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Personalised Adaptive CBR Bolus Recommender
System for Type 1 Diabetes

Ferran Torrent-Fontbona and Beatriz López

Abstract—Type 1 Diabetes Mellitus (T1DM) is a chronic
disease. Those who have it must administer themselves with
insulin to control their blood glucose level. It is difficult to
estimate the correct insulin dosage due to the complex glucose
metabolism, which can lead to less than optimal blood glucose
levels. This paper presents PepperRec, a case-based reasoning
(CBR) bolus insulin recommender system capable of dealing with
an unrestricted number of situations in which T1DM persons can
find themselves. PepperRec considers several factors that affect
glucose metabolism, such as data about the physical activity of
the user, and can also cope with missing values for these factors.
Based on CBR methodology, PepperRec uses new methods to
adapt past recommendations to the current state of the user, and
retains updated historical patient information to deal with slow
and gradual changes in the patient over time (concept drift). The
proposed approach is tested using the UVA/PADOVA simulator
with 33 virtual subjects and compared with other methods in the
literature, and with the default insulin therapy of the simulator.
The achieved results demonstrate that PepperRec increases the
amount of time the users are in their target glycaemic range,
reduces the time spent below it, while maintaining, or even
reducing, the time spent above it.

Index Terms—Diabetes, bolus recommender system, case based
reasoning, patient empowerment.

I. INTRODUCTION

TYPE 1 Diabetes Mellitus (T1DM) is a chronic metabolic
disease characterised by the autoimmune destruction of

the beta cells of the endocrine pancreas responsible for con-
trolling Blood Glucose (BG) levels through the secretion of
insulin. There are no actual global statistics regarding the
number of people suffering from T1DM [1], but the American
Diabetes Association estimates that there are approximately
1.25 million American adults and children with T1DM. Ac-
cording to the International Diabetes Federation, the highest
incidence rates are in Europe, where there are approximately
140,000 children with T1DM and 21,600 new cases every year
[2].

People with T1DM must control their BG level, e.g. by
drawing blood from their fingertips in order to measure the
glucose concentration, and then administer insulin to mimic
the natural insulin secretion of the pancreatic beta cells.
Large intervention trials, [3], have shown the impact of tight
glycaemic control to avoid hyperglycaemia, and its consequent
long term micro-vascular (retinopathy, nephropathy and neu-
ropathy) and macro-vascular (coronary heart disease, stroke
and peripheral vascular disease) complications. These trials
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have highlighted the need for accurate and timely insulin
dosage to avoid hypoglycaemia.

In practice, people with T1DM combine basal insulin (slow-
acting insulin) and bolus insulin (fast-acting insulin) to control
BG. Basal insulin is adjusted by clinicians in collaboration
with patients during periodic visits. Bolus dosage parameters,
the Insulin to Carbohydrates Ratio (ICR) and the Insulin
Sensitivity Factor (ISF), are also adjusted by clinicians in
collaboration with patients, but bolus doses must be calculated
by patients each time they are required which is usually
before an intake of carbohydrates. Bolus doses are calculated
according to the agreed ICR, ISF, carbohydrate intake, the
blood glucose level and the active insulin remaining from
previous doses (insulin on board). The final bolus may be
adjusted by the user, depending on other factors such as
the time of day or their physical activity. There are several
insulin bolus calculators on the market to help people calculate
their insulin dosage [4]. These are software tools usually
incorporated in insulin pumps, glucose meters, personal digital
assistants and smartphones, such as [5] and [6].

Bolus calculators have proved useful in improving patients’
glycaemic self-control [7], [8], [9], [10]. However, they do
not achieve optimal glycaemic control, usually because of
the difficulty associated with setting parameters and regularly
adjusting them to take account of changes in the patients’
insulin requirements due to their physical activity, time of
day, etc. These decisions are taken according to simple rules
based on empirical experience. However, these simple rules
do not capture the complexity of the glucose metabolism.
This leads to miscalculations with regard to the appropriate
insulin dosage. Therefore, there is a need to develop insulin
recommender systems that aid people with T1DM.

