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A B S T R A C T

The processes involved in the thermal decomposition of yttrium propionate in oxidizing and inert atmosphere
were analyzed with thermoanalytical techniques (thermogravimetry and evolved gas analysis) and with the help
of structural characterization (X-ray diffraction, infrared spectroscopy and elemental analysis) of intermediate
and final products. Samples in the form of films and powders were analyzed. The decomposition behavior
studied as a function of particle size and film thickness was investigated. We conclude that, as a consequence of
the gas and heat transport, films decompose differently than powders. Finally, two decomposition mechanisms
are proposed that are in agreement with the observed volatiles and intermediate phases.

1. Introduction

The relatively recent interest in yttrium propionate (Y-Prop3) has
been boosted by its application in the synthesis of YBa2Cu3O7-x (YBCO)
[1–3]. YBCO belongs to the second generation of high-temperature
superconductors, which are applied in the form of tapes (also called
coated conductors, CCs), and thus its entire synthetic process is based
on thin film technology. Among the different processing routes, YBCO
synthesis through chemical methods (chemical solution deposition,
CSD) [4] provides the possibility, with respect to physical methods, for
cost efficient and easily scalable processes.

CSD routes can be differentiated based on the type of YBCO pre-
cursor solution, which usually tends to involve short-chain carboxylates
of the corresponding metals in order to facilitate the removal of the
organic moieties during the first stage of the films’ thermal treatment
(pyrolysis). Since during the second stage (growth) the film is treated at
much higher temperatures, the choice of the precursor solution plays a
fundamental role in the type of intermediate species that are formed
and therefore the subsequent choice of the experimental conditions
(P,T) to facilitate their conversion to YBCO. In this regard, up to now,
there is a wide understanding of the trifluoroacetate (TFA) route [5–7]
to YBCO, where the precursor solution consists of the trifluoroacetate
salts of each metal. However, a major drawback of this route is that the
decomposition of the intermediate BaF2 involves the release of Hy-
drofluoric acid (HF). It has been stated that out-diffusion of HF is the
limiting step in obtaining YBCO during the growth stage [6–9]. The
thicker the film, the more difficult HF removal is, so it is not possible to
obtain a fast growth rate in thick films through the TFA route. Indeed,

the slow HF diffusion is the main challenge in obtaining cost-compe-
titive YBCO tapes. Therefore, other precursor solutions have been
considered, such as low-fluorine [2] or fluorine-free (FF) solutions [10].
In fact, it has been shown that, from FF solutions, YBCO can grow
through a liquid-solid reaction [11,12], and this in turn can lead to very
high growth rates.

To get the final desired properties of the superconductive tapes,
each stage of the synthetic process needs to be understood and opti-
mized. In this perspective, thermal analysis (TA) is especially suited to
monitor structural transformations such as solvent evaporation, pre-
cursor pyrolysis, oxidation and decomposition of intermediate com-
pounds that take place during pyrolysis of metal-organic precursors. In
fact, there have been an increasing number of studies regarding the
thermal decomposition of YBCO FF-precursor powders such as Yttrium
acetate (YAc3), Yttrium propionate (YProp3) and the corresponding
barium and copper salts [13–15]. However, so far, the thermal de-
composition of Y-Prop3 has been studied only in the form of powder
[16–19]. In situ evolved gas analysis (EGA) was performed by means of
quadrupole mass spectrometry (EGA-MS/Q) by [17,18] in air and in
nitrogen, and with Fourier-transform infrared spectroscopy (EGA-FTIR)
in argon by [19]. The reported volatiles, even in inert atmosphere, are
different, so that a univocal and general mechanism has not been es-
tablished yet. Also the literature shows differences in the temperature
range in which the last stage takes place, reporting complete decom-
position at 600 °C [16–18], 700 °C [17] or even at 1350 °C [19]. Be-
sides, despite the fact that water vapor is commonly used in the
synthesis of YBCO FF tapes, none of the published papers analyze the
effect of the presence of water vapor in the thermal decomposition of
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the metalorganic precursor [3,20].
Moreover, the use of TA in films is quite limited because the signal-

to-noise ratio depends on the sample mass, and sample mass for films is
typically one order of magnitude smaller than sample mass used in TA
experiments. However, it has been stated that powders can behave
differently than films [9,21–25] due to different gas and heat transport
phenomena between the two. Therefore, an in-situ study of the thermal
processes that lead to YBCO tape synthesis is of fundamental interest to
reveal the actual kinetics and mechanism occurring in films.

