iy
Universitat de Girona

Escola Politécnica Superior
[

Treball Final de Grau/Carrera

Realitzat i defensat a UCLeuven-Limburg (nom universitat) de Belgica
(pais)

Estudi: Grau en Eng. Electron. Ind. i Automatica Pla 2009

Titol: Robotic Arms

Document: Memoria

Alumne: Juan Salom Bonnin

Director/Tutor: Jaume Puig
Departament: Eng. Quimica, Agraria i Tecn. Agroalimentaria

Convocatoria (mes/any): gener/2018

Index

1.

2.

3.

4,

6.

7.

INTRODUGCTION ...ttt ettt e e e e e e e e anbb e e e e 1
3 O = = Tod (o | {0 ¥ Vo USSP 1
I 0] o0 USSP 1
R T Yo 0 o 1= USSP 1
LIST OF FIGURES ... ettt e e 2
COMPANY ittt ettt e e e et e e ettt b e e e e e et ee bbb e e aaeeenrnes 4
EXERCISE DESCRIPTION ..ottt ettt a et aeeeeans 5
AL, PUCKING ettt 5
4.2, PLACING. ...ttt 6
GO D S e 8
5.1 SOTIWAIE .ttt 8
5.1.1. FANUC RODOQUITEcceiiiiiiiiiiiiiie 8
5.1.2. KUKA Sim Tech & OfficeLite HMIcccooviiiiiiiiiiiiiireeiee e 15
5.1.3. ABB RODOISTUTIOcceiiieiiiiiies e e et e e e e e eeeees 17
5.2, HAIAWATEeeeiiieeei ettt 20
521, KUKA KR-C3 .ottt e e e 20
522 FANUC LR Mate 200 iD/AS......uuuuuuueueeeenenenennnnnnnnnnennnnnnnnnnnnnsnnnsnnnnennnnnnne 24
BRAND DIFFERENCESottt et e e 28
6.1, RODOIS ...t e e 28
6.2, SOMWAIE ...t e e 29
6.2.1. SIMUIALION. ..ottt 29
L O o o [o PSSP 31
OVERVIEW OF EXERCISE DIFFERENCES.........coiiiii e 34
7.1. Declaring variables i 34
A €1 - 1o I {01V 1] = TSP 35

7.3, PlaCing FOULINEuuiiitiiiiiiiiiiiiiiiiiiiiieee bbbt eeeennnes 36

8. CONFIGURATION MANUALooiii e 38

T I AN =1 = 3 = o] o Lo 153 (8o [o 1NN 38
8.2. FANUC RODOQUIAEcoiiiiiiii e 40
0. GLOS S ARY ettt a e e 42

10. BIBLIOGRAPHY ... 43

Robotic Arms Juan Salom

1. INTRODUCTION
1.1 Background

The University of Leuven-Limburg in their Electro-mechanics courses use KUKA
robots to teach the students how a robotic/mechanical arm works, its functionalities,
capabilities and its usage in production lines in a real industrial environment.

Nowadays they own a KUKA KR-C3, a robot with six degrees of freedom.

They have recently acquired a new FANUC LR Mate 200/iD 4s robot with six

degrees of freedom as well as its offline and online software.

Also, they downloaded an ABB software Robotstudio to watch how it performs and if

it would be a good choice to buy an actual robot.

1.2. Purpose

The project describes a unique exercise that intention is to teach the students about
the different brands of robotic arms on how to utilize these robots for future works in

industries.

Precisely, it is a palletizing exercise that grabs sticks and places them into layers in
which every even layer the rotation changes resulting in a tower of perpendicular

sticks, which size is within the software and hardware limitations of the robot.

The objective is to show the students the main differences in coding/programming
and teaching the distinct brands of robots so they will have a wider acknowledgment
about it and could be a big difference in their workplaces.

1.3. Scope

This project has required an autonomous learning on two of the three robots and
has taken 3 months to finish it. Because the course cannot take that long, the
exercise will be simplified for the student, as a meaning, the code and layout of the

robot is almost done, the student will have to complete it.

Two courses for each robot should be the appropriate period of learning, so it will be
between 3-6 hours a lesson. Taking into account that one of the robots it is only
simulated that sums a total of 5 exercises, definitely, that is a total of 15-30 hours of

learning, depending on how the teachers want to manage the time.

Robotic Arms Juan Salom

2. LIST OF FIGURES

Figure 1. PIiCKING SITUCTUIE ... e e e e e et a e e e e e e eeneees 5

Figure 2. PlaCing SIIUCIUIEccooiiieeeeeeeee e 6

Figure 3. FANUC SimM Code 01cooiiiiiiiiii et e e e ettt s e e e e e e e eanees 9

Figure 4. FANUC SiM Code 02oooeiiiiiii et e ettt s e e e e e e eanees 10
Figure 5. FANUC SIM Code 03 ... 11
Figure 6. PICK SUDPIOQIramccoiiiiiiiieie e e e e et e e e e e e e eanees 12
Figure 7. PLACE SUDPIOQIamMcooiiiiiiieie ettt s e e e e e eeaa e s s e e e e e aeennes 13
Figure 8. VacPick simulation SUDIOULINEccooeieeieieeeeeeee e 14
Figure 9. VacPlace simulation subrouting ... 14
Figure 10. KUKA SIM COURttt s e e e e e ettt e s e e e e e e eanees 15
Figure 11. ABB RobOtStudio COE 01uiiiiiiiiiiiiice et e e eaeees 17
Figure 12. ABB RoDOtStUdio COAE 02.......ccooeeeeeeeeeeeeeeeeee e 18
Figure 13. ABB RoDOtStudio Code 03ccooiiieeeeeeeeee e 19
Figure 14. KUKA KR-C3 ...t 20
Figure 15. KUKA Teach pendantccooooieiioe oo 21
Figure 16. KUKA robot COOE 01coooiiieeeeeeeeeeeeeeee e 21
Figure 17. KUKA robot COAE 02 ...t eeeeeeeees 22
Figure 18. FANUC LR Mate 200ID /4Sccii et 24
Figure 19. iPendant Touch from FANUC ... 25
Figure 20. FANUC robOt COOE.......ccooeeieeeeeeeeeeeeeeeeeeeeeee e 25

Robotic

Arms Juan Salom

Figure 21. Subprogram ‘Grab’ FANUCooiiiiiiiiiiiii e 26
Figure 22. Subprogram ‘Place’ FANUC ... 27
Figure 23. KUKA SIM TECN ...t 29
Figure 24. ABB RODOISTUAIO.ccooeeeeeeeeeeeeeeeee e 30
Figure 25. FANUC RODOQUITEcooieeeeeeeeeeeeeeeeeee e 31
Figure 26. KUKA deClaratiOnsS...........oouuiiiiiiii it e ettt s e e e e e e ennnes 34
Figure 27. ABB deClarationsccoooeeiiiiieeeeeeeeeeeeeee e 34
Figure 28. FANUC decClarationscooooooeoeiieeeeeeeeeee e 35
Figure 29. KUKA calCulation PrOCESS.......ciiiii it e e et s e ettt e e e e e e aanees 36
Figure 30. KUKA placing actionuciiiiiiiiiiiiiiei et e et e e e e e e eanens 36
Figure 31. ABB calculation PrOCESSccooieiiieieeeeeeeee e 36
Figure 32. ABB PlaCing @ClONccooeeeeeeeeeeeee e 37
Figure 33. FANUC calCulation PrOCESSccoceiiiiiiiiiiiiie e e ee ettt a e e e eanees 37
Figure 34. FANUC placing aCtiON............oiiiiiiiiiiiiiie et e e e e e annees 37
Figure 35. SmartComponent CONNECLIONSccoeeieieeeeeeee e 38
Figure 36. Station Logic I/O CONNECHIONS...........ocuuiiiiiiii e e e eanens 39
Figure 37. Utool Configurationioii i e e e eaeens 40
Figure 38. Parts CONfIQUIAtIONccoeiieeeeeeeee e 41

Robotic Arms Juan Salom

3. COMPANY

The company | did the project is the University of Leuven-Limburg, at the

Technology faculty, located in Campus Diepenbeek, Hasselt, Belgium.

The ambition of UCLL is to stimulate regional development. This in no way excludes
an international scope, to the contrary. The future of the region and the alumni is
closely linked to their international competences. UC Leuven-Limburg brings
international cases and practices to its regional businesses. By developing
international competences amongst their local graduates and by attracting exchange
students, the university college supplies the region with much-needed international
alumni. For all of this, we turn to the international partners for inspiration, good

practices and collaboration.

In my staying, | was in the Robotics Laboratory, working with the real robots they
have and the software which lets you practice with the simulated robot that you
choose. My purpose was to teach the professors and they consequently, would the
students.

Robotic Arms Juan Salom

4. EXERCISE DESCRIPTION

The exercise is a palletizing exercise involving sticks that have to be picked up with
a vacuum tool (as it is the same than in the laboratory) from a vertical structure (Fig.
1) and then placed in a certain order on top of a table (Fig 2).

