the different structures of the levels. On the other hand, as 

shown in Figs. 5 (c), (d) and (f), the behavior of the average length of diagonal lines (L), 

entropy (ENT) and trapping time (TT) are very similar. The fact that there is a common 

or similar behavior with the lower  for all the RQA investigated parameters induces to 

consider that this value of radius threshold is the most appropriate. 

The RR, DET and LAM evolution shows a similar behavior in the region of micro-scale 

and meso-scale, and they can be used as indicators of the transition between these 

regions. Nevertheless, the DET and LAM values become saturated when IMF is C7 and 

superior. This happens because the macro-scale (C7 to C10) has a strong and highly 
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deterministic periodic component, which gives a maximum value of one. This 

observation is similar to those of Tahmasebpour et al. (2015), which found the 

maximum value of determinism for the higher scales, although in their case the signal 

was decomposed by wavelets. As can be seen in Fig. 5, all RQA parameters can group 

each level on its scale when =0.005 is used. 

 

4.3.2. Slugging regime 

The evolution of the RQA parameters for the slugging regime has been plotted in Fig. 

6. For consistency, the chosen threshold radius has been the same as for the bubbling 

regime ( =0.005). As can be seen, all parameters can characterize the different 

regions corresponding to the three studied scales. 

The differentiation with L and TT parameters is done with excellent precision (Figs. 6 

(c) and 6 (f)). The other parameters can separate the three regions, although with less 

precision, in the intersection or confluence of two different scales, especially to clearly 

identify the border between micro-scale and meso-scale. However, the increase in 

energy that can be seen in Figs. 2(c) and 3(c) confirms that there is a change in the 

structure of level. Assuming that the maximum energy corresponds to the bubble 

contribution, this region is constituted of meso-scale. The levels C1, C2 and C3 have 

very low energy. In the next levels there is an increase of the energy to a maximum in 

C5, and then, a gradual decrease to very low energy from C9. 
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a)

c)

e)

 

b)

d)

 
f)

 

Fig. 5. Evolution of the parameters of RQA for the different IMF computed for bubbling 

regime and particles of dp=211 m. 
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(g)

 

 

(h)

 

 

Fig. 5. (continued) 

The evolution shown in Figs. 2 (c) and 3 (c) along with the mapping of Fig. (6), 

suggests that C1 to C3 belong to the micro-scale, C4 to C8 to the meso-scale and C9 to 

C11 to the macro-scale. Thus, the classification is reasonably suitable despite some 

uncertainty at the scales confluence. 

The RQA parameters evolution for slugging regime is similar to that for bubbling regime 

except for a significant difference: the maximum fluidization energy is displaced to 

higher level scales: from C3 for bubbling regime to C5 for slugging regime, which means 

that the bubble phase decreases its frequency as shown in Figs. 2(d) and 3(d). 

For both bubbling and slugging regimes the determinism (DET) decreases in the micro-

scale, increases in the meso-scale and remains constant in the macro-scale. The 

determinism is related to the predictability of the system and has low values for 

stochastic systems and high values for predictable systems. 

As shown in Fig. 1 (a) for bubbling regime, the level is much more periodic in the 

macro-scale (C8) than in the meso-scale (C4) i.e. more deterministic and, because of 

that, the determinism is 1 for macro-scale. 
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Fig. 6. RQA evolution for the different modes computed for slugging regime, particles of 

dp=211 m and  =0.005. 
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(g)

 

(h)

 

 

Fig. 6. (continued) 

All in all, comparing the DET of the detail levels (IMF) for both regimes, the values of 

the slugging regime are higher because this regime has a higher periodic component. 

The entropy measures the complexity of the system. One would expect the ENT to 

decrease for macro-scale, the more periodic system. But the ENT increases with the 

periodicity, an apparent contradiction. This effect was reported by Webber and Zbilut 

(2005) who argued that the truncation of the diagonal lines in the RP influences the 

computation. As will be seen below, other measures of complexity (ApEn and LZ) will 

give results consistent with this argumentation. Even if the evolution of entropy is not 

logical, its increase in this region is also an indicator to distinguish the scales. 