In this study, both in-situ EGA-MS/Q and EGA-FTIR are applied to
analyze the volatiles formed during pyrolysis and the effect of different
atmospheres. It will be shown that, depending on the surrounding at-
mosphere, two different mechanisms compete and involve the forma-
tion of different volatiles. In particular, the kinetics is significantly
enhanced in the presence of water vapor. Additionally, gas transport
also affects the kinetics and the relative contribution of a given reaction
mechanism. A new reaction scheme will be proposed around the al-
ready known radical path of decomposition (Fig. 1, reaction α).

2. Material and methods

Yttrium acetate hydrate (Y(CH3CO2)3·xH2O Sigma Aldrich, 99.9%)
was dried in vacuum at 55 °C and then dissolved ([Y3+]=0.25M) in a
mixture of methanol (VWR, 99.8%) and propionic acid (Merck,≥99%),
with a solvent proportion of 1:1 in volume. The solution was deposited
by drop coating over 10× 10mm2 LaAlO3 (LAO) substrates and dried
at 80 °C on hot plate for 5min. Residual water and propionic acid may
not be completely removed at this stage, depending on the thickness of
the film. Due to the excess of propionic acid, acetate groups are re-
placed by propionates [2]. Nominal thickness of films (h) reported in
this work is calculated from the mass of the films, knowing the particle
density of Y2O3 (d= 5.01 g/cm3) and the surface area (A) of the sub-
strate, h=m/(d⋅A). The nominal thickness is expected to be smaller
than the real thickness due to the porosity of the films. Additionally, Y
(C2H5CO2)3 (Y-Prop3) powder precipitating over time from the same
solution and left in atmospheric air to dry was studied as a comparison
after grinding, unless else indicated. Particles’ size for ground powders
is ≈10 μm, for not-ground is between 0.1 and 1mm.

Thermogravimetric experiments (TG) were carried out in a Mettler
Toledo thermobalance, model TGA/DSC1. FTIR evolved gas analysis
(EGA-FTIR) was performed with a Bruker model ALPHA spectrometer
coupled to a gas cell (Transmission model). A steel tube kept at 200 °C
was used to connect the thermobalance to the gas cell. Sample tem-
perature was raised at a constant rate (shown in the corresponding EGA
figures) up to 600 °C under a continuous flow (55ml/min) of the de-
sired gas. Uncovered Al2O3 pans of 70 μl in volume were used for
samples in the form of powder, whereas LAO substrates 10×10mm2

were used for film deposition. EGA-FTIR results are reported plotting
the wavenumber corresponding to the most characteristic, but not ne-
cessarily the most intense, peak of each volatile as a function of

temperature. FTIR frequencies referenced throughout the paper are the
following: 1780 cm−1 for propionic acid, 2355 cm−1 for CO2,
2740 cm−1 for acetaldehyde, 1732 cm−1 for 3-pentanone and 2-buta-
none, 2180 cm−1 for CO.

In the case of TG analysis coupled with mass spectrometry (EGA-
MS), alumina pans of 150 μl were used as crucibles and a steel capillary
heated up to 200 °C was used to connect the TG gas outlet to the MS
chamber. In the case of EGA-MS of films decomposed in vacuum (total
pressure around 10−7 bar), the sample deposited on 5×5mm2 LAO
was heated up in a quartz tube directly connected to the MS chamber.
The vacuum was achieved with a turbomolecular pump in series with a
rotary pump. In both cases, EGA-MS experiments were performed by
means of a quadrupole analyzer (MKS model Microvision Plus).

