

Treball Final de Grau/Carrera

Realitzat i defensat a UCLeuven-Limburg (nom universitat) de Bèlgica
(país)

Estudi: Grau en Eng. Electròn. Ind. i Automàtica Pla 2009

Títol: Robotic Arms

Document: Memòria

Alumne: Juan Salom Bonnin

Director/Tutor: Jaume Puig
Departament: Eng. Química, Agrària i Tecn. Agroalimentària

Convocatòria (mes/any): gener/2018

Index

1. INTRODUCTION ... 1

1.1. Background .. 1

1.2. Purpose .. 1

1.3. Scope ... 1

2. LIST OF FIGURES .. 2

3. COMPANY .. 4

4. EXERCISE DESCRIPTION ... 5

4.1. Picking .. 5

4.2. Placing .. 6

5. CODES .. 8

5.1. Software ... 8

5.1.1. FANUC Roboguide .. 8

5.1.2. KUKA Sim Tech & OfficeLite HMI .. 15

5.1.3. ABB Robotstudio ... 17

5.2. Hardware .. 20

5.2.1. KUKA KR-C3 ... 20

5.2.2. FANUC LR Mate 200 iD/4s .. 24

6. BRAND DIFFERENCES .. 28

6.1. Robots .. 28

6.2. Software ... 29

6.2.1. Simulation .. 29

6.2.2. Coding ... 31

7. OVERVIEW OF EXERCISE DIFFERENCES ... 34

7.1. Declaring variables ... 34

7.2. Grab routine.. 35

7.3. Placing routine .. 36

8. CONFIGURATION MANUAL ... 38

8.1. ABB Robotstudio .. 38

8.2. FANUC Roboguide ... 40

9. GLOSSARY ... 42

10. BIBLIOGRAPHY .. 43

Robotic Arms Juan Salom

1

1. INTRODUCTION

1.1. Background

The University of Leuven-Limburg in their Electro-mechanics courses use KUKA

robots to teach the students how a robotic/mechanical arm works, its functionalities,

capabilities and its usage in production lines in a real industrial environment.

Nowadays they own a KUKA KR-C3, a robot with six degrees of freedom.

 They have recently acquired a new FANUC LR Mate 200/iD 4s robot with six

degrees of freedom as well as its offline and online software.

Also, they downloaded an ABB software Robotstudio to watch how it performs and if

it would be a good choice to buy an actual robot.

1.2. Purpose

The project describes a unique exercise that intention is to teach the students about

the different brands of robotic arms on how to utilize these robots for future works in

industries.

Precisely, it is a palletizing exercise that grabs sticks and places them into layers in

which every even layer the rotation changes resulting in a tower of perpendicular

sticks, which size is within the software and hardware limitations of the robot.

The objective is to show the students the main differences in coding/programming

and teaching the distinct brands of robots so they will have a wider acknowledgment

about it and could be a big difference in their workplaces.

1.3. Scope

This project has required an autonomous learning on two of the three robots and

has taken 3 months to finish it. Because the course cannot take that long, the

exercise will be simplified for the student, as a meaning, the code and layout of the

robot is almost done, the student will have to complete it.

Two courses for each robot should be the appropriate period of learning, so it will be

between 3-6 hours a lesson. Taking into account that one of the robots it is only

simulated that sums a total of 5 exercises, definitely, that is a total of 15-30 hours of

learning, depending on how the teachers want to manage the time.