The student has to think on how it is easier for the robot to do this, spending the less
effort on coding/programming the robot and also thinking on the shorter ways for the
robot, taking care of singularities and not exceeding axis limits neither. Also, the
type of movement has to be in mind (linear, joint or arc) as it can create problems

when running the program.

The idea of the exercise is to make a program whose code is simple, clean and
clear, by that means, the student has to do a thinking before starting as organization
is key to get it nicer.

It is important that the program is not full of taught points as the idea here is to
teach the less points possible and after it make some calculations to get a full
autonomous program, this way if in the future it is necessary to change something
this would be just changing numbers and not have to teach new points.

4.1. Picking

The first part of the program is for the robot to pick the sticks. In this exercise the
sticks are laying in a vertical structure on top of each one like in the next figure.

Figure 1. Picking structure

Robotic Arms Juan Salom

The number of sticks can be variable as in the code it has to be set up as a variable.
Then the robot will keep placing them depending on how many sticks there are as it
depends on layers of sticks, where each layer contains 4 sticks. If the number of
sticks is divided by 4 and the remainder is not O, then the robot has to leave the

sticks that do not form a layer of 4.

The robot has to learn a position over the structure of sticks, its height has to be
much higher than the first stick on top (in case there are a lot of sticks), then it starts
to go down with the vacuum ON, when it grabs a stick, the vacuum sensor goes
‘HIGH’ and the down movement has to stop. Then the piece is taken to the placing

spot.

4.2. Placing

After picking the stick, the robot takes it to another location; this location is set up in
the code and can be wherever but inside the robot axis limits. The target structure
has to be like seen in the figure 2.

Figure 2. Placing structure

As it can be seen there are layers of 2 sticks in the same orientation, to not make it
that difficult for calculations, the layers consist on 2 sticks in a perpendicular
orientation and other 2 sticks perpendicular to them, making a total of 4 per layer.

Robotic Arms Juan Salom

For placing, there is only one point needed to be taught to the robot, as the other
points are calculated from that point in the code. The first stick goes to that taught
point, then the second just moves in a axis. For the third, it has to move in the three

axis and one rotation axis minimum, normally around ‘Z’.

Robotic Arms Juan Salom

5. CODES
In this chapter the codes used for each exercise will be explained separately for

each brand because were some |/O issues between hardware and software.

To summarize, there are some common variables in each code, however there

could be more or less depending of the language used in the programming screen.

HorC Variable used to set the height of the stack of sticks

I Auxiliary variable used to set the maximum layers

Sticks For setting the total number of sticks
Layer Counter for the corresponding layer at that moment
5.1. Software

5.1.1. FANUC Roboguide

The FANUC software called Roboguide uses a visual simulation program where the
objects are linked to fixtures. It has a lot of configurations for the Robot controller
and environment, however, the idea for the exercise is to use the Teach pendant as
the operator would use it in the actual robot. The TP has the environment for coding,
nevertheless it is not free programming and it is not as intuitive as other coding

languages. Its basis is on the language ‘KAREL'.

Robotic Arms Juan Salom

Buay Step Hald Fault
Bun 4% I/0 Prod TCyo EALLET LIR
PALLET
1/55

BE: vreiME NUM=1
2: TUTOOL_NUM=1
3: PBAYLOADI[1]
4
5: ER[1:X]=0
f: R[2:¥]=0
7: R[3:Z0]=0
B: R[4:W]=0
9: R[5:P]=0
10: R[&:R]=0
11: ER[7:Z1]1=0
12: ER[EB:Layer]=1
13: R[9:5ticks]=8
14: BR[10:I]=R[9:5ticks] DIV 4
15: ER[11:C]=R[9:5ticks]#*10
1a:
17:J BPR[3:HOME] 100% CHT100
1Az
19: FOR R[&:Layer]=1 TO 3
20z

Figure 3. FANUC sim Code 01

The code starts with the setting of the Frame and Tool that is going to be used in

this program. This has to be created in the simulation program.

After that, the Payload is set up; the payload indicates how much load the robot is
holding. When setting this, the inertia of the robot with and without load has to be
calculated as well as the load inertia in every axis. This determines how the robot

will accelerate between points.

Then the registers (constants and variables) are started with the value wanted.
Registers 1 to 7 are axis registers and registers ‘10:I" and '11:C’ will be explained

their function later.

A joint movement to the start position ‘Home’ is needed for getting ready the robot

and eliminate possible interferences with other programs.

Now, we enter the FOR Loop, from Layer =1 to 3.

Setting up ‘Layer’ to 0 and the FOR Loop from 0 to 2 seems to not work.

Robotic Arms

Juan Salom

DL U T % % T % T % T 0 T % % T 8

La L
[I |

iz
Fun S Prod TCic

PALLET

G L L L L L
[= T Y SO L % R e TV e O S - R (R R LT 6 T S

)
K]

=
[}

Step Hald Fanlt

CALL PICK
@FR[3:HOME] 100% CNT100
CALL PLACE

PR[6:PL1] 100% CNTE20
WAIT 1.00(sec)

CALL VACPLACE

CALL PICK
@PR[3:HOME] 100% CNT100
CALL PLACE

PR[7:PL2] 100% CNTE0
WAIT 1.00(sec)

CALL VACPLACE

CALL PICK
@PR[3:HOME] 100% CNT100
CALL PLACE

PR[&:PL3] 100% CNTE0
WAIT 1.00(sec)

CALL VACPLACE

Figure 4. FANUC sim Code 02

FATLLET LIN

397353

First thing in the loop is to call in the subprogram ‘PICK’ (Fig.6) that will be explained

later, but basically it is the program for picking the sticks. Then the robot passes

again through position ‘Home’ to avoid going directly to the place point as that could

cause collisions.

Then the subprogram ‘PLACE’ is called (will be explained later, Fig. 7) and the robot

goes to the corresponding position where it leaves the stick (positions 6, 7, 8 and 9).

The robotic arm waits 1 second, this time control could avoid problems with the

outputs switching ON or OFF before or after it is required. Then another subroutine

is called, in this case ‘VACPLACE’ is a simulation program not done in the Teach

Pendant and will be explained later (Fig.9).

10

Robotic Arms

Juan Salom

Buay Step Hald Fault
run GO trod [RGHEN| FATLET LIN
PALLET

23/55
36:J EPE[3:HOME] 100% CNT100
37: CALL PLACE
38:J PR[8:PL3] 100% CNTEO

39: WAIT 1.00(sec)
40: CALL VACPLACE
41:

42: CALL PICK
43:J @PR[3:HOME] 100% CHNT100
44: CALL PLACE
45:J PR[9:PL4] 100% CNTEO
46: WAIT 1.00(sec)
47: CALL VACFLLCE
48
49: R[&8:Layer]=E[&:Layer]+l
50: ENDFOR
5l:
52:J @PR[3:HOME] 100% CHNT100
s
54:

[End]

Figure 5. FANUC sim Code 03

Before ending the FOR Loop, we increase the layer by 1 as every time this loop is

done it creates one layer of 4 sticks.

Then the robot just goes to ‘Home’ position to finish the program. As said, this

program can do many layers as we configure in the code because it is based on

calculations of positions.

11

Robotic Arms Juan Salom

PAYLOAD[1]

FR[5:1 stick]=FR[2:PICK]
FR[5,3:1 stick]=PR[5,3:1 stick]+R[11l:C]
:J F[1] 100% CHISO
:L. PE[5:1 stick] 500mm/sec FINE
CALL VACFICK
WAIT 1.00({sec)
:J F[1] 1l00% CHISO
10: R[9:5tick3a]=R[9:5ticks]-1
11: R[11:C]=10*E[3:5ticks]
[End]

-.:ucoqmm.pwh.\!

Figure 6. PICK subprogram

The Payload is set up to the first configuration that it was created for having a stick
at the tool as a load.

In the registers a Position Register is created (PR2: PICK), this lays just on top the
table where the first stick touches the table. This position must not be changed for
calculations as it could mess the entire program. So another P.R. (PR5:1 stick) is
set as the same position as PR2, except for the ‘Z' axis that is changed and
summed with the register R[11:C]. This register is equal to ‘10 * the number of

sticks’ so every time it enters the subprogram it goes lower.

Then a P1 is created way higher than the sticks and it moves there with a joint

movement, after that it goes to the calculated PR5 in a linear movement.

The subroutine ‘VACPICK’ (Fig. 8) is a simulation program that basically picks the
stick with the vacuum tool, then waits 1 second and goes again to P1.

To finish, the registers ‘R9: Sticks’ and ‘R11:C’ are calculated again for next loop.