Five experiments were conducted on films: for EGA-FTIR experi-
ments, the sample was decomposed at 5 K/min at atmospheric pressure
of humid oxygen (A), dry oxygen (B) and dry nitrogen (C); for EGA-MS
experiments, the films were heated up at 5 K/min in an atmosphere of
oxygen with a total pressure of 10−5 bar (E) and in an atmosphere of air
with total pressure of 10−7 bar (F). Powder samples (labeled with a
single quote (‘)) were decomposed in crucibles at atmospheric pressure
of inert gas (D’, nitrogen for EGA-FTIR at both 5 and 10 K/min and
argon for EGA-MS at 10 K/min) and oxygen (C’, EGA-FTIR-MS, 10 K/
min). In the case of D’, since EGA-FTIR gave similar results using Ar or
N2, Ar was chosen for the corresponding EGA-MS experiment to avoid
interference with CO (m/z=28, as N2).

Differential Scanning calorimetry (DSC) was performed for powders
with a Mettler Toledo model DSC822, in 70 μl-alumina pans, in the
same experimental conditions as the corresponding TG experiment. For
films, the DSC signal came directly from the TGA/DSC experiment.

Infrared spectra of solid samples were collected using a Fourier
Transform Infrared Spectrometer (FTIR), Bruker model ALPHA coupled
to an attenuated total reflection (ATR) module (model Platinum ATR).
XRD experiments were done in a D8 ADVANCE diffractometer from
Bruker AXS. The X-ray beam wavelength was 1.5406 Å (Cu-Kα). The X-
ray source was operated at a voltage of 40 kV and at a current of 40mA.
Elemental Analysis was performed in a Perkin Elmer 2400 series ele-
mental analyzer.

3. Results and discussion

3.1. Characterization of initial product

The FTIR and XRD pattern of as-deposited Y-Prop3 are shown in
Fig. 2a and b, respectively. Since the FTIR spectra of both the film and
powder samples are nearly identical, their chemical structures are ex-
pected to be the same; both show the appearance of the propionate
stretching bands (absent in the acetate). Also the results from elemental
analysis (Table 1) of the dry Y-Prop3, obtained from the corresponding
Y-Ac3 solution, agree with the expected composition of Y-Prop3, pro-
viding further support for the replacement of acetate groups by

Fig. 1. Proposed reaction scheme for Y-Prop3 decomposition.
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propionates. Conversely, although the XRD pattern of the present work
is similar to [19], there are significant differences between our FTIR
and XRD pattern and those reported in the literature [16–19], also there
are significant differences among the different structures reported in the
literature. Indeed, in carboxylates, the carboxylate bond and the crys-
talline structure depend strongly on the presence of crystallization
water [2,26–28], so that the distance between the asymmetric and
symmetric carboxylic bands [Δν= νas(COO−) – νs(COO−)] can be used
to determine the type of carboxylate-to-metal complexation structure
[27,29–32]. Thus, for propionates, by comparison between Δν and that
of sodium propionate (ΔνNa-prop= 134.6 cm−1) [33] it has been pro-
posed that [27,30] a chelating coordination exists when Δν< <
ΔνNa-prop, bridging coordination occurs when Δν ≤ΔνNa-prop, while
monodentate coordination appears when Δν > > ΔνNa-prop.

Nasui et al. [29] obtained Δν=135 cm−1, which was assigned to a
mixed structure of chelating and bridging. From XRD, Martynova et al.
[32] found three different coordination modes for the carboxylate li-
gands in Y-Prop3 monohydrate: tridentate chelating-bridging, bidentate
chelating and bidentate bridging, reporting a splitting of νas(COO-) and
νs(COO-) in three bands that can be assigned to these different struc-
tural functions of the ligand. In this work, the shape of νas(COO-) and
νs(COO-) of the dry salt does not show a clear splitting, but different
coordination modes that are compatible with the results of Nasui and
Martynova are nevertheless present. In fact, from the FTIR spectra of
our dry Y-Prop3 films (Fig. 2a), Δν=125 cm−1, suggesting the pre-
sence of a bidentate chelating coordination mixed with some bridging
coordination.

