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TOPOLOGICAL AND ALGEBRAIC REDUCIBILITY FOR

PATTERNS ON TREES

LLUÍS ALSEDÀ, DAVID JUHER AND FRANCESC MAÑOSAS

Abstract. We extend the classical notion of block structure for periodic or-
bits of interval maps to the setting of tree maps and study the algebraic
properties of the Markov matrix of a periodic tree pattern having a block
structure. We also prove a formula which relates the topological entropy of a
pattern having a block structure with that of the underlying periodic pattern
obtained by collapsing each block to a point, and characterize the structure of

the zero entropy patterns in terms of block structures. Finally, we prove that
an n-periodic pattern has zero (positive) entropy if and only if all n-periodic
patterns obtained by considering the k-th iterate of the map on the invariant
set have zero (respectively, positive) entropy, for each k relatively prime to n.

1. Introduction, definitions and statement of the main results

The notion of reducibility plays a fundamental role in the study of the combina-
torial and topological dynamics of discrete dynamical systems. Reducible systems
are those such that the space can be decomposed in connected pieces with pairwise
disjoint interiors which are permuted by the map. In this situation the behaviour
of the original map can be related with the dynamics of an iterate of the map on
the reduced pieces. This approach plays a crucial role, for instance in the study of
both the surface homeomorphisms [13] and the interval dynamics related to peri-
odic orbits (where reducibility is formalized through the notion of block structure)
[4]. In this setting the concept of minimal dynamics plays also a fundamental role.
Each minimal model has an associated (Markov) matrix that encodes at the alge-
braic level all its dynamical features, such as implications between periodic orbits,
topological entropy, etc.

The aim of this paper is to clarify in full the notions of reducibility and irre-
ducibility for periodic orbits of tree maps. We provide precise definitions of these
notions for periodic patterns of trees and study the dynamical implications of these
notions at a topological level. Moreover relate these features with the algebraic
properties of the Markov matrices of the associated minimal models. Thanks to
this study, we obtain some interesting properties of the topological entropy of re-
ducible systems and we clarify its relation with the decomposition of the space and
the Markov matrix of the map.

Before defining and study these notions we have to introduce the notation and
definitions to fix the framework.

A tree is a compact uniquely arcwise connected space which is a point or a union
of a finite number of intervals (by an interval we mean any space homeomorphic
to [0, 1]). Any continuous map f : T −→ T from a tree T into itself will be called a
tree map. A set X ⊂ T will be called f -invariant if f(X) ⊂ X . For each x ∈ T , we
define the valence of x to be the number of connected components of T \ {x}. A
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point of valence different from 2 will be called a vertex of T and the set of vertices
of T will be denoted by V (T ). Each point of valence 1 will be called an endpoint
of T. The set of such points will be denoted by En(T ). The points in V (T ) \En(T )
have valence greater than or equal to 3. They will be called the branching points
of T . Also, the closure of a connected component of T \V (T ) will be called an edge
of T .

Any tree which is a union of r ≥ 2 intervals whose intersection is a unique point
y of valence r will be called an r-star, and y will be called its central point.

Given any subset X of a topological space, we will denote by Int(X) and Cl(X)
the interior and the closure of X , respectively. For a finite set P we will denote its
cardinality by |P |.

A triplet (T, P, f) will be called a model if f : T −→ T is a tree map and P is a
finite f -invariant set. In particular, if P is a periodic orbit of f and |P | = n then
(T, P, f) will be called an n-periodic model. Given X ⊂ T we will define the convex
hull of X , denoted by 〈X〉T or simply by 〈X〉, as the smallest closed connected
subset of T containing X . When X = {x, y} we will write 〈x, y〉 or [x, y] to denote
〈X〉. The notations (x, y), (x, y] and [x, y) will be understood in the natural way.

Let T be a tree and let P ⊂ T be a finite subset of T . The pair (T, P ) will
be called a pointed tree. A set Q ⊂ P is said to be a discrete component of
(T, P ) if either |Q| > 1 and there is a connected component C of T \ P such
that Q = Cl(C) ∩ P , or |Q| = 1 and Q = P . We say that two pointed trees
(T, P ) and (T ′, P ′) are equivalent if there exists a bijection φ : P −→ P ′ which
preserves discrete components. In this case, two discrete components C of (T, P )
and C′ of (T ′, P ′) will be called equivalent if C′ = φ(C). The equivalence class of a
pointed tree (T, P ) will be denoted by [T, P ], and the equivalence class of a discrete
component of (T, P ) will be called a discrete component of [T, P ].

Let (T, P ) and (T ′, P ′) be equivalent pointed trees, and let θ : P −→ P and
θ′ : P ′ −→ P ′ be maps. We will say that θ and θ′ are equivalent if θ′ = ϕ ◦ θ ◦ ϕ−1

for a bijection ϕ : P −→ P ′ which preserves discrete components. The equivalence
class of θ by this relation will be denoted by [θ]. If [T, P ] is an equivalence class of
pointed trees and [θ] is an equivalence class of maps then the pair ([T, P ], [θ]) will
be called a pattern. Any discrete component of [T, P ] will be also called a discrete
component of the pattern ([T, P ], [θ]).

We say that a model (T, P, f) exhibits a pattern (T ,Θ) if T = [〈P 〉T , P ] and
Θ = [f

∣∣
P
]. Alternatively, we will say that the model (T, P, f) is a representative of

the pattern (T ,Θ).
The topological entropy [1] is a well known quantitative measure of the dynamical

complexity of a model. It is an important topological invariant which is defined
for continuous maps on compact metric spaces. The topological entropy of a map
f : T −→ T will be denoted by h(f). Given a pattern P , the topological entropy of
P is defined to be

h(P) := inf{h(f) : (T, P, f) is a model exhibiting P}.
The simplest models exhibiting a given pattern are the monotone ones, according

to the following definition. Let S and T be trees and let f : T −→ S be a map. Given
a, b ∈ T we say that f

∣∣
[a,b]

is monotone if f([a, b]) is either an interval or a point and

f
∣∣
[a,b]

is monotone as an interval map. Let (T, P, f) be a model. A pair {a, b} ⊂ P

will be called a basic path of (T, P ) if it is contained in a single discrete component
of (T, P ). We will say that f is P -monotone if En(T ) ⊂ P and f

∣∣
[a,b]

is monotone

for any basic path {a, b}. The model (T, P, f) will be calledmonotone. In such case,
Proposition 4.2 of [4] states that the set P ∪ V (T ) is f -invariant. It easily follows
that the map f , which is P -monotone, is also (P ∪ V (T ))-monotone. Observe that
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the closure of each connected component of T \ (P ∪ V (T )) is an interval [v, w],
which is mapped by f either to a point or to the proper interval [f(v), f(w)]. In
the latter case, of course we can assume without loss of generality that f

∣∣
[v,w]

is

injective. For practical purposes, all monotone models considered throughout this
paper will be assumed to satisfy this additional property.

Theorem 1.1 (Theorem A of [3]). Let P be a pattern. Then the following state-
ments hold.

(a) There exists a monotone model of P.
(b) Every monotone model (T, P, f) of P satisfies h(f) = h(P).

The monotone models from Theorem 1.1 are essentially unique in the following
sense. Let (T, P, f) be a monotone model and let S be a non-empty union of
edges disjoint from P . We will say that S is an invariant forest of (T, P, f) if either
f i(S)∩P = ∅ for every i ≥ 0 or there exists n > 0 such that f i(S)∩P = ∅ for every
i = 0, 1, . . . , n− 1 and fn(S) degenerates to a point of P . We will say that (T, P, f)
is a canonical model of the pattern [T, P, f ] if it has no invariant forests. From [3,
Theorem B] it follows that every pattern has a canonical model. Moreover, given
two canonical models (T, P, f) and (T ′, P ′, f ′) of the same pattern there exists a
homeomorphism ϕ : T −→ T ′ such that ϕ(P ) = P ′, and f ′ ◦ϕ

∣∣
P
= ϕ ◦ f

∣∣
P
. Hence,

the canonical model of a pattern is essentially unique.
It is worth noticing that the proof of Theorem 1.1 is constructive and gives a

finite algorithm to construct the canonical model of any pattern.
To state the first main result of this paper we need to introduce the notions of

trivial pattern, collapsing interval, Markov matrix, block structure and rotational
structure, which depend only on the combinatorial data of the pattern.

An n-periodic pattern P will be called trivial if it has only one discrete compo-
nent. In this case, for n ≥ 2, let (T, P ) be a pointed tree such that T is an n-star
with En(T ) = P = {x1, x2, . . . , xn} and let y be its central point. Consider a rigid
rotation on T , that is, a model (T, P, f) such that f(y) = y and f maps bijectively
[y, xi] onto [y, xi+1] for 1 ≤ i < n and [y, xn] onto [y, x1]. Clearly, (T, P, f) is a
monotone model with no invariant forests. In consequence, (T, P, f) is the canon-
ical model of P . Therefore, it easily follows that every trivial pattern has entropy
0.

Let P be a periodic pattern and let (T, P, f) be the canonical model of P . Any
(P ∪ V (T ))-basic interval [a, b] such that f([a, b]) reduces to a point will be called
a collapsing interval of P . Note that, in this case, since P is periodic, {a, b} 6⊂ P .
On the other hand, since (T, P, f) has no invariant forests, {a, b} 6⊂ V (T ) \ P .
Therefore, each collapsing interval has the form [a, b] with a ∈ P and b ∈ V (T ) \P .
The interval [c, 8] in the canonical model of the pattern P shown in Figure 4 is an
example of a collapsing interval, since f(c) = f(8) = 9.

It should be mentioned that there is a purely combinatorial criterion to decide
whether a pattern P has collapsing intervals without constructing its canonical
model. Indeed, it is easy to see that a pattern ([T, P ], [f ]) has collapsing intervals if
and only if there is a discrete component C of (T, P ) such that |En(〈f(C)〉)| < |C|.
This definition is independent from the particular model (T, P, f) realizing the
pattern. For an example, recall that [c, 8] is a collapsing interval for the pattern
P in Figure 4 and observe that there is a discrete component C = {2, 4, 8, 12}
such that 〈f(C)〉 = 〈{3, 5, 9, 1}〉, a tree with 3 endpoints. For another example
of a pattern with collapsing intervals, see Figure 1: take the discrete component
C = {1, 5, 13} and observe that 〈f(C)〉 = 〈{2, 6, 14}〉 is an interval.

Let (T,Q, f) be a monotone model such that Q ⊃ V (T ). Note that, in this case,
any connected component of T \ Q is an open interval. An interval of T will be
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called Q-basic if it is the closure of a connected component of T \Q. Observe that
two different Q-basic intervals have pairwise disjoint interiors. Given K,L ⊂ T , we
will say that K f -covers L if f(K) ⊃ L. Consider a labelling I1, I2, . . . Ik of all
Q-basic intervals. The Markov graph of (T,Q, f) associated to this labelling is a
combinatorial directed graph whose vertices are the Q-basic intervals and there is
an arrow from Ii to Ij if and only if Ii f -covers Ij . On the other hand, the Markov
matrix of (T,Q, f) associated to this labelling is a k×k matrix (mi,j)

k
i,j=1 such that

mi,j = 1 if and only if Ii f -covers Ij , and mi,j = 0 otherwise. Given two different
labellings of the set of Q-basic intervals and their associated Markov matrices M
and N , there exists a permutation matrix A such that M = ATNA (where AT

denotes the transpose of A), and the corresponding Markov graphs are isomorphic.
Recall that if (T, P, f) is the canonical model of a pattern P then the model

(T, P∪V (T ), f) is monotone. Thus, we can consider their Markov graph and matrix.
Since both objects depend only on the canonical model of P , which is uniquely
determined by the combinatorial data of the pattern P , they will be respectively
called Markov graph of P and Markov matrix of P .