Robotic Arms Juan Salom

2

2. LIST OF FIGURES

Figure 1. Picking structure .. 5

Figure 2. Placing structure ... 6

Figure 3. FANUC sim Code 01 ... 9

Figure 4. FANUC sim Code 02 ... 10

Figure 5. FANUC sim Code 03 ... 11

Figure 6. PICK subprogram .. 12

Figure 7. PLACE subprogram ... 13

Figure 8. VacPick simulation subroutine ... 14

Figure 9. VacPlace simulation subroutine ... 14

Figure 10. KUKA SIM code ... 15

Figure 11. ABB Robotstudio Code 01 ... 17

Figure 12. ABB Robotstudio code 02 .. 18

Figure 13. ABB Robotstudio Code 03 ... 19

Figure 14. KUKA KR-C3 ... 20

Figure 15. KUKA Teach pendant .. 21

Figure 16. KUKA robot code 01 .. 21

Figure 17. KUKA robot code 02 .. 22

Figure 18. FANUC LR Mate 200iD /4s .. 24

Figure 19. iPendant Touch from FANUC... 25

Figure 20. FANUC robot code ... 25

Robotic Arms Juan Salom

3

Figure 21. Subprogram ‘Grab’ FANUC ... 26

Figure 22. Subprogram ‘Place’ FANUC .. 27

Figure 23. KUKA SIM Tech ... 29

Figure 24. ABB Robotstudio .. 30

Figure 25. FANUC Roboguide .. 31

Figure 26. KUKA declarations ... 34

Figure 27. ABB declarations ... 34

Figure 28. FANUC declarations .. 35

Figure 29. KUKA calculation process .. 36

Figure 30. KUKA placing action .. 36

Figure 31. ABB calculation process .. 36

Figure 32. ABB placing action ... 37

Figure 33. FANUC calculation process ... 37

Figure 34. FANUC placing action .. 37

Figure 35. SmartComponent connections ... 38

Figure 36. Station Logic I/O connections... 39

Figure 37. Utool Configuration .. 40

Figure 38. Parts configuration ... 41

Robotic Arms Juan Salom

4

3. COMPANY

The company I did the project is the University of Leuven-Limburg, at the

Technology faculty, located in Campus Diepenbeek, Hasselt, Belgium.

The ambition of UCLL is to stimulate regional development. This in no way excludes

an international scope, to the contrary. The future of the region and the alumni is

closely linked to their international competences. UC Leuven-Limburg brings

international cases and practices to its regional businesses. By developing

international competences amongst their local graduates and by attracting exchange

students, the university college supplies the region with much-needed international

alumni. For all of this, we turn to the international partners for inspiration, good

practices and collaboration.

In my staying, I was in the Robotics Laboratory, working with the real robots they

have and the software which lets you practice with the simulated robot that you

choose. My purpose was to teach the professors and they consequently, would the

students.

Robotic Arms Juan Salom

5

4. EXERCISE DESCRIPTION

The exercise is a palletizing exercise involving sticks that have to be picked up with

a vacuum tool (as it is the same than in the laboratory) from a vertical structure (Fig.

1) and then placed in a certain order on top of a table (Fig 2).

The student has to think on how it is easier for the robot to do this, spending the less

effort on coding/programming the robot and also thinking on the shorter ways for the

robot, taking care of singularities and not exceeding axis limits neither. Also, the

type of movement has to be in mind (linear, joint or arc) as it can create problems

when running the program.

The idea of the exercise is to make a program whose code is simple, clean and

clear, by that means, the student has to do a thinking before starting as organization

is key to get it nicer.

 It is important that the program is not full of taught points as the idea here is to

teach the less points possible and after it make some calculations to get a full

autonomous program, this way if in the future it is necessary to change something

this would be just changing numbers and not have to teach new points.

4.1. Picking

The first part of the program is for the robot to pick the sticks. In this exercise the

sticks are laying in a vertical structure on top of each one like in the next figure.

 Figure 1. Picking structure

Robotic Arms Juan Salom

6

The number of sticks can be variable as in the code it has to be set up as a variable.

Then the robot will keep placing them depending on how many sticks there are as it

depends on layers of sticks, where each layer contains 4 sticks. If the number of

sticks is divided by 4 and the remainder is not 0, then the robot has to leave the

sticks that do not form a layer of 4.

The robot has to learn a position over the structure of sticks, its height has to be

much higher than the first stick on top (in case there are a lot of sticks), then it starts

to go down with the vacuum ON, when it grabs a stick, the vacuum sensor goes

‘HIGH’ and the down movement has to stop. Then the piece is taken to the placing

spot.

4.2. Placing

After picking the stick, the robot takes it to another location; this location is set up in

the code and can be wherever but inside the robot axis limits. The target structure

has to be like seen in the figure 2.

 Figure 2. Placing structure

As it can be seen there are layers of 2 sticks in the same orientation, to not make it

that difficult for calculations, the layers consist on 2 sticks in a perpendicular

orientation and other 2 sticks perpendicular to them, making a total of 4 per layer.

Robotic Arms Juan Salom

7

For placing, there is only one point needed to be taught to the robot, as the other

points are calculated from that point in the code. The first stick goes to that taught

point, then the second just moves in a axis. For the third, it has to move in the three

axis and one rotation axis minimum, normally around ‘Z’.

Robotic Arms Juan Salom

8

5. CODES

In this chapter the codes used for each exercise will be explained separately for

each brand because were some I/O issues between hardware and software.

To summarize, there are some common variables in each code, however there

could be more or less depending of the language used in the programming screen.

H or C Variable used to set the height of the stack of sticks

I Auxiliary variable used to set the maximum layers

Sticks For setting the total number of sticks

Layer Counter for the corresponding layer at that moment

5.1. Software

5.1.1. FANUC Roboguide

The FANUC software called Roboguide uses a visual simulation program where the

objects are linked to fixtures. It has a lot of configurations for the Robot controller

and environment, however, the idea for the exercise is to use the Teach pendant as

the operator would use it in the actual robot. The TP has the environment for coding,

nevertheless it is not free programming and it is not as intuitive as other coding

languages. Its basis is on the language ‘KAREL’.