Case Based Reasoning (CBR) [11] is a methodology that
provides new recommendations based on past ones. This
technique is becoming an alternative to building tools to
support users’ decisions. In this paper, we present PepperRec,
a novel approach developed as part of the H2020 project
PEPPER, for insulin bolus recommendations based on CBR
that focuses on the management of an unrestricted number
of situations (cases) in which the users find themselves. These
situations depend on a set of variables (time of day, meal size,
and past and future physical activity), some of which could
have missing values. PepperRec estimates the ICR and ISF
according to the situation of the user, and then calculates the
bolus recommendation using these parameters. PepperRec can
manage patient physiological evolution and model the slow
changes of the user over time (concept drift [12]).

CBR for insulin recommender systems was first proposed
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in [13], but it achieved limited results in practice due to the
technological limits and capabilities of the mobile devices at
the time. Brown extended this work in [14] and proposed
a bolus recommender system based on CBR that runs in
a mobile application. It consists of a CBR system which
considers the BG, time and carbohydrate intake of several
previous meals in order to recommend a bolus dose. In contrast
to PepperRec, the method in [14] provides the bolus dose,
while PepperRec calculates the ICR and ISF parameters from
which the bolus is obtained. Therefore, [14] needs more cases
to cover the possible combinations of the input variables,
whereas PepperRec estimates the ICR, ISF and then calculates
the bolus using them, the carbohydrate intake and the BG level,
which requires a smaller number of cases.

Herrero et al. in [15], [16] proposed two approaches based
on CBR to deal with different contexts. Three possible times of
day and three physical activity levels define up to nine possible
contexts with the corresponding ICR and ISF values. When a
bolus recommendation is required, the system evaluates the
current situation (time of day and exercise) and then uses
the ICR and ISF that correspond to the most similar situation
stored to calculate the required bolus. The methodology then
checks the output of the proposed bolus dose, in the form
of the postprandial blood glucose level, and corrects the used
ICR and ISF using a run-to-run algorithm (R2R). Therefore,
the methods proposed in [15], [16] are capable of repeatedly
adjusting the parameters of a bolus calculator (ICR and ISF)
for different contexts. Similarly to [15], [16], this paper
proposes a method based on CBR that automatically adjusts
the ICR and ISF, and then calculates the required bolus for a
given carbohydrate intake and BG level. However, [15], [16]
copy the solution from past experiences and then revise them,
whereas PepperRec provides a reuse method to adapt past ICR
and ISF values to the current situation, as well as a new revise
and retain mechanism.

In addition to CBR, other artificial intelligence techniques
have been explored for bolus recommendation. For example,
[17] proposes a bolus recommender system based on fuzzy
logic. It identifies a physiological model for the corresponding
user using information about how the ICR changes depending
on meal size. Then the fuzzy logic model is repeatedly updated
after each meal to adjust the recommendations to the user’s
physiology. However, this model only catches ICR variability
caused by the amount of carbohydrates in the meal. Authors
in [18] propose a R2R method that repeatedly adjusts user
ICR and ISF and then calculates the appropriate bolus dose
for a given BG level and carbohydrate intake. This is a method
that is capable of personalising a subject’s ICR and ISF, and
capturing possible changes over time (inter-day variability).
However, ICR and ISF depend on several factors and do
not usually have a monotonic evolution. Rather, they have
periodicities due to intra-day variability, peaks and valleys due
to non-constant physical activity, stress, hormone cycle, etc.
Therefore, CBR alternatives, such as PepperRec have been
developed as more powerful tools in terms of capturing this
variability.

Other algorithms to calculate the required insulin dosage
are proposed for closed-loop BG control systems, such as

Fig. 1. PepperRec approach.

the ones suggested in [19], [20] or those reviewed in [7],
[21]. However, these algorithms are usually control algo-
rithms that use glucose predictions to regulate a continuous
(or almost continuous) infusion of insulin. Conversely, this
paper proposes a method for recommending insulin doses for
people with T1DM, where the user decides whether or not to
accept the outcome. Therefore, closed-loop algorithms are not
applicable.

II. MATERIALS AND METHODS

PepperRec is a personalised and adaptive CBR bolus rec-
ommender system for people with T1DM. Those using this
recommender system are assumed to wear a Continuous
Glucose Monitor (CGM) to monitor BG, especially during the
postprandial phase. The proposed bolus recommender system
first estimates the ICR, and then calculates the ISF. The ICR
and ISF are parameters whose setting is one of the main
difficulties that clinicians, carers and people with diabetes face
when they use bolus calculators [15]. Once the ICR and ISF
are estimated, PepperRec calculates the bolus.

Figure 1 illustrates PepperRec methodology for bolus rec-
ommendation. The details are described in the reminder of the
section.

