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Abstract—We present a model that makes it possible to analyze
the effect of the age dependences of mortality, fertility and
dispersal persistence on the speed of propagating fronts in two
spatial dimensions. Speeds derived analytically agree very well
with those obtained from numerical simulations. Infant mortality
and total fecundity are the most relevant parameters affecting
the front speed, whereas the adult mortality rates and dispersal
persistences are less important. We apply the model to the
Neolithic transition in Europe. The predictions of the model
are consistent with the archaeological data for the front speed,
provided that the infant mortality lies within a relatively narrow
range.

I. INTRODUCTION

Reaction-dispersal front propagation models have been re-
cently applied to many systems, such as human invasions [1],
[2]. A variety of models has been developed in recent years to
analyze the speeds of human invasion fronts [3]. Recently, the
following integro-differential equation has been proposed (for
some derivations, see Eq. (10) in Ref. [4], Eq. (4) and Fig. 1
in Ref. [5], and Eq. (176) and Fig. 17 in [6]),

p(x, y, t+ T ) = F

∫ +∞

−∞

∫ +∞

−∞
p(x+4x, y +4y, t)

φ(4x,4y)d4x d4y, (1)

where p(x, y, t+T ) is the population density at the location
(x, y) and time t + T . The time interval T is that between
two subsequent dispersal events or ’jumps’, i.e. one generation
(defined as the mean age difference between an individual and
her/his children). The parameter F appearing in Eq. (1) is the
net fecundity or reproductive rate (number children per parent
which survive to adulthood). The dispersal kernel φ(4x,4y)
is the probability per unit area that the children of an individual
located at (x + 4x, y + 4y, t) become adults at (x, y, t +
T ). Strictly, Eq. (1) is valid at sufficiently low values of the
population density p, because there is a maximum saturation
density above which net reproduction vanishes (see Eq. (9) in
Ref. [4]).

Equation (1) is called the non-overlapping generation
model. Note that in this model, all traits in the life history
of the individuals are ignored, i.e. only the age-independent
parameters T and F are used. Therefore, this model cannot
analyze any effect on the front speed of the fact that the

fecundity, mortality and dispersal kernel depend on the age
of individuals. In this paper, we will extend this model to
allow for such dependencies [7].

II. THE MODEL

In order to take into account the dependencies of fecundity,
mortality and dispersal on age, we regard the population as
subdivided into several age groups. For simplicity, and also for
later application to data appropriate to the Neolithic transition
(Sec. IV), we consider only four groups (however, all of our
results can be easily extended to an arbitrarily large number
of groups). For definiteness, let the age group subindices be
ordered so that p1(x, y, t) corresponds to the youngest age
group and p4(x, y, t) to the oldest one. Then we generalize
Eq. (1) into the set



p1(x, y, t+ τ) = f2

∫
φ2(∆x,∆y)p2(x+ ∆x, y + ∆y, t)

d∆xd∆y

+f3

∫
φ3(∆x,∆y)p3(x+ ∆x, y + ∆y, t)

d∆xd∆y

+f4

∫
φ4(∆x,∆y)p4(x+ ∆x, y + ∆y, t)

d∆xd∆y

p2(x, y, t+ τ) = (1−m1)

∫
φ1(∆x,∆y)p1(x+ ∆x, y + ∆y, t)

d∆xd∆y

p3(x, y, t+ τ) = (1−m2)

∫
φ2(∆x,∆y)p2(x+ ∆x, y + ∆y, t)

d∆xd∆y

p4(x, y, t+ τ) = (1−m3)

∫
φ3(∆x,∆y)p3(x+ ∆x, y + ∆y, t)

d∆xd∆y

(2)
where pi(x, y, t) is the population density (number of individ-
uals per unit area) of age-group i, fi is its fecundity, mi its
mortality, and φi(∆x,∆y) its dispersal kernel. We assume that
the infant population p1(x, y, t) does not reproduce, so that
f1 = 0 in Eqs. (2) (this is in agreement with the data we will
use in Sec. IV). The time interval τ should be chosen so that
the demographic data on mortality, fecundity and dispersal,
which are always recorded in age intervals, can be applied
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to Eqs. (2) (see Sec. III). Similarly to the age groups with
densities p1, p2 and p3, mortality will also affect the dynamics
of subpopulation p4, but this effect is not included in Eqs. (2)
for the following reason. Since by definition p4 is the oldest
age group, all individuals corresponding to p4 will simply
disappear after their reproduction and dispersal, and their death
will not affect the front speed.