12

Robotic Arms Juan Salom

Buay Step Hald Fault
fun #2040 | fecad |0 | FLACE LINE O
PLACE
1/19
BE: raviozpgz)
2: PR[6:PL1]=PR[1:PLACE]
3: R[1l2:A]=R[8:Layer]=*10
4: PR[6,3:PL1]1=PR[&,3:FL1]+R[12:A]
9: PR[7:PL2]=FR[6:FL1]
6: PR[7,1:PL2]=FR[7,1:PL2]+48
7
&8: PR[B:PL3]=PR[6:PL1]
9: PR[8,3:PL3]=PR[8&,3:PL3]+10
10: PR[8,2:PL3]=PR[&,2:PL3]+15
11: PR[8,1:PL3]=PR[&,1:PL3]+28
2: PR[8,5:PL3]=PE[8,5:PL3]+(-1.3)
13: PR[&,6:PL3]=PR[&,6:PL3]+88.3
l4: PR[&,4:FL3]=FR[&,4:FL3]+1.8
15:
16: PR[9:FL4]=PFE[8:FL3]
17: PR[9,2:PL4]=PR[%,2:PL4]-25
[=
[End]

Figure 7. PLACE subprogram

The ‘PLACE’ subprogram starts off with the setting of the Payload that was created
for the robot without load at the tool. Then all the next calculations take place to
create the points where the sticks are going to land, 4 positions for each layer. As

seen, the ‘PR8’ needs changes in every axis, including the rotation ones.

13

Robotic Arms Juan Salom

E\ Simulation Program Editor - Robot Controllerl - VacPick 126
-'-.- - x"-; - a - -a - e':-l - e‘:: -
Record Touchup MoveTo Forward Backward Inst Mone Mone

- EI " » }(%.@
BY * pickup

TR
Rl = Tablet : Stick01[4] -
-

TR ¥ GP:1 - UT: 1 (Wacoum) : Stick01[1]

Figure 8. VacPick simulation subroutine

This subroutine is inside the simulation program and it is obliged to create it outside

the T.P. Every part, tool and fixture has to be configured for picking up.

& Simulation Program Editor - Rebot Controllerl - VacPlace IE
~J = | & B B D .8
Record | |Touchup MaoveTo Forward Baclward Inst Mone Mone

a v « oy X %-@

From | # GP1-UT:1 (Macuum) @ Stick01[1] \d |

Wl = Tablet1 : Stick01[4

Figure 9. VacPlace simulation subroutine

This is exactly the opposite of the subroutine mentioned before, it is used for
dropping the sticks in the fixture ‘Table11’. Everything needs to be configured in the

main program.

14

Robotic Arms

Juan Salom

5.1.2. KUKA Sim Tech & OfficeLite HMI

KUKA has its own software called Sim Tech and uses another own program called

OfficeLite that lets you connect the virtual T.P. to the simulation program.

Sim Tech is a simple and intuitive program to use for everyone and requires little

knowledge on how it works, however this simplicity means that the program has

some limitations in software.

The coding language is based on a mix of Pascal and its own language.

LU [I S SN

o T
e MR OWn

1a

17 &

1is
19
20
21
&
23
23
25
26
27
25
&5
30
31
3z
33
53
35
36

DEF pallet|()
IMT LAYEFR
IMNT I

INT STICHE
IMNT H

P23 FP1

P23 PZE

P23 P3

P23 P4

FO3I PICHE

LAYER=1
STICE=S
I=STICES4
H=1=Z*LAYEFR

FTF XHOHME

WHILE ([(LAYER<=I)

PICK=DOWHN
PICK.Z=PICKE.Z+1z2*3TICK
FP1=FPLACE
P1.zZz=FP1.Z+H
P2=F1

Pz . X=Pz2 .HE+55
P3=F1
P3.E=FP3.EZ+H
P3.XE=P3.E+Z5
P3.¥=P3.¥—-Z2
P3.C=F3.C—-90
Pa3=F3
P3.¥=F3.%¥+15

Figure 10. KUKA SIM code

37
g
539
40
41
35
33
33
35
k3=
£
45
19
50
51
5z
53
S5
55
Sa
57
55
59
=3u]
= §
(=95
63
=
65
(=3
a7
[=1=]
=3=]
7o
71

FTF TP
LIN FPICE
PTF TF
PTF F1

FTF UF
PICE.Z=PICEK.Z-1Z2
LIN FICEK

FTF UF

PTF F2

PTF TF
PICK.Z=PICK.Z-12
LIN FPICK

FTF UF

PTF F3

FTF UF
PICK.Z=PICKE.Z-1Z2
LIN FPICE

PTF TF

PTF F4

STICE=3TICE-4%

LAYER=LAYER+1

ENDWHILE

PTPF XHOHME

END

To start, declarations of integers and positions variables have to be made before

the INI instruction (does not appear but should be at line 17) as well as their values.

The robot goes to ‘Home’ position and then enters the While (layer has to be equal

or less than I).

15

Robotic Arms Juan Salom

Position ‘Pick’ takes the coordinates of ‘Down’, which position is just where the first
stick touches the table at the picking structure. Then the height of the total of sticks

is added to the ‘Z’ axis and the robot goes there to pick it up.

Position ‘P1’ gets the coordinates of ‘Place’ which sits where the first stick at the
place structure touches the table, then the next 3 positions ‘P2,P3,P4’ are

calculated from ‘P1’.

After that, the robot enters the movement loop where it goes to a position called
‘UP’ which lays on top of the picking structure and after picking the stick (‘Pick’)

goes again to ‘UP’ and then to the corresponding place position.

We see that except of the first line, in the others there is a line which changes the
height of the picking spot, subtracting 12 mm each time. Also, at the end we know

that the robot has already picked up 4 sticks so we subtract it to the total of sticks.

*Remark: This is done in an old version of KUKA Sim Tech and OfficeLite and it is
not possible to link outputs nor inputs, so this shows only the movements of the

robot.

16

Robotic Arms Juan Salom

5.1.3. ABB Robotstudio

ABB has its software called Robotstudio, it is a powerful engine with a lot of

features and adjustments that can make a simulation program much similar to the

actual robot.

This has a strong drawback which makes the program complex and hard to

understand in most parts, nonetheless the coding system called ‘Rapid’ is an

interactive and intuitive programming method, as the program helps you with every

instruction made, completing it for you if necessary.

The T.P. engine is weak as it has only a few options to edit something about the

robot environment, the code cannot be modified and sometimes changing between

T.P. and the sim program creates bugs and issues in the software.

EI. T T S

MODULE Modulel
= CONST robtarget Heme:=[[232.329829201,-28.826755026,814.977659974],[0.993127548,0.08220279,0.013503404, -0. 032202793,
[-1,8,-1,1],[9E+@9,9E+09, 9E+89,9E+09, 9E+A9, 9E+89]];
CONST robtarget Target 18offset:=[[358.627914838,-128,5819,444,028724941],[@,0,1,0],[-1,0,-1,8],
[9E+@9,9E+89, 9E+89,9E+89,9E+89,9E4+09]] ;

CONST robtarget Target 10:=[[358.627914838,-128.819,363.297],[0,0,1,0],[-1,8,-1,8], [JE+A9,9E+89 , 9E+09, OE+89, 0E+09, 9E+89]];
CONST robtarget Target_20offset:=[[330.758,265.921,430.614089394],[0,0,1,0],[0,0,0,0], [9E+09,0E+09, 9E+09, 9E+09, 9E+89, 9E+69]];
CONST robtarget Target 28:=[[333.65,265.921,391.699943146],[@,8,1,8],[0,8,0,8], [9E+9,9E+89, 9E+89, 9E-+09, 9E+A9,9E+09]];
CONST robtarget P1:=[[383.827,-186.248,406, 608000803],[@,0,1,8],[-1,0,-1,0], [JE+29,9E+00, 0E+B0,0E+80, 0F+20,0E+20] |;
CONST robtarget P2:=[[320.447,149.409,346.782],[8,8,1,0],[0,0,8,8],[9E+89,9E+09, 9E-+89, 9E+09, 9E+09,9E+89]];
CONST robtarget Ploffs:=[[363.827,-186.248,426.000000003],[0,0,1,0],[-1,8,-1,0], [9E+09, 9E+09, 0E+A9, OE+09, 9E+00,9E+69]];
CONST robtarget P2offs:=[[320.447,149.489,356.782],[0,0.787106751,0.707106781,8],[@,0,1,8], [9E+89,9E+89,9E+@9,9E+09, 9E+A9, 9E+09]
VAR robtarget pl@;
VAR robtarget P11; !Declarations have to be done HERE, Robtarget for targets respecting to robet(Const or Var) -
VAR robtarget P12; ! and num for any type of number
VAR robtarget P13;
VAR robtarget Restpoint;
VAR num Layer;
VAR num Stick;
VAR num I;
VAR num rl;
VAR num counter;
VAR num c;

= PROC main() ! We create a path in the HOME TAB and here we make the structure of the code, although we-
! dont have to use the MAIN procedure so leave it in blank.
ENDPROC

Figure 11. ABB Robotstudio Code 01

The Rapid coding system creates modules and its hierarchy down way are the

Procedures, after that there are the instructions.

In the figure 11 we can see how to declare targets for the robot and variables. The

easiest way to set targets is to do it in the simulation program as it is much more

intuitive and simple; using the code could be useful to change some coordinates or

gquaternions (axis of rotation).

17

Robotic Arms Juan Salom

In this case, the procedure ‘Main’ is not utilized.