Robotic Arms Juan Salom

9

Figure 3. FANUC sim Code 01

The code starts with the setting of the Frame and Tool that is going to be used in

this program. This has to be created in the simulation program.

After that, the Payload is set up; the payload indicates how much load the robot is

holding. When setting this, the inertia of the robot with and without load has to be

calculated as well as the load inertia in every axis. This determines how the robot

will accelerate between points.

Then the registers (constants and variables) are started with the value wanted.

Registers 1 to 7 are axis registers and registers ‘10:I’ and ’11:C’ will be explained

their function later.

A joint movement to the start position ‘Home’ is needed for getting ready the robot

and eliminate possible interferences with other programs.

Now, we enter the FOR Loop, from Layer = 1 to 3.

Setting up ‘Layer’ to 0 and the FOR Loop from 0 to 2 seems to not work.

Robotic Arms Juan Salom

10

Figure 4. FANUC sim Code 02

First thing in the loop is to call in the subprogram ‘PICK’ (Fig.6) that will be explained

later, but basically it is the program for picking the sticks. Then the robot passes

again through position ‘Home’ to avoid going directly to the place point as that could

cause collisions.

Then the subprogram ‘PLACE’ is called (will be explained later, Fig. 7) and the robot

goes to the corresponding position where it leaves the stick (positions 6, 7, 8 and 9).

The robotic arm waits 1 second, this time control could avoid problems with the

outputs switching ON or OFF before or after it is required. Then another subroutine

is called, in this case ‘VACPLACE’ is a simulation program not done in the Teach

Pendant and will be explained later (Fig.9).

Robotic Arms Juan Salom

11

 Figure 5. FANUC sim Code 03

Before ending the FOR Loop, we increase the layer by 1 as every time this loop is

done it creates one layer of 4 sticks.

Then the robot just goes to ‘Home’ position to finish the program. As said, this

program can do many layers as we configure in the code because it is based on

calculations of positions.

Robotic Arms Juan Salom

12

Figure 6. PICK subprogram

The Payload is set up to the first configuration that it was created for having a stick

at the tool as a load.

In the registers a Position Register is created (PR2: PICK), this lays just on top the

table where the first stick touches the table. This position must not be changed for

calculations as it could mess the entire program. So another P.R. (PR5:1 stick) is

set as the same position as PR2, except for the ‘Z’ axis that is changed and

summed with the register R[11:C]. This register is equal to ‘10 * the number of

sticks’ so every time it enters the subprogram it goes lower.

Then a P1 is created way higher than the sticks and it moves there with a joint

movement, after that it goes to the calculated PR5 in a linear movement.

The subroutine ‘VACPICK’ (Fig. 8) is a simulation program that basically picks the

stick with the vacuum tool, then waits 1 second and goes again to P1.

To finish, the registers ‘R9: Sticks’ and ‘R11:C’ are calculated again for next loop.

Robotic Arms Juan Salom

13

Figure 7. PLACE subprogram

The ‘PLACE’ subprogram starts off with the setting of the Payload that was created

for the robot without load at the tool. Then all the next calculations take place to

create the points where the sticks are going to land, 4 positions for each layer. As

seen, the ‘PR8’ needs changes in every axis, including the rotation ones.

Robotic Arms Juan Salom

14

Figure 8. VacPick simulation subroutine

This subroutine is inside the simulation program and it is obliged to create it outside

the T.P. Every part, tool and fixture has to be configured for picking up.

Figure 9. VacPlace simulation subroutine

This is exactly the opposite of the subroutine mentioned before, it is used for

dropping the sticks in the fixture ‘Table11’. Everything needs to be configured in the

main program.

Robotic Arms Juan Salom

15

5.1.2. KUKA Sim Tech & OfficeLite HMI

KUKA has its own software called Sim Tech and uses another own program called

OfficeLite that lets you connect the virtual T.P. to the simulation program.

Sim Tech is a simple and intuitive program to use for everyone and requires little

knowledge on how it works, however this simplicity means that the program has

some limitations in software.

The coding language is based on a mix of Pascal and its own language.

Figure 10. KUKA SIM code

To start, declarations of integers and positions variables have to be made before

the INI instruction (does not appear but should be at line 17) as well as their values.

The robot goes to ‘Home’ position and then enters the While (layer has to be equal

or less than I).

Robotic Arms Juan Salom

16

Position ‘Pick’ takes the coordinates of ‘Down’, which position is just where the first

stick touches the table at the picking structure. Then the height of the total of sticks

is added to the ‘Z’ axis and the robot goes there to pick it up.

Position ‘P1’ gets the coordinates of ‘Place’ which sits where the first stick at the

place structure touches the table, then the next 3 positions ‘P2,P3,P4’ are

calculated from ‘P1’.

After that, the robot enters the movement loop where it goes to a position called

‘UP’ which lays on top of the picking structure and after picking the stick (‘Pick’)

goes again to ‘UP’ and then to the corresponding place position.