It is important to note that the modes of the carboxylate binding
depend on the presence of crystallization water (see Fig. 2 inset and
Fig.S1 in Supporting Info) but, since decomposition is not coupled to
dehydration, once dehydration is completed, the evolution of the de-
composition of the propionate should be independent of the initial
structure and water amount.

3.2. Dehydration and solvent evaporation

The decomposition as a function of temperature, for films deposited
on LAO substrates, was monitored by TG coupled to EGA-FTIR and
EGA-MS.

For films, the first mass loss starts during the drying stage at 80 °C
and corresponds to water and propionic acid evaporation; it is also
observed by TG for thick films until 150 °C. This is expected since sol-
vent removal depends on time and film thickness; in fact, the boiling
point for the acid is relatively high (140 °C) and the remaining powder
is very hygroscopic. Thus, between drying stage and TG experiment,
atmospheric water may be absorbed (see the endothermic DSC peak in
Fig. 3 at 65 °C that is related to water evaporation). The detailed de-
scription of dehydration can be found in the Supporting Info.

3.3. Thermal decomposition at atmospheric pressure: organic ligand

It has long been established that in inert atmosphere salts of car-
boxylic acids thermally decompose to yield CO2 and symmetrical ke-
tones as major products [34,35], following a free-radical reaction
[36–38]. The same volatiles where observed by Grivel [19] for the
thermal decomposition of Y-Prop3 in Ar, proposing the reaction scheme
α (radical) shown in Fig. 1: the mechanism results in a single dTG peak
and an oxycarbonate intermediate that then yields yttria.

In agreement with this scenario, for Y-Prop3 powder in inert at-
mosphere (both N2 and Ar, Fig. 4D’) we observe a single-step reaction
around 355 °C where the main volatiles are 3-pentanone and CO2 (by
EGA-FTIR and EGA-MS), and it is in agreement with the presence of an
endothermic peak in the DSC signal (Fig. 3) at 355 °C that is consistent

Fig. 2. a) Infrared spectra and b) XRD of the film and powder initial product.

Table 1
Elemental analysis of initial compounds and products obtained from decom-
position in oxygen (B), nitrogen (D’) at 600 °C and vacuum (F) at 500 °C. The
expected values for anhydrous Y-Ac3 and Y-Prop3 are included. Compositions
are given in mass percent.

Compound Found (Expected)

%C %H

Y-Ac3 (anhydrous) (27.09) (3.41)
Y-Prop3 (anhydrous) 34.36 (35.08) 4.59 (4.91)
B (600 °C) 0.98 –
D’ (600 °C) 0.33 –
F (500 °C) 9.69 –

Fig. 3. Comparison of the DSC signal for Y-Prop3 decomposition in experiments
A and D’.
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with radicals formation. Thus, in inert conditions, the homolytic clea-
vage of the molecule and the recombination of the acyl and alkyl ra-
dicals would result in the formation of the symmetrical ketone 3-pen-
tanone.

However, when the same compound is studied in inert conditions
but after deposition on a substrate, the volatiles identified by IR are
mainly propionic acid, along with the symmetrical ketone (Fig. 4C).
Since both powder and film are obtained from the same solution, this
difference can be attributed to the fact that films are much more sen-
sitive to residual atmospheres than powders [21,39]. The effect of the
residual oxygen was confirmed by increasing the flow of nitrogen in the
TG; the higher the nitrogen flow, the higher the amount of 3-pentanone
and the smaller the formation of propionic acid. Conversely, in a humid
oxygen atmosphere, Fig. 4A, we observe that 1) the peak related to
propionic acid is more prominent while 3-pentanone is no longer ob-
served; 2) the evolution of propionic acid is shifted to lower tempera-
tures and 3) the single step process in inert atmosphere becomes a two-
step decomposition with splitting of the DTG signal into two peaks. IR
analysis of volatiles shows that the first step is related mainly to the
formation of propionic acid while the second step to CO2 and acet-
aldehyde. The same behavior is observed with a flow of dry oxygen,
although in this case the relative prominence of the first step is less
significant than in the case of a humid atmosphere (Supporting Info,
Fig.S6), and, for thicker films (∼4 μm, Fig. 4B), the splitting is only
evident in humid O2, suggesting that water vapor favors the removal of
the propionate groups as acid.