In order to derive the theoretical speed for our model, we
look for constant-shape solutions for each subpopulation, i.e.
pi(x, y, t) = wi exp[−λ(x − ct)] (i=1,2,3) in the limit in
which the coordinate co-moving with front z ≡ x− ct→∞.
Then the set of Eqs. (2) becomes



w1 exp(λc) = f2w2

∫ ∞
0

ϕ2(∆)I0(λ∆)∆d∆

+f3w3

∫ ∞
0

ϕ3(∆)I0(λ∆)∆d∆

w2 exp(λc) = (1−m1)w1

∫ ∞
0

ϕ1(∆)I0(λ∆)∆d∆

w3 exp(λc) = (1−m2)w2

∫ ∞
0

ϕ2(∆)I0(λ∆)∆d∆,

(3)
where

I0(λ∆) ≡ 1

2π

∫ 2π

0

dθ exp [λ∆ cos θ] (4)

is the modified Bessel function of the first kind and order
zero, and we have assumed that φi depend only on distance
∆ ≡

√
42
x +42

y (isotropic kernels). The dispersal probability
per unit area φi(4) is related to that per unit length ϕi(∆)
(i.e. into a 2D ring of area 2π∆ d∆) as ϕi(∆) = 2π∆φi(∆)
[8].

For simplicity, let us assume a simple description in which

φi(∆) = peiδ
(2)(∆) + (1− pei)δ(2)(∆− r) (5)

where δ(2) is the two-dimensional Dirac delta function, i.e., an
individual of age group i either stays at rest (with probability
pei, which is called the persistence of age group i) or moves
distance r (with probability 1 − pei). Such a description has
been useful previously in several models [4], [5], [9] that did
not take the age structure of the population into account. In
those papers it was also shown that a realistic value for the
mobility distance of prehistoric human populations is r = 50
km. We use a single value for r because using a different
value for each age group would substantially complicate the
simulations in Sec. III. We think this is reasonable because
in our model the value of the persistence pei (and, therefore,
the mobility behavior of the individuals) is allowed to depend
on age. Then, using matrix notation, the system (3) can be
rewritten as

exp(λc)~w ≡
−→−→
H (λ)~w, (6)

where we have defined

−→w ≡

w1

w2

w3

 , (7)

−→−→
H (λ) ≡

 0 f2Ψ2(λ) f3Ψ3(λ)
(1−m1)Ψ1(λ) 0 0

0 (1−m2)Ψ2(λ) 0

 ,

(8)
and

Ψi(λ) ≡ pei + (1− pei)I0(λr). (9)

As usual, according to marginal stability analysis [10] the
front speed c for systems with the form (6) can be found from
the well-known expression [11]

c = min
λ

1

λ
ρ1(λ), (10)

with ρ1 the largest of the eigenvalues of
−→−→
H (λ).

III. NUMERICAL SIMULATIONS

The numerical simulations of the system (2) are performed
on a 2D grid with 1000 x 1000 nodes, with nearest-neighbors
distance r = 50 km (see Sec. II). Initially pi(x, y, t) = 0.25
(but the front speed does not depend on this value) for
i = 1, ..., 4 at the central node, and 0 elsewhere. At each
time interval, corresponding to τ = 12.5 yr, we compute
the new subpopulation number densities pi(x, y, t + τ) at all
nodes of the 2D grid in a two-step process: dispersal and
growth (the latter includes reproduction and deaths). In the
dispersal step, as in the analytical model in Sec. II, a fraction
pei of the population in age group i stays at the original node,
and the remaining fraction is distributed equally among the
nearest neighbors, i.e., a fraction (1−pei)/4 jumps a distance
±r along each horizontal or vertical direction. In the second
step, the effects of reproduction and mortality are computed
as follows. At each node, the new infant population density
p1 is computed as

∑4
i=2 fi pi (the numerical values of fi

are given below). The new population density pi for each of
the remaining three age groups (i = 2, ..., 4) is computed by
removing a fraction mi−1pi−1 to the population density pi−1
(see the last three equations in the set ((2)). In order to avoid
an unbounded population growth, if after any of these steps a
population density in a grid node exceeds the saturation value,
then it is set equal to the saturation value (we used a saturation
value of unity in our simulations, but changing it does not
modify the front speed). The two-step dispersal-growth cycle
is then repeated many times, until a constant speed for the
propagation of the population profiles is reached.