We see that except of the first line, in the others there is a line which changes the

height of the picking spot, subtracting 12 mm each time. Also, at the end we know

that the robot has already picked up 4 sticks so we subtract it to the total of sticks.

*Remark: This is done in an old version of KUKA Sim Tech and OfficeLite and it is

not possible to link outputs nor inputs, so this shows only the movements of the

robot.

Robotic Arms Juan Salom

17

5.1.3. ABB Robotstudio

ABB has its software called Robotstudio, it is a powerful engine with a lot of

features and adjustments that can make a simulation program much similar to the

actual robot.

This has a strong drawback which makes the program complex and hard to

understand in most parts, nonetheless the coding system called ‘Rapid’ is an

interactive and intuitive programming method, as the program helps you with every

instruction made, completing it for you if necessary.

The T.P. engine is weak as it has only a few options to edit something about the

robot environment, the code cannot be modified and sometimes changing between

T.P. and the sim program creates bugs and issues in the software.

Figure 11. ABB Robotstudio Code 01

The Rapid coding system creates modules and its hierarchy down way are the

Procedures, after that there are the instructions.

In the figure 11 we can see how to declare targets for the robot and variables. The

easiest way to set targets is to do it in the simulation program as it is much more

intuitive and simple; using the code could be useful to change some coordinates or

quaternions (axis of rotation).

Robotic Arms Juan Salom

18

In this case, the procedure ‘Main’ is not utilized.

Figure 12. ABB Robotstudio code 02

Inside the procedure the variables have to be set. As always, the common

variables are there with a few more that will be explained later.

First thing the robot has to do is go to position ‘Home’, as we see, the positions are

in the next form: Type of move – Name – Pace – Precision – Tool – Workobject.

Then the program goes into the While Loop (Layer equal or less than I), then the

positions are configured with the instruction ‘Offset’. Next to them there are the

comments explaining every point.

After it, calls the function ‘Grab’ (Fig. 13) and moves to ‘Restpoint’ and then to the

placing point. A ‘WaitUntil \ InPos’ is needed before setting the vacuum to LOW

because the simulation robot resets the vacuum before arriving to the target.

Robotic Arms Juan Salom

19

 Figure 13. ABB Robotstudio Code 03

At the end of the loop 1 layer is added to the counter condition. This procedure

ends going to position ‘Home’.

The subroutine ‘Grab’ moves to ‘P1offs’ which lays on top of the sticks, the vacuum

is set to HIGH and a ‘WaitTime’ is strictly necessary to not interfere with the While

Loop.

To enter the While Loop, the digital input ‘SensorV’ (detects if there is stick) has to

be LOW. Then ‘r1’ is used as height for grabbing the sticks, as we can see, if there

is no stick, the robot goes 10mm lower with the instruction ‘Move RelTool’ which

moves the tool respecting to position ‘p1offs’ in the axis wanted. There ‘r1’ is set up

with the first and last equation that involves ‘counter’. In the move, the ‘Z’ axis is

positive as in the simulation program ‘Z’ of the tool is negative.

The ‘WaitUntil SensorV = 1’ is there to space the time between actions and to make

sure that the sensor detects the stick. A ‘WaitTime’ should work the same.

Robotic Arms Juan Salom

20

5.2. Hardware

5.2.1. KUKA KR-C3

The KUKA KR-C3 is the robot used in the Robotics Lab and the one that has to be

taught to the students, it is almost the same as the previous version KR-C2 but the

controller and robot is lighter and more compact. Designed for small spaces and

little loads.

It is a small robotic arm with 6 degrees of freedom, stands out for his speed and low

weight and has a maximum payload of 3 kg. Also, it has a maximum reach of 635

mm and a repeatability of ± 0.05 mm.

Figure 14. KUKA KR-C3

Robotic Arms Juan Salom

21

The T.P. lets you edit the code and control the robot in an easy and safe way.

Figure 15. KUKA Teach pendant

The program made for the actual robot differs from the simulation one because in the

actual robot there are the inputs and outputs needed, so the code changes.

Figure 16. KUKA robot code 01

Robotic Arms Juan Salom

22

To start off, always before the INI instruction (does not appear in the code, but

should be in Line 16), declarations must be done and after declarations values can

be assigned to variables or constants.

The same as in the FANUC code we have similar variables that means the same,

we have ‘Layer’, ‘Stick’, ‘I’ and ‘Position’. The last one is an optional function that

works with the Switch case and defines where the structure is going to lay.

First the robot goes to ‘Home’ position, and then using a While Loop (While Layer is

equal or less than I) the program starts the calculation of the points for placement

of sticks. Same as before, we have 4 sticks per layer.