Since in the presence of oxygen degradative oxidation is likely to
take place, for films in a dry O2 atmosphere decomposition can be
triggered by the oxidation of the propionate groups to acetaldehyde,
CO2 and propionic acid to produce the reaction scheme shown in β
(Hydrolysis+ oxidation) of Fig. 1. This is in agreement with the vola-
tiles observed and the DSC signal in Fig. 3, which is no longer en-
dothermic. Clearly, in humid O2 and humid N2 (not shown), the for-
mation of propionic acid independent from acetaldehyde and CO2 is
due to the occurrence of mechanism β* in water vapor and low tem-
peratures. However, β* does not reach completion in humid O2 or in
humid N2 because, at higher temperatures, it is interrupted by the oc-
currence of β and α, respectively. Finally, in dry N2 (C) and relatively
thick films, 3-pentanone formation was observed with propionic acid
and thus β and α (favored by the presence of residual O2 and water
vapor in the TG furnace) are competing, given the impossibility of
creating a fully inert atmosphere in thin films [23,39].

3.4. Thermal decomposition at atmospheric pressure: oxycarbonate

Both paths, α and β, lead to the formation of an oxycarbonate
(∼ 44%): quenches of the solid residue in Fig. 5 at around 50% show
the disappearance of CHx groups with the increase of the COO−

stretching bands. From literature, yttrium carbonate decomposes to
form yttrium oxycarbonates between 350 and 470 °C [40,41]. Y2O2CO3

is stable up to 470 °C and decomposes in a single step to form yttrium
oxide between 500 and 600 °C [42,43]. From Fig. 4A we observe a peak
in the evolution of CO2 around 440 °C for films in humid oxygen that
can be attributed to the decomposition of Y2O2CO3. Indeed, the ob-
served mass loss and the FTIR spectra in Fig. 5 confirm this conclusion.
Conversely, for films in nitrogen (Fig. 4C), we observe that the de-
composition is completed at a higher temperature (470 °C) and two
peaks related to the evolution of CO2 are observed. This stage is much
slower and gradual compared to experiments performed on films in O2.
The formation of CO2 at higher temperatures is the result of the removal
of carbon rich residues, which occurs through reaction with oxygen.
Therefore, the more inert the atmosphere (and the longer the CO2 out-
diffusion path going from films to powder), the higher the final de-
composition temperature. In fact, for the powder sample in nitrogen,
the decomposition of the oxycarbonate is shifted to even higher tem-
peratures (540 °C, Fig. 4D’), and the sample quenched at around 50%

Fig. 4. EGA at 5 K/min for: Y-Prop3 films in humid O2 (A), dry O2 (B), N2 (C);
powders in N2/Ar (D’); films in PO2∼ 10−5bar (E), PO2 < 10−7bar (F).
Enlarged image of D’ can be found in the Supporting Info.
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(380 °C), is greyish, in agreement with the presence of some elemental
carbon. On the other hand, quenches of the corresponding film in
oxygen were white at both 50% and 41%.

These facts account for the different final decomposition tempera-
tures reported in the literature. For instance, despite the fact that the
XRD pattern shows the formation of Y2O3 at 600 °C (Fig. 5), the FTIR of
the solid residue shows that decomposition is not fully completed at
600 °C for both powder and film; complete removal of COO- bands in
the range 1400–1500 cm−1 is only observed after heating up to
1200 °C. Additionally, given the fact that, for films, more than one CO2

peak is detected by EGA-FTIR, it is possible that, prior to the oxycar-
bonate, the decomposition passes through Y2(CO3)3 and Y2O(CO3)2
(Supp. Info, Fig.S7). A table summarizing the main temperature ranges
of decomposition and mass loss can be found in the Supporting Info.