S PROC Path_18()

31 ! declare the number of sticks to arrange

32 Stick:=8;

33 I:= Stick/4;

34 Layer:= 1;

35 ci=0;

36 counter:=1;

37 Movel Home, w588, z5, TCPVacuum \WObj:=wobje;

38

39 = WHILE (Layer<=I) DO

48

41 ci=Layer-1; !Set ¢ as a variable for the height of the layers.

42 Restpoint:= Offs(P2,8,0,200); !create a restpoint respect to P2 with +288mm in 7 Axis
43 Pl@:=0ffs(P2,8,8, Layer*le4+c*18); 'now the same with P18 but the height changes every loop
44 : fs(Pl@,8,3@,8); ! P11 just moves +3@ in Y respecting to Pl@

s(
45 fs(P2offs,-10,11, (Layer*1@4c*1@)); ! As P12 has to rotate we've created another point already rotated
a6 P13:=0ffs(P12,32,0,8);

a7

43 !This moves the robot in PTP movement to a point with
49 Grabj ! the specified velocity and precision. The

58 Movel Restpoint, vS@@, z5, TCPVacuum \WObj:=wobj@; ! toocldata and the workobject have to be specified
51 Movel pl@, vsee, z5, TCPVacuum \WObj:=wobj@;

52 WaitUntil \InPos,TRUE;

53 Reset Vacuumj;

54 GRAB; I calls function GRAB

55 Movel Restpoint, vs@e, z5, TCPVacuum ‘\WObj:=wobje;

56 Movel P11, v5@@, z5, TCPVacuum \WObj:=wocbj@;

57 WaitUntil \InPos,TRUE; ! wait until the robot arrives at position

58 Reset Vacuum; ! set output to @

59 GRAB;

Movel Restpoint, v58@, z5, TCPVacuum \WObj:=wobje;
Movel P12, w508, z5, TCPVacuum \WObj:=wcbj@;
WaitUntil \InPos,TRUE;

Reset Vacuum;

GRAB;

Movel Restpoint, v58@, z5, TCPVacuum \WObj:=wobje;
Movel P13, vsee, z5, TCPVacuum \WObj:=wobj@;
WaitUntil \InPos,TRUE;

reset Vacuumj

GO M RO
00w R Wk @

Figure 12. ABB Robotstudio code 02

Inside the procedure the variables have to be set. As always, the common
variables are there with a few more that will be explained later.

First thing the robot has to do is go to position ‘Home’, as we see, the positions are

in the next form: Type of move — Name — Pace — Precision — Tool — Workobject.

Then the program goes into the While Loop (Layer equal or less than I), then the
positions are configured with the instruction ‘Offset’. Next to them there are the

comments explaining every point.

After it, calls the function ‘Grab’ (Fig. 13) and moves to ‘Restpoint’ and then to the
placing point. A ‘WaitUntil \ InPos’ is needed before setting the vacuum to LOW

because the simulation robot resets the vacuum before arriving to the target.

18

Robotic Arms Juan Salom

7@ Layer:=Layer+l;

! layer +1 as we have 1 layer done
7 ! now layer and ¢ change and the height also
72 ENDWHILE
74 Movel Home,v5@@,z5, TCPVacuum\Wobj:=wobja;
77 ENDPROC
80 PROC GRAB()

Movel Ploffs, vws@@, z5, TCPVacuum \WObj:=wchje;
SetD0 Vacuum, 1;
WaitTime (8.5);

a position is set on top of the sticks

vacuum on

wait to reach the position and not interfere with the-
next function WHILE

= WHILE (DInput (SensorV)=8) DO

rl:=counter*1@;
Movel RelTool (ploffs,®,@,rl), v6e,z5,TCPVacuum \WObj:=wohje; !move the tool linearly down from the previous position-

9@ WaitUntil Sensorv=1; I'rl times until it detects stick and then exits the WHILE
91 counter:=counter+l;
92 ENDWHILE
& ENDPROC
ENDHMODULE

Figure 13. ABB Robotstudio Code 03

At the end of the loop 1 layer is added to the counter condition. This procedure

ends going to position ‘Home’.

The subroutine ‘Grab’ moves to ‘P1offs’ which lays on top of the sticks, the vacuum
is set to HIGH and a ‘WaitTime’ is strictly necessary to not interfere with the While

Loop.

To enter the While Loop, the digital input ‘SensorV’ (detects if there is stick) has to
be LOW. Then ‘r1’ is used as height for grabbing the sticks, as we can see, if there
is no stick, the robot goes 10mm lower with the instruction ‘Move RelTool" which
moves the tool respecting to position ‘p10ffs’ in the axis wanted. There ‘r1’ is set up
with the first and last equation that involves ‘counter’. In the move, the ‘Z’ axis is

positive as in the simulation program ‘Z’ of the tool is negative.

The ‘WaitUntil SensorV = 1’ is there to space the time between actions and to make

sure that the sensor detects the stick. A ‘WaitTime’ should work the same.

19

Robotic Arms Juan Salom

5.2. Hardware

5.2.1. KUKA KR-C3

The KUKA KR-C3 is the robot used in the Robotics Lab and the one that has to be
taught to the students, it is almost the same as the previous version KR-C2 but the
controller and robot is lighter and more compact. Designed for small spaces and
little loads.

It is a small robotic arm with 6 degrees of freedom, stands out for his speed and low
weight and has a maximum payload of 3 kg. Also, it has a maximum reach of 635
mm and a repeatability of + 0.05 mm.

Figure 14. KUKA KR-C3

20

Robotic Arms

Juan Salom

The T.P. lets you edit the code and control the robot in an easy and safe way.

(2]
800088

@6
®e
@0
L

@
(-]
@
L)

-

......--=g

1

oS
4

5000000

)

Figure 15. KUKA Teach pendant

The program made for the actual robot differs from the simulation one because in the

actual robot there are the inputs and outputs needed, so the code changes.

-1 N o WM

DEF FALLETL(|
INT STICE

INT LAYER

INT I

INT POSITION
POS POINTL
POS POINTZ
POS POINTS

POS POINT4

LAYER=1
ATICE=1Z
I=ETICES4
POSITICH=0

:0
FTF XHOME
WHILE [LAYER<=I)

SWITCH{POIITICH)

CAIE O
POINT1=DOW

POINT1. Z=FPOINT1.
POINT1.¥=FOINT1.

31
32
33
I3
35
3
37
e
39
40
31
3=
335
34
35
16
37
L 1=]
33
50
51
52
53
54
55
=3 =)
57
55
52
=1u]}

or 1

Z+11*LAYER
T-120

CASE 1
FOINT1=DOWH

FOINTL1.Z=FOINT1.
FPOINT1.¥=FPOINTI1.
POINT1.X=POINT1.

EMNDSEWITCH

FOINTZ=FOINT1
FPOINTE . ¥=FOINTZ

POINT3=FOINT1

FOINTS . Z=FOINT3 .
POINTS . X=FPOINT3.
FPOINTS . ¥=FPOINTS.
LCH+20

FOINTS . C=FOINT3

FPOINTA=POINTS
FOINTS . X=FOINT4

FTF RESTPOINT
GRAE (]

FPTF RESTPOINT
LIN POINT1
$OUT[1] =FLLSE
$0UT[2] =TRUE
GRAE [

FTF RESTPOINT

Figure 16. KUKA robot code 01

Z+11*LAYER
¥T-3Z0
X-60

-Y¥+7E

Z+11*LAYER
X-25
T+35

-E+65

21

Robotic Arms Juan Salom

To start off, always before the INI instruction (does not appear in the code, but
should be in Line 16), declarations must be done and after declarations values can

be assigned to variables or constants.

The same as in the FANUC code we have similar variables that means the same,
we have ‘Layer’, ‘Stick’, ‘I" and ‘Position’. The last one is an optional function that

works with the Switch case and defines where the structure is going to lay.

First the robot goes to ‘Home’ position, and then using a While Loop (While Layer is
equal or less than I) the program starts the calculation of the points for placement

of sticks. Same as before, we have 4 sticks per layer.

Position ‘Restpoint’ lays in between ‘Home’ and the stick structure, then the
subprogram ‘GRAB’ is called (Figure 11) and then it goes with a linear movement
to ‘Point1’ which is the first point of the place structure. Then Output 1 is shut OFF

and output 2 is set ON, this is for stopping the vacuum.

57 LIN POINTZ
55 $0OUT[1]=FALSE
52 §0QUT[Z]=TRUE
&0 GRAE ()

&1 PTP RESTFOINT
62 LIN POINTS

63 $OUT[1]=FALSE
64 S$OUT[2]=TRUE
65 GRALE (]

&6 PTP RESTFOINT
&7 LIN POINT4

65 $OUT[1]=FALSE
62 $0OUT[2]=TRUE
70

71 LAYTER=LAYER+1
7z ENDWHILE

73

74 PTP ZHOME

75

76 END

77

75 DEF GRAE ()

7o

S0 PTP XZP1

51 LIN XP:

gz

&3

54 $OUT[1]=TRUE
55 $0OUT[2]=FALSE
=1

57 WHILE($IM[1]==FALSE)
5 LIN REL{Z-9}
52 ENDWHILE

a0

291 END

Figure 17. KUKA robot code 02

22

Robotic Arms Juan Salom

As we see, the process repeats. Calculations are made for each point and require
linear axis moves, except for ‘Point3 ’ that also requires a 90 degree rotation in ‘Z’

axis.