A. CBR

CBR combines problem solving and lazy learning tech-
niques to work out a solution for a new problem based on
past experience [11]. Given a problem or query case Q, this
methodology obtains a solution by following four main phases:
(i) retrieve of past experiences similar to Q, (ii) reuse of the
retrieved past solutions to work out a new solution for the new
problem, (iii) revision of the proposed solution according to
the outcome, and (iv) retention of the new case according to
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Fig. 2. CBR cycle.

TABLE I
CASE REPRESENTATION

Type Variable Description
Input (retrieve) Time of day Hour of the day
Input (retrieve) CHO Amount of carbohydrates of the meal (in g)
Input (retrieve) Past physical activity Four-level quantification of past exercise
Input (retrieve) Future physical activity Four-level estimation of future exercise
Input (reuse) Gc Preprandial blood glucose (in mg/dl)
Input (reuse) IOB Insulin on board

Output (reuse) ICRQ Estimated ICR for the current case
Output (reuse) ISFQ Estimated ISF for the current case
Input (revise) W Subject’s weight (in kg)
Input (revise) Gsp Target blood glucose (in mg/dl)
Input (revise) Gl Lower bound blood glucose (in mg/dl)
Input (revise) Gmin Postprandial minimum glucose (in mg/dl)

Output (revise) ˆICRQ Corrected ICR
Output (revise) ˆISFQ Corrected ISF

a strategy that considers its relevance measured according to
certain metrics.

Figure 2 illustrates the CBR methodology.
The core of the methodology is the case base, where expe-

riences are stored. In the case of insulin recommendation, as
cases capture the history of the person’s insulin management,
the outcome of PepperRec is a personalised recommendation.
Therefore, the size and quality of the cases stored determines
the quality of the CBR outcomes. Retain mechanisms are
crucial for this purpose, and can be complemented with other
additional maintenance steps as proposed in [22].

B. Cases

The structure of the cases stored in the case base is
shown in Table I. The input variables are the time of day,
the estimated carbohydrate intake, the current BG level, and
past and future physical activity. Amongst these parameters,
physical activity has been identified as a key factor in this
work. Therefore, a particular descriptor, which consists of a
four-level quantification, is inferred in the retrieve step for
physical activity.

C. Retrieve

The retrieve step selects similar cases to the query (or new)
case from the input data. Two main steps are considered in
this phase: feature identification, and the match-and-selection
of cases.

1) Feature identification: In the feature identification step,
several inferences are made regarding the input variables.
Physical activity before a meal is quantified in four levels
according to the exercise performed in the last hours measured
by an activity tracker. If its use is consistent, the activity
tracker ensures an objective and consistent measurement of
the activity. However, this does not produce accurate mea-
surements due to the quality of the activity tracker sensors.
Nevertheless, as CBR can follow up a patient’s subjective in-
formation, it could do the same with the information captured
by the activity tracker [22].

The four quantification levels (none, low, mild and intense)
are defined with personal thresholds:
• None: activity below th1
• Low: activity between th1 and th2
• Mild: activity between th2 and th3
• Intense: activity over th3

where th1, th2 and th3 are thresholds which depend on the
average activity of the user during this period. The user is also
asked to provide an approximate four-level (none, low, mild,
intense) subjective prediction of the physical activity they will
carry out during the postprandial phase.

The size of the meal (CHO) also has an impact on the ICR
and ISF. Therefore, the amount of carbohydrates is quantified
on three levels (low, medium, high) depending on whether the
meal has less than 30g, more than 30g and less than 70g,
or more than 70g of carbohydrates, respectively. The variable
indicating the hour of the day is already a discrete variable
since its possible values are the integer hours of the day, i.e.
from 0 to 23. Therefore, the hour of the day is adjusted using
a rounding procedure based on the timestamp.

Once all the variables used in the retrieve step are quantified,
they are normalised to values in [0, 1]. Note that BG is not
used by the retrieve step and therefore it is not quantified or
normalised.

2) Match and select: The retrieval of similar experiences is
based on a similarity measure. When choosing the appropriate
similarity measure, it is important to consider that in healthcare
and medicine, the available data is rarely complete. Therefore,
systems should be able to deal with missing values [23], [24].