4.4. Intrinsic mode function analysis 

The pressure fluctuations in the fluidized bed are the result of the contribution of 

different causes. The bubbles passing near the pressure measurement probe cause a 

variable pressure field and, consequently, pressure fluctuations. The pressure 
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bulk of the bed are originated by this natural bed oscillation (Baskakov et al.,1986). The 

contribution to the pressure fluctuations due to the particle dynamics (particle-particle 

interaction and particle-wall interaction), despite its low energy, must also be taken into 

consideration (Briongos et al., 2006). Other minor causes of pressure fluctuations are 

bubble formation, bubble coalescence and bubble disintegration. 

Thus, the pressure fluctuations on the bed are the result of these individual 

contributions associated with the local and the global dynamics. Some of these 

oscillations would have different frequencies because of its different nature. EMD 

generates several IMF with different mean frequencies. It is likely, then, that some IMF 

can be associated to an individual cause of the pressure fluctuations. This makes 

reasonable to investigate the possible relationship of the modes obtained by EMD from 

the pressure fluctuations with the particle dynamics, the bulk dynamics and the bubble 

dynamics. 

Briongos et al. (2006) considered three detail levels of interest for engineering 

purposes in the analysis of the slugging fluidization dynamics. The first of them is the 

particle dynamics component: particle-particle, particle-wall interactions and coherent 

structures. The second level, or bulk component, is due to the natural oscillation of the 

bed. The bed moves up and down due to the gas circulation and to the elastic 

movement of the particles in the emulsion phase. The third level corresponds to the 

bubble dynamics, which has great importance in the overall dynamics of bubbling and 

slugging fluidized beds. A very significant amount of the dissipated energy in the 

fluidization corresponds to the bubble phase. Hence, the behavior of the bubble phase 

is of key importance for the design of fluidized beds. This is the reason for countless 

studies on this subject for decades (Cranfield and Geldart, 1974; Mori and Wen, 1975; 

Darton et al., 1977; Hilligardt and Werther, 1986; Choi et al., 1988; Choi et al., 1998). 
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To prove the connection of the IMF with these pressure fluctuations contribution, some 

models that describe their behavior has been used. The model of Baskakov et al. 

(Baskakov et al., 1986) has been used to predict the natural frequency of the bed (fbs), 

with the following equation, 

mf

bs
H

g
f



1
      (15) 

The model of Choi et al. (Choi et al., 1988; 1998) has been used to estimate the bubble 

frequency in the bed for the bubbling regime. With this model it is possible to predict 

the bubble frequency from the two phase theory and the bubble growth theory. The 

bubble frequency (fb) can be estimated by the following expression: 
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Where Nf is the number-based bubble flow rate (s-1), dbf the frontal bubble diameter and 

A the bed transversal area. Nf can be calculated by, 
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being db the bubble diameter. The bubble growth used in this theory is, 
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For slugging regime the model of bubble frequency (fs) proposed by De Luca et al. 

(1992) has been used. 
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It can be seen in Fig. 2 that the maximum energy corresponds to level C3 for bubbling 

regime and to C5 for slugging regime. It is coherent to assume that the maximum of the 

fluidization energy is associated to the local bubble dynamics. Briongos et al. (2006) 

justified that the level C5, obtained by EMD, was related to the local bubble dynamics 

for slugging regime. 

The mean frequency evolution of every level versus the excess of gas velocity from 

incipient fluidization (u-umf) for the two particle diameters and regimes investigated is 

shown in Figs. 7 and 8. It can be seen that the frequency values for every level do not 

change significantly with the gas velocity, but this is due to the narrow range of values 

investigated. 

The plots for the bubbling regime (Figs. 7 (a) and 8 (a)) include the oscillation 

frequency of the bed from Baskakov model and the bubble frequencies from Choi 

model. The predictions of both models are very similar and also close to the 

experimental frequencies of level C3, meaning that both models agree fairly well with 

this level. However, Choi model differs a bit from the experimental values at the lowest 

gas velocities. This is probably due to the small gas velocity and the poor fluidization in 

that flow. 