The mean observed values of the parameters, as well as
the ranges used in the simulations, are reported in Table 1.
They have been obtained as follows. First, as mentioned above,
in order to use the histograms for the fecundities in Refs.
[12], [13], the appropriate interval between age groups is
τ = 12.5 yr. From table 2 in Ref. [12], the characteristic value
for the total fertility ratio F of preindustrial agriculturalists
was estimated as F ' 6.6 children per adult woman. The
characteristic value of F is given in children per adult in our
Table 1, as appropriate for application in our model (this is
half the value per adult woman, because the number of women
and men in human populations are approximately the same).
An upper bound for F was set to 7.0 children per adult woman
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TABLE I
MODEL PARAMETERS AND THEIR RANGES

Parameter (units) Value Minim. Max. Refs.

F (children/adult) 3.30 3.00 3.50 [12] , [13]

m1 (dimensionless) 0.55 0.27 0.77 [14]

m2(dimensionless) 0.30 0.15 0.45 [14]

m3(dimensionless) 0.40 0.20 0.60 [14]

m4(dimensionless) 1.00 1.00 1.00 [14]

pe1(dimensionless) 0.38 0.19 0.54 [15]

pe2(dimensionless) 0.38 0.19 0.54 [15]

pe3(dimensionless) 0.38 0.19 0.54 [15]

pe4(dimensionless) 0.38 0.19 0.54 [15]

(from the estimations for Linearbandkeramic (LBK) farmers
during their range expansion in Western Europe [13]). The
minimum value for preindustrial agriculturalists is F = 6.0
children per adult woman, according to table 2 in in Ref.
[12]. The age-dependent fecundities fi used in our model were
estimated by multiplying the total fertility ratio F times the
age-specific relative ratios (defined as the age-specific rate fi
divided by the total rate F ) in natural fertility populations, as
given in Ref. [13], Fig. 2.5. This yields f1 = 0.0, f2 = 2.3,
f3 = 1.0, f4 = 0.0 children per women. Therefore, note that
for a given value of F, the values of f2 and f3 are given by
the equations f2/f3 = 2.3 and f2 + f3 = F . Age-dependent
mortalities were estimated from table 4 in [14], yielding the
characteristic values m1 = 0.55, m2 = 0.30, m3 = 0.40,
m4 = 1.00. Finally, Ref. [15] is the only source we know
with quantitative dispersal data for preindustrial agriculturalist
populations. Unfortunately, it does not seem possible to esti-
mate the age-dependent persistencies pei because all mobility
data give individual distances moved since birth, not since the
individual had several specific ages. However, Ref. [15] makes
it possible to estimate several values of the infant persistence.
As noted in a previous publication [4], the mean is pe1 = 0.38
and the range is 0.19 ≤ pe1 ≤ 0.54. Due to the lack of more
refined information, and because infants necessarily move with
adults, we approximated the adult persistencies (pe2, pe3 and
pe4) to the same range as that of pe1 (Table 1). Moreover, we
will find that our model is consistent with the data for any
value of the adult persistencies (Fig. 1).

IV. APPLICATION TO THE NEOLITHIC TRANSITION IN
EUROPE

Finally we can apply our model to the Neolithic transition
in Europe. In Fig. 1, the full lines are the analytical results
from Eq. (10), and the symbols have been obtained using the
numerical simulations described in the previous section. In
Fig. 1, the persistence of the infant population pe1 has its
mean observed value (Table 1) and we have assumed pe2 =
pe3 (because, as mentioned above, only pe1 can be reliably
estimated from the ethnographic data available, whereas pe2
and pe3 cannot). The persistence of old adults pe4 does not
have any effect on the front speed (simply because it appears
only in the term multiplying f4 = 0 in Eqs. (2)). The hatched

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

 theory

m
1
=0.55

m
1
=0.20

 

 

sp
ee

d 
(k

m
/y

r)

pe2 = pe3

simulations

Pérez-Losada, Fig. 1

Fig. 1. Front speed in 2D versus adult dispersion persistence, for two values
of the infant mortality. Adapted from [7].

rectangle corresponds to the speed range of the Neolithic
transition in Europe, as determined from archaeological data
(0.6 to 1.3 km/year) [16].

