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Abstract

Type 1 diabetes mellitus is a chronic disease that requires those affected to self-administer insulin
to control their blood glucose level. However, the estimation of the correct insulin dosage is not
easy due to the complexity of glucose metabolism, which usually leads to blood glucose levels far
from the optimal. This paper presents an adaptive and personalised basal insulin recommender
system based on Kalman filter theory that can be used with or without continuous glucose mon-
itoring systems. The proposed approach is tested with the UVa/PADOVA simulator with eleven
virtual adult subjects. It has been tested in combination with two different bolus calculators, and
the performance achieved has been compared with that obtained with the default basal doses of
the simulator, which can be assumed as optimal. The achieved results demonstrate that the pro-
posed system rapidly converges to the optimal basal dose, and it can be used with adaptive bolus
calculators without the risk of instability.
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1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a chronic metabolic disease characterised by the autoim-
mune destruction of the beta cells of the endocrine pancreas that are responsible for controlling
Blood Glucose (BG) levels through the secretion of insulin. There are no global statistics about
the number of people suffering from T1DM (World Health Organization, 2016), but the Ameri-
can Diabetes Association estimates that there are approximately 1.25 million American children
and adults with T1DM, and according to the International Diabetes Federation, Europe has ap-
proximately 140,000 children with T1DM and has the highest incidence rates, with 21,600 new
cases of T1DM every year (International Diabetes Federation, 2015).

People living with T1DM need to control their BG level in order to avoid it being too high and
suffering hyperglycaemia1 events, or too low and suffering hypoglycaemia2 events. Therefore,
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1Hyperglycaemia can cause, in the long term, micro-vascular complications such as retinopathy, nephropathy and
neuropathy, and macro-vascular complications such as coronary heart disease, stroke and peripheral vascular disease.

2Hypoglycaemia may result in clumsiness, trouble talking, loss of consciousness, seizures, or death.
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people with T1DM have to periodically check their BG using a Continuous Glucose Monitor
(CGM) or with capillary BG measurements, i.e. by drawing blood from the fingertips in order
to measure the glucose concentration. Usually, two types of insulin are used to regulate the BG
- a fast acting insulin also called bolus insulin, and a slow acting insulin called basal insulin.
While bolus insulin is used to metabolise the ingested carbohydrates from food, basal insulin is
used to metabolise the liver’s continuous secretion of glucose. Therefore, bolus doses are usually
calculated considering the current BG and the quantity of carbohydrates to ingest, while basal
doses are calculated analysing BG behaviour over a particular period of time, e.g. a month.

The estimation of the insulin needed is usually done following very simple rules, mainly
based on empirical experience, that barely catches the complexity of the glucose metabolism
and, consequently, fail to optimise the insulin therapy. Consequently, there are Bolus Calculators
(BC) on the market (Garg et al., 2008; Sussman et al., 2012) that help people to calculate the
appropriate bolus dose. However, basal doses are usually agreed upon by patients and their
endocrinologist.

This paper explains a novel methodology based on Kalman filter to automatically adjust basal
insulin. The proposed method takes advantage of the use of CGM. Nevertheless, a variation of
the algorithm that does not require the use of CGM is also presented. The methodology is tested
in combination with a traditional BC and with an adaptive BC based on Case-Based Reasoning
(CBR) presented in the previous work (Torrent-Fontbona et al., 2017). The system is tested with
ten virtual adults and an average adult using the UVa/PADOVA T1DM simulator. The results
show that the proposed algorithm is capable of achieving optimal values in a few iterations, even
without the use of CGM.

This paper is organised as follows: first, some background information regarding insulin
dosage calculation is presented with support of the related literature; second, the basal recom-
mender system is described; third, the experimentation and the results are explained; finally, the
paper ends with the achieved conclusions.