Oscillations of the bed and the local bubble dynamics, even though they are different 

phenomena, have very similar frequencies in the bubbling regime. Therefore, it is not 

possible to distinguish them separately. That is to say, in all likelihood the level C3 

includes the contribution of these two dynamics. 
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a) b)

 

 

Fig. 7. Mean frequencies of the levels extracted for dp=211 m particles (a) bubbling 
regime and (b) slugging regimes. 

 

a)

 

b) 

 

Fig. 8. Mean frequencies of the levels extracted for dp=96 m particles (a) bubbling 
regime and (b) slugging regimes. 
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is close to C4 (Fig. 7(b) and 8(b)), suggesting that this level component is related to the 

bulk component, clearly distinguishable from the local bubble component (C5). 

The computation of the approximate entropy (ApEn) and the LZ-entropy can help to 

characterize the levels associated to the particle dynamics, to the local bubble 

dynamics and to the natural bed oscillation. Therefore, these two parameters have 

been computed for the original signal and for levels C1 and C3 of the bubble regime 

(Figs. 9 (a) and (c), and 10 (a) and (c)). 

As can be seen in Fig. 9 (a) and (c) the C1 component has more complexity (higher 

value of ApEn) than the original signal for all the relative velocities that have been 

studied. At first, the entropy does not change so much with the velocity of the gas but, 

for higher velocities, it considerably grows. This evolution is due to the increase in 

complexity originated by the increase of the inter-particle and wall-particle collisions at 

higher velocities. 

The level C3 and the original signal have similar complexity. But the original signal has 

a slightly higher complexity than the level C3 surely due to the influence of the 

disordered particle motion on the bed, since it brings together all the involved 

phenomena, including particle interaction. 

Figs. 9 (b) and (d) show the evolution of the ApEn for both particle diameters 

investigated and for slugging regime. The plot for dp=211 m shows that the 

component C1 increases its complexity at higher velocity due to the intense particle 

motion. The level C5 is almost constant with a trend to slightly decrease when the gas 

velocity grows, which is more pronounced for particles of 96 m of diameter. A 

decrease in the entropy would be justified by an increase in slug size when the gas 

velocity grows. The slug occupies more space in the column and there is less 

possibility of mixing with the dense phase. However, the entropies are lower in the 
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case of the slugging regime for all component levels, since the dynamics for this 

regime is much more ordered (lower complexity). 

 

a)

c)

 

b)

d)

 

 

Fig. 9. Approximate entropy (a) and (c) for bubbling regime and, (b) and 

d) for slugging regime. 
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reflects the bulk dynamics of the bed and hence it is more complex than the dynamics 

of the bubbles (C5) or than the combination of all phenomena including the particle-

particle interaction (original signal). 

A similar behavior can be seen in Fig. 10 where the LZ complexity has been plotted 

versus the difference of gas velocity. This parameter shows the clearest trends, 

especially for the slugging regime. The level component C1, as in the case of 

approximate entropy, shows the highest entropy while C3, the lowest. The original 

signal has an intermediate complexity between those levels. This is obvious due to the 

motion of the particles and the lesser complexity of the bubble motion component (C3). 

As the original signal includes both phenomena, it reflects the behavior of both 

contributions. For 211 m particles, de C4 level (related to the bulk component) has an 

LZ complexity slightly higher than the original signal and the C5 level. This can be 

ascribed to the increase in particle motion, something also indicated by ApEn. In 

contrast, for 96 m particles the C4 level has slightly lower complexity than the original, 

this may be due to the lower energy of particle interaction. But in any case they have a 

very similar value. 

The hypothesis that the detail level C1 from EMD decomposition is related to particle 

dynamics is coherent analyzing the mutual information of these level scales. The 

mutual information function (MI) is a quantification of the amount of information 

contained in a random variable, through another random variable. It is a quantification 

of the nonlinear dependency between these two random variables. Analyzing the 

mutual information of a single variable we can detect the persistence in a nonlinear 

time series. This function has been used to compare the different predictability of the 

analyzed levels. 
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a)

c)

 

b)

d)

 

Fig. 10 The LZ-C4 complexity, (a) and (c) bubble regime and (b) and (d) slugging 

regime. 