We recall [8] that a square matrix with non-negative entries is called reducible if
there exists a permutation matrix A such that

(1) ATMA =

(
M11 0
M21 M22

)

where M11 and M22 are square matrices of sizes l × l and m × m (l,m ≥ 1)
respectively and 0 stands for the l×m matrix whose entries are all 0. If there does
not exist such A then the matrix M is called irreducible.

An irreducible matrix M is called primitive if all powers Mn are irreducible for
n ≥ 2. Otherwise M is called imprimitive. It is well known [8, Theorem 8] that an
irreducible matrix M is primitive if and only if there exists n ≥ 1 such that all the
entries of Mn are positive.

A square matrix with non-negative entries M will be called cyclic if there exist
p ≥ 2 and a permutation matrix A such that

(2) ATMA =




0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0




where the diagonal 0 blocks are square (possibly with pairwise different sizes). Of
course, the matrix of a cyclic permutation is cyclic.

Remark 1.2. Let M be an irreducible matrix. It is well known [8] that M is
imprimitive if and only if M is cyclic.

The Markov matrix of a trivial pattern is the simplest example of a cyclic matrix.
Indeed, the following remark states that the Markov matrix of a trivial pattern is,
in fact, a permutation matrix.

Remark 1.3. Recall that if (T, P, f) is the canonical model of a trivial n-periodic
pattern P with n ≥ 3 then T is an n-star with En(T ) = P and f(y) = y, where y is
the central point of T . It is straightforward to check that the Markov matrixM of P
is the permutation matrix corresponding to the cyclic permutation (2, 3, . . . , n, 1).
In consequence, M is cyclic.

We are interested in describing some algebraic properties of the Markov matrix
of a periodic pattern in terms of purely combinatorial features of the pattern. Let
P = ([T, P ], [f ]) be an n-periodic pattern with n ≥ 3. For n > p ≥ 2, we will
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Figure 1. A 16-periodic pattern P = ([T, P ], [f ]). The dashed
circles stand for the discrete components of P . The points of P
are labelled with natural numbers, f(i) = i+ 1 for 1 ≤ i < 16 and
f(16) = 1. The pointed tree corresponding to the discrete compo-
nent {1, 6, 8, 11, 14} in the canonical model is shown. The partition
P = P1∪P2 = {1, 3, 5, 7, 9, 11, 13, 15}∪{2, 4, 6, 8, 10, 12, 14, 16} de-
fines a 2-block structure for P . There is also a 4-block structure
given by the partition P = Q1 ∪ Q2 ∪ Q3 ∪ Q4 = {1, 5, 9, 13} ∪
{2, 6, 10, 14}∪ {3, 7, 11, 15}∪ {4, 8, 12, 16}.

say that P has a p-block structure (or simply a block structure) if there exists a
partition P = P1 ∪ P2 ∪ . . .∪ Pp such that f(Pi) = Pi+1 for 1 ≤ i < p, f(Pp) = P1,
and 〈Pi〉T ∩ Pj = ∅ whenever i 6= j. In this case, p is a strict divisor of n and
|Pi| = n/p for 1 ≤ i ≤ p. Observe that from the equivalence relation which
defines the class of models belonging to the pattern P it easily follows that this
notion does not depend on the particular model (T, P, f) representing P . The trees
〈Pi〉T (which do depend on the particular model (T, P, f) realizing the pattern)
will be called blocks. See the pattern P in Figure 1 for an example: the partition
P = P1 ∪ P2 = {1, 3, 5, 7, 9, 11, 13, 15} ∪ {2, 4, 6, 8, 10, 12, 14, 16} defines a 2-block
structure for P , since 〈P1〉T ∩P2 = 〈P2〉T ∩P1 = ∅ no matter what particular model
(T, P, f) represents P .

We note that if a pattern has a p-block structure, this p-block structure is es-
sentially unique up to relabelling of blocks. Observe also that a pattern can have
several different block structures: see again Figure 1 for an example.

The existence of a block structure for a periodic pattern P is essentially equiv-
alent to the fact that, for some k ≥ 1, the k-th power Mk of the Markov matrix
M of P is reducible (Corollary B). To look closer at the algebraic properties of
M (more precisely, to discriminate whether M is reducible itself and to decide
whether M is cyclic) we need to define a couple of particular block structures,
which we will respectively call separated structure and rotational structure. Let us
introduce them.

Let P be an n-periodic pattern with n ≥ 3 and let (T, P, f) be the canonical
model of P . Assume that P has a p-block structure defined by a partition P =
P1∪P2∪. . .∪Pp. We say that this p-block structure is separated if 〈Pi〉T ∩〈Pj〉T = ∅
whenever i 6= j. For instance, the 4-block structure Q1∪Q2∪Q3∪Q4 for the pattern
P in Figure 1 is separated, since the blocks have pairwise disjoint intersections in any
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Figure 2. The canonical model (T, P, f) of a 8-periodic pattern
P , which satisfies f(y) = y. The pattern P has a separated and
rotational 4-block structure given by the partition {1, 5}∪ {2, 6}∪
{3, 7} ∪ {4, 8} and also a rotational 2-block structure given by the
partition {1, 3, 5, 7} ∪ {2, 4, 6, 8}, which is not separated.

model representing P (in particular, in the canonical model). On the other hand,
a part of the tree T corresponding to the canonical model is shown in Figure 1.
Observe that 〈P1〉T ∩ 〈P2〉T = {y}, where y is a branching point of valence 4.
Therefore, the 2-block structure P1 ∪ P2 is not separated.

The cyclicity of the Markov matrix of a periodic pattern is related to the existence
of another particular case of block structure. Let P be a non-trivial n-periodic
pattern with n ≥ 3 and let (T, P, f) be the canonical model of P . Assume that
there exists a branching point y ∈ T such that f(y) = y. For n > p ≥ 2, we will
say that P has a p-rotational structure (or simply a rotational structure) if there
exist subtrees Y1, Y2, . . . , Yp such that each Yi is the closure of a union of connected
components of T \ {y}, f(Yi) = Yi+1 for 1 ≤ i < p and f(Yp) = Y1. Note that the
sets Yi \ {y} form a partition of T \ {y}. In this situation, we will see (Lemma 2.2)
that the partition P = P1∪P2∪ . . .∪Pp, where Pi := P ∩Yi for 1 ≤ i ≤ p, defines a
p-block structure for P . In other words, a rotational structure is a particular case
of block structure. Moreover,

(a) Either all blocks 〈Pi〉 are pairwise disjoint,
(b) Or 〈Pi〉 ∩ 〈Pj〉 = {y} whenever i 6= j.

Hence, a rotational structure is either separated or every pair of blocks in the
canonical model intersect at a fixed branching point.

Of course, a pattern can have several different rotational structures. For an ex-
ample, consider the 8-periodic pattern P whose canonical model (T, P, f) is depicted
in Figure 2. In this case, y is the only branching point in T and f(y) = y. The con-
nected components of T \ {y} are the intervals (y, 5], (y, 6], (y, 7] and (y, 8], whose
closures which are mapped cyclically by f . Hence, {1, 5} ∪ {2, 6} ∪ {3, 7} ∪ {4, 8}
defines a 4-rotational structure for P . Since the blocks 〈1, 5〉, 〈2, 6〉, 〈3, 7〉, 〈4, 8〉
are pairwise disjoint, (a) holds and this rotational structure is separated. On the
other hand, since f also maps cyclically the sets [y, 5] ∪ [y, 7] and [y, 6] ∪ [y, 8], the
partition {1, 3, 5, 7}∪ {2, 4, 6, 8} defines a 2-rotational structure for P , which is not
separated because the blocks 〈{1, 3, 5, 7}〉 and 〈{2, 4, 6, 8}〉 intersect at y. Observe
that the points of P rotate around the discrete component {1, 2, 3, 4} under the
action of f . This fact justifies the name rotational structure.

For another example, see the 12-periodic pattern whose canonical model (T, P, f)
is shown in Figure 4. In this case, there is only one fixed point y of f , which belongs
to (1, 10). Since y is not a branching point, the two block structures exhibited by
P are not rotational.

Note that there exist block structures that are not rotational neither separated.
In Figure 3 we show a simple example: the 8-periodic pattern P has no rotational



TOPOLOGICAL AND ALGEBRAIC REDUCIBILITY FOR PATTERNS ON TREES 7

3

1 2

4

6

8

5

7

a b

Figure 3. The canonical model (T, P, f) of a 8-periodic pat-
tern P , which satisfies f(a) = b, f(b) = a. The pattern
P has a non-separated 4-block structure given by the partition
{1, 5} ∪ {2, 6} ∪ {3, 7} ∪ {4, 8} and a separated 2-block structure
given by {1, 3, 5, 7} ∪ {2, 4, 6, 8}.
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Figure 4. The canonical model (T, P, f) of a 12-periodic pattern
P , which satisfies f(a) = d, f(b) = 6, f(c) = 9, f(d) = b. The
pattern P has a separated 4-block structure given by the partition
{1, 5, 9}∪ {2, 6, 10}∪ {3, 7, 11}∪ {4, 8, 12} and a separated 2-block
structure given by the partition {1, 3, 5, 7, 9, 11}∪{2, 4, 6, 8, 10, 12}.

structures, since the only fixed point in the canonical model lies on the open interval
(1, 2) and, in consequence, is not a branching point. On the other hand, the 4-block
structure given by the partition P1 ∪ P2 ∪ P3 ∪ P4 = {1, 5} ∪ {2, 6}∪ {3, 7} ∪ {4, 8}
is not separated. However, the pattern has also a separated 2-block structure given
by the partition {1, 3, 5, 7} ∪ {2, 4, 6, 8}, obtained by grouping together some sets
Pi. This is, in fact, the idea of the next lemma which states that the the notions of
separated and rotational structure are not restrictive when a pattern has a block
structure. It will be proved in Section 2.

Lemma 1.4. Let P be a periodic pattern. Then, P has block structures if and only
if P has rotational or separated block structures.

We remark that the notion of block structure is purely combinatorial, since it
depends only on the discrete components of P . In contrast, a block structure will
be separated or rotational depending on some topological properties of the blocks
in the canonical model of P . However, since the canonical model is unique and it
is constructed by means of a well defined algorithm uniquely determined by the
combinatorial data of P , in fact both notions are also intrinsic (in the sense that
depend only on the combinatorial data of P).

In the literature one can find several kinds of block structures and related notions
for periodic orbits. In the interval case, the Sharkovskii’s square root construction
(see [12] or [4]) is an early example of a block structure. Also the notion of extension,
first appeared in [7], gives rise to some particular cases of block structures for
interval periodic orbits. Finally, the notion of division, introduced in [9] for interval
periodic orbits and generalized in [2] and [5] in order to study the topological
entropy and the set of periods for tree maps, has a strong connection with the
notion of rotational structure.

Now we are ready to state the first main result of this paper.

Theorem A. Let P be an n-periodic pattern with n ≥ 3 and let M be the Markov
matrix of P. The following statements hold:
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(a) M is reducible if and only if P has separated block structures or collapsing
intervals.

(b) M is cyclic if and only if either P is trivial or has rotational structures.

From Theorem A, Lemma 1.4 and Remark 1.2 we immediately get the following
result.

Corollary B. Let P be a non-trivial n-periodic pattern with n ≥ 3 and let M be
the Markov matrix of P. Then, Mk is reducible for some k ≥ 1 if and only if P has
collapsing intervals or block structures. Equivalently, M is primitive if and only if
P has no collapsing intervals and no block structures.