Position ‘Restpoint’ lays in between ‘Home’ and the stick structure, then the

subprogram ‘GRAB’ is called (Figure 11) and then it goes with a linear movement

to ‘Point1’ which is the first point of the place structure. Then Output 1 is shut OFF

and output 2 is set ON, this is for stopping the vacuum.

Figure 17. KUKA robot code 02

Robotic Arms Juan Salom

23

As we see, the process repeats. Calculations are made for each point and require

linear axis moves, except for ‘Point3 ’ that also requires a 90 degree rotation in ‘Z’

axis.

At Line 78, the ‘GRAB’ subprogram is defined: the robot goes to ‘XP1’ (on top of

the sticks) and then to ‘XP2’ (even closer). The vacuum is activated with output 1 to

ON and output 2 to OFF, then the programs enters a while loop meaning that while

the vacuum sensor does not detect any stick it does a linear movement in ‘–Z’

direction until the sensor notices it, only after that exits the subprogram.

Robotic Arms Juan Salom

24

5.2.2. FANUC LR Mate 200 iD/4s

The FANUC was recently acquired by the university and with it is required to teach

the students on a new brand. This model has 6 axis or degrees of freedom. It is

more modern than the KUKA and also smaller and lighter.

Has a protection of IP67, has a maximum reaching of 550 mm and a maximum

payload of 4 kg; also repeatability is ± 0.013 mm.

Weighs only 20 kg and the controller R30iB is remarkable for its weight and minor

size, perfect for compact places and little cabins.

Figure 18. FANUC LR Mate 200iD /4s

Robotic Arms Juan Salom

25

The T.P. is called ‘iPendant Touch’; it is lightweight, ergonomic and the touchscreen

is resistive. It has space for USB stick and reserved internal options for two more

axes.

Figure 19. iPendant Touch from FANUC

The program made for hardware and software are different because in the actual

robot program actually there is an input sensor that can detect if the output

(vacuum) has picked something.

Figure 20. FANUC robot code

Robotic Arms Juan Salom

26

As it was done in the simulation program, the payload has to be set up, in this case,

payload [2] is movement without load and payload [1] motion with 1 stick on the tool.

The variables are configured as registers for ease and recognition of the name. We

see that the register ‘R[2:i]’ has two calculations as the coding system does not let

you incorporate two different operands in the same line and because the ‘For loop’

cannot be entered with a variable its value is 0 so it is needed to sum 1 up to ‘R[2:i]’.

First off, the robot goes to ‘Home’ position, then the subprogram ‘PLACE’ is called,

only once and at the beginning (will be explained later). After that comes the

subprogram ‘GRAB’.

The layer is composed of the four positions registers: ‘5:p1, 6:p2, 7:p3 and 8:p4’.

The robot waits 1 second for assuring to reach the corresponding position, then the

vacuum is turned off (RO[3]) and the payload is set again as without load.

To finish, one unity is added to layer and if reaches the maximum value for the For

loop it ends; with the robot to ‘Home’ position the program ends.

Figure 21. Subprogram ‘Grab’ FANUC

A position register ‘PR[4]’ is equalized with ‘Restpoint’ position, this way it is

possible to work with a position without changing any coordinates. After, the

payload[1] is set on.

Robotic Arms Juan Salom

27

Then the robot goes to ‘Restpoint’ which is higher on top of the pick structure and

the vacuum is turned on. With an ‘IF’ condition that means if the input ‘RI[1]’ is off, 5

mm of the ‘Z’ axis are subtracted to that position so it starts to go down until the

input detects piece, this is achieved because of the instruction ‘LBL and JMP LBL’.

A ‘Wait’ is put on there as it is needed to make sure it grabs the stick. Then, it just

goes to ‘Restpoint’ again.

Figure 22. Subprogram ‘Place’ FANUC

This subroutine is only meant for calculations, there are no motion actions on the

robot.

First off, the height (R[4]) is set up as the ‘Layer’ multiplied by 8 so it goes higher

with every layer. As in every program made, the 4 positions are calculated the

same.

‘P1’ takes the coordinates of ‘Placep(oint)’, which lays where the first stick touches

the table. Then ‘P2 and P3’ just equalize to ‘P1’ and ‘P4’ takes the ‘P3’ coordinates.

For the orientation of the perpendicular layer, a turn of -90 degrees in the ‘Z’ axis is

obliged.

Robotic Arms Juan Salom

28

6. BRAND DIFFERENCES

6.1. Robots

It is important to know which robot has the best features and characteristics for

knowing which to buy or use in a production line. In the next table, a comparison is

made. The ABB robot is a similar model than the other two brands.