For the bubbling regime (Fig. 11(a)) the mutual information of C3 presents some 

periodic component. There is a minimum after which the curve still continues to 

oscillate although with a waning amplitude. However, the C1 component rapidly loses 

its periodicity. Conversely, for the slugging regime (Fig. 11(b)), the MI of this level (C1) 

presents a large persistence of peaks in its evolution. The first peak approximately 

corresponds to the average instantaneous frequency of this level. Briongos et al. 

(2006) analyzing the slugging fluidization by EMD found the same characteristic in this 

level, C1, and attributed it to the oscillatory motion of particles. This persistence 

behavior has not been detected in bubbling regime (Fig. 11(a)). The dynamics of the 
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slugging regime generates big bubbles which fill the column diameter (slug) with the 

gas phase aggregated in a few bubbles or slugs. The particles are not well distributed, 

forming a more compact phase than in the case of the bubbling regime. With less 

distance between particles, collisions are easy to happen. Sometimes the slugging 

dynamics produces the separation into slices of emulsion separated by gas and the 

separation of the two phases is wider, which makes this effect even more pronounced. 

The complexity of the particle dynamics is evident given the high values of ApEn and 

LZ computed for this component level (C1). Conversely, for bubbling regime the 

particles move further apart and they are often dragged by the gas, thus avoiding the 

oscillatory dynamics, as reflected in the evolution of the MI in Fig. 11 (a). 

a)

 

 

b)

 

 

Fig. 11. Mutual information for the levels of interest for particles of dp=211 m 

(a) for bubbling regime and (b) for slugging regime. 
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bursting on the surface of the bed. It also decreases faster than in C5, thus showing 

that is it is more dissipative. 

 

5. Conclusions 

The structure of the gas solid fluidized bed has been analyzed by means of the 

multiresolution approach using the empirical mode decomposition (EMD) for bubbling 

and slugging regimes. It has been shown that the Recurrence Quantification Analysis 

(RQA) is an excellent tool to differentiate the scales into which the structure of gas 

fluidization can be classified. The parameters computed by RQA are able to distinguish 

three different zones which correspond to the micro-scale, meso-scale and macro-

scale. 

The analysis of IMF extracted from the pressure fluctuations of the bed by EMD reflects 

the characteristics of the bubbling and the slugging regimes. The average frequency of 

the more relevant intrinsic mode functions related to local bubble component is lower 

for slugging regime than for bubbling regime. For the bubble regime the range average 

frequency is from 3.5 Hz to 5.5 Hz and for slugging regime from 1.5 Hz to 2.5 Hz. 

Analyzing both the energy distribution and the RQA parameters of every intrinsic mode 

function computed (IMF), it can be concluded that C1 and C2 belong to micro-scale, C3 

to C6 are included in meso-scale and from C7 above belong to macro-scale for bubbling 

regime, while for slugging regime C1 to C3 belong to micro-scale, C4 to C8 are included 

in micro-scale and from C9 above belong to macro-scale. 

Comparing the evolution of the Recurrence plots (RP) the LWA pattern increases in the 

sense of increasing the level of the scale. That is to say, the level related to the local 

bubble dynamics (belonging to meso-scale) has considerably more LWA than the level 

related to particle interaction (belonging to micro-scale). Also, the level representative 
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of macro-scale has more LWA than the level related to the local bubble dynamics. 

Conversely, the LBA has an inverse behavior. 

It has been also observed that the levels with more energy of fluidization are 

reasonably related to local bubble dynamics. Nevertheless, the level C3 which has the 

highest energy value for bubbling regime, is probably the combination of two causes: 

the local bubble dynamics and the bed oscillation. Moreover, the level C4 is related to 

bed oscillation and C5 to the local bubble dynamics for slugging regime. 

The behavior of the C1 level shows that it is related to the particle-particle interaction 

and particle-wall interaction for both the bubbling and slugging regime. 

Both the approximate entropy and the Lempel-Ziv complexity values are coherent with 

the evidence of the relation of the levels obtained by EMD with the dynamics of the 

main phenomena associated to gas-solid fluidization. 
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