Let us see some examples. Consider again the 8-periodic pattern P shown in
Figure 2. Recall that P has a 2-rotational structure. Therefore, by Theorem A(b),
its Markov matrix is cyclic. Indeed, consider the following labelling of the set of
(P ∪ V (T ))-basic intervals: I1 = [1, 5], I2 = [y, 1], I3 = [y, 3], I4 = [3, 7], I5 = [2, 6],
I6 = [y, 2], I7 = [y, 4], I8 = [4, 8]. Then, the Markov matrix M of P associated to
this labelling has the cyclic form




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0




.

On the other hand, P has a separated 4-block structure. Therefore, by Theo-
rem A(a), M is reducible. Indeed, consider the labelling J1 = [1, 5], J2 = [2, 6],
J3 = [3, 7], J4 = [4, 8], J5 = [y, 1], J6 = [y, 2], J7 = [y, 3], J8 = [y, 4]. Then, the
associated Markov matrix of P has the reducible form




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0




.

It is worth noticing that Theorem A generalizes some well known results for
interval patterns. It is folk knowledge that a periodic interval pattern has a block
structure if and only if its Markov matrix is reducible (see, for instance, the proof
of Lemma 4.4.16 of [4], where this fact is proved for a particular case of block
structure called extension). In fact, this is true not just for interval patterns but
for a broader class of patterns, which we call simplicial. A pattern ([T, P ], [θ]) is
called simplicial if each discrete component of (T, P ) has two points. Observe that,
in this case, for each pointed tree (S,Q) ∈ [T, P ] we have that V (S) ⊂ Q and, for
each discrete component C of (S,Q), 〈C〉S is an interval. For simplicial patterns
(in particular, for interval patterns) the following simpler version of Theorem A
holds:

Corollary C. Let P be a simplicial n-periodic pattern with n ≥ 3 and let M be the
Markov matrix of P. Then, M is reducible if and only if P has a block structure.
Moreover, if M is irreducible then M is primitive.
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The fourth main result of this paper has to do with the topological entropy of
patterns with a block structure. It is a generalization of the following classical result
for interval patterns. Take a periodic pattern on the interval (which can be identified
with a cyclic permutation φ) and a P -monotone interval map f exhibiting φ over P .
Assume that φ has a p-block structure defined by a partition P = P1∪P2∪ . . .∪Pp.
It is well known (Section 2.10 of [4]) that each block can be collapsed to a point
in order to get a p-periodic pattern θ (see the details below) that we will call the
skeleton of φ. Assume in addition that φ

∣∣
P

is monotone on each block except at
most one. This very particular type of block structure for interval patterns is called
an extension [7]. In this situation, it is well known (Lemma 4.4.16 of [4]) that the
entropies of φ and θ are related via the following formula:

h(φ) = max {h(θ), (1/p)h(fp
∣∣
〈Pi〉) } for any 1 ≤ i ≤ p,

which makes sense since fp maps every block 〈Pi〉 onto itself. Moreover, all the
entropies h(fp

∣∣
〈Pi〉) are the same.

As far as we know, the above formula is just proven for extensions and there
does not exist a similar result for interval patterns with a general p-block structure.
The fourth main result of this paper generalizes the above formula to the setting
of tree patterns with either a rotational structure or a separated block structure,
with no additional restrictions (recall that, by Lemma 1.4, every pattern with block
structures has either a rotational or a separated structure). In order to state it we
need to introduce the notion of skeleton.

Let P be an n-periodic pattern and let (T, P, f) be the canonical model of P .
Let P = P1 ∪ P2 ∪ . . . ∪ Pp be a partition of P which defines a separated p-block
structure or a p-rotational structure for P . We will see (Lemma 2.1) that in both
cases f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p and f(〈Pp〉) = 〈P1〉. The skeleton of P
(associated to this partition of P ) is a p-periodic pattern Q defined as follows:

(a) If P1 ∪P2 ∪ . . .∪Pp defines a p-rotational structure for P , then Q is defined
to be a trivial p-periodic pattern.

(b) If P1 ∪ P2 ∪ . . . ∪ Pp defines a separated p-block structure for P which
is not a p-rotational structure, consider the tree S obtained from T by
collapsing each block 〈Pi〉 to a point xi. Let κ : T −→ S be the standard
projection, which is bijective on T \ ∪i〈Pi〉 and satisfies κ(〈Pi〉) = xi. Set
Q = κ(P ) = {x1, x2, . . . , xp} and define θ : Q −→ Q by θ(xi) = xi+1 for
1 ≤ i < p and θ(xp) = x1. Then the skeleton Q of P is defined to be the
p-periodic pattern ([S,Q], [θ]). Observe that θ ◦ κ

∣∣
P
= κ ◦ f

∣∣
P
.

Now we are ready to state the fourth main result of this paper.

Theorem D. Let P be an n-periodic pattern and let (T, P, f) be the canonical
model of P. Assume that there is a partition P = P1 ∪ P2 ∪ . . . ∪ Pp which defines
either a p-rotational structure or a separated p-block structure for P. Let Q be the
associated skeleton of P. Then, all the entropies h(fp

∣∣
〈Pi〉) are equal and

h(P) = max {h(Q), (1/p)h(fp
∣∣
〈Pi〉) } for any 1 ≤ i ≤ p.

The fifth main result of this paper describes the zero entropy periodic patterns
(i.e. periodic patterns P such that h(P) = 0) in terms of the existence of a very
particular class of block structures. This result relies on Theorem D and on a nice
characterization of the zero entropy patterns (not just those associated to periodic
orbits) first given in [3]. We will recall the terminology and the results of [3]
necessary to establish such a characterization in Section 5.

Let P = ([T, P ], [f ]) be a periodic pattern with a p-block structure defined by a
partition P = P1 ∪P2 ∪ . . .∪Pp. We will say that this p-block structure has trivial
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Figure 5. On the left, a 12-periodic pattern P3 with a separated
6-block structure {1, 7}∪{2, 8}∪{3, 9}∪{4, 10}∪{5, 11}∪{6, 12}
with trivial blocks. The dashed circles stand for the discrete com-
ponents of P . In the centre, the corresponding skeleton P2, with
a 3-block structure {1, 4} ∪ {2, 5} ∪ {3, 6} with trivial blocks. On
the right, the corresponding skeleton P1, a trivial pattern.

blocks if the patterns ([〈Pi〉, Pi], [f
p
∣∣
Pi
]) are trivial for 1 ≤ i ≤ p. Equivalently, Pi is

contained in a discrete component of (T, P ) for 1 ≤ i ≤ p. Observe that this notion
is independent from the particular model (T, P, f) representing the pattern P .

An n-periodic pattern P will be called 1-starry if P is trivial. For k ≥ 2, P
will be called k-starry if P has a separated p-block structure with trivial blocks
whose associated skeleton is (k-1)-starry. For an example, consider the 12-periodic
pattern P3 of Figure 5. By constructing the canonical model of P3 one checks
that the block structure {1, 7} ∪ {2, 8} ∪ {3, 9} ∪ {4, 10} ∪ {5, 11} ∪ {6, 12}, with
trivial blocks, is separated. The associated skeleton P2 has also a separated 3-block
structure {1, 4} ∪ {2, 5} ∪ {3, 6}, again with trivial blocks. Finally, its associated
skeleton P1 is a trivial pattern. Hence, the patterns Pk are k-starry for k = 1, 2, 3.

Theorem E. A periodic pattern P has entropy zero if and only if P is k-starry
for some k ≥ 1.

Observe the recursive nature of Theorem E: the fact that an n-periodic pattern
has entropy 0 is translated to the fact that a collection of periodic patterns (the
skeleton and those associated to the blocks), with periods strictly smaller than
n, have entropy 0. It is well known that the same happens for interval periodic
patterns (see, for instance, Corollary 4.4.19 of [4]). However, we emphasize that in
order for P to have entropy 0 it is not enough that the patterns exhibited by fp

on each block have entropy 0. In addition, they must be trivial. This fact can be
used to quickly discard that a given pattern has entropy 0. For an example, see
the 12-periodic pattern P in Figure 6. It has a unique block structure given by the
partition P1 ∪ P2 = {1, 3, 5, 7, 9, 11} ∪ {2, 4, 6, 8, 10, 12}. Since the corresponding
blocks are not trivial, P cannot be starry. In consequence, the entropy of P is
positive by Theorem E.

Lastly, we prove a result that derives easily from Theorems D and E. We recall
that if ([T, P ], [f ]) is an n-periodic pattern and we take any k ∈ N such that k and n
are relatively prime, then ([T, P ], [fk]) is also an n-periodic pattern (different from
([T, P ], [f ]) in general).

Theorem F. Let P = ([T, P ], [f ]) be an n-periodic pattern. Then:

(a) P has zero entropy if and only if all patterns ([T, P ], [fk]), for each k ∈ N
such that k and n are relatively prime, have zero entropy.
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Figure 6. A 12-periodic pattern P , which has a unique 2-block
structure P1 ∪ P2 = {1, 3, 5, 7, 9, 11} ∪ {2, 4, 6, 8, 10, 12}. The as-
sociated skeleton is a trivial 2-periodic pattern, and the patterns
([〈Pi〉, Pi], [f

2]) have entropy 0. However, h(P) ≈ log(1.98) > 0.

(b) P has positive entropy if and only if all patterns ([T, P ], [fk]), for each k ∈ N
such that k and n are relatively prime, have positive entropy.

As far as we know, Theorem F was not explicitly stated in the literature, even
for interval patterns. We also remark that in general the entropies of the patterns
([T, P ], [fk]) in the statement (b) of Theorem F need not be equal.

This paper is organized as follows. In Section 2 we prove some technical results
on the topological distribution of the blocks in the canonical model of patterns
with a block structure and prove Lemma 1.4. In Section 3 we prove Theorem A
and Corollary C. Section 4 is devoted to prove Theorem D. Finally in Section 5
we introduce the notions and results from [3] which characterize the zero entropy
patterns and use them to prove Theorems E and F.

2. Rotational structures. Proof of Lemma 1.4

The aim of this section is to study the properties of block structures and finally
prove Lemma 1.4. We start with a simple lemma on the cyclicity of the blocks in
the canonical model of a pattern with a block structure.

Lemma 2.1. Let P be a periodic pattern and let (T, P, f) be the canonical model of
P. Assume that P has a p-block structure given by a partition P = P1∪P2∪. . .∪Pp.
Then, f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p and f(〈Pp〉) = 〈P1〉.
Proof. By the definition of a p-block structure, 〈Pi〉 ∩ Pj = ∅ whenever i 6= j.
Equivalently,

(3) 〈Pk〉 ∩ P = Pk for 1 ≤ k ≤ p.

From (3) and the fact that 〈Pk〉 is the smallest connected set containing Pk, it
follows that each 〈Pk〉 can be written as the union of all the intervals of the form
[a, b] such that {a, b} ⊂ Pk is a basic path of (T, P ). Then, it is enough to see that
f([a, b]) ⊂ 〈Pk+1〉 for such basic intervals [a, b]. Since f is P -monotone, f([a, b]) =
[f(a), f(b)], which is obviously contained in 〈Pk+1〉 because {f(a), f(b)} ⊂ Pk+1.

�

The next result states that a rotational structure is a particular case of block
structure. It also describes the spatial distribution of the corresponding blocks.

Lemma 2.2. Let P be an n-periodic pattern and let (T, P, f) be the canonical model
of P. Assume that there exists a partition P = P1 ∪P2 ∪ . . .∪Pp which defines a p-
rotational structure for P. Then, the same partition defines a p-block structure for
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P. Moreover, either this p-block structure is separated or there exists a branching
point y with f(y) = y such that 〈Pi〉 ∩ 〈Pj〉 = {y} whenever i 6= j.