The proposed similarity measure is inspired in Tversky
index [25] and consists of an average Euclidean distance
between all the attributes, but with the particularity that it is
normalised by the number of non-missing values of the query
case. Thus, given a query case Q with {NQ} non-missing
attributes, and a case C from the case base, then the similarity
between the two cases is given by the Equation (1), where N
is the number of attributes, and qi and ci are the ith attribute
of case Q and case C, respectively. Moreover, the distance
between a non-missing value and a missing value is considered
maximum, i.e. 1.

S(Q,C) = 1− 1

‖{NQ‖}
∑

i∈{NQ}

(qi − ci)2 (1)

Note, that the proposed similarity measure does not fulfil
that S(Q,C) = S(C,Q) if both cases have different missing
attributes. However, this ensures that the selected cases are
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those more similar to the query case considering the known
information of the query case. Other techniques such as
replacing the unknown value with an average value may
introduce bias in the selection of cases. Forcing the distance
between a known attribute of the query case and an unknown
attribute of a case from the case base as 1, leads the retrieve
step to prefer the most complete cases (those with more known
attributes) in the case base. The outcome of the retrieval stage
is a set of the K most similar cases.

D. Reuse

As the retrieved and query situations are not identical, Pep-
perRec provides the ICR solution to the query case following
[26]. The proposed reuse methodology consists of a weighted
mean of the ICR of the retrieved cases based on their similarity
to the query case as shown in Equation (2), where K is the
number of retrieved cases, ICRQ is the ICR of the query case,
Ck is the kth retrieved case, and ICRCk

is its corresponding
ICR.

ICRQ =

∑K
i=1 S(Q,Ck)ICRCk∑K

i=1 S(Q,Ck)
(2)

Given ICRQ, the insulin sensitivity factor of the query case
ISFQ is calculated as stated in [27] using Equation (3), where
W is the weight of the user in kg.

ISFQ =
341.94 · ICRQ

W
(3)

After ICRQ and ISFQ are calculated, the recommended
bolus BQ for the query case is calculated according to
Equation (4).

BQ =
CHO

ICRQ
+
Gc −Gsp

ISFQ
− IOB (4)

This expression is used in bolus calculators with the same
input data (see [14]). The remaining active insulin IOB can
be calculated as in [15].

E. Revise

The outcome of the proposed solution can be evaluated by
the postprandial BG curve of the user. The proposed revise
process is based on the idea proposed in [15], which relies
on the assumption that an additional bolus would have been
necessary to bring the BG curve in the glycaemic target range
in the event that it is not. The authors propose focusing on
the minimum postprandial BG value, Gmin, to calculate the
additional bolus. Given the meal time tm, the value Gmin is
calculated as expressed by Equation (5) as the minimum BG
value of Gcgm(t) measured by a CGM between t1 and t2 time
after tm, with t1 < t2, e.g. t1 = 2h and t2 = 6h.

Gmin = min
t∈{tm+t1,tm+t2}

{Gcgm (t)} (5)

Given Gmin, this paper proposes to correct the ICRQ

recommended by the reuse process according to Equation (6),
where ˆICRQ is the corrected ICR of the query case, and

α ∈ [0, 1] is the learning rate. The ISF is also corrected using
Equation (3) but with the new ˆICRQ. Note that a learning
rate is incorporated to smooth changes since they could be
influenced by noisy measurements of the continuous glucose
monitor.

ˆICRQ = (1− α)ICRQ + α
CHO +

Gc−Gsp

341.94/W

BQ + IOB + Gmin−Gl

ISFQ

(6)

Note that the correction bolus is estimated by comparing the
postprandial minimum blood glucose Gmin and the lower
glucose threshold Gl. Therefore, the revise step modifies the
ICR to bring the Gmin to Gl. The target glucose values, Gsp

and Gl, may be agreed upon between the patient and the
clinician.

F. Retain

The retain step is responsible for updating the case base
for further recommendations. Hence, there is a maintenance
process consisting of deciding if the query case should be
saved in the case base, and which cases should be removed
from the case base because they are redundant, old, etc.

In the posed problem, the ICR can change over time because
subject’s physiology changes due to age, changes in body
weight, etc. This change cannot be solved by retrieving past
experiences since the subject’s physiology is new. PepperRec
deals with this problem, called concept drift, in this stage.
Thus, the proposed maintenance strategy consists of preferring
to keep recent cases (i.e. the query case) over similar cases
Ci in the case base if they are sufficiently similar, i.e. if
S(Q,Ci) < Σ, where Σ is a similarity threshold, case Ci is
removed. This maintenance process relies on the assumption
that similar cases should have the same (or very similar) ICR
and, if not, the case should be removed because subject’s
physiology has changed. Insulin response is quite sensitive
to input factors of the query case. Therefore, this strategy
emphasizes factors interaction in the final recommendation
over other cases frequently applied. Then, similar old cases
should always be removed because they are either redundant
(have the same ICR) or obsolete.