MODEL KUKA KRC3 FANUC LRMATE

200iD/4s

ABB IRB 120

MAX. LOAD 3 kg 4 kg 3 kg

REACH 635 mm 550 mm 580 mm

WEIGHT 30 kg 20 kg 25 kg

IP IP40 IP67 IP30

REPEATABILITY ± 0.05 mm ± 0.013 mm ± 0.01 mm

ARM SIGNALS(I/O) 4/4 6/2 6/4

J1 VELOCITY 240 º/s 460 º/s 250 º/s

J2 VELOCITY 210 º/s 460 º/s 250 º/s

J3 VELOCITY 240 º/s 520 º/s 250 º/s

J4 VELOCITY 375 º/s 560 º/s 320 º/s

J5 VELOCITY 300 º/s 560 º/s 320 º/s

J6 VELOCITY 375 º/s 900 º/s 420 º/s

J1 MOTION RANGE ±180º 360º +165º to -165º

J2 MOTION RANGE -45º/135º 230º 110º to -110º

J3 MOTION RANGE -225º/45º 402º 70º to -110º

J4 MOTION RANGE ±180º 380º 160º to -160º

J5 MOTION RANGE ±135º 240º 120º to -120º

J6 MOTION RANGE ± ∞ 720º 400º to -400º

PRICE 7.000 € 14.092 € 18.638 €

We can conclude that the best option would be the FANUC as its light weight,

protection, joint velocity and motion ranges are better than the other two models. The

only important drawback between the other is the maximum reach.

Also, taking in account the price, the KUKA is a good option for quality at cheap cost.

Robotic Arms Juan Salom

29

6.2. Software

As for the software, a table like the previous is not understandable for this subject,

so the software aspects will be explained objectively and with remarks from the

author of the project too.

6.2.1. Simulation

The simulation program will be rated on how easy or complex, its overall functions

and special features.

To start off with the easiest program, that would be the KUKA Sim Pro. To make a

layout of a robot with a tool configured standing on a table and doing a simple task

is relatively simple and requires low effort of learning. It is an intuitive program for

offline programming and it is good to learn about the environment near a robot.

It has a wide variety of components thanks to the ‘eCatalog’ from a KUKA server

that lets you download new components and resources from it.

Nonetheless, the simplicity of the program makes it sloppy and unclear to work in a

serious way with it. The teach function does not let many options for making

programs. Also the view functions are slow as there are no shortcuts for the mouse,

only a few of the keyboard.

Figure 23. KUKA SIM Tech

Robotic Arms Juan Salom

30

As for the ABB Robotstudio, that would be the most complex sim program out of

the three. However, its difficulty on making a simulation program is compensated

with the enormous aspects and feature that has. Creating and running a successful

program means spending a good amount of time learning but then the capabilities

that has are seen and going further away with does not seem already tough.

However, there are aspects (like the constant manual synchronization it is needed

between coding and simulation, the amount of configurations you have to do for

tools and also the axis orientation that creates problems sometimes) that could be

better done.

Figure 24. ABB Robotstudio

Then, the FANUC Roboguide as for difficulty it would be between the two, it is

capable of many things but it is hard to understand how it works because it uses

connections between the objects for running it, the objects are not ‘free’ in space

like in the other programs. That utilization of the objects creates a lot of

configurations that can be made such as create and destroy delays, approach and

retreat automatic points, simple tool creation… also there are a good amount of

objects that can be created: parts, fixtures, obstacles, workers, machines, cables…

Robotic Arms Juan Salom

31

and every type of object has its own function in the program and this is where it

comes the complex part, knowing which object it is needed for an especial function

and knowing how to set it up correctly.

This also creates a problem being the program not intuitive and using the virtual TP

only for programming is not possible unlike in the actual robot. Some of the

functions do not work properly and the program crashes occasionally and corrupts

the file.

Figure 25. FANUC Roboguide

6.2.2. Coding

KUKA Sim pro for coding has to work side a side with OfficeLite which acts as the

TP. The coding in KUKA is pretty straightforward and easy to understand. Uses a

similar language to Pascal called KRL, like a mix between Pascal and its own

KUKA language. It is a modular language with 4 types of data and two types of

movement can be programmed.

Robotic Arms Juan Salom

32

Also if a mistake is made the error log is clear and lets you know where the actual

issue is at. Overall, it is a good coding system for beginners and a good point to

start to work with robots due to its clearness and ease of use.

Robotstudio uses the ABB own coding language which was influenced by the

predecessor ARLA and also by C. Includes procedures, trap routines, functions,

automatic error handling and can multi task.

Unlike the complexity of the sim program, the Rapid system helps you code,

showing all the options that can be typed in the instruction and this does not waste

time of learning how to code that specific language.

Like it was mentioned before, the Rapid system in the software works separately

from the sim program unless you set it up manually. Also, some arithmetic

instructions are hard to understand and unclear, i.e. rotations for a point are in

quaternion system.