3.5. Vacuum and inert decomposition

Unlike the TG results previously discussed, when the decomposition
is carried out in vacuum (Fig. 4E and F), the final product is no longer
white but black. Although a black Y2O3 has been reported to form at
low PO2 due to oxygen substoichiometry [44], we can notice that ele-
mental analysis (Table 1) shows that a significant amount of carbon is
still present at 500 °C. This carbon could be attributed to elemental
carbon (from disproportionation of CO) or a carbonate (expected
∼10%C). Additionally, Fig. 5F shows that at 600 °C the Y-O FTIR band
at 560 cm−1 is missing, while the contribution of broad bands in the
conjugated carbonyl region is much more significant for experiments
performed in vacuum (Fig. 5F) than in experiments performed at at-
mospheric pressure in oxidative, Fig. 5A, or inert atmosphere, Fig. 5D’.

The decomposition of the propionate in vacuum (Fig. 4E and F)
produces again 3-pentanone (m/z=57, 29, 86) and CO2 (m/z=44),
along with C2Hx fragments of m/z=29 [C2H5], 28 (CO or [C2H4]), 27
[C2H3], 26 [C2H2] (not shown). Compared with E, in the highest va-
cuum (F) we notice a higher abundance of m/z=29,28,27 with respect

to 3-pentanone. Formation of CO instead of CO2 would account for the
greater COO- content in the product, while C2H5 formation in turn
would explain the excess of m/z=29 and the presence of m/z=43,
upon recombination to give butane (m/z=43,29,28,27). Finally, in
vacuum, radicals tend to survive longer due to a larger free path be-
tween collisions, and they may undergo further fragmentation (instead
of recombining to form 3-pentanone or butane), explaining the excess
of fragments m/z=29 to 26, and water. All these competing reactions
are displayed in α** (Fig. 1).

In fact, when some oxygen is introduced (Fig. 4E), the amount of
fragments m/z=26 to 29 decreases along with water. Reaction scheme
α is favored with respect to carbonization, although not enough to re-
move all carbon and the final compound is still black, but its FTIR
shows a small contribution from the characteristic Y2O3 band at
560 cm−1 (Supporting Info, Fig.S8).

Finally, at atmospheric pressure of Argon (Fig. 4D’) we observe
some carbonization. In fact, although the final product is Y2O3 (white),
the quench at 51% (Fig. 5D’) is slightly grey and EGA-MS shows un-
expected amounts of fragments of m/z=27, 28, 29. Thus, in D’, α**
competes with α, but the residual carbon is oxidized to CO (also de-
tected by EGA-FTIR) and CO2, in correspondence of a gradual decrease
of the TG curve between 400 and 500 °C (Fig. 4D’) and, in agreement
with literature, only 3-pentanone and CO2 are detected by EGA-FTIR,
thus α dominates over α**.

3.6. Films vs powder

It is important to stress that, due to gas diffusion, films decompose
differently than powders, in a given atmosphere. In fact, the decom-
position process of Y(CH3CH2CO2)3 for films starts earlier (150 °C
versus 250 °C for powders, Fig. 6) but stretches over a wider range of
temperatures. As illustrated in Fig. 6a, decomposition shifts to higher
temperature as the film thickness increases. The effect seems to be
bigger for the step at low temperature, indicating that the thinner the

Fig. 5. FTIR of solid residue during Y-Prop3 decomposition at 5 K/min in different atmospheres, and the corresponding XRD spectra of the final products. Percentages
are expressed as (mf/mi)%.
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film, the earlier the evolution of propionic acid (shifted by 20 °C to
lower temperatures when nominal thickness is reduced from 4.8 μm to
0.5 μm). Similarly, for powders deposited on LAO, the decomposition
temperature decreases when the particles size is reduced from
≈500 μm to a few μm (by grounding).