G. Experimentation Set-up

The proposed CBR-based bolus recommender system has
been tested on 33 in silico subjects (11 adults, 11 adolescents
and 11 children) using the UVA/PADOVA T1DM simulator
[28]. The UVA/PADOVA simulator is the only T1DM simu-
lator approved by the United States Food and Drug Admin-
istration as an alternative to animal testing of T1DM control
strategies. The 33 virtual subjects are supposed to encompass
variations in the population with T1DM [29]. However, since
the simulator does not incorporate intra-day variability of
insulin sensitivity, and physical activity variability of the ICR,
these were artificially introduced as proposed in [30].

Fifty 90-day simulations have been carried out for all 33
virtual subjects. Meal size estimations are done following a
random uniform distribution of [0.7, 1.1] times the actual meal



5

size, and BG readings are taken using the default CGM of the
simulator with the default measurement noise, which follows a
Johnson’s SU -distribution with γ = −0.5444, λ = 10.63827,
δ = 1.6898 and ξ = −5.47. The learning rate of the revise
step has been set to alpha = 0.2.

The proposed bolus recommender system is analysed in
terms of time in, above and under the target glycaemic range,
i.e. the proportion of time (in %) that each subject has the BG
in, below and above the range [70, 180] mg/dl. Wilcoxon tests
have been used to verify if the results obtained by PepperRec
present significant differences to other methods: the state-of-
the-art method presented in [15], the R2R algorithm explained
in [16] and the default bolus therapy provided by the simu-
lator as a baseline method for optimising bolus calculators.
Wilcoxon tests are non-parametric statistical hypothesis tests
that assess if samples come from continuous distributions
with equal medians. This test was chosen because it does not
require the assumption that the analysed data follows a normal
distribution.

III. RESULTS

A. Overall Performance

Table II shows the results (average ± standard deviation) of
the time (%) in, below and above the glycaemic target using
the proposed method (PepperRec), the R2R method explained
in [16], the default insulin therapy of the simulator, and the
method in [15] labelled as Herrero et al. The results show that
PepperRec achieves a greater amount of time in the glycaemic
target range by reducing the time below the target. R2R and
Herrero et al.’s methods achieve similar results to the default
insulin therapy for adults and adolescents, but worse results for
children, who are the ones with higher variability. However,
PepperRec outperforms the default insulin therapy even with
children and reduces the standard deviation in comparison with
the other methods, meaning that it increases the stability of a
subject’s glucose level. Therefore, PepperRec can recommend
a more accurate bolus dosage.

Figures 3, 4 and 5 illustrate the individualised time in, below
and above the glycaemic target range for the 11 virtual adults,
showing that PepperRec achieves greater amounts of time in
the glycaemic target range than the other tested methods for
all subjects. Wilcoxon tests show that PepperRec not only
significantly (pvalue < 0.05) outperforms the other methods
in average in terms of time in the glycaemic target, but also
outperforms them for all virtual subjects individually (adults,
adolescents and children).

B. Robustness

Figure 6 shows the target in the glycaemic range of the
virtual subjects using PepperRec with and without missing
values. The results show that when values are missing (10%
of physical activity is missing) this slightly reduces the time in
the glycaemic range. Despite this small performance decrease,
the achieved time in the glycaemic range is significantly better
than that achieved by the other methods without missing values
(see Figure 3), indicating the robustness of PepperRec against
missing values. These results are achieved under conditions
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Time (%) in the glycaemic target range

PepperRec
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Default insulin therapy
Herrero et al.

Fig. 3. Average and standard deviation of time (%) in the glycaemic range
of the CBR recommender system PepperRec and a run-to-run recommender
system.
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Fig. 4. Time (%) below the glycaemic range of the CBR recommender system
PepperRec and a run-to-run recommender system.

involving the use of a noisy CGM, and mis-estimations of
meal size by the subjects, as described in Section II-G.