FANUC Roboguide does not have a free programming system but is basis is on

language KAREL, it is possible to code in a PC and then run it in the robot but any

mistake appearing in the code will have to be fixed in the PC again. The program

uses the TP for coding. Its principal difference it is that utilizes various types of

registers (normal registers, position registers, palletize registers…), this registers

have to be set up before start coding as if that is not done, correcting the program

in case of error could be a great mess.

The TP has a lot of good functions: resistive touchscreen, easy jogging, USB port,

lightweight, option to window the screen until 4 windows… but at the same time

some functionalities seem older.

Referring to instructions, the programming does the job but with less options than

the competence, besides, the not freedom coding makes it hard for the

programmer to be imaginative and creative.

Robotic Arms Juan Salom

33

 SIM Pro &

OfficeLite

ABB Robotstudio FANUC

Roboguide

Advantages Straightforward

coding and

simulating.

Instructions are clear

and manageable.

Simulation features

and options are

huge.

Automatic coding

system and clear

error handling.

Registers do not

need data type

specification.

TP has options

which ease working.

Drawbacks Simplicity limits the

options for the robot.

The sim program is

old and tedious for

working, i.e. cannot

link I/O to program.

Complexity means to

spend quite time

learning.

Synchronization

between coding and

simulation is not

automatic.

Coding system is not

free and instructions

are limited.

It is not possible to

use I/O in TP

programming.

Robotic Arms Juan Salom

34

7. OVERVIEW OF EXERCISE DIFFERENCES

To the reader to understand better the differences between the three coding

language systems in this chapter, it will be shown how coding changes referring to

instructions to accomplish an objective for the robot.

This will be explained summarized, if the reader needs more information it is more

detailed in the chapter 5.Codes.

7.1. Declaring variables

The first thing in the program is to declare the different variables and constants and

set their value.

- KUKA: Declarations are made at the top before the INI system instruction. There

are four types and must be declared directly. After that, the value has to be

given below it.

Figure 26. KUKA declarations

- ABB: Also, declarations must be done before the Procedure routine and the

value can be given directly there.

Figure 27. ABB declarations

Robotic Arms Juan Salom

35

- FANUC: Declarations can be done, either on the register tab or inside the

program. Data type just has to be according the five types of registers existing.

The values can be changed also inside or in the register tab.

Figure 28. FANUC declarations

7.2. Grab routine

Here, how every robot has to approach, pick a stick and retreat will be seen in code.

- KUKA: A point is set higher than the sticks’ structure, the vacuum gets on and

with the instruction ‘While’; while the input is LOW starts going down with the

instruction LIN_REL{Z -9}, which makes the robot descend linearly 9 mm until it

detects the stick.

- ABB: The instructions are nearly the same except for a few; a ‘WaitTime’ is

needed before the ‘While’, inside the ‘While’ two variables more are needed as

the instruction for descending is not the same. ‘MoveL RelTool’ is for moving the

tool linearly but respecting to a point, as the height has to change two variables

are needed to change the height every time goes inside the loop.

- FANUC: Because there is no ‘While’ loop, two mixed instructions are needed:

‘IF’ and ‘JMP & LBL’. A position register is equalized to the one that lays higher

of the structure, then the LBL starts before the ‘IF’; if the input is LOW 5 mm are

subtracted of the position and the robot descends that, after it there is the ‘JMP

LBL’ and the process repeats until input is not LOW anymore.

Robotic Arms Juan Salom

36

7.3. Placing routine

Here the process for calculating the placement points and the routine of how the

robot does the job will be summarized.

- KUKA: A point where the first stick to be placed touches the table is taught, then

from this point the others are calculated, P1 and P2 in the same orientation and

height and P3 and P4 higher and 90 degrees turned. The instructions in KUKA

for this are as shown in the figure:

Figure 29. KUKA calculation process

As we see, these are the instructions for it, it is possible to change the three axis

and its rotation of a point (X, Y, Z, A, B, C). Units are in millimetres and degrees.

To do the action of placing, a call to subroutine ‘Grab’ and deactivation of

vacuum are needed.

Figure 30. KUKA placing action

- ABB: In this code, the points have to be calculated with an offset from a point.

Also rotation is only possible in this way using quaternions which are hard to

calculate, so the solution for rotating P3 and P4 is to add a point already rotated

to make it simpler.

Figure 31. ABB calculation process

In the comment section we can see the explanation given for the calculations.

Also, the variable ‘c’ is needed as in this case P1 and P3 are not equalized and

the height has to be set up like this.

Robotic Arms Juan Salom

37

To make the placement process it works like KUKA except for one added

instruction.

Figure 32. ABB placing action

Before turning off the vacuum it is important to add the ‘WaitUntil \InPos’ as the

program tries to execute the instructions as fast as possible and it deactivates

the vacuum before arriving at the point.

- FANUC: This system works quite similar to KUKA, the instruction does the

same, it only changes its syntax.