At Line 78, the ‘GRAB’ subprogram is defined: the robot goes to ‘XP1’ (on top of
the sticks) and then to “XP2’ (even closer). The vacuum is activated with output 1 to
ON and output 2 to OFF, then the programs enters a while loop meaning that while
the vacuum sensor does not detect any stick it does a linear movement in ‘-2’

direction until the sensor notices it, only after that exits the subprogram.

23

Robotic Arms Juan Salom

5.2.2. FANUC LR Mate 200 iD/4s

The FANUC was recently acquired by the university and with it is required to teach
the students on a new brand. This model has 6 axis or degrees of freedom. It is
more modern than the KUKA and also smaller and lighter.

Has a protection of IP67, has a maximum reaching of 550 mm and a maximum
payload of 4 kg; also repeatability is £ 0.013 mm.

Weighs only 20 kg and the controller R30iB is remarkable for its weight and minor

size, perfect for compact places and little cabins.

Figure 18. FANUC LR Mate 200iD /4s

24

Robotic Arms Juan Salom

The T.P. is called ‘iPendant Touch’; it is lightweight, ergonomic and the touchscreen
IS resistive. It has space for USB stick and reserved internal options for two more

axes.

Figure 19. iPendant Touch from FANUC

The program made for hardware and software are different because in the actual
robot program actually there is an input sensor that can detect if the output

(vacuum) has picked something.

1: PAYLOAD[Z] : 34: (CALL GRLE :

Z: i 35:J PRE[2:p4] 100% FINE E
3: R[3:stcicks]=%8 H . .
4: R[l:layer]=1 . 36: WAIT 1.00(=ec) :
5: R[Z2:i]=R[3:sticks] DIV 4 37: RO[3]=0FF :

6: RI[Z:i]=R[2:i]+1 ; 38: PAYLOAD([Z] !

8:J PR[1:home] 100% CHNT100 : 39: :

= : 40 :
10: FCR R[l:layer]=1 TO R[Z2:4i] ; 41: E[l:layer]=R[l:layer]+l ;
11: H . .
1z2: CALL PLACE : 223 ’
13 . 43: ENDFCRE ;
14: CALL GRAB ; 44 H
15:3 FR[S:pl] 100% FINE ; 45:J PR[1l:home] 100% CNTSO ;
1&: WALTIT 1.00(=sec) :
17: RO[3]=0FF : 26 ;

g€: PAYLOAD[Z] :
18 H
20: CALL GRAB ;
21:J PR[6:p2] 100% FINE :
22: WAIT 1.00(sec) :
23: RO[3]1=0CFF :
Z4: PAYLOAD[Z2] :
25« H
Ze: H
=7 CALL GRAB E
28:J PRI[7:p3]1 100% FINE :
zg WAIT 1.00(sec) :
30: RO[3]1=0FF :
31: PAYLOAD[Z] :
33: H

Figure 20. FANUC robot code

25

Robotic Arms Juan Salom

As it was done in the simulation program, the payload has to be set up, in this case,

payload [2] is movement without load and payload [1] motion with 1 stick on the tool.

The variables are configured as registers for ease and recognition of the name. We
see that the register ‘R[2:i] has two calculations as the coding system does not let
you incorporate two different operands in the same line and because the ‘For loop’

cannot be entered with a variable its value is 0 so it is needed to sum 1 up to ‘R[2:i]".

First off, the robot goes to ‘Home’ position, then the subprogram ‘PLACE’ is called,
only once and at the beginning (will be explained later). After that comes the

subprogram ‘GRAB’.

The layer is composed of the four positions registers: ‘5:p1, 6:p2, 7:p3 and 8:p4’.

The robot waits 1 second for assuring to reach the corresponding position, then the
vacuum is turned off (RO[3]) and the payload is set again as without load.

To finish, one unity is added to layer and if reaches the maximum value for the For

loop it ends; with the robot to ‘Home’ position the program ends.

1: PR[4]=PR[Z2:restp]

2: PAYLOAD[1]

3: K

4:J PR[Z2:restp] 100% CHTEO
5: K

6: RO[3I]=CH ;

T: :

8: LBL[1]

S: K
1d: IF (RI[1])=0CFF) THEN :
11: K

2 PR[4,3]=FPR[4,3]-5
13:J PR[4] 100% CHTSO
14 JHME LBL[1]
15 WAIT 1.00(sec)
1& ENDIF
17 H

8:J PR[Z2:restp] 100% CHTSO
15 :

Figure 21. Subprogram ‘Grab’ FANUC

A position register ‘PR[4] is equalized with ‘Restpoint’ position, this way it is
possible to work with a position without changing any coordinates. After, the

payload[1] is set on.

26

Robotic Arms Juan Salom

Then the robot goes to ‘Restpoint’ which is higher on top of the pick structure and
the vacuum is turned on. With an ‘IF’ condition that means if the input ‘RI[1] is off, 5
mm of the ‘Z’ axis are subtracted to that position so it starts to go down until the
input detects piece, this is achieved because of the instruction ‘LBL and JMP LBL’.

A ‘Wait’ is put on there as it is needed to make sure it grabs the stick. Then, it just

goes to ‘Restpoint’ again.

1l: ER[4:height]=R[l:layer]*& H
3: PR[S5:pl]=PR[3:placep] H
4: PR[5,3:pl]=PR[5,3:pl]+R[4:height] H
5: H
&: PR[6:p2]=PR[5:pl] H
T7: PR[&,2:p2]=PR[E,Z2:p2]+72 ;
9: PR[7:p3]=PR[5:pl] H
10: PR[7,1:p3]=PR[7,1:p3]-25 ;
11: PR[7,2:p3]=PR[7,2:p3]1+3c ;
2: PR[7,3:p3]=PR[7,3:p3]+R[4:height] H
13 PR[7,6:p3]=PR[7,6:p3]-50 ;
14 ;
15 PR[8:p4]=PR[T:p3] ;
le PR[8,1:p4]=PR[E8,1:p4]+55 H

Figure 22. Subprogram ‘Place’ FANUC

This subroutine is only meant for calculations, there are no motion actions on the

robot.

First off, the height (R[4]) is set up as the ‘Layer’ multiplied by 8 so it goes higher
with every layer. As in every program made, the 4 positions are calculated the

same.

‘P1’ takes the coordinates of ‘Placep(oint)’, which lays where the first stick touches
the table. Then ‘P2 and P3’ just equalize to ‘P1’ and ‘P4’ takes the ‘P3’ coordinates.
For the orientation of the perpendicular layer, a turn of -90 degrees in the ‘Z’ axis is

obliged.

27

Robotic Arms

Juan Salom

6. BRAND DIFFERENCES

6.1. Robots

It is important to know which robot has the best features and characteristics for

knowing which to buy or use in a production line. In the next table, a comparison is

made. The ABB robot is a similar model than the other two brands.

MODEL KUKA KRC3 FANUC LRMATE ABB IRB 120
200iD/4s
MAX. LOAD 3 kg 4 kg 3 kg
REACH 635 mm 550 mm 580 mm
WEIGHT 30 kg 20 kg 25 kg
IP IP40 IP67 IP30
REPEATABILITY +0.05 mm +0.013 mm +0.01 mm
ARM SIGNALS(I/O) 4/4 6/2 6/4
J1 VELOCITY 240 °/s 460 °/s 250 °/s
J2 VELOCITY 210 9/s 460 °/s 250 °/s
J3VELOCITY 240 °/s 520 /s 250 9/s
J4 VELOCITY 375°9/s 560 °/s 320 °/s
J5 VELOCITY 300 /s 560 °/s 320 °/s
J6 VELOCITY 375°9s 900 /s 420 °/s
J1 MOTION RANGE +180° 360° +165° to -165°
J2 MOTION RANGE -45°/135° 230° 110° to -110°
J3 MOTION RANGE -2250/45° 402° 70° to -110°
J4 MOTION RANGE +180° 380° 160° to -160°
J5 MOTION RANGE +135° 240° 120° to -120°
J6 MOTION RANGE + 720° 400° to -400°
PRICE 7.000 € 14.092 € 18.638 €

We can conclude that the best option would be the FANUC as its light weight,

protection, joint velocity and motion ranges are better than the other two models. The

only important drawback between the other is the maximum reach.

Also, taking in account the price, the KUKA is a good option for quality at cheap cost.

28

Robotic Arms Juan Salom

6.2. Software

As for the software, a table like the previous is not understandable for this subject,
so the software aspects will be explained objectively and with remarks from the
author of the project too.

6.2.1. Simulation

The simulation program will be rated on how easy or complex, its overall functions

and special features.

To start off with the easiest program, that would be the KUKA Sim Pro. To make a
layout of a robot with a tool configured standing on a table and doing a simple task
is relatively simple and requires low effort of learning. It is an intuitive program for

offline programming and it is good to learn about the environment near a robot.