Proof. Until the end of this proof, all the subindices will be considered modulo p,
and we will take {1, 2, . . . , p} as the representatives of Z/p. By the definition of
a p-rotational structure, there exist a branching point y ∈ T with f(y) = y and
subtrees Y1, Y2, . . . , Yp with n > p ≥ 2 such that each Yi is the closure of a union
of connected components of T \ {y}, f(Yi) = Yi+1 for 1 ≤ i < p and f(Yp) = Y1.
Moreover, Pi = Yi ∩ P for 1 ≤ i ≤ p. We have that f(Pi) = Pi+1 for 1 ≤ i ≤ p.

Since all sets Yk are closures of unions of connected components of T \ {y}, it
immediately follows that

(4) 〈K〉 ⊂ Yk for each 1 ≤ k ≤ p and every K ⊂ Yk.

Now let us see that P1 ∪ P2 ∪ . . . ∪ Pp defines a p-block structure for P . Indeed:
since y /∈ P ⊃ Pl, then 〈Pk〉 ∩ Pl = (〈Pk〉 \ {y}) ∩ Pl. By (4), 〈Pk〉 ⊂ Yk. Then,
since Pl ⊂ Yl and Yk ∩ Yl = {y}, it follows that 〈Pk〉 ∩ Pj = ∅ whenever k 6= l. In
consequence, P1 ∪ P2 ∪ . . . ∪ Pp defines a p-block structure for P .

From Lemma 2.1 we get that

(5) f(〈Pk〉) = 〈Pk+1〉 for 1 ≤ k ≤ p.

Assume first that no block 〈Pk〉 contains y. Since Yi ∩ Yj = {y} when i 6= j,
from (4) it follows that 〈Pi〉 ∩ 〈Pj〉 = ∅ for i 6= j. Hence, in this case the p-block
structure defined by P1 ∪ P2 ∪ . . . ∪ Pp is separated. On the other hand, assume
that there is a block 〈Pk〉 containing y. Then, from (5) and the fact that f(y) = y
it follows that all blocks contain y. Thus, (4) and the fact that Yi ∩ Yj = {y} when
i 6= j yield that 〈Pi〉 ∩ 〈Pj〉 = {y} for i 6= j. �

The following is a technical result on the pairwise intersections of blocks in the
canonical model of a pattern with a general block structure.

Lemma 2.3. Let (T, P, f) be the canonical model of a periodic pattern P. Assume
that P has a p-block structure given by P = P1 ∪ P2 ∪ . . . ∪ Pp. Then, 〈Pi〉 ∩ 〈Pj〉
is either empty or consists of a single point of V (T ) \ P , whenever i 6= j.

Proof. Until the end of this proof, all the subindices will be considered modulo p,
and we will take {1, 2, . . . , p} as the representatives of Z/p.

For any pair {k, l} ⊂ {1, 2, . . . , p}, set Xk,l := 〈Pk〉 ∩ 〈Pl〉. From the definition
of a p-block structure it easily follows that

(6) Xk,l ∩ P = ∅ for any pair k, l.

We have to prove that Xi,j is either empty or reduces to a single point of V (T )\P .
Assume, by way of contradiction, that Xi,j contains more than one point. Then,
Xi,j is a non-empty union of edges of T and, by (6), is disjoint from P . Since f is
(P ∪ V (T ))-monotone, f(Xi,j) is either a point or a non-empty union of edges of
T disjoint from P and, by Lemma 2.1, it is contained in Xi+1,j+1. Iterating this
argument yields that fk(Xi,j) is disjoint from P for every k ≥ 0. Therefore, Xi,j

is an invariant forest, in contradiction with the fact that (T, P, f) is a canonical
model. This proves that Xi,j reduces to one point z.

Thus, to end the proof of the lemma we have to see that z ∈ V (T ). Otherwise,
Val(z) = 2 and, by (6), z /∈ P . Hence, there is a unique (P ∪V (T ))-basic interval I
such that z ∈ Int(I). In this case, since 〈Pi〉 and 〈Pj〉 are convex hulls of subsets of
P , we would have that I ⊂ Xi,j , in contradiction with the fact that Xi,j = {z}. �

The iterative use of Lemma 2.3 leads to the following lemma, which is the key
result in the proof of Lemma 1.4.
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Lemma 2.4. Let (T, P, f) be the canonical model of a periodic pattern P with a
p-block structure given by P = P1 ∪ P2 ∪ . . . ∪ Pp. Assume that there exist at least
two different blocks with non-empty intersection. Then, there exists a divisor m ≥ 1
of p and an m-periodic orbit {y, f(y), . . . , fm−1(y)} ⊂ V (T ) \ P such that

f i(y) ∈
p
m−1⋂

j=0

〈Pi+1+jm〉 for 0 ≤ i < m.

Proof. By Lemma 2.3, if two blocks 〈Pi〉 and 〈Pj〉 are not disjoint then its inter-
section reduces to a point y ∈ V (T ) \ P . By Lemma 2.1, f(y) ∈ 〈Pi+1〉 ∩ 〈Pj+1〉.
Again by Lemma 2.3, f(y) ∈ V (T ) \ P . The lemma easily follows from a simple
iterative argument. �

Finally we prove Lemma 1.4.

Proof of Lemma 1.4. The “if” part of the statement is trivial. Let us prove the
“only if” part. Let (T, P, f) be the canonical model of P and assume that P has
a p-block structure given by a partition P = P1 ∪ P2 ∪ . . . ∪ Pp. We claim that if
this p-block structure is not separated then either it is rotational or there exists an
m-block structure for P for some 1 < m < p. It is clear that the lemma follows
from the iterative use of this claim.

Let us prove the claim. Since the p-block structure is not separated, at least two
different blocks are not disjoint. Then, by Lemma 2.4, there exists a divisor m ≥ 1
of p and an m-periodic orbit {y, f(y), . . . , fm−1(y)} ⊂ V (T ) \ P such that

f i(y) ∈
p
m−1⋂

j=0

〈Pi+1+jm〉 for 0 ≤ i < m.

If m = 1, then
⋂p

i=1〈Pi〉 = {y} for a fixed point y ∈ V (T ) \ P . Since En(T ) ⊂ P ,
T =

⋃p
i=1〈Pi〉. It easily follows that T \{y} is the disjoint union of the sets 〈Pi〉\{y},

each being a union of connected components of T \{y}. Thus, the p-block structure
defined by P1 ∪ P2 ∪ . . . ∪ Pp is rotational and the claim holds in this case.

Assume that m > 1. Set

P i :=

p
m−1⋃

j=0

Pi+jm for 1 ≤ i ≤ m.

Then, f(P i) = P i+1 for 1 ≤ i < m and f(Pm) = P 1. To see that P 1∪P 2∪ . . .∪Pm

defines an m-block structure for P we have to show that 〈P r〉 ∩ P s = ∅ whenever
r 6= s. Indeed: since all blocks 〈Pr+jm〉 intersect at a single point in V (T ) \ P , it
follows that

〈P r〉 =
p
m−1⋃

j=0

〈Pr+jm〉.

Moreover, each point of P in 〈P r〉 belongs to a unique block 〈Pr+km〉. Since P1 ∪
P2 ∪ . . . ∪ Pp defines a p-block structure for P , 〈Pr+km〉 is disjoint from any set of

the form Ps+jm and, hence, from P s. Therefore, P = P 1 ∪ P 2 ∪ . . . ∪ Pm defines
an m-block structure for P and the claim is proved. �

3. Proofs of Theorem A and Corollary C

The next two results describe the algebraic structure of the Markov matrix of the
periodic patterns exhibiting separated and rotational block structures respectively.
We will use them in the proofs of Theorems A and C. Lemma 3.1 tells us that the
Markov matrix of a periodic pattern with a separated block structure is reducible.
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Lemma 3.1. Let P be an n-periodic pattern and let (T, P, f) be the canonical model
of P. Assume that there is a partition P = P1∪P2∪. . .∪Pp which defines a separated
p-block structure for P. Let z be the number of (P ∪V (T ))-basic intervals, let ni be
the number of (P ∪ V (T ))-basic intervals contained in 〈Pi〉 for i = 1, 2, . . . , p and
let q = n1 + n2 + . . . + np. Then, q < z and there exists a labelling of the set of
(P ∪ V (T ))-basic intervals such that the Markov matrix of P reads as

(
M11 0
M21 M22

)

where M11 and M22 are square matrices of sizes q×q and (z−q)×(z−q) respectively,
and

M11 =




0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0




where the diagonal 0 blocks are square, Mi is an ni×ni+1 matrix for 1 ≤ i < p and
Mp is an np × n1 matrix.

Proof. Since all blocks 〈Pi〉 are pairwise disjoint, it follows that for each (P ∪V (T ))-
basic interval I there exists at most one 1 ≤ i ≤ p such that I ⊂ 〈Pi〉. Thus,
q = n1+n2+ . . .+np ≤ z. Let us see that q < z. Set X := ∪p

i=1〈Pi〉. Observe that
X is a union of (P ∪V (T ))-basic intervals. Moreover, since p ≥ 2 and all blocks are
pairwise disjoint, X is not connected. If follows that the closure of T \X contains
at least one (P ∪ V (T ))-basic interval. In consequence, q < z.

Set ñ0 = 0 and ñi = n1 + n2 + . . . + ni for 1 ≤ i < p. By Lemma 2.1,
f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p and f(〈Pp〉) = 〈P1〉. Then, it is straightforward to
check that the lemma holds for a labelling I1, I2, . . . , Iz of the set of (P∪V (T ))-basic
intervals such that Ij+ñi−1

⊂ 〈Pi〉 for i = 1, 2, . . . , p and 1 ≤ j ≤ ni. �

The next result is the analogous of Lemma 3.1 for rotational structures. It tells
us that the Markov matrix of a pattern with a rotational structure is cyclic.

Lemma 3.2. Let P be an n-periodic pattern and let (T, P, f) be the canonical model
of P. Assume that there is a partition P = P1 ∪ P2 ∪ . . . ∪ Pp which defines a p-
rotational structure for P. Let z be the number of (P ∪V (T ))-basic intervals, let ni

be the number of (P ∪V (T ))-basic intervals contained in 〈Pi〉 for i = 1, 2, . . . , p and
let q = n1 + n2 + . . .+ np. Then, there is a labelling of the set of (P ∪ V (T ))-basic
intervals such that the Markov matrix of P reads as




0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0




where the diagonal 0 blocks are square. Moreover,

(a) If all blocks are pairwise disjoint, then z = q+p, Mi is an (ni+1)×(ni+1+1)
matrix for 1 ≤ i < p and Mp is an (np + 1)× (n1 + 1) matrix.

(b) If all blocks intersect at a single point, then z = q, Mi is an ni×ni+1 matrix
for 1 ≤ i < p and Mp is an np × n1 matrix.

Proof. By definition of a p-rotational structure, there exists a branching point y ∈ T
with f(y) = y and subtrees Y1, Y2, . . . , Yp with n > p ≥ 2 such that each Yi is the
closure of a union of connected components of T \ {y}, f(Yi) = Yi+1 for 1 ≤ i < p
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and f(Yp) = Y1. Moreover, Pi = Yi ∩ P for 1 ≤ i ≤ p. By Lemma 2.2, either
all blocks are pairwise disjoint or their pairwise intersections reduce to {y}. On
the other hand, by Lemma 2.2 a p-rotational structure is in particular a p-block
structure. So, by Lemma 2.1, f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p and f(〈Pp〉) = 〈P1〉.
Set ñ0 = 0 and ñi = n1 + n2 + . . .+ ni for 1 ≤ i < p.