Since the kinetics of the β reaction scheme is limited by oxygen and
water diffusion, the large surface to volume ratio of films makes gas
renewal next to the surface much more efficient, favoring this me-
chanism. For this reason, in films with humid or oxidative atmosphere,
only propionic acid is detected, and not 3-pentanone. Route α is not
seen until the thickness approaches a few microns (≈5 μm) for ex-
periments at atmospheric pressure in N2, and for very thin films only in
experiments performed in vacuum. On the other hand, keeping the
mass constant (nominal thickness ≈4.4 μm), the decomposition seems
to be accelerated in this order: humid O2 > dry O2 >nitrogen/va-
cuum (Fig. 6b). This is in agreement with the fact that the formation of
the radicals, path α, requires higher temperatures as compared with
hydrolysis and oxidation of the molecule.

In powders, due to the slow intra-particle oxygen transport [21], the
local atmosphere near particles is almost inert and process β shifts to
higher temperatures. This shift of process β favors the occurrence of α,
to the point that in N2 β is almost suppressed; we observe a long plateau
before decomposition starts and the volatiles observed correspond to
route α (Fig. 4D’). As a confirmation, we enhance the inter-particle
oxygen transport by spreading particles on a substrate instead of pla-
cing them inside a crucible, and we observe in oxygen the same be-
havior as in films: formation of propionic acid instead of 3-pentanone
(Fig. 7B’).

The formation of a local inert atmosphere would explain why Nasui
et al. [17] reported the presence of ketones by MS instead of propionic
acid when the powder sample was decomposed in air. In fact, for
powders inside a crucible we observe slight differences between the
volatiles formed in oxidizing and inert atmosphere but in all cases ke-
tones and CO2 are the main volatiles (Fig. 7C’, D’). However, while in
inert conditions most radicals rearrange as 3-pentanone, the presence of
oxygen (C’, and C in smaller amount due to the sensitivity of the film to
residual O2) may oxidize some, resulting in the formation of 2-butanone
(reaction scheme α*) along with the symmetric ketone. In fact, 1) EGA-
MS shows the presence of the characteristic fragments of 2-butanone
(m/z=43, 72) well separated from those of 3-pentanone (m/z=57,
86); 2) additionally the ratio of fragments 43/57 increases by one order
of magnitude going from inert to oxidizing atmosphere (from F,E,D’ to
C’), while the 57/86 ratio remains constant; 3) lastly, EGA-FTIR, be-
sides being in agreement with the presence of 2-butanone (Fig. 8C’),
shows formation of CO and H2O in C’ (as expected in α*), and their
contribution decreases with decreasing O2 content in the atmosphere
(going from C’ to D’ in Fig. 7). Finally, small amounts of propionic acid
and acetaldehyde are also detected by MS and IR at the beginning of

Fig. 6. a) Effect of particles’ size and film thickness and b) effect of atmosphere on TG curves of Y-Prop3 at 5 K/min; the legend is labeled in order of curve
appearance, from left to right.

Fig. 7. EGA of the volatiles from decomposition of Y-Prop3 powder at 10 K/min
varying atmosphere type and sample layout. Enlarged image of C’ can be found
in the Supporting Info.
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decomposition in oxygen, as a consequence of the occurrence of reac-
tion scheme β at the particles’ surface.

Therefore, the significant increase of fragment m/z=43 in the
presence of an oxygen atmosphere can be attributed to the oxidation of
the C2H5 fragment of the ligand to produce acetaldehyde (A and B), and
to yield 2-butanone upon recombination of CH3C]O% and C2H5· ac-
cording to α* (in C’ where radicals are formed). On the other hand, in
the absence of oxygen, upon simple recombination without oxidation of
the radicals, butane could be formed (in E, F).

3.7. Thermal explosion

From Fig. 6a, it is apparent that when the powder mass in a humid
oxygen atmosphere reaches a critical value, the TG curve no longer
exhibits a smooth evolution but shows a very abrupt mass loss and the
differential thermal analysis (Supporting Info, Fig.S5) curve exhibits a
very sharp exothermic peak; these two features (not observed in N2) are
characteristic of a thermal runaway [21,45–47]. When a thermal run-
away occurs, the reaction becomes locally unstable; it reaches a high
temperature state and accelerates enormously so that it is virtually
adiabatic (all the heat released by the reaction contributes to the
sample temperature increase) [48–52].