It has a wide variety of components thanks to the ‘eCatalog’ from a KUKA server

that lets you download new components and resources from it.

Nonetheless, the simplicity of the program makes it sloppy and unclear to work in a
serious way with it. The teach function does not let many options for making
programs. Also the view functions are slow as there are no shortcuts for the mouse,

only a few of the keyboard.

10 O 10 Wode

I |D»’gmmm2mwwuh
a3 e

Figure 23. KUKA SIM Tech

29

Robotic Arms Juan Salom

As for the ABB Robotstudio, that would be the most complex sim program out of
the three. However, its difficulty on making a simulation program is compensated
with the enormous aspects and feature that has. Creating and running a successful
program means spending a good amount of time learning but then the capabilities
that has are seen and going further away with does not seem already tough.

However, there are aspects (like the constant manual synchronization it is needed
between coding and simulation, the amount of configurations you have to do for
tools and also the axis orientation that creates problems sometimes) that could be

better done.

|2 New View
./ ShowyHide ~

T_ROBLIRB120) ~

@ P

- &
o0 M i > Graphics
TCPVacuum - - v o)k

1§ TESTing Rapid
Mecharisms
& IRB120_3.58_012
4 VacuumTool
Comporents
&4 SmartComponent_1
P Stick01
P Stick02
P Stick03
P Stick04
P Stick05
P Stick0
P Stick07
P Stick08
P Table
@ Table_3

Show messages from: All messages @ Time: Category

(i) IRB_120 (Station): 10155 - Program restarted 231172017 14:47:38 Event Log
(i) IRB_120 (Station): 10128 - Frogram stopped 23/11/201714:47:38 Event Log
(i) IRB_120 (Station: 10016 - Automatic mode requested 23/11/2017 14:47:38 Event Log
(i) IRB_120 (Station): 10017 - Automatic mode confimed 23/11/2017 14:47:38 Event Log
() IRB_120 (Station): 10140 - Speed adjusted 231172017 14:47:38 Event Log
(i) IRB_120 (Station): 10010 - Mtors OFF state 231172017 14:47.38 Event Log
(i) IRB_120 (Station): 10011 - Motors ON state 23/11/2017 14:47:42 Event Log

10011 -Motors ONstate e R [T [.22 350.21 0.00 | MoveL - = v500 - 210 - TCPVacuum - WOl

[

Figure 24. ABB Robotstudio

Then, the FANUC Roboguide as for difficulty it would be between the two, it is
capable of many things but it is hard to understand how it works because it uses
connections between the objects for running it, the objects are not ‘free’ in space
like in the other programs. That utilization of the objects creates a lot of
configurations that can be made such as create and destroy delays, approach and
retreat automatic points, simple tool creation... also there are a good amount of

objects that can be created: parts, fixtures, obstacles, workers, machines, cables...

30

Robotic Arms Juan Salom

and every type of object has its own function in the program and this is where it
comes the complex part, knowing which object it is needed for an especial function
and knowing how to set it up correctly.

This also creates a problem being the program not intuitive and using the virtual TP
only for programming is not possible unlike in the actual robot. Some of the
functions do not work properly and the program crashes occasionally and corrupts
the file.

lin

File Edit View Cell Robot Teach Test-Run Project Tools Window Help

1= NGRS R A

b - R LR TP E-F AR e > -0 w20
CRAQ A F o B e[[Bm B

FE- Cell Browser- T01 [=]
HEL I
: Back | Fwd Add
w0 Parts o
- Robot Controlers
=-8

1) Fies
Jobs
1 Programs.
CALT
-8 comser
-8 GEMDATA
-.FE} GETDATA
-..[B} GET_Home
-} IRc_counTeR
B re_wsc
B re_status
Bl re_sLasel
PALLET
Pk
& PLace
pRRRR
[} REQMENU
T} SENDDATA
<P} SENDEVNT
BB} SENDSVSV
-y WacPick
<} VacPlace
B zoruscrrres
_Nm
_MAN L4
_PICK
_PLACE
_ZERD
R variables
#} Obstacles
Bl Workers

-T& Profiles Z
7 [i b

m

ROBOGUIDE | Favortes|
[Robot Controllert @ PICK |<Nombotemors> [Fo0% PartRack i
Figure 25. FANUC Roboguide

6.2.2. Coding

KUKA Sim pro for coding has to work side a side with OfficeLite which acts as the
TP. The coding in KUKA is pretty straightforward and easy to understand. Uses a
similar language to Pascal called KRL, like a mix between Pascal and its own
KUKA language. It is a modular language with 4 types of data and two types of
movement can be programmed.

31

Robotic Arms Juan Salom

Also if a mistake is made the error log is clear and lets you know where the actual
issue is at. Overall, it is a good coding system for beginners and a good point to

start to work with robots due to its clearness and ease of use.

Robotstudio uses the ABB own coding language which was influenced by the
predecessor ARLA and also by C. Includes procedures, trap routines, functions,

automatic error handling and can multi task.

Unlike the complexity of the sim program, the Rapid system helps you code,
showing all the options that can be typed in the instruction and this does not waste

time of learning how to code that specific language.

Like it was mentioned before, the Rapid system in the software works separately
from the sim program unless you set it up manually. Also, some arithmetic
instructions are hard to understand and unclear, i.e. rotations for a point are in

quaternion system.

FANUC Roboguide does not have a free programming system but is basis is on
language KAREL, it is possible to code in a PC and then run it in the robot but any
mistake appearing in the code will have to be fixed in the PC again. The program
uses the TP for coding. Its principal difference it is that utilizes various types of
registers (normal registers, position registers, palletize registers...), this registers
have to be set up before start coding as if that is not done, correcting the program

in case of error could be a great mess.

The TP has a lot of good functions: resistive touchscreen, easy jogging, USB port,
lightweight, option to window the screen until 4 windows... but at the same time

some functionalities seem older.

Referring to instructions, the programming does the job but with less options than
the competence, besides, the not freedom coding makes it hard for the

programmer to be imaginative and creative.

32

Robotic Arms Juan Salom
SIM Pro & ABB Robotstudio FANUC
OfficeLite Roboguide
Advantages Straightforward Simulation features Registers do not
coding and and options are need data type
simulating. huge. specification.
Instructions are clear | Automatic coding TP has options
and manageable. system and clear which ease working.
error handling.
Drawbacks Simplicity limits the | Complexity means to | Coding system is not

options for the robot.

The sim program is
old and tedious for
working, i.e. cannot
link 1/0 to program.

spend quite time

learning.

Synchronization
between coding and
simulation is not

automatic.

free and instructions

are limited.

It is not possible to
use /O in TP

programming.

33

Robotic Arms Juan Salom

7. OVERVIEW OF EXERCISE DIFFERENCES

To the reader to understand better the differences between the three coding
language systems in this chapter, it will be shown how coding changes referring to

instructions to accomplish an objective for the robot.

This will be explained summarized, if the reader needs more information it is more

detailed in the chapter 5.Codes.

7.1. Declaring variables

The first thing in the program is to declare the different variables and constants and

set their value.

- KUKA: Declarations are made at the top before the INI system instruction. There
are four types and must be declared directly. After that, the value has to be

given below it.

1 DEF PALLET1{ |
2 INT 3TICK

3 INT LAYER

4 INT I

= INT POSITICN
6 PO3 POINTL

7 PoOS POINTE

& PoOS POINTS

S POS POINT4

10

11

12 LAYER=1

13 STICE=1:

14 I=3TICE/4

15 PO3IITICN=0 ;0 or 1

Figure 26. KUKA declarations

- ABB: Also, declarations must be done before the Procedure routine and the

value can be given directly there.

1 MODULE Modulel

CONST robtarget Home:=[[232.329829201, -28.826758026,814.977659974], [8.993127848,8.68220279,0.013508494, -0, 08226827931 ,
[-1,8,-1,1],[9E+09,9E409, 9E+89, 9E+09, 95409, 9E+09]]

CONST robtarget Target looffset:=[[358.627914038, -128.819,444.928724941],[0,9,1,0],[-1,8,-1,0],
[9E+09,9E+09, 9E+09, 9E+09, 9E+09, 9E+09] 1;

CONST robtarget Target_10:=[[358.627914938,-128.519,363.297],[0,0,1,0],[-1,0, -1,8], [9E+09,9E+09, 9E+89,0E+09, OE+09, 9E+89] |5

CONST robtarget Target_260ffset:=[[338.758,265.921,430.614089394] , [6,0,1,8],[,8,8,0], [9E+69,0E-+69, 0E-+09, 9E+89, 9 +09, 9E+09] | ;

CONST robtarget Target_26:=[[333.65,265.921,391.6999431461, [6,8,1,6], [0,8,0,8], [9E+69,95+69, 609, OE+09, 9E+09, 9E+09] 15

CONST robtarget P1:=[[363.527,-186.248,406.000000003], [0,0,1,01,[-1,0, -1,0], [9E+09, 96409, 9E+09, 9E+09,9E+09, 96489]]

CONST robtarget P2:=[[320.447,149.409,345.702],9,0,1,0],[0,0,0,0], [9E+09, 9E+09, 95409, 9E+00, OE+09, 9E+09] |

CONST robtarget Ploffs:=[[303.827,-186.248,426.000000003],[0,6,1,0], [-1,8,-1,0], [9E+09, 9E+69, 9E+09, 95409, 9E+09, 9E+09] 1;

CONST robtarget P2offs:=[[320.447,149.409,356.702],[8,0.707166751,0. 707186751, 0], (2,0, 1,0], [9E-+09, 9E+09, 9 +09, 9E+09, 9E+69,9E-+09]

VAR robtarget p1e;

VAR robtarget P11; IDeclarations have to be done HERE, Robtarget for targets respecting to robot(Const or Var) -

VAR robtarget P12; ! and num for any type of number.