From Fig. 1 we see that the infant mortality m1 has a
very important effect on the front speed. Indeed, the predicted
speeds are consistent with the observed range (hatched rect-
angle) for an infant mortality of m1 = 0.55 (this value has
been directly measured for some preindustrial populations,
see table 4 in [14]). However, the predicted speeds are totally
inconsistent with the observed range for other values of the
infant mortality, e.g. for m1 = 0.20. From Fig. 1 we conclude
that (i) the predictions of the model are consistent with
the observed speed range for realistic values of the infant
mortality, and (ii) the role of the infant mortality should be
taken into account in order to understand human invasion front
speeds, as done here for the first time. In Fig. 1 we also
note that the speed decreases with increasing values of the
mortality, as was to be expected intuitively (if less people
survive, less people can migrate and the front speed should
be slower). Also, according to Fig. 1, the higher the value
of the adult persistence (pe2 = pe3), the slower the front
propagates, as was again to be expected (less people migrate
if the persistence is higher, see Sec. II). Finally, in Fig. 1 it
is seen that the numerical simulations (circles) confirm the
validity of our analytical results (curves).

It is important to estimate the importance of each parameter
value on the front speed. In order to do so, in Fig. 2 we
present a sensitivity analysis, performed as follows. All but one
of the adjustable parameters were fixed at the characteristic
value given in Table 1. The speed was then computed for the
single remaining parameter set to its minimum and maximum
values in Table 1. Figure 2 shows that the model is very
sensitive to the infant mortality m1 and, to less extent, to the
total fecundity ratio F . The model is somewhat sensitive to
the young adult mortality m2 and to the persistencies of the
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Fig. 2. Sensitivity analysis of the model as regards its parameter values.
Adapted from [7].

infantiles (pe1) and young adults (pe2), albeit to a lesser extent.
The persistence of the mature adults, pe3, has a non-vanishing
but a very small effect. Finally, the model is insensitive to the
mortality of mature adults, m3. This was expected because,
according to the ethnographic data [14], the oldest individuals
(with density p4) do not reproduce (f4 = 0), so the last
equation in the set (2) should not affect the propagation
behavior of the front, and it is only in this equation that the
parameter m3 appears. Indeed, this expectation has made it
possible to reduce Eqs. (2) to the simpler system, which in
turn has lead us to our analytical result for the front speed
[Eqs. (6)- (10)].

Finally, let us analyze in more detail the effect of infant
mortality m1 on the invasion front speed, given its importance
(Fig. 2) as well as its novelty. Figure 3 shows this effect
(when keeping the other parameters fixed at their baseline or
characteristic values in Table 1). As in Fig. 1, the hatched
rectangle shows the observed speed range for the Neolithic
transition in Europe (0.6 to 1.3 km/year). Simulated values
(rhombus) are in almost perfect agreement with theoretical
ones (open circles and full curve). It is important to note that,
according to Fig. 3, for the predicted speed to lie within the
experimental range, the infant mortality must be rather high,
m1 > 0.5 (as is indeed observed in preindustrial populations
[14]). Moreover, and quite interestingly, beyond a threshold
value (m1 ' 0.63 in Fig. 3) infant mortality is too high and
the speed too slow compared to the range implied by the
archaeological data (hatched rectangle). For even larger values
of infant mortality, the front speed drops until it vanishes,
thereby leading to a front propagation failure induced by infant
mortality.

Although we have illustrated our model for a specific
application (the Neolithic transition in Europe), clearly it can
be also useful to other population expansions. Moreover, the
effect of the mortality shown in Fig. 3 could be related to
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Fig. 3. The effect of infant mortality on the speed of the Neolithic transition.
Adapted from [7].

several interesting factors. For example, a region with less
natural resources (or a period of drought) could lead to higher
values of the infant mortality m1, and thus to slower speeds
(Fig. 3) or even to the failure of the invasive species (vanishing
speed, also seen in Fig. 3) to successfully colonize the new
habitat.

V. CONCLUSIONS

In this paper we have analyzed the effect of age-dependent
mortality, fecundity and persistence on the invasion speed for
populations that spread across a two-dimensional space. Our
simulated and analytical front speeds are consistent with each
other and, for realistic parameter ranges, with the observed
speed of the Neolithic transition in Europe. Predicted speeds
fall within the experimental range for realistic values of the
infant mortality (e.g., m1 = 0.55), and this conclusion is
independent of the adult dispersal persistence (Fig. 1). The
sensitivity of the results has been analyzed, with reference to
a baseline case for the parameter values obtained from the
ethnographic literature (Fig. 2). Infant mortality m1 and total
fecundity ratio F have the most important effects. This is
the first model that relates the Neolithic front speed to the
age-dependent demographic and dispersal parameters of the
population. We have found that there is a relatively narrow
range for the value of the infant mortality (0.5 < m1 < 0.63)
consistent with the observed range of the Neolithic front
speed (Fig. 3). Of course, more complicated models can be
considered, but for the application considered here it is very
difficult to find more detailed ethnographic data, and our
simple model takes into account the age dependency of the
major demographic parameters.
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