From the physical parameters of Y(C2H5CO2)3 (Table 2) we calcu-
lated the critical film thickness (Hcr) at which a thermal runaway would
happen for the sample in the form of film in humid O2, according to the
equation [53]:

=H
T

δ ca
qb

R
Ecr
G Kis

A
cr

2

(1)

Furthermore, we were able to calculate the critical mass (mcr) for
which thermal explosion would occur in the case of powders in humid
O2 inside a 70-μl alumina pan (finite cylinder geometry, diameter of
4.95mm) combining the following relationships [53]:

= =+
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where TKis is the temperature at which the reaction rate is at its max-
imum [54–56], RG is the universal gas constant, EA is the activation

energy, a is the thermal diffusivity ≡( )a ,λ
ρc c is the specific heat ca-

pacity of the sample, q is the heat of reaction (Enthalpy) and b is the
heating rate.

The aforementioned equations and the determination of the phy-
sical parameters given in Table 2 are described in the supporting in-
formation; in particular, the kinetic parameters (A and EA) were derived
performing TG experiments in humid O2 at 4 different heating rates,
and the curves were analyzed using isoconversional kinetic methods
[57,58], specifically the Friedman method. Thermal conductivity (λ)
and specific heat capacity (c) were obtained experimentally from dif-
ferential scanning calorimetry in a specific temperature range for the
sample in the form of powder [59,60].

Knowing the aforementioned parameters and solving equation 1,
the critical thickness above which combustion would occur for a Y-
Prop3 thin film is 937 μm at a heating rate of 5 K/min, which means that
for films a thermal explosion is impossible to reach [53,61]. This can be
explained thanks to the greater surface of the substrate, which helps
dissipating the heat, preventing combustion from occurring. On the
other hand, from equation 2, the sample critical mass for Y-Prop3 was
found to be around 13mg for a heating rate of 5 K/min. This is in
agreement with the evolution of the TG curve with the sample mass
shown in Fig.S2 of the Supporting info, where, for a 13-mg sample, we
observe the characteristic sharp mass loss related to a thermal runaway.

4. Conclusions

In this study, we have analyzed the thermal decomposition of yt-
trium propionate as a function of film thickness, particle size, heating
rate and gas atmosphere, comparing samples in the form of film and
powder. We have shown that the volatiles depend on the aforemen-
tioned parameters. This behavior is related to the competition between
two different mechanisms: one related to the hydrolysis and oxidation
of yttrium propionate in the presence of water or oxygen, and a second
mechanism related to a radical reaction. The first one is enhanced by
oxygen and water vapor, and in films due to the easy diffusion of the
reacting species. Conversely, the radical decomposition is favored in
inert conditions and when oxygen diffusion or atmosphere renewal
around the sample are hindered.

Finally, we have observed that films decompose differently than
powders; they exhibit different kinetics and the decomposition route is
also different. For instance, films decompose at significantly lower
temperatures and their decomposition is accelerated by the presence of
water vapor. Conversely, within the standard parameters of TG ana-
lysis, powders may undergo combustion for sample masses of the order
of 10 mg. Taking into account this different behavior between films and
powders, it is of the utmost importance to analyze films to disclose the
actual phenomena occurring during YBCO precursor pyrolysis in the
synthesis of superconducting tapes.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the

Fig. 8. Infrared spectra of the volatiles detected at the corresponding decom-
position peak in Fig. 7.

Table 2
Physical Parameters of Y(C2H5CO2)3.

Specific heat capacity, c [J/(kg K] 1247 (180 °C)
Activation Energy, EA [kJ/mol] 83.46
Pre-exponential Constant, A [s−1] 4.6× 105

Enthalpy of Reaction, q [J/kg] 4.26×106

Apparent Density, ρ [kg/m3l] 630
Thermal Conductivity, λ [W/(m·K)] 0.06
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