VAR robtarget P13;

VAR robtarget Restpoint;

VAR num Layer;

VAR nunm Stick;

VAR num I;

VAR num r1;
VAR num counter;
VAR num ¢;
PRCC main() ! e create a path in the HOME TAB and here we make the structure of the code, although we-
! dont have to use the MAIN procedure so leave it in blank.
ENDPROC

Figure 27. ABB declarations

34

Robotic Arms Juan Salom

- FANUC: Declarations can be done, either on the register tab or inside the
program. Data type just has to be according the five types of registers existing.

The values can be changed also inside or in the register tab.

Step Eold Fault

() -
an Sl ..; | PALLET LIN

PALLET

1/55
: UFRAME_NUM=1
UTOOL. NUM=1
PAYLORD[1]

R[1:X]=0
R[2:¥]=0

R[3:20]=0

8: R[4:W]=0

9: E[5:P]=0

10: R[6:R]=0

11: R[7:Z1]=0

12: R[&8:Layer]=1l

13: ER[9:5ticks]=8

14: R[10:I]=R[9:Sticks] DIV 4
15: R[11:C]=R[9:5ticka]*10

17:J @PR[3:HOME] 100% CNT100

19: FOR R[8:Layer]=1 IO 3

Figure 28. FANUC declarations

7.2. Grab routine

Here, how every robot has to approach, pick a stick and retreat will be seen in code.

- KUKA: A point is set higher than the sticks’ structure, the vacuum gets on and
with the instruction ‘While’; while the input is LOW starts going down with the
instruction LIN_REL{Z -9}, which makes the robot descend linearly 9 mm until it
detects the stick.

- ABB: The instructions are nearly the same except for a few; a ‘WaitTime’ is
needed before the ‘While’, inside the ‘While’ two variables more are needed as
the instruction for descending is not the same. ‘MoveL RelTool’ is for moving the
tool linearly but respecting to a point, as the height has to change two variables

are needed to change the height every time goes inside the loop.

- FANUC: Because there is no ‘While’ loop, two mixed instructions are needed:
‘IFP and ‘UMP & LBL'. A position register is equalized to the one that lays higher
of the structure, then the LBL starts before the ‘IF’; if the input is LOW 5 mm are
subtracted of the position and the robot descends that, after it there is the ‘JMP
LBL’ and the process repeats until input is not LOW anymore.

35

Robotic Arms

Juan Salom

7.3. Placing routine

Here the process for calculating the placement points and the routine of how the

robot does the job will be summarized.

KUKA: A point where the first stick to be placed touches the table is taught, then

from this point the others are calculated, P1 and P2 in the same orientation and

height and P3 and P4 higher and 90 degrees turned. The instructions in KUKA

for this are as shown in the figure:

34 POINTI=POINTI1

35 POINTI . E=FPOINT3 . EZ+11*LAYER

36 POINTS . X=POINTI.X-Z25
37 POINTS . ¥=POINTI.¥+35
1= POINTS . C=FOINTI.C+20
49

Figure 29. KUKA calculation process

As we see, these are the instructions for it, it is possible to change the three axis

and its rotation of a point (X, Y, Z, A, B, C). Units are in millimetres and degrees.

To do the action of placing, a call to subroutine ‘Grab’ and deactivation of

vacuum are needed.

2 PTF RESITFOINT

GRAE ()

55 PTP RESTPOINT

6 LIN POINTL

7 S0OUT[1]=FALSE
§OUT[2] =TRUE

Figure 30. KUKA placing action

ABB: In this code, the points have to be calculated with an offset from a point.

Also rotation is only possible in this way using quaternions which are hard to

calculate, so the solution for rotating P3 and P4 is to add a point already rotated

to make it simpler.

c:=Layer-1; !Set ¢ as a variable for the height of the layers.

Restpoint:= 0ffs(P2,0,0,200); !create a restpoint respect to P2 th +200mm in Z Axis
P10:=0ffs(P2,0,0,Layer*18+c*10); 'now the t changes every loop
P11:=0ffs(P10,0,30,0); ! P11 just o P10
P12:=0ffs(P20offs,-10,11, (Layer*10+c*10)); ! As P12 reated another point already rotated
P13:=0ffs(P12,32,0,0);

Figure 31. ABB calculation process

In the comment section we can see the explanation given for the calculations.

Also, the variable ‘c’ is needed as in this case P1 and P3 are not equalized and

the height has to be set up like this.

36

Robotic Arms Juan Salom

To make the placement process it works like KUKA except for one added

instruction.
Grab;
MoveJ Restpoint, v58@, z5, TCPVacuum \WObj:=wobj@;
Movel pl@, v5@@, z5, TCPVacuum \WObj:=wobijo;
WaitUntil \InPos,TRUE;
Reset Vacuum;

Figure 32. ABB placing action

Before turning off the vacuum it is important to add the ‘WaitUntil \InPos’ as the
program tries to execute the instructions as fast as possible and it deactivates

the vacuum before arriving at the point.

- FANUC: This system works quite similar to KUKA, the instruction does the
same, it only changes its syntax.

9: PR[7:p3]=PR[5:pl] H
10: PR[7,1:p3]=PR[7,1l:p3]-25 ;
11: PR[7,2:p3]=PR[7,2:p3]1+3¢ ;
12: PR[7,3:p3]1=PR[7,3:p3]+E[4:height]
13: PR[7,6:p3]=PR[7,E6:p3]-50 ;

- -

Figure 33. FANUC calculation process

As seen, now the axes are called ‘1, 2, 3, 4, 5 and 6’ referring to ‘X, Y, Z’ and its
rotations ‘W, P, R’. To work like used in the code, the position registers have to

be saved as Cartesian coordinates.

The process of placing is exactly the same as KUKA.

2Z0: CALL GRAB ;

21:J PR[&:p2] 100% FINE ;
22: WAIT 1.00(sec)

23: RO[3]=CFF

Figure 34. FANUC placing action

Inside the ‘Grab’ subroutine there are the approach and retreat positions, also

the wait is to make sure it reaches the position before turning off the vacuum.

37

Robotic Arms Juan Salom

8. CONFIGURATION MANUAL

This chapter is a manual for the lecturers on how to set up correctly the robot and
the environment on ABB Robotstudio and FANUC Roboguide, as in KUKA Sim
Tech is not possible to link inputs or outputs.

8.1. ABB Robotstudio

To set up the layout like in the figure 24:

- Add the robot you want.

- Go to create Geometry and make a cylinder at coordinates {0, 0, 0}.

- Go to create a Tool and fill the requests.

- Drag the tool to the robot at the Layout tab.

- Then, in modelling tab, go to smart sensor and add component.

- Add a LineSensor, create it with enough length and small radius. Drag it to the
tool at the layout Tab.

- Go to Signals and connections and then add I/O signals and add 1 D.l. and 1
D.O.

- Double click on the created SmartComponent, then add components and

connect them this way.

Solutionl - ABB RobotStudio 6.05.02 (32-bit)

Simulation

G L |G A H
Import Frame | Target Path Other
mpert Frne | Target pan o

Controller ~ RAPID Add-Ins

(5 New View
./ Show/Hide -
Frame Size -

[Teach Target
55 Teach Instruction
13) View Robot at Target

R Task

5 @
Robot
System -

-
e
ABE Import
Library - Library -

.. 120 3kg_0.58m) -
Workobject wabjo -
Tool

TCPVacuum

3§ Solution1 @ s
martComponent 2 Description Engish ~
[Station Bemerts P! — ‘ B J
4 1 RB_120_%g_058m Compose | Propetties and Bindings | Signals and Connections | Design
4 4 T_ROB1 =
4 (il Tooldata {o
1 TCPVacuum Properties =)
17 toold Inputs [+ Outputs
4 [Workobjects & Tergets Vacuum [| Detection¥acuum
& webj0 Properti
Paths & Frocedures iabe
. Start (10,00 0,00 5.00] mm)
End (10.00 0,00 20,00] mm)
Radius (3.00 mm) Properties
SensedPart Child
SensedPoint ([0,00 0,00 0,00] mm) KeepPostion (True)
110 Sigrals
Active
Properti
Properties moredes
Operator (NOT) 10 Signale
Delay (0.05) =
110 Signals ‘SimulationStopped
Show Bindings [#] Show Cannections 7] Show unused Zoom]
Show messages from: Al messages - Time Category ks
(i) VacuumTool attached to IRB120_3_58_ 01 13/10/2017 13:39:33 General
(i) LineSensor attached to Vacuum Tool 13/10/2017 13:40:12 General
(i) Saved station Solution1 successfully. 13/10/2017 13:40:15 General
(i) IRE_120_%kg_0.58m {Station): 10230 - Backup step ready 13/10/2017 13:40:15 Evert Log
(i) IRE_120_3kg_0.58m {Station): 10231 - Backup step ready 13/10/2017 13:40:15 Evert Log
(i) IRE_120_3kg_0.58m {Station): 10232 - Backup step ready 13/10/2017 13:40:15 Evert Log]
(i) IRE_120_%kg_0.58m {Station): 10233 - Backup step ready 13/10/2017 13:40:15 Evert Log @

|ucs: station| EEEFETETT I | o=
Figure 35. SmartComponent connections

38

Robotic Arms Juan Salom

- Then you go to Controller, 1/O system configuration, and click add signals, 1 D.I.
and 1 D.O. Both with value = 1.