Assume first that all blocks intersect at {y}. Then, each (P∪V (T ))-basic interval
is contained in one (and only one) block. It follows that q = n1+n2+ . . .+np = z.
Moreover, it is straightforward to check that (b) holds for a labelling I1, I2, . . . , Iz
of the set of (P ∪ V (T ))-basic intervals such that Ij+ñi−1

⊂ 〈Pi〉 for i = 1, 2, . . . , p
and 1 ≤ j ≤ ni.

Now assume that all blocks are pairwise disjoint. As in the proof of Lemma 2.2,
we get that each block 〈Pj〉 intersects only one connected component of T \ {y}.
Therefore, T \ {y} has exactly p connected components, whose closures are the
subtrees Y1, Y2, . . . , Yp, and 〈Pi〉 ⊂ Yi for 1 ≤ i ≤ p. Since En(T )∩Yi ⊂ P ∩Yi = Pi,
it easily follows that for each 1 ≤ i ≤ p there exists a unique point ai ∈ 〈Pi〉 such
that (y, ai)∩(P∪V (T )) = ∅. In other words, [y, ai] is a (P∪V (T ))-basic interval and
the number of (P ∪ V (T ))-basic intervals contained in Yi is ni +1. Moreover, since
f(y) = y and f(ai) ∈ 〈Pi+1〉, the P -monotonicity of f implies that [y, ai] f -covers
[y, ai+1]. It is straightforward to check that (a) holds for a labelling I1, I2, . . . , Iz
of the set of (P ∪ V (T ))-basic intervals such that Ii−1+j+ñi−1

⊂ 〈Pi〉 ∪ [y, ai] for
i = 1, 2, . . . , p and 1 ≤ j ≤ ni + 1. �

Since a rotational structure can be simultaneously a separated block structure
(Lemma 2.2), in view of Lemmas 3.1 and 3.2, the Markov matrix of a pattern with
a rotational structure can be reducible and cyclic at the same time.

Now we are ready to prove Theorem A.

Proof of Theorem A. Let (T, P, f) be a canonical model of P . Set PV = P ∪ V (T )
and let z be the number of PV -basic intervals, so that M is a z × z matrix.

Let us prove (a). We start by proving the “if” part of the statement. Assume
that P has collapsing intervals. Then, M has l ≥ 1 rows whose elements are all 0.
Hence, M is reducible because, for an appropriate permutation matrix A, (1) holds
for an l × l matrix M11 whose entries are all 0.

Now assume that P = P1∪P2∪. . .∪Pp is a partition of P that defines a separated
p-block structure for P . By Lemma 3.1, there is a labelling of the set of PV -basic
intervals such that M reads as the right hand side of (1), where M11 is a q × q
matrix and M21 has q − z > 0 rows. Hence, M is reducible.

Next we prove the “only if” part of (a). Since M is reducible, there is a labelling
I1, I2, . . . , Iz of the set of PV -basic intervals such that the Markov matrix of P
reads as the right hand side of (1), where M11 and M22 are square matrices of sizes
l × l and m × m (l,m ≥ 1) respectively and 0 stands for the l ×m matrix whose

entries are all 0. In particular, the set X :=
⋃l

i=1 Ii is f -invariant. Now we assume
that P has no collapsing intervals, and we will show that P has a separated block
structure.

Since l < z, it follows that T \ X 6= ∅. Let us see that X has at least two
connected components. First we note that P ∩X 6= ∅ because, otherwise, X would
be an invariant forest for f disjoint from P , in contradiction with the fact that
(T, P, f) is a canonical model. Now observe that, since P ∩ X 6= ∅ and X is f -
invariant, P ⊂ X . In particular, En(T ) ⊂ X . It follows that X is not connected,
because otherwise X = T , a contradiction.

Since f maps any connected component of X onto a connected component of X
and P is a periodic orbit of f , it easily follows that f acts as a cyclic permutation
of the set of connected components of X . So, there exists a divisor p ≥ 2 of n
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and a labelling X1, X2 . . . , Xp of the set of connected components of X such that
f(Xi) = Xi+1 for 1 ≤ i < p and f(Xp) = X1. Set Pi = Xi ∩ P for 1 ≤ i ≤ p.
Then, f(Pi) = Pi+1 for 1 ≤ i < p and f(Pp) = P1. Moreover, for any pair
{i, j} ⊂ {1, 2, . . . , p} we have that 〈Pi〉 ∩ 〈Pj〉 = ∅, since Xi ∩Xj = ∅. Thus, P has
a separated p-block structure and the proof of (a) is now complete.

Let us prove (b). We start by proving the “if” part of the statement. If P is a
trivial pattern, Remark 1.3 tells us that M is a cyclic matrix. On the other hand, if
P is non-trivial and there is a partition P = P1∪P2∪ . . .∪Pp defining a p-rotational
structure for P , then Lemma 3.2 tells us as M reads as the right hand side of (2).
Hence, M is cyclic.

Finally we prove the “only if” part of (b). Until the end of this proof, for any
k ∈ N we will take {1, 2, . . . , k} as the representatives of Z/k. Let I1, I2, . . . , Iz be
a labelling of the set of PV -basic intervals such that, for some p ≥ 2,

M =




0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0




where the diagonal 0 blocks are square. Assume that P is not trivial. We have to
show that P has a rotational structure.

Let mi be the number of rows ofMi for 1 ≤ i ≤ p, so that m1+m2+. . .+mp = z.

Set X1 =
⋃m1

j=1 Ij and Xi =
⋃m1+...+mi

j=m1+...+mi−1+1 Ij for 2 ≤ i ≤ p. Since M has the

above cyclic form,

(7) f(Xi) ⊂ Xi+1 mod p for 1 ≤ i ≤ p.

Observe that any PV -basic interval belongs to a unique Xi. Moreover, if a PV -
basic interval I is contained in Xi then f(I) is either a point of Xi+1 or a connected
union of PV -basic intervals contained in Xi+1.

Take a fixed point y of f . Note that y /∈ P since P is an n-periodic orbit with
n > 1. Moreover, y ∈ V (T ) because if y ∈ Int(I) for some PV -basic interval I then
f(I) ⊃ I, in contradiction with the fact that all the diagonal entries of M are 0.
Let s ≥ 3 be the valence of y. Let {ai}si=1 be the set of points from PV such that
(y, ai)∩PV = ∅ for 1 ≤ i ≤ s. Now we claim that f(ai) 6= y. Indeed: this is obvious
when ai ∈ P and, if ai ∈ V (T ) \ P , then f(ai) 6= y because otherwise [y, ai] would
be an invariant forest, in contradiction with the fact that (T, P, f) is a canonical
model.

Now observe that each [y, ai] is a PV -basic interval and, in consequence, is con-
tained in a unique Xj. From the previous claim and (7), it immediately follows
that s = p · r for some r ≥ 1 and f acts as a local rotation around y. Without loss
of generality we may assume that the points ai are labelled in such a way that

(8) [y, ai] ⊂ Xi mod p for 1 ≤ i ≤ s.

Let Z1, Z2, . . . , Zs be a labelling of the set of connected components of T \ {y}
such that ai ∈ Zi for 1 ≤ i ≤ s. Set Yi := Cl

(⋃r−1
j=0 Zi+jp

)
, for 1 ≤ i ≤ p. We

claim that Yi = Xi for i = 1, 2, . . . , p.
Now we prove the claim. First we will show that [y, w] ⊂ Xi for every w ∈

En(T ) ∩ Yi.
Recall that (T, P, f) has no invariant forests. Then, from the fact that f(y) = y

and the P -monotonicity of f it follows that there exists t ≥ 0 such that f i([y, a1])∩
P = ∅ for 0 ≤ i < t, f t([y, a1]) ∩ P 6= ∅ and f i([y, a1]) = [y, f i(a1)] ⊃ [y, a1+i mod s]
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for 0 ≤ i ≤ t. Take any x ∈ [y, f t(a1)] ∩ P . Then, [y, x] ⊃ [y, a1+t mod s]. By (8),
[y, a1] ⊂ X1 and, by (7),

(9) [y, x] ⊂ X1+t mod p.

Now, since En(T ) ⊂ P , it follows that w ∈ P . So, there is r ≥ 0 such that
w = f r(x). From (9) and using again (7), we have that

(10) X1+t+r mod p ⊃ f r([y, x]) ⊃ [y, f r(x)] = [y, w].

On the other hand, there exists a unique j ∈ {1, 2, . . . , s} such that [y, w] ⊃ [y, aj ].
By the definition of the sets Yi and the assumption that w ∈ Yi, we get j ≡ i
(mod p). On the other hand, from (8) and (10), j ≡ 1 + t + r (mod p). In conse-
quence, X1+t+r mod p = Xi. Therefore, Yi =

⋃
w∈En(T )∩Yi

[y, w] ⊂ Xi.

Now assume that Yi $ Xi. Since both sets are unions of PV -basic intervals it
follows that Xi\Yi contains the interior of a PV -basic interval J . Since T =

⋃p
i=1 Yi

it follows that J ⊂ Yj ⊂ Xj with j 6= i. Consequently the PV -basic interval J is
contained simultaneously in Xi and Xj ; a contradiction. This ends the proof of the
claim.

From (7) it follows that, for each i = 1, 2, . . . , p, f(Yi) ⊂ Yi+1 mod p. We have to
see that f(Yi) = Yi+1 mod p for every i = 1, 2, . . . , p.

Set Pi := P ∩ Yi. Since T =
⋃p

i=1 Yi and P is a periodic orbit it follows that
|Pi| = n/p for every i and f(Pi) = Pi+1 mod p. To see that f(Yi) = Yi+1 mod p we
will prove that [y, w] ⊂ f(Yi) for every w ∈ En(T ) ∩ Yi+1 mod p. Since

w ∈ En(T ) ∩ Yi+1 mod p ⊂ P ∩ Yi+1 mod p = Pi+1 mod p,

there exists a unique x ∈ Pi ⊂ Yi such that f(x) = w. Consequently, [y, w] ⊂
f([y, x]) ⊂ Yi+1 mod p because [y, x] ⊂ Yi and f(Yi) ⊂ Yi+1 mod p. This implies that
f(Yi) = Yi+1 mod p and, hence, P has a p-rotational structure. �

Finally we prove Corollary C, which follows easily from Corollary B and the
definition of a simplicial model.

Proof of Corollary C. Let (T, P, f) be the canonical model of P . Since P is simpli-
cial, V (T ) ⊂ P . Since n ≥ 3, it follows that P has at least two discrete components
and, in consequence, is not a trivial pattern.

Recall that a collapsing interval has the form [a, b] with a ∈ P and b ∈ V (T ) \
P . Since V (T ) ⊂ P , it follows that P has no collapsing intervals. Then, by
Theorem A(a), M is reducible if and only if P has a separated block structure.

On the other hand, the fact that V (T ) ⊂ P implies that the set of fixed points
of f , that is disjoint from P , is disjoint from V (T ). It follows that P cannot have a
rotational structure. Then, the corollary follows from Lemma 1.4 and Corollary B.

�

4. Proof of Theorem D

For any square matrix M , we will denote its spectral radius by σ(M). We recall
that it is defined as the maximum of the moduli of the eigenvalues of M . It is well
known that the topological entropy of an interval pattern P can be computed as
logmax{σ, 1}, where σ is the spectral radius of the Markov matrix of a monotone
representative of P . This is also true for general tree patterns. Indeed, let P be
a pattern. Let (T, P, f) be a monotone representative of P . By Theorem 1.1(b),
h(P) = h(f). On the other hand, f is (P ∪ V (T ))-monotone and thus we can
consider the Markov matrix of the monotone model (T, P ∪ V (T ), f). By standard
arguments (see for instance [4, Theorem 4.4.5] or [6]), the topological entropy of f
is equal to

(11) h(P) = logmax{σ(M), 1}.
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Now we are ready to prove Theorem D.