Figure 33. FANUC calculation process

As seen, now the axes are called ‘1, 2, 3, 4, 5 and 6’ referring to ‘X, Y, Z’ and its

rotations ‘W, P, R’. To work like used in the code, the position registers have to

be saved as Cartesian coordinates.

The process of placing is exactly the same as KUKA.

Figure 34. FANUC placing action

Inside the ‘Grab’ subroutine there are the approach and retreat positions, also

the wait is to make sure it reaches the position before turning off the vacuum.

Robotic Arms Juan Salom

38

8. CONFIGURATION MANUAL

This chapter is a manual for the lecturers on how to set up correctly the robot and

the environment on ABB Robotstudio and FANUC Roboguide, as in KUKA Sim

Tech is not possible to link inputs or outputs.

8.1. ABB Robotstudio

To set up the layout like in the figure 24:

- Add the robot you want.

- Go to create Geometry and make a cylinder at coordinates {0, 0, 0}.

- Go to create a Tool and fill the requests.

- Drag the tool to the robot at the Layout tab.

- Then, in modelling tab, go to smart sensor and add component.

- Add a LineSensor, create it with enough length and small radius. Drag it to the

tool at the layout Tab.

- Go to Signals and connections and then add I/O signals and add 1 D.I. and 1

D.O.

- Double click on the created SmartComponent, then add components and

connect them this way.

Figure 35. SmartComponent connections

Robotic Arms Juan Salom

39

- Then you go to Controller, I/O system configuration, and click add signals, 1 D.I.

and 1 D.O. Both with value = 1.

- Then go to Station Logic, Signals & Connections and create the next

connections:

Figure 36. Station Logic I/O connections

- After that, the tool should grab and drop objects and the D.I. sensor should

detect if there is an object at or near the tool.

- Now, the environment just has to be created. Place the robot, add some models

for objects like tables or cubes, set up correctly the axes of every object with

frame and create the targets and paths.

- Then the procedure is created and you have to synchronize with RAPID, so click

synchronize to RAPID and the code generated would be in the RAPID tab.

- There you can code and go much further with the actions that the robot can do.

Robotic Arms Juan Salom

40

8.2. FANUC Roboguide

For setting up the layout like in figure 25:

- Create new cell and follow the wizard: select create robot with default

configuration; select the latest version; click on handling tool H552; select the

robot to use, in our case order number H754; then just hit next to everything else

and finish the wizard.

- First thing is to add the tool: at the Cell Browser, open Robot controllers > robot

> tooling > right-click on UT > add link. If we do not like the tools’ models we can

add an own model: box, cylinder, sphere or CAD file.

- Double click on the tool and set the location of it and the mass, and go to

UTOOL tab, edit it and drag it to the end of the tool. Click ‘use current triad

location.

Figure 37. Utool Configuration

- Then, to create an environment, go to fixtures and create some tables for

example. Fixtures do not interact with the robot, only on collision.

- When adding anything, the size and location can be changed.

- Also go to parts and create the parts you want to work with. Remember that the

mass should not be greater than the payload. The part will be created on top of

a Part Rack, only the rack can be moved.

- After that, go to the fixture created and double click, go to parts tab and select

the part you want it to be linked. Select where you want it to be using the part

offset.

Robotic Arms Juan Salom

41

Figure 38. Parts configuration

- Then double click on the tool and do the same in the parts tab. Go to simulation

tab and at Gripper settings select Vacuum.

Robotic Arms Juan Salom

42

9. GLOSSARY

In this chapter the acronyms appeared in the project are given its meaning.

CAD – Computer Aided Design

D.I. – Digital Input

D.O. – Digital Output

I/O – Inputs & Outputs

IP – Ingress Protection

P.R. – Position Register

T.P. – Teach Pendant

U.C.L.L – University of Leuven-Limburg

Robotic Arms Juan Salom

43

10. BIBLIOGRAPHY

http://www.fanuc.eu/es/en/robots/robot-filter-page/lrmate-series/lrmate-200id-4s

http://new.abb.com/products/robotics/industrial-robots/irb-120

http://www.globalrobots.com/product.aspx?product=24933

https://en.wikipedia.org/wiki/KUKA_Robot_Language

https://en.wikipedia.org/wiki/RAPID

https://en.wikipedia.org/wiki/Karel_(programming_language)

http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf

https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%2

0reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf

http://www.aip-

primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_D

ownload&EntryId=147&PortalId=1&TabId=150

http://www.fanuc.eu/es/en/robots/robot-filter-page/lrmate-series/lrmate-200id-4s
http://new.abb.com/products/robotics/industrial-robots/irb-120
http://www.globalrobots.com/product.aspx?product=24933
https://en.wikipedia.org/wiki/KUKA_Robot_Language
https://en.wikipedia.org/wiki/RAPID
https://en.wikipedia.org/wiki/Karel_(programming_language)
http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150