- Then go to Station Logic, Signals & Connections and create the next

connections:

5 solutiont* £ .
© [Station Elements Solution1
4 01 1RB_120_3g_0.56m Compose | Properties and Bindings | Signals and Connections | Design
4 44T_ROB1 /O Signals
4 i Tooldata Name Signal Type Value
4 TCPVacuum
4 toold
4 [t Workobjects & Targets
4 1 wobj0
4 1o wobj_of
() Home
@ Taret 20
(® Target_200ff
(® Target_30
© Target_30eft
4 [Paths & Procedures
4 & Path_10
4 Moved Home
<= Moved Targst_200ff Add /O Signials Expose Child Signal ~ Edt Delete
% MoveJ Targel_20 170 G
4 MoveJ Target_200ff Source Object ‘Source Signal Target Object Target Signal
“* Move Target_30off 1RB_120_3%g_0.58m [Vacuum SmartComponert_2 [vacuum
** Move) Target_30 ‘SmartComponent_2 DetectionVacuum IRB_120_%g_058m SensVac
4 MoveJ Target_300ff
“+# Moved Home
Add 10 Cornection Edt Manage /0 Cornections Delete Move Up Move Down
Show messages from: Al messages - Time Category -
(i) IRB_120_3kg_0.58m (Station): 10002 - Frogram poirter has been resst 13/10/2017 14:15:48 Event Log
(1) IRE_120_%kg_0.58m (Station): 10129 - Frogram stopped 13/10/2017 14:15:49 Evert Log
(i) IRB_120_3kg_0.58m (Station): 10016 - Automatic mods requested 13/10/2017 14:16:52 Event Log
(1) IRB_120_%g_0,58m (Statior): 10017 - Automatic made confimed 13/10/2017 14:15:52 Evert Log
(i) IRB_120_3kg_0.58m (Station): 10140 - Speed adjusted 13/10/2017 14:16:52 Event Log
(1) IRB_120_%kg_0.58m (Station): 10010 - Metors OFF state 13/10/2017 14:15:53 Evert Log
(1) IRB_120_%g_0.58m (Station): 10011 - Motors ON state 13/10/2017 14:15:55 Evert Log

|| simulation Time:126s | uCs: Station | TSI I |

Figure 36. Station Logic 1/0 connections

- After that, the tool should grab and drop objects and the D.l. sensor should
detect if there is an object at or near the tool.

- Now, the environment just has to be created. Place the robot, add some models

for objects like tables or cubes, set up correctly the axes of every object with

frame and create the targets and paths.

Then the procedure is created and you have to synchronize with RAPID, so click

synchronize to RAPID and the code generated would be in the RAPID tab.

There you can code and go much further with the actions that the robot can do.

39

Robotic Arms Juan Salom

8.2. FANUC Roboguide

For setting up the layout like in figure 25:

- Create new cell and follow the wizard: select create robot with default
configuration; select the latest version; click on handling tool H552; select the
robot to use, in our case order number H754; then just hit next to everything else
and finish the wizard.

- First thing is to add the tool: at the Cell Browser, open Robot controllers > robot
> tooling > right-click on UT > add link. If we do not like the tools’ models we can

add an own model: box, cylinder, sphere or CAD file.

- Double click on the tool and set the location of it and the mass, and go to
UTOOL tab, edit it and drag it to the end of the tool. Click ‘use current triad

location.

F2- Cell Browser- teste
- = 3
Back Fwd Add
[Smi3 HandlingPRO Workcell
Fidures
i Parts
BB Rrobot controtiers
=8

™ Tooling

= T UT:1 (Eoatt)

teoll
T UT:2 (Eeat2)
e UT:3 (Eoat3)
T uT 4 (Eoate)
e UT:5 (Ecats)
% UT:6 (Eoats)
¥ UT:7 (EcalT)

UT:1 (Eoatl), GP: 1 - LR Mate 200iD/4S, Robot C... [53 |

* uTs oate) Feature Prog Settings | Feature Pos Difts | Feature AppiRet
¥ o (oats) Feature Pos Offsets | _Collision Avoidance | Calibration
% UT 10 (Eoatio) General | Trace | UTOOL | Pats | Simuiation
14 UserFrames uTooL
-8 Space Check x 0.000 mm Edit UTOOL
P Dressouts
e ¥ 0.000 mm
arg: Use Gurrent Triad
0 Fies z 0.000 mm Location
Jobs
w 0.000 deg
£ Programs
5] Variables F 0.000 deg
#f Obstacles R 0.000 deg
B& workers
ZH profies Move Robot Normalto-Surface
¢ Dimensions —
gtnerobottoasurface, |-z - |
Targets selectthe Tool Frame axis that -
53 Torget Groups matches the surfacenermal line
B Machines
55 cables
B external Devices

R 40 edi views

o) Comen) [oy) []

ROBOGUIDE | Favortes

Figure 37. Utool Configuration

- Then, to create an environment, go to fixtures and create some tables for
example. Fixtures do not interact with the robot, only on collision.

- When adding anything, the size and location can be changed.

- Also go to parts and create the parts you want to work with. Remember that the
mass should not be greater than the payload. The part will be created on top of
a Part Rack, only the rack can be moved.

- After that, go to the fixture created and double click, go to parts tab and select
the part you want it to be linked. Select where you want it to be using the part
offset.

40

Robotic Arms Juan Salom

T=- Cell Browser- teste

- oo
Back ~ Fwd Add
513 HandlingPRO worl = Fiturel
2%t Fidures | General | caibration | Farts | Simutation|
.“"H Foure) ™ parte The number of Parts
B Parts @ Partt
- W Partt !
g Fel Add Delete
E @ Fgl
B8 Robot contr
= %; A Part Offsat
B3 [GR art Otts:
oA V] Edit Part Offset
X 303.000 mm
Y 275.000 mm
z 433.000 mm
w 0.000 deg
P 0.000 deg
R 0.000 deg
1f (@no Part -
- — ——
(@ Visible at Teach Time
LI Fil [#] visible at Run Time
Jof Show collisions
- {3 o
i8] v,
.4 Obstacles [ok] [(cancel] [_appy | [Hetp |
&R, Workers.
@ Profiles
" Dimensions
Targets
&% Target Groups
.. T Machines
4 [m 3

Figure 38. Parts configuration

- Then double click on the tool and do the same in the parts tab. Go to simulation

tab and at Gripper settings select Vacuum.

41

Robotic Arms Juan Salom

9. GLOSSARY

In this chapter the acronyms appeared in the project are given its meaning.

CAD — Computer Aided Design

D.l. — Digital Input

D.O. — Digital Output

I/O — Inputs & Outputs

IP — Ingress Protection

P.R. — Position Register

T.P. — Teach Pendant

U.C.L.L — University of Leuven-Limburg

42

Robotic Arms Juan Salom

10.BIBLIOGRAPHY

http://www.fanuc.eu/es/en/robots/robot-filter-page/lrmate-series/Irmate-200id-4s

http://new.abb.com/products/robotics/industrial-robots/irb-120

http://www.qglobalrobots.com/product.aspx?product=24933

https://en.wikipedia.org/wiki/KUKA Robot Language

https://en.wikipedia.org/wiki/RAPID

https://en.wikipedia.org/wiki/Karel (programming language)

http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4 1.pdf

https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%?
Oreference%20manual RAPID 3HAC16581-1 revd en.pdf

http://www.aip-

primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core D
ownload&Entryld=147&Portalld=1&Tabld=150

43

http://www.fanuc.eu/es/en/robots/robot-filter-page/lrmate-series/lrmate-200id-4s
http://new.abb.com/products/robotics/industrial-robots/irb-120
http://www.globalrobots.com/product.aspx?product=24933
https://en.wikipedia.org/wiki/KUKA_Robot_Language
https://en.wikipedia.org/wiki/RAPID
https://en.wikipedia.org/wiki/Karel_(programming_language)
http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150
http://www.aip-primeca.net/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=147&PortalId=1&TabId=150