Proof of Theorem D. Set PV = P ∪ V (T ). Let z be the number of PV -basic in-
tervals, let ni ≥ 1 be the number of PV -basic intervals contained in 〈Pi〉 for
i = 1, 2, . . . , p and let q = n1 + n2 + . . . + np. Then, by Lemmas 3.1 and 3.2,
there exist positive integers m1,m2, . . . ,mp and a labelling of the set of PV -basic
intervals such that the Markov matrix of P reads as

(12)

(
M11 0
M21 M22

)

with

M11 =




0 M1 0 . . . 0
0 0 M2 0
...

. . .
. . .

...
0 0 . . . 0 Mp−1

Mp 0 . . . 0 0




,

where Mi is an mi ×mi+1 matrix for 1 ≤ i < p, Mp is an mp ×m1 matrix, and:

Case 1 : If P1 ∪ P2 ∪ . . . ∪ Pp defines a p-rotational structure for P , then M22 is an
empty matrix and, for each 1 ≤ i ≤ p, either mi = ni+1 when all blocks are
pairwise disjoint, or mi = ni when they all intersect at a single branching
point.

Case 2 : If P1 ∪ P2 ∪ . . . ∪ Pp defines a separated p-block structure for P that is not
a p-rotational structure, then q < z and mi = ni for each 1 ≤ i ≤ p. Thus,
M11 is a q × q matrix and M22 is a (z − q)× (z − q) matrix.

It is straightforward to check that

(M11)
p =




N1 0 . . . 0

0 N2

...
...

. . . 0
0 . . . 0 Np




,

where

(13) N1 = M1M2 · · ·Mp and Ni = MiMi+1 · · ·MpM1 · · ·Mi−1 for 2 ≤ i ≤ p.

So, Ni is an mi ×mi square matrix for each 1 ≤ i ≤ p.
Next let us see that

(14) σ(Ni) = σ(Nj) for each pair i, j ∈ {1, 2, . . . , p}.
Indeed, it is well known (see for instance [4, Lemma 4.4.2]) that, for every matrix
N ,

σ(N ) = lim sup
k→∞

| tr(N k)|1/k,

where tr(·) denotes the trace of a square matrix (that is, the sum of all the entries
of its diagonal). Therefore, to prove (14) it is enough to show that tr((Ni)

k) =
tr((Nj)

k) for all k ≥ 1. Using (13) and the definition of the product of matrices,
it immediately follows that, for every 1 ≤ t ≤ p, the m-th entry of the diagonal of
(Nt)

k coincides with the number of different loops of length k in the Markov graph
of (T, PV , f) starting and ending at the corresponding PV -basic interval in 〈Pt〉.
Therefore, tr((Nt)

k) is the total number of loops of length k in the Markov graph
of (T, PV , f) starting and ending at some PV -basic interval in 〈Pt〉. Let us denote
the set of all such loops as Γk

t .
Now we claim that for each k ≥ 1 there exists a one-to-one correspondence

φ : Γk
i −→ Γk

j . Clearly, (14) follows from this claim and the previous paragraph.

Let us prove the claim. Assume for definiteness that j ≥ i. Let α ∈ Γk
i . By
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Lemma 2.1, f(〈Pt〉) = 〈Pt+1〉 for 1 ≤ t < p and f(〈Pp〉) = 〈P1〉. It easily follows
that k is a multiple of p and that α has the form

Ii → Ii+1 → . . . → Ip → Ip+1 → Ip+2 → . . . → Ii+k−1 → Ii,

with It ∈ 〈Pt mod p〉 for i ≤ t ≤ i+ k (we take {1, 2, . . . , p} as the representatives of
N/p). We define φ(α) to be the shifted loop

Ij → Ij+1 → . . . → Ip → Ip+1 → Ip+2 → . . . → Ii+k−1 → Ii → Ii+1 → . . . → Ij ,

which is a loop of length k starting and ending at a PV -basic interval in 〈Pj〉. So,
φ(α) ∈ Γk

j . Clearly, φ is one-to-one and the claim is proved.
Now we will prove that

(15) h(fp
∣∣
〈Pt〉) = logmax{σ(Nt), 1} for every 1 ≤ t ≤ p.

Set Q̃ := PV ∪Bd (f−p(PV )) . The fact that (T, P, f) is a monotone model implies
that f−p(PV ) has finitely many connected components. Hence, since Bd (f−p(PV ))
is the union of Bd(C) for every connected component C of f−p(PV ), it follows that

Q̃ is finite.

Now we set Qt := Q̃ ∩ 〈Pt〉. Since PV is f -invariant it follows that

PV ⊂ f−1(PV ) ⊂ f−2(PV ) ⊂ · · · ⊂ f−p(PV ).

Hence, Q̃ ⊂ f−p(PV ) and, consequently,

fp(Qt) ⊂ fp
(
f−p(PV ) ∩ 〈Pt〉

)
⊂ PV ∩ 〈Pt〉 ⊂ Qt

because fp(〈P 〉t) ⊂ 〈Pt〉. So, Qt is f
p
∣∣
〈Pt〉-invariant and V (T ) ∩ 〈Pt〉 ⊂ Q̃ ∩ 〈Pt〉 =

Qt. Hence, we can speak about Qt-basic intervals (in 〈Pt〉) and consider the model(
〈Pt〉, Qt, f

p
∣∣
〈Pt〉

)
.

The connected components of T \ Q̃ (and hence of 〈Pt〉 \Qt) are characterized

by the following claim: every connected component of T \ Q̃ is either a connected
component of T \ f−p(PV ) or its closure is contained in (a connected component

of) f−p(PV ). To see it, let C be a connected component of T \ Q̃. Clearly, ei-
ther C is a connected component of T \ f−p(PV ) or C ∩ f−p(PV ) 6= ∅. Since

V (T ) ∪ Bd (f−p(PV )) ⊂ Q̃, it follows that C is an interval disjoint from V (T )
and Bd (f−p(PV )) . Hence, C ∩ f−p(PV ) 6= ∅ implies that Cl(C) is contained in a
connected component of f−p(PV ). This proves the claim.

Now we claim that fp
∣∣
J
is monotone for every Qt-basic interval J . Clearly, the

fp-image of every connected component of f−p(PV ) is a single point. Hence, the
claim holds trivially when J is contained in a connected component of f−p(PV ). If
this is not the case, by the above claim, J is the closure of a connected component
of T \ f−p(PV ). To prove that fp

∣∣
J
is monotone it is enough to show that f i(J) is

contained in a PV -basic interval for i = 0, 1, . . . , p, because the model (T, PV , f) is
monotone and

fp
∣∣
J
= f

∣∣
fp−1(J)

◦ f
∣∣
fp−2(J)

◦ · · · ◦ f
∣∣
f(J)

◦ f
∣∣
J
.

We have ∅ = Int(J) ∩ f−p(PV ) ⊃ Int(J) ∩ f−i(PV ) for every i ∈ {0, 1, . . . , p}.
Hence, f i(J) is contained in a PV -basic interval for i = 0, 1, . . . , p. This ends the
proof of the monotonicity of fp

∣∣
J
.

Let B denote the Markov matrix of the monotone model
(
〈Pt〉, Qt, f

p
∣∣
〈Pt〉

)
.

Then, by (11), h(fp
∣∣
〈Pt〉) = logmax{σ(B), 1}. Thus, to prove (15), we have to

show that σ(B) = σ(Nt). It is well known (see, for instance, [11]) that the spectral
radius of a non-negative matrix N is equal to the limit as k goes to infinity of the
k-th root of the norm of N k, where we can use any norm equivalent to the standard
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one. In particular we can use the 1-entrywise matrix norm, which we will denote
by ‖·‖

1
and is defined for non-negative matrices as the sum of all entries. Then,

σ(N ) = lim
k→∞

k

√
‖N k‖

1
.

So we will have to study and relate the entries of Bk and Nk
t for every k. In

particular we have to fix the labelling of the Qt-basic intervals.
Let Im̃t+1, Im̃t+2, . . . , Im̃t+mt

denote the PV -basic intervals contained in 〈Pt〉
(labelled as in the definition of the matrix M), where m̃t =

∑t−1
i=0 mi.

Since PV ∩ 〈Pt〉 ⊂ Qt, it follows that every Qt-basic interval is contained in one
of the intervals Im̃t+ℓ. Then, for ℓ ∈ {1, 2, . . . ,mt} let us denote by rℓ the number
of Qt-basic intervals contained in Im̃t+ℓ and label these intervals by Jℓ,i with i ∈
{1, 2, . . . , rℓ}. For ℓ,m ∈ {1, 2, . . . ,mt} we define a matrix Bℓ,m = B

(1)
ℓ,m =

(
bℓ,mi,j

)

of size rℓ × rm by

bℓ,mi,j =

{
1 if Jℓ,i f

p-covers Jm,j ,

0 otherwise.

Observe that, with the above labelling of the Qt-basic intervals, the matrix B can
be written in block form as

B =




B1,1 B1,2 · · · B1,mt

B2,1 B2,2 · · · B2,mt

...
... · · ·

...
Bmt,1 Bmt,2 · · · Bmt,mt


 .

Also, for k ≥ 1 we set

(16) B
(k+1)
ℓ,m :=

mt∑

s=1

B
(k)
ℓ,sBs,m

for every ℓ,m. Then, by standard Algebra, Bk is the block matrix
(
B

(k)
ℓ,m

)
.

By construction of the set Qt we have fp(Qt) ⊂ PV ∩ 〈Pt〉. This means that,
given ℓ,m ∈ {1, 2, . . . ,mt} and i ∈ {1, 2, . . . , rℓ}, either Jℓ,i fp-covers Im̃t+m or
fp(Jℓ,i) is disjoint from Int(Im̃t+m). In other words, the i-th row of Bℓ,m is either
constant 0 or constant 1. In particular, every matrix Bℓ,m is row-constant according
to the following definition.

A non-negative matrix such that, for every row, all entries in that row coincide
will be called row-constant. For operational purposes, we will write a row-constant
matrix of size s1×s2 as vuT

s2 where v is a non-negative vector of size s1, us2 denotes

a vector of ones of size s2 and uT
s2 means the transpose of us2 (here “vector” means

a matrix with a single column, and thus uT
s2 is a matrix with a single row). Observe

that each column of a row-constant matrix coincides with the vector v and hence
its sum is ‖v‖

1
(which, by definition, is the sum of all entries of v).

Clearly the sum of row-constant matrices is row-constant. On the other hand,
if v is a non-negative vector of size s1, w is a non-negative vector of size s2 and
s3 is a positive integer, then (vuT

s2)(wu
T
s3 ) = v(uT

s2w)u
T
s3 = (‖w‖

1
v)uT

s3 . Hence, the

product of row-constant matrices is also row-constant. Consequently, by (16), we

obtain by induction on k that every matrix B
(k+1)
ℓ,m is row-constant.
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We will denote by β
(k)
ℓ,m the non-negative integer vector of size rℓ such that

B
(k)
ℓ,m = β

(k)
ℓ,muT

rm . We also set βℓ,m = β
(1)
ℓ,m. Hence, equation (16) now becomes

B
(k+1)
ℓ,m =

mt∑

s=1

B
(k)
ℓ,s Bs,m =

mt∑

s=1

(
β
(k)
ℓ,s u

T
rs

) (
βs,muT

rm

)
=

mt∑

s=1

β
(k)
ℓ,s

(
uT
rsβs,m

)
uT
rm

=

mt∑

s=1

‖βs,m‖
1
β
(k)
ℓ,s u

T
rm =

(
mt∑

s=1

‖βs,m‖
1
β
(k)
ℓ,s

)
uT
rm ,

and consequently,

(17) β
(k+1)
ℓ,m =

mt∑

s=1

‖βs,m‖
1
β
(k)
ℓ,s .