2. Background and related work

Basal-bolus therapy consists of administering basal and bolus insulin to metabolise and con-
trol BG. The market offers BC software tools which usually incorporate glucose meters (Sussman
et al., 2012) or personal digital assistants (Garg et al., 2008), etc., to help people to calculate the
appropriate bolus dosage. BCs usually rely on a mathematical formulation similar to Equation
(1) (Brown, 2015; Herrero et al., 2015a) to calculate the bolus dose B, where CHO (in g) is the
amount of carbohydrates in the meal, Gc (in mg/dl) is the blood glucose level, Gsp (in mg/dl) is
the target blood glucose level, IS F (in mg/dl) is the insulin sensitivity factor, ICR (in g) is the
insulin to carbohydrates ratio and IOB is the remaining active insulin (insulin on board).

B =
CHO
ICR

+
Gc −Gsp

IS F
− IOB (1)

Despite BCs having been proved useful in terms of improving glycaemic self-control (Lepore
et al., 2012; Shashaj et al., 2008; Gross et al., 2003), they are still far from achieving optimal
glycaemic control, usually because of the difficulty of setting their parameters (ICR and IS F)
and regularly adjusting them according to changes in insulin requirements.

This has led researchers to develop new methods that automatically adjust BC parameters
such as those of (Herrero et al., 2015a,b; Torrent-Fontbona et al., 2017) which then recommend
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an accurate dosage. However, these methods require an optimised basal insulin to achieve good
results.

In this regard, (Torrent-Fontbona et al., 2017) propose a method that uses physical activity,
time of day and meal size to define the cases of a CBR system. The method models the changes
in terms of ICR and ISF according to physical activity, time of day and meal size throughout a
set of cases, to then estimate the value of ICR and ISF under a new situation. Once the ICR and
ISF are calculated, the method recommends a bolus dose using Equation (1). Cases are updated
according to the blood glucose values after a bolus recommendation in order to recursively adjust
the modelling of the ICR and ISF. This paper presents a basal insulin recommender system and
analyses its performance in combination with (Torrent-Fontbona et al., 2017) and in combination
with a standard bolus calculator with fixed ICR and ISF.

Basal insulin is usually adjusted by the endocrinologist in agreement with the patient with
T1DM. Usually, clinicians start with the rule of 50% bolus and 50% basal insulin (Brown, 2015).
Therefore, when they have a new patient, they make an estimation of the Total Daily Dose (TDD)
of insulin that she may need, and then they set the basal insulin and the parameters (ICR and ISF)
used to calculate bolus doses depending on carbohydrate intake and BG. After this initialisation,
the clinician and the patient adjust the basal dose according to the BG behaviour in the periodic
meetings they have (e.g. monthly).

Despite the fact that basal insulin adjustment has been traditionally left to an endocrinologist,
the literature presents methods with the objective of automatically adjusting basal insulin. For
example, (Herrero et al., 2017) propose the combination of CBR and a run-to-run algorithm, to
calculate the appropriate basal dosage. The authors use CBR to retrieve a past basal dosage for
a given context, and they use the run-to-run algorithm to iteratively adjust the basal dosage for
each context. Conversely, this paper proposes to iteratively adjust the Kalman filter model, which
then guarantees the best linear estimation and prediction of the needed insulin. Therefore, the
proposed methodology does not assume that there are clear identifiable contexts for which the
required basal dosage is different. Despite this it could be easily extended to a table of models,
each of which is applicable to a particular context.

The authors in (Palerm et al., 2008) also propose a run-to-run algorithm to iteratively adjust
the basal dosage using six capillary glucose measurements per day and (Toffanin et al., 2017)
propose to use a run-to-run algorithm to adapt basal dosage during the night and insulin-to-
carbohydrate ratio during the day, using a CGM. We also take advantage of the use of CGM and
basal dosage is estimated daily, but we also propose a variation of the method to avoid the need
for CGM.

Artificial pancreas has led to important research on developing algorithms to control insulin
infusion, such as the methods reviewed in (Doyle et al., 2014). However, these methods cannot be
compared to the presented approach since it aims to help people with T1DM with a basal-bolus
therapy using a pump or multiple daily injections, instead of an artificial pancreas system.

Artificial intelligence has been also used to aid people with T1DM beyond the recommenda-
tion of basal insulin. In this regard, CBR has proved to be a powerful tool in terms of provid-
ing bolus recommendations for T1DM (Brown, 2015; Herrero et al., 2015a,b; Torrent-Fontbona
et al., 2017). These works exploit the capacity of CBR to describe the solution space throughout
a set of past experiences in order to learn from them, and recommend a bolus dose for each new
situation. The authors in (Marling et al., 2008) propose a case-based decision support system
to detect complications in people with TD1M on insulin pump therapy, and then recommend
therapeutic adjustments stored in the case base.