Basal insulin is the cornerstone of insulin therapy. Table III
shows a comparison of the results achieved with PepperRec
with the optimal basal dosage and the default basal dosage
in terms of the ages of the population under consideration
(adults, adolescents and children). The results show that a
good basal dosage (the simulators default basal dosage) but not
optimal, can reduce the potential benefits of using PepperRec,
demonstrating that basal insulin is crucial. In particular, an
average absolute deviation about 9% regarding the optimal
basal in adult produces a 5% reduction of the time in the
glycaemic target range; a deviation about 15% produces a
reduction of about 3% in the portion of time in the glycaemic
target range; and a deviation about 55% produces a reduction
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Fig. 5. Time (%) above the glycaemic range of the CBR recommender system
PepperRec and a run-to-run recommender system.
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TABLE II
AVERAGE THROUGHOUT THE 11 ADULTS, 11 ADOLESCENTS AND 11 CHILDREN OF THE MEAN AND STANDARD DEVIATION OF THE TIME (%) IN, BELOW

AND ABOVE THE GLYCAEMIC TARGET USING THE DEFAULT INSULIN THERAPY, A RUN-TO-RUN ALGORITHM TO ADJUST BOLUS CALCULATOR
PARAMETERS (R2R), THE METHOD PRESENTED IN [15] (HERRERO ET AL.) AND PEPPERREC. ALL METHODS HAVE BEEN TESTED USING EMPIRICALLY

OPTIMISED CONSTANT BASAL DOSAGE.

Method/Subject Adults Adolescents Children
In Below Above In Below Above In Below Above

PepperRec with optimal basal 84.00± 1.26 2.96± 0.93 13.04± 0.87 67.83± 2.07 4.84± 1.75 27.34± 1.09 64.31± 2.21 7.30± 2.10 28.39± 1.15
R2R 73.83± 4.72 5.16± 2.87 21.00± 2.41 54.18± 6.39 7.98± 4.58 37.84± 2.47 44.48± 3.71 4.83± 2.94 50.69± 1.77

Default insulin therapy 74.44± 4.26 13.81± 4.06 11.75± 2.02 55.21± 9.12 18.28± 8.97 26.51± 2.38 54.11± 6.33 14.86± 5.43 31.04± 2.08
Herrero et al. 75.92± 2.75 6.60± 2.13 17.48± 1.11 49.34± 5.53 9.68± 4.54 40.98± 2.37 48.57± 4.10 17.74± 3.47 33.68± 1.75

1 2 3 4 5 6 7 8 9 10 11
Virtual subject

0

20

40

60

80

100
% in target time Without missing values

With missing values

Fig. 6. Time (%) in the the glycaemic range of PepperRec with and without
missing values.

about 11% in the portion of time inside the target range.
Therefore, PepperRec needs a good basal dosage to achieve the
best possible results. Nevertheless, PepperRec achieves good
results even when basal dosage is far from optimal.

C. Latency

PepperRec is capable of recommending bolus doses using
experiences stored in the case base. The case base is person-
alised since it contains the user’s experiences. This implies that
the first time a bolus is required with regard to a particular
context, PepperRec would provide a recommendation based on
other experiences in other contexts that may not be sufficiently
similar. In such a situation, the recommendation may not be
optimal. This problem occurs when new contexts appear, and
therefore PepperRec needs to update (or initialise) the case
base for the new context.

Figure 7 shows the evolution of the time (average and
standard deviation) in the glycaemic target range for all virtual
adults in the first 30 days, starting with a case base with a
single case with non-optimal ICR and ISF. It shows that the
time in the glycaemic target range increases over the days,
and finally converges around a value after two weeks. The
convergence time can be adjusted with the learning rate of
the revise step. However, there is a trade-off between the
convergence time and the variability around the optimal after
convergence.

IV. DISCUSSION

The results achieved by PepperRec demonstrate that the
variability of the ICR due to factors such as exercise or intra-
day variability are caught by the proposed system. Thus, the
proposed system divides the solution space according to the
information provided, and then adapts and personalises the

5 10 15 20 25 30
Days

65

70

75

80

85

90

%

Time (%) in the glycaemic target range

Fig. 7. Evolution of the average and standard deviation of the time (%) in the
the glycaemic range between all virtual adults throughout the first 30 days.

proposed solution. The retain step divides the solution space
by keeping the relevant cases however many there are. These
cases are then used by the retrieve and reuse steps to propose
solutions to new cases. Finally, the revise and retain steps are
responsible for repeatedly optimising the proposed solutions
and keeping the system updated. Using this methodology, the
virtual subjects achieve a time in the glycaemic range that is
about 10% greater than when using the default insulin therapy
of the simulator. PepperRec also reduces the variability of the
simulations. Therefore, it is capable of improving the safety
of patients not only by increasing the time in the target range,
but also by increasing the stability of the BG level against
different sources of variability.

PepperRec outperforms other methods in the literature such
as the one presented in [15] and the R2R algorithm explained
in [16] that achieve results similar to those in the default
insulin therapy. The CBR bolus recommender system proposed
in [14] also achieves similar results to the default insulin
therapy as the author explains in [14]. Therefore, PepperRec
outperforms these other state-of-the-art methods.

PepperRec is also capable of dealing with missing values
and retrieving the most similar experiences in order to recom-
mend a new bolus dose prioritising the most complete cases
in the case base. This procedure is proven to be robust when
information is missing information by obtaining similar times
in the glycaemic range to those when all the information is
known. Consequently, PepperRec can minimise a decrease in
performance in the event of a loss of information. This conclu-
sion is relevant for healthcare applications, since the system
must be trustworthy, even when the user does not provide all
the information required due to omission or tiredness.

As with any CBR system, PepperRec requires a good
case base to achieve notable results. The research shows that
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TABLE III
AVERAGE THROUGHOUT THE 11 ADULTS, 11 ADOLESCENTS AND 11 CHILDREN OF THE MEAN AND STANDARD DEVIATION OF THE TIME (%) IN, BELOW
AND ABOVE THE GLYCAEMIC TARGET USING PEPPERREC WITH OPTIMISED BASAL DOSAGE USING THE ALGORITHM OF [31] AND THE DEFAULT BASAL
DOSAGE OF THE SIMULATOR. THE LAST ROW INDICATES THE AVERAGE AND STANDARD DEVIATION AMONGST SUBJECTS OF THE RELATIVE ABSOLUTE

DIFFERENCE BETWEEN THE OPTIMAL BASAL AND DEFAULT BASAL.

Method/Subject Adults Adolescents Children
In Below Above In Below Above In Below Above

PepperRec with optimal basal 84.00± 1.26 2.96± 0.93 13.04± 0.87 67.83± 2.07 4.84± 1.75 27.34± 1.09 64.31± 2.21 7.30± 2.10 28.39± 1.15
PepperRec with default basal 79.06± 2.64 6.81± 2.74 14.12± 1.48 64.43± 3.48 8.48± 4.14 27.08± 1.64 53.84± 3.47 16.17± 3.90 30.52± 1.25

Basal insulin relative difference (%) 8.90± 7.47 15.44± 10.94 52.56± 48.89

PepperRec may need two weeks to initialise the case base,
which is an acceptable amount of time since diabetes is a
chronic disease, but more research could be done to reduce
the effects of the initialisation problem.

V. CONCLUSIONS

This paper presents PepperRec, a case based reasoning bolus
recommender system for people with type 1 diabetes mellitus.
The proposed system automatically estimates the personalised
insulin to carbohydrates ratio and insulin sensitivity factor of
the user to calculate the appropriate bolus for a given time of
day, carbohydrate intake, physical activity, blood glucose level,
weight, the desired glucose target and glucose lower bound.
Using CBR methodology, PepperRec provides a new retrieve
method that is able to deal with missing values. In the reuse
phase, PepperRec can manage contextual information due to
an adaptation method that combines previous ICR values from
similar circumstances. The proposed solution is then corrected
according to the outcome (postprandial blood glucose) in the
revise phase. Finally, the proposed methodology can repeat-
edly follow a subject’s physiological changes by means of a
retain strategy that manages the concept drift by removing
obsolete cases in favour of recent ones.

The system has been tested using the UVA/PADOVA sim-
ulator with 33 virtual subjects (11 adults, 11 adolescents and
11 children) with artificially-added variability for the time of
day and physical activity. The results are compared with the
default insulin therapy of the simulator and other methods
described in the literature, and demonstrate that the proposed
system outperforms the other methods, while exhibiting a
robust behaviour when information is missing.

For future work, the system should be tested in a real
environment with real people with type 1 diabetes, and the
true benefits of the proposed system should be analysed. It
would be interesting to analyse the capacity of the proposed
methodology to recommend bolus doses to prevent hypergly-
caemia when this is forecast and there is still research to be
done to minimise the effects of the problem of initialisation.
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