Now we set Nt := (aℓ,m) and, for every k ≥ 1, Nk
t =

(
a
(k)
ℓ,m

)
. We will prove by

induction on k that a
(k)
ℓ,m =

∥∥∥β(k)
ℓ,m

∥∥∥
1

for every k, ℓ,m.

We first consider the case k = 1. As it has been noted above, aℓ,m coincides with
the number of different paths of length p in the Markov graph of (T, PV , f) from
Im̃t+ℓ to Im̃t+m.

We start by proving that aℓ,m ≤ ‖βℓ,m‖
1
. By [4, Lemma 1.2.6] every path of

length p in the Markov graph of (T, PV , f) from Im̃t+ℓ to Im̃t+m gives a minimal

closed subinterval Ĵ of Im̃t+ℓ such that f s(Ĵ) is contained in a PV -basic interval

for s = 1, 2, . . . , p − 1 and fp(Ĵ) = Im̃t+m. Then, the endpoints of Ĵ belong to

f−p(PV ) ∩ 〈Pt〉 and Ĵ is the closure of a connected component of 〈Pt〉 \ f−p(PV ).

Hence, Ĵ is a Qt-basic interval Jℓ,i. This implies that the i-th entry of βℓ,m is
1. Moreover, two different paths of length p in the Markov graph of (T, PV , f)
from Im̃t+ℓ to Im̃t+m give rise to two different Qt-basic intervals. Consequently,
aℓ,m ≤ ‖βℓ,m‖

1
.

Now we will prove the converse inequality. Let Jℓ,i be a Qt-basic interval such
that Jℓ,i fp-covers Im̃t+m (i.e. the i-th entry of βℓ,m is 1). Clearly fp(Jℓ,i) is
non-degenerate and, hence, Jℓ,i is the closure of a connected component of 〈Pt〉 \
f−p(PV ). From above, f s(Jℓ,i) is contained in a PV -basic interval for s = 0, 1, . . . , p
(in particular fp(Jℓ,i) = Im̃t+m). In a similar way to the proof of [4, Lemma 1.2.12],
these PV -basic intervals form a path of length p in the Markov graph of (T, PV , f)
from Im̃t+ℓ to Im̃t+m and two different Qt-basic intervals give rise to two different

paths. Hence, ‖βℓ,m‖
1
≤ aℓ,m and, consequently, a

(1)
ℓ,m = aℓ,m = ‖βℓ,m‖

1
=
∥∥∥β(1)

ℓ,m

∥∥∥
1

for every ℓ,m.

Now assume that a
(k)
ℓ,m =

∥∥∥β(k)
ℓ,m

∥∥∥
1

holds for some k ≥ 1 and for every ℓ,m. Then,

by (17), the norm properties and the definition of the matrix product,

∥∥∥β(k+1)
ℓ,m

∥∥∥
1

=

∥∥∥∥∥
mt∑

s=1

‖βs,m‖
1
β
(k)
ℓ,s

∥∥∥∥∥
1

=

mt∑

s=1

∥∥∥β(k)
ℓ,s

∥∥∥
1

‖βs,m‖
1
=

mt∑

s=1

a
(k)
ℓ,sas,m = a

(k+1)
ℓ,m

(notice that if v and w are non-negative vectors then ‖v + w‖
1
= ‖v‖

1
+ ‖w‖

1
).

To end the proof of (15), observe that
∥∥∥B(k)

ℓ,m

∥∥∥
1

, the sum of all entries of B
(k)
ℓ,m,

is rm

∥∥∥β(k)
ℓ,m

∥∥∥
1

. Hence,

∥∥Bk
∥∥

1
=

mt∑

ℓ,m=1

∥∥∥B(k)
ℓ,m

∥∥∥
1

=

mt∑

ℓ,m=1

rm

∥∥∥β(k)
ℓ,m

∥∥∥
1

=

mt∑

ℓ,m=1

rma
(k)
ℓ,m.
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Consequently, ∥∥Nk
t

∥∥
1
≤
∥∥Bk

∥∥
1
≤ r∗

∥∥Nk
t

∥∥
1

where r∗ = maxm rm. Thus,

σ(Nt) = lim
k→∞

k

√∥∥Nk
t

∥∥
1
≤ lim

k→∞
k

√
‖Bk‖

1
= σ(B) ≤ lim

k→∞
k

√
r∗
∥∥Nk

t

∥∥
1
= σ(Nt).

This ends the proof of (15).
From (14) and (15) it follows that the entropies of fp

∣∣
〈Pi〉 are all the same. On

the other hand, using (11) and standard Algebra we get that

h(P) = logmax{σ(M11), σ(M22), 1} =

logmax{σ((M11)
p)1/p, σ(M22), 1} =(18)

logmax{σ(N1)
1/p, σ(N2)

1/p, . . . , σ(Np)
1/p, σ(M22), 1},

where in this formula we formally set σ(M22) = 1 if M22 is an empty matrix.
In view of (14), (15) and (18), to prove the theorem it is enough to show that

(19) h(Q) = logmax{σ(M22), 1},

where Q is the skeleton of P and we formally set σ(M22) = 1 if M22 is an empty
matrix. We recall that Q = ([S,Q], [θ]) with Q = {x1, x2, . . . , xp}, θ(xi) = xi+1 for
1 ≤ i < p and θ(xp) = x1, and that the discrete components of (S,Q) are defined
according to the Cases 1 and 2. Next we prove (19) in each case.

Case 1. P = P1 ∪ P2 ∪ . . . ∪ Pp defines a p-rotational structure for P.

Then, M22 is an empty matrix and the right hand side of (19) is equal to 0. Since
in this case Q is by definition a trivial pattern, h(Q) = 0. Thus, (19) holds and the
theorem is proved in this case.

Case 2. P = P1 ∪ P2 ∪ . . . ∪ Pp defines a separated p-block structure for P that is
not a p-rotational structure.

Then, q < z and M22 is a (z − q) × (z − q) matrix. Now we recover the notation
of the definition of the skeleton (page 9, case (b)). To compute the topological
entropy of the skeleton Q, next we construct a monotone model (S,Q, g) of Q. Let
g : S −→ S be such that g ◦κ = κ◦ f . Then, by the definition of κ, g is well defined
and (S,Q, g) is a model of Q. We claim that g is Q-monotone. Observe that κ is
monotone on each interval [a, b] ⊂ T . Take any basic path σ of (S,Q). We have to
see that g is monotone on 〈σ〉S . Note that there exists a basic path π of (T, P ) such
that κ(〈π〉T ) = 〈σ〉S . By the definitions, g

∣∣
〈σ〉S = κ ◦ f

∣∣
〈π〉T , which is monotone.

This ends the proof of the claim.
Set QV := Q ∪ V (S). Let A be the set of PV -basic intervals whose interior is

contained in T \ (
⋃p

i=1〈Pi〉) and let B be the set of all QV -basic intervals. From
the definitions it easily follows that if v ∈ V (T ) then κ(v) ∈ V (S) ∪ Q, and that
if [v, w] ∈ A then [κ(v), κ(w)] ∈ B. Moreover, the correspondence κ̃ which sends
each [v, w] ∈ A to [κ(v), κ(w)] ∈ B is a bijection. On the other hand, the definition
of g implies that for any I, J ∈ A, I f -covers J if and only if κ̃(I) g-covers κ̃(J).
This means that if I1, I2, . . . , Iz−q is the labelling of A such that the Markov matrix
of (T, PV , f) reads as in (12), then the Markov matrix of (S,QV , g) associated to
the labelling κ̃(I1), κ̃(I2), . . . , κ̃(Iz−q) is exactly M22. Since (S,Q, g) is a monotone
model of Q, (11) tells us that (19) holds. �
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5. Proofs of Theorems E and F

We start this section recalling the characterization of zero entropy patterns given
in [3]. We will use this characterization to prove Theorems E and F.

Let (T, P, f) be a monotone model of a pattern P . Let π be a basic path of
(T, P ). We say that P is π-reducible if fn(π) is contained in a single discrete
component of (T, P ) for every n ≥ 0. In this case, let X =

⋃
i≥0〈f i(π)〉 and let

C1, C2, . . . , Cp be the connected components of X . Note that P ⊂ X . It is easy to
see that for each 1 ≤ i ≤ p there exists ji such that f(Ci) ⊂ Cji . Then we take the
tree T ′ obtained from T by collapsing each Ci to a point ci. Let κ : T −→ T ′ be the
standard projection. We set P ′ = κ(P ) and define f ′ : P ′ −→ P ′ as f ′ = κ◦f ◦κ−1.
It is easy to see that ([T ′, P ′], [f ′]) is a well defined pattern, which we call a π-reduced
(or simply reduced) pattern of P . The process of obtaining this pattern from P is
called a reduction. A pattern will be called strongly reducible if there exists a finite
sequence or reductions leading to a pattern ([S,Q], [g]) such that Q consists on a
single point. The notion of a strongly reducible pattern depends apparently on
the chosen sequence of basic paths and monotone models. From the next theorem,
which is the characterization of zero entropy patterns given in [3], it follows that
this notion is well defined.

Theorem 5.1 (Theorem E of [3]). A pattern has zero entropy if and only if it is
strongly reducible.

The following result will be used to prove the “only if” part of the statement of
Theorem E.

Proposition 5.2. Let (T, P, f) be the canonical model of a periodic pattern P
which is π-reducible for a basic path π of (T, P ). Let C be a connected component
of
⋃

i≥0〈f i(π)〉. Then, the pointed tree (C,P ∩C) has a unique discrete component.

Proof. Set π = {a, b} and X =
⋃

i≥0〈f i(π)〉. By definition, f i(π) is a basic path of

(T, P ) for i ≥ 0. Since f is P -monotone, it follows that 〈f i(π)〉 = f i(〈π〉) and
(20) (f i(a), f i(b)) ∩ P = ∅ for every i ≥ 0.

By the definition of the set X , every point x ∈ P ∩C satisfies that:

(a) x = f i(a) for some i ≥ 0 and [x, f i(b)] ⊂ C
(b) x = f j(b) for some j ≥ 0 and [x, f j(a)] ⊂ C.

Since there exist only two integers i, j ≥ 0 such that x = f i(a) and x = f j(b), it
follows that:

(c) Either [x, f i(b)] ∩ [x, f j(a)] = {x} and, thus, ValC(x) = 2, or [x, f i(b)] ∩
[x, f j(a)] has non-empty interior and, thus, ValC(x) = 1.

For simplicity, by shifting the labels of the points of P we can assume without
loss of generality that a ∈ C.

Since f is P -monotone, it follows that the set X is f -invariant. Let p be the
number of connected components of X . Set g = fp and r = |P |/p. Since P is a
periodic orbit, f acts as a p-cyclic permutation of the set of connected components
of X and, in consequence, P ∩ C is an r-periodic orbit of g. Using (a-c), this fact
implies that every point x ∈ P ∩ C satisfies:

(A) x = gi(a) for some i ≥ 0 and [x, gi(b)] ⊂ C
(B) x = gj(b) for some j ≥ 0 and [x, gj(a)] ⊂ C
(C) Either [x, gi(b)]∩[x, gj(a)] = {x} and, thus, ValC(x) = 2, or [x, gi(b)]∩[x, gj(a)]

has non-empty interior and, thus, ValC(x) = 1.