Fuzzy logic has been also used to develop models of subjects’ physiology, and provide bolus
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recommendations relying on these fuzzy logic models. For example, (Liu et al., 2013) presents
a fuzzy logic model of glucose behaviour according to the size of the meal. This fuzzy model is
updated using new information regarding meals and BG values, and it is used to provide bolus
recommendations.

Artificial intelligence has been also used to predict BG and possible hypoglycaemia and hy-
perglycaemia events. Various researchers have opted for using CGM data to train machine learn-
ing models. In this regard, (Mo et al., 2013; Pappada et al., 2008) propose the use of artificial
neural networks to predict hypoglycaemia; (Plis et al., 2014) proposes the use of a generic phys-
iological model of BG dynamics to generate informative features for a support vector regression
model to predict BG levels; (Sudharsan et al., 2015) analyses the performance of random forests,
K-nearest neighbour, support vector machine and nave Bayes to predict hypoglycaemia for type
2 diabetes. They conclude that random forests and support vector machine outperform the other
two methods. The authors in (Oviedo et al., 2016) present a deep review of BG prediction strate-
gies for T1DM.

3. Basal recommender system

This paper presents an adaptive and personalised basal insulin recommender system based
on Kalman filter theory (Grewal, 2011). The methodology is depicted in Figure 1. This consists
of predicting the TDD and then updating its value according to Kalman filter theory, and using
the measured TDD (the sum of basal and bolus doses) which is provided by the user. The
predicted TDD is used to recommend a basal dose for the user. In parallel, the method updates
the bolus/basal proportion and the covariance of the process noise which are parameters used for
updating the TDD.

The remainder of the section explains the different parts of the system.

3.1. Kalman filter modelling

Kalman filter is a recursive estimator used to infer parameters of interest from indirect, in-
accurate and uncertain observations. It consists of a two-step method which firstly predicts the
one-step ahead state (the value of the parameters of interest) and then updates the prediction
given a new observation of the state (new measurements of the parameters).

Assuming that state xn is governed by a system control sequence un and the corresponding
system noise wn, the system state equation is formalised as follows:

xn+1 = A · xn + B · (un + wn) (2)

where A is the state transition model and B is the control-input model.
The observations of the state are defined as

ŷn = H · xn + vn (3)

where yn is the observed state, H is the observation model, and vk is the observation noise.
The prediction of the future state is formalised as Equations (4) and (5), where x̂n+1|n is the

predicted TDD for time n + 1, x̂n|n is the estimated TDD for time n conditioned to the measure-
ments until n, and Kn is the Kalman gain.

x̂n+1|n = A · x̂n|n + B · un (4)
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Figure 1: Adaptive and personalised basal insulin recommender system.

x̂n|n = x̂n|n−1 + Kn
(
yn − x̂n|n−1

)
(5)

The Kalman gain is formalised according to Equation (6), where Rn denotes the observation
noise covariance at the nth time and Pn|n−1 and Pn|n are formalised according to Equations (7) and
(8) and denote the covariance of prediction error of x̂n|n−1 and its update. Qn denotes the known
covariance of the process noise at the nth time.

Kn = A · Pn|n−1 · HT ·
(
H · Pn|n−1 · HT + Rn

)
(6)

Pn|n−1 = A · Pn−1|n−1 · AT + Qn−1 (7)

Pn|n = (I − Kn · H) · Pn|n−1 (8)

If wn and vn are Gaussian white noise (wn v N (0,Q) and vn v N (0,R)), the Kalman filter
minimises the mean square error of the estimated parameters. If the noise is not Gaussian, given
the mean and the standard deviation of the noise, the Kalman filter is the best linear estimator
(Grewal, 2011).

The standard Kalman filter works well if there is exact a priori knowledge of the system
structure (A, B and H), as well as the statistical properties, which are mainly the covariances of
the process and observation noise (Q and R).
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3.2. Process and observation model

In order to achieve a good performance, the structure of the system has to be known a priori.
In the proposed modelling, if we consider that the state variable xn describes the TDD, and the
control variable un denotes the daily bolus dose, then Equation (4) predicts the TDD for day
n + 1 (x̂n+1|n), given the estimation of the TDD on day n (x̂n|n) and the amount of bolus insulin
administered on day n. Since un is the amount of bolus insulin infused on day n and it is known,
we can assume B = 1. According to this, A models the amount of basal insulin in the prediction
of the TDD for the next day, and it models it as a portion of the TDD of the current day.

Clinicians usually initialise basal insulin as half of the estimated TDD, i.e. A = 1
2 . However,

they periodically adjust it according to the BG behaviour. This paper proposes to iteratively
adjust A according to the average BG level according to Equation (9), where Ak is the estimated
transition model at the kth iteration of the algorithm, α is the learning rate, µG is the average BG
(e.g. average of CGM readings) since the last update of A, and Gsp is the glucose set point, i.e.
the target average BG.

Ak+1 = Ak + α
µG −Gsp

Gsp
(9)

Note that the average of CGM values can be defined as µG = 1
M

∑t
m=t−M Gm, where Gm is the

mth BG measurement, M is the number of BG samples used, and t denotes the time when Ak+1
is estimated. Nevertheless, it can be iteratively calculated as

µGm =
m − 1

m
µGm−1 +

1
m

Gm (10)

where m is the number of BG samples, µGm is the mth update of µG and Gm is the mth BG sample,
i.e. the new BG reading.

Moreover, α is a design parameter that can be the same for everybody, and Gsp is easier to
set than A for any clinician or patient since it is the desired average blood glucose. It is usually
the mid-point of the glycaemic target range.

On the other hand, H denotes the observation model. Since xn is the true TDD and yn is the
measured TDD, we can assume H = 1.

3.3. Iterative estimation of Q

As stated previously, a precise estimation of the noises covariance is needed. However, in
practice, this is difficult to estimate, especially with regard to process noise, since we are often
not able to completely understand the mechanism of noise. For example, in the case of the TDD,
its variability is caused by several different factors that are very difficult to model.

On the other hand, the observation noise is easy to model since it depends on the accuracy
of the insulin infusion mechanism, e.g. a pump. Therefore, its covariance cov (v) = R can be
assumed to be known.

This paper proposes an iterative estimation of the covariance of the process noise (Q). The
proposed method is based on (Feng et al., 2014) and considers that the covariance of a random
variable can be approximated as follows

covn+1(ζ) =
1

n + 1

n+1∑
i=1

ζ2
i −

 1
n + 1

n+1∑
i=1

ζi


2

(11)
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Therefore, as n→ ∞ then, (covn (ζ) − cov (ζ))→ 0.
Developing Equation (11), we obtain

covn+1(ζ) =
n

n + 1
covn (ζ) +

1
n + 1

ζ2
n+1 −

(
n

n + 1
µn +

1
n + 1

ζn+1

)2

(12)

Then, if we define variables ζn and Vn as follows

ζn =
(
HT H

)−1
HT yn − A

(
HT H

)−1
HT yn−1 (13)

Vn =
(
HT H

)−1
HT vn − A

(
HT C

)−1
HT vn−1 (14)

we can state

ζk = B · wk−1 + Vk (15)

Therefore, as (Feng et al., 2014) states, we can estimate Q at the nth time as follows

Q̂n = cov(B · wn−1) = cov(ζn) − var(Vn) (16)

where cov(ζn) can be obtained by taking consecutive samples of yn and using Equations (12)
and (13). Moreover, if we consider that two consecutive samples of v are independent, then the
covariance of Vn can be calculated a priori using cov (v) according to Equation (17).

cov (Vn) = cov
((

HT H
)−1

HT · v
)

+ A
(
HT H

)−1
HT cov

(
A

(
HT H

)−1
HT · v

)
(17)

Considering that B = 1, H = 1 and A is a scalar, then

cov (Vn) =
(
1 + A2

)
R (18)

3.4. Complete algorithm

The proposed algorithm consists of using Kalman filter theory for estimating the next day’s
TDD and, based on this, setting the basal insulin dose. However, this requires a priori knowledge
of the system’s structure and its statistical properties. As this section has explained, most of this
information is known but, in practice, the transition model and the process noise covariances
are difficult to determine a priori, and may be different for each T1DM patient. Therefore,
the complete algorithm consists of a Kalman filter that predicts the TDD of the next day and
two methods that iteratively estimate the personalised transition model A and the process noise
covariance Q. The process noise covariance is estimated every time we have a TDD sample,
i.e. once per day. On the other hand, to update A, it is necessary to measure the BG average.
Therefore, this paper suggests the need to do this every several days in order to let the BG average
reach the stability point for a given A, e.g. once per week.

Algorithm 1 shows an implementation of the proposed method assuming H = 1 and B = 1.
Step 11 shows the update step of the Kalman filter, and step 12 shows the prediction of the next
day’s TDD. Then, step 14 calculates the basal dose recommendation for the next day.

The proposed system assumes that bolus insulin is a given information. Therefore, this al-
gorithm can be used in combination with bolus recommender systems and even adaptive bolus
recommender systems such as that detailed in (Torrent-Fontbona et al., 2017).

7



Algorithm 1 Basal recommender system algorithm
Initialisation: A = 1

2 , Q = 1, basal = 0
Require: Gsp, average BG, sample sequence {yn} of TDD, sample sequence {un} of daily bolus, R

1: for each day n do
2: if end of week then
3: Update A according to Equation (9)
4: end if
5: yn ← basal + un

6: cov (Vn)←
(
1 + A2

)
R

7: ζn ← yn − A · yn−1

8: Calculate cov (ζ) using Equation (12)
9: Q← cov (ζ) − cov (Vn)

10: K ← P
P+R

11: x← x + K · (yn − x)
12: x← A · x + un

13: P← A2P + Q
14: basal← A · x
15: end for

3.5. Proposal for non-CGM users
The proposed approach takes advantage of the increasing use of CGM. However, there are

still T1DM patients who rely on capillary BG measurements. In order to avoid the use of CGM,
Equation (9) could be relaxed as follows

Ak+1 = Ak + µ
1
M

∑t
i=t−M FGi − FGsp

FGsp
(19)

where FGi is the ith fasting glucose measurement, and FGsp is the target fasting glucose level.
Fasting glucose can be measured every morning before breakfast or before each meal. Therefore,
this does not involve extra capillary BG measurements than for calculating bolus doses.

4. Results and discussion

The basal recommender system has been tested using the UVa/PADOVA T1DM simulator
with eleven (ten plus the average subject) virtual adult subjects, which are supposed to represent
the variability found amongst real adults with T1DM (Visentin et al., 2014; Kovatchev et al.,
2009). The UVa/PADOVA T1DM simulator is the only T1DM simulator approved by the United
States Food and Drug Administration as an alternative to animal testing of T1DM control strate-
gies. The simulator consists of a model of glucose-insulin dynamics during a meal; a model
of glucose kinetics in hypoglycaemia which allows insulin utilization to increase at low glucose
levels; and a model of glucagon kinetics, secretion and action that mimics endogenous glucose
production at low glucose levels. The glucose dynamics of the simulator reproduces the distri-
bution of insulin correction factors, and the glucose fluctuations in T1DM observed during meal
challenges and in hypoglycaemia (Visentin et al., 2014; Kovatchev et al., 2009). The simulator
is described in more detail in (Visentin et al., 2014).

The proposed system has been tested using a BC with constant parameters and the CBR-
based BC presented in (Torrent-Fontbona et al., 2017). The performance of the basal recom-
mender system has been compared to that achieved with a constant basal dosage. The constant
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Figure 2: Average between the eleven virtual subjects of the mean and standard deviation of the proportion of time in the
target glycaemic range using the proposed basal recommender system or the default basal dosage in combination with a
CBR-based bolus calculator.

BC parameters and basal dose were the ones provided by the default insulin therapy of the simu-
lator, and they can be considered as optimal or nearly optimal. The simulator has been modified
to simulate lifestyle changes according to (Herrero et al., 2017) to incorporate intra-day variabil-
ity and impact of physical activity on BG behaviour.

The conducted experimentation consists of 20 simulation of 90 days. The results are analysed
in terms of time (average and standard deviation) in the target glycaemic range which is the
proportion of time when BG is within a healthy range.

4.1. Results with CGM

Figure 2 shows the average and standard deviation of the time in the target glycaemic range
throughout the 90-day simulations. It displays the mean values between all virtual subjects of the
average and standard deviation of the proportion of time in the target glycaemic range throughout
the 20 simulations. It shows how the average increases along the 90 days (about 13 weeks) and
how the combination of the CBR BC and basal recommender outperforms the CBR BC with the
default basal doses.

The basal recommender system combined with the CBR BC achieves about 5% more time in
the target range than the default basal combined with the CBR BC, meaning that the adaptability
of the basal recommender system is capable of achieving a better adjustment.

Moreover, the standard deviation decreases along the 90 days when both systems are used.
In particular, the standard deviation decreases from more than 4% to 2.5% approximately, when
the basal recommender and the CBR BC are used, and from 5% to 3.5% approximately, when
the CBR BC is used with the default basal doses.

Figure 3 shows the average and standard deviation of the proportion of time in the target
glycaemic range throughout the 90-day simulations using the default BC with the proposed basal
recommender system or the default basal dosage. According to this, the average increases along
the 90 days when the basal recommender system is used in combination with the default BC.
After 4 weeks, the time on target becomes similar to that achieved using the default basal, which
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Figure 3: Average between the eleven virtual subjects of the mean and standard deviation of the proportion of time in the
target glycaemic range using the proposed basal recommender system or the default basal dosage in combination with
the default bolus calculator.

is considered optimal. Therefore, the proposed basal recommender system reaches optimality
after 3 iterations.

In contrast with the results achieved using the CBR BC, the standard deviation is not reduced
using the default BC, with or without the basal recommender system, since its values oscillate
between 4% and 5% approximately.

Figure 4 shows the average and standard deviation of the time in the target glycaemic range
for each subject after an initialisation of six weeks using the default BC and basal, or using
the default BC with the basal recommender system, or using a CBR-based BC with the default
basal, or using a CBR-based BC and the basal recommender system. The figure shows that the
combination of the CBR-based BC and the basal recommender system outperforms all the other
methods. On average, the combination of the CBR-based BC and the basal recommender system
achieves 83.87 ± 1.35 percent of time on target, while the CBR BC with default basal doses
obtains 78.92 ± 2.90, the default BC with the basal recommender system 74.44 ± 3.64, and the
default BC and basal doses 76.63 ± 4.37.

Moreover, when comparing the use of the basal recommender system and the default basal
doses with the default BC, the differences are only significant3 for subjects 2 and 10, for which the
performance of the basal recommender system is better than the constant basal dose. Therefore,
the results are similar for both methods, meaning that the basal recommender system is capable
of estimating the optimal dosage. On the other hand, when the basal recommender system is used
with the CBR-based BC, the performance is significantly better for all subjects compared to that
achieved with the CBR BC and the default basal doses, because these are optimal in combination
with the default BC.

4.2. Results without CGM
Figure 5 shows the results of the proposed basal recommender system modified for non-

CGM users as explained in Section 3.5. The achieved time in the target glycaemic range is

3Significant according to Wilcoxon tests.
10



1 2 3 4 5 6 7 8 9 10 11
Virtual subject

0

20

40

60

80

100

%
Time in the glycaemic target range

Default BC and basal
Default BC and basal recommender
CBR BC and default basal
CBR BC and basal recommender

Figure 4: Average and standard deviation of the proportion of time in the glycaemic target range using the default bolus
calculator and basal doses, the default bolus calculator with the basal recommender system, a CBR-based bolus calculator
with the default basal doses and a CBR-based bolus calculator with the basal recommender system.

compared with that achieved with a constant BC and basal dose. The results show that the pro-
posed methodology is capable of achieving similar results, meaning that the basal recommender
methodology is, in general, capable of approximately achieving the optimal basal dose. In par-
ticular, there are not significant differences between the time in the target glycaemic range for
all subjects, except for subject 7, for which the proposed method demonstrate worse