To prove the proposition, it is enough to show that ValC(x) = 1 for each x ∈
P ∩C. For definiteness, by shifting again the labels of the points of P if necessary,
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a = gk(b) b

g3k(b)

g2k(b)

g3k(b)

Figure 7. The two possible relative positions of the point g3k(b)
in the proof of Proposition 5.2, when g3k(b) 6= b.

we may assume that x = a. Let k ≥ 1 be such that gk(b) = a. Since obviously (20)
holds with g instead of f , it follows that

(21) (gi+k(b), gi(b)) ∩ P = ∅ for every i ≥ 0.

Moreover, using (A–C) with i = 0, j = k and x = a = gk(b) we get that either
[gk(b), b] ∩ [gk(b), g2k(b)] = {gk(b)} and ValC(a) = Val(gk(b)) = 2 or [gk(b), b] ∩
[gk(b), g2k(b)] has non-empty interior and ValC(a) = Val(gk(b)) = 1 (see Figure 7
for a sketch of this situation). Next we will show that the first possibility does not
hold. To do it, assume by way of contradiction that b and g2k(b) are separated by
gk(b).

If g3k(b) = b then gk(b) ∈ (g2k(b), g3k(b)) ∩ P = (g2k(b), b) ∩ P , in contradiction
with (21). On the other hand, if g3k(b) 6= b, we use (A–C) with i = k and j = 2k
to conclude that either ValC(g

2k(b)) = 2 and the points b and g3k(b) are separated
by g2k(b) and gk(b), or ValC(g

2k(b)) = 1 and they are separated by gk(b). In both
cases, b and g3k(b) are separated by gk(b). Iterating the previous argument we get
that, for every 2 ≤ m < r, the points b and gmk(b) are separated by gk(b). In
consequence, gk(b) ∈ (g(r−1)k(b), b) ∩ P = (g(r−1)k(b), grk(b)) ∩ P , in contradiction
with (21). �

To prove the “if” part of the statement of Theorem E we need to introduce a
slight generalization of the notion of a monotone interval map. Let f : X −→ Y be
a continuous map. We say that f is monotone if f−1(K) is a connected subset of
X for every connected subset K of Y . To understand why this definition extends
the notion of monotonicity on an interval to trees see Figure 8.

It seems reasonable that a tree map f : T −→ T that is monotone has entropy
0. To prove this fact, we use the classical notion of horseshoe and Theorem B of
[10], which links the positive entropy of a graph map (in particular, a tree map) to
the existence of horseshoes. For s ≥ 2, we say that a graph map f : G −→ G has
an s-horseshoe if there is an interval I ⊂ G and s subintervals of I with pairwise
disjoint interiors, each of them mapped by f onto the whole I.

Theorem 5.3 (Theorem B of [10]). If a continuous map f of a graph into itself
has positive topological entropy then there exists sequences (kn)

∞
n=1 and (sn)

∞
n=1 of

positive integers such that for each n the map fkn has an sn-horseshoe and

lim sup
n→∞

1

kn
log(sn) = h(f).

The fact that a monotone map of a tree has zero entropy is now a direct conse-
quence of Theorem 5.3:

Corollary 5.4. Let T be a tree and let f : T −→ T be a monotone map. Then,
h(f) = 0.

Proof. From the definition of monotonicity, it directly follows that fk is a monotone
map for every k ≥ 1. On the other hand, assume that a map has an s-horseshoe
given by an interval I and s ≥ 2 subintervals I1, I2, . . . , Is of I. Let x ∈ I1. From
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x

a b c d

Figure 8. Left: a monotone interval map, for which the preimage
of any connected set is also connected. Right: a non-monotone
interval map, for which f−1(x) = [a, b]∪ {c} ∪ {d}, a disconnected
set.

the definition of horseshoe it easily follows that f−1(x) has at least s connected
components and, thus, is not connected. Therefore, a map with horseshoes cannot
be monotone. Collecting it all, we conclude that for every k ≥ 1, the map fk has
no horseshoes. Then, the corollary follows from Theorem 5.3. �

Observe that if (T, P, f) is a monotone model then, for every interval [a, b] ⊂ T
such that (a, b) ∩ P = ∅, f is monotone from [a, b] to [f(a), f(b)]. In fact this is
also true when one replaces [a, b] by the convex hull of any subset of a discrete
component of (T, P ) as the following lemma shows.

Lemma 5.5. Let (T, P, f) be a monotone model and let C be a subset of a discrete
component of (T, P ). Then, f is a monotone map from 〈C〉 to 〈f(C)〉.
Proof. Since f is P -monotone, it follows that f(〈C〉) = 〈f(C)〉. Let K be a con-
nected subset of 〈f(C)〉. It is well known that the connected subsets of a tree are
trees. Hence, K \ (P ∪ V (T )) is the union of a finite number of pairwise disjoint
open intervals I1 ∪ I2 ∪ . . .∪ Ik. Since Ii ∩P = ∅ and f is P -monotone, f−1(Cl(Ii))
is connected for every 1 ≤ i ≤ k. It follows that, when Cl(Ii) ∩ Cl(Ij) 6= ∅,
f−1(Cl(Ii) ∪ Cl(Ij)) is connected. Then, a simple iterative argument yields that
f−1(K) is connected and the lemma follows. �

The following proposition is the main tool for proving Theorem E.

Proposition 5.6. Let P be an n-periodic pattern. Then, h(P) = 0 if and only if
either P is trivial or has a separated p-block structure with trivial blocks such that
the associated skeleton has entropy 0.

Proof. Let (T, P, f) be the canonical model of P . We start by proving the “if”
part of the statement. If P is trivial, then we already know that h(P) = 0. As-
sume that P is not trivial and that there exists a separated p-block structure
P = P1 ∪ P2 ∪ . . . ∪ Pp such that the associated skeleton has entropy 0 and
the patterns ([〈Pi〉, Pi], [f

p
∣∣
Pi
]) are trivial for each 1 ≤ i ≤ p. By Lemma 2.1,

f(〈Pi〉) = 〈Pi+1〉 for 1 ≤ i < p and f(〈Pp〉) = 〈P1〉. On the other hand, since the
pattern ([〈Pi〉, Pi], [f

p
∣∣
Pi
]) is trivial, Pi is a subset of a discrete component of (T, P ).

Therefore, Lemma 5.5 tells us that f
∣∣
〈Pi〉 for 1 ≤ i < p and f

∣∣
〈Pp〉 are monotone

maps. From the definition of monotonicity it follows that fp
∣∣
〈Pi〉 is monotone for
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every 1 ≤ i ≤ p. Then, from Corollary 5.4, h(fp
∣∣
〈Pi〉) = 0 for 1 ≤ i ≤ p. In

consequence, h(P) = 0 by Theorem D.
Next we prove the “only if” part of the statement. Assume that P is not trivial

and h(P) = 0. By Theorem 5.1, P is strongly reducible. In particular, there exists
a basic path π of (T, P ) such that P is π-reducible. Let C = {C1, C2, . . . , Cp}
be the set of connected components of

⋃
i≥0〈f i(π)〉. Then, f acts as a p-cyclic

permutation of C. Let Pi := P ∩Ci for 1 ≤ i ≤ p. Since Ci = 〈Pi〉, Proposition 5.2
tells us that ([〈Pi〉, Pi], [f

p
∣∣
Pi
]) are trivial patterns for all 1 ≤ i ≤ p. Observe that

p > 1 because otherwise C1 = T , C1 ∩ P = P and in this case P would be a
trivial pattern; a contradiction. Hence, since all sets 〈Pi〉 are pairwise disjoint, the
partition P = P1 ∪ P2 ∪ . . . ∪ Pp defines a separated p-block structure for P . Since
h(P) = 0, from Theorem D we get that the entropy of the associated skeleton is
0. �

Now we are ready to prove Theorem E.

Proof of Theorem E. The “only if” part of the statement follows directly by itera-
tively using Proposition 5.6 finitely many times.

Now assume that P is k-starry for some k ≥ 1. We have to show that h(P) = 0.
We will proceed by induction on k. If k = 1, then P is trivial by definition and
thus h(P) = 0. Assume now that any k′-starry pattern has entropy zero for every
1 ≤ k′ < k. Let (T, P, f) be the canonical model of P . Since P is k-starry, there is
a partition P = P1∪P2∪ . . .∪Pp defining a separated p-block structure with trivial
blocks whose associated skeleton Q is (k-1)-starry. By the induction hypothesis,
h(Q) = 0. On the other hand, since each Pi is a subset of a discrete component of
(T, P ), we get that h(fp

∣∣
〈Pi〉) = 0 for 1 ≤ i ≤ p, as in the proof of the “if” part of

Proposition 5.6. In consequence, h(P) = 0 by Theorem D. �

Finally we prove statements (a) and (b) of Theorem F. It is clear that both
results derive immediately from the following proposition and corollary.

Proposition 5.7. Let P be an n-periodic pattern and let (T, P, f) be the canonical
model of P. Let k ∈ N be relatively prime to n. If h(P) = 0 then h(([T, P ], [fk])) =
0.

Proof. Set Q = ([T, P ], [fk]). We have to prove that h(Q) = 0. This clearly holds
when P is trivial, since in this case Q is also trivial.

Now assume that P is not trivial. We claim that for some p < n there exist
two p-periodic patterns P ′ = ([T ′, P ′], [f ′]) and Q′ = ([T ′, P ′], [(f ′)k]) such that
h(P ′) = 0 and h(Q′) = h(Q). It is clear that the proposition follows from the
iterative use of this claim together with the remark in the first paragraph of the
proof.

Now let us prove the claim. By Theorem E, there exists a p-block structure
P = P1∪P2∪. . .∪Pp such that the associated skeleton has entropy 0 and the patterns
([〈Pi〉, Pi], [f

p
∣∣
Pi
]) are trivial (in consequence, have entropy 0) for each 1 ≤ i ≤ p.

Let ([T ′, P ′], [f ′]) be the associated skeleton. Now observe that, since k and n
are relatively prime, fk acts as a p-cyclic permutation on the set {P1, P2, . . . , Pp}
(in general, different from the one induced by f). It follows that P1 ∪ P2 ∪ . . . ∪
Pp also defines a p-block structure for Q, and that the associated skeleton Q′ is
([T ′, P ′], [(f ′)k]). By Theorem D,

(22) h(Q) = max {h(Q′), (1/p)h(fkp
∣∣
〈Pi〉) } for any 1 ≤ i ≤ p.

Since the pointed trees (〈Pi〉, Pi) have one discrete component, using Lemma 5.5
as in the proof of Proposition 5.7 yields that fkp

∣∣
Pi

is a monotone map. Then, by
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Corollary 5.4, h(fkp
∣∣
Pi
) = 0. Hence, from (22) it follows that h(Q′) = h(Q). This

ends the proof of the claim and proves the proposition. �
Corollary 5.8. Let P be an n-periodic pattern and let (T, P, f) be the canonical
model of P. Let k ∈ N be relatively prime to n. If h(([T, P ], [fk])) = 0 then
h(P) = 0.

Proof. Since n and k are relatively prime, there exists k′ such that kk′ is congru-
ent to 1 modulo n. Therefore, ([T, P ], [(fk)k

′
]) = ([T, P ], [f ]) = P . Then, since

([T, P ], [fk]) is an n-periodic pattern with zero entropy and n and k′ are also rela-
tively prime, h(P) = 0 by Proposition 5.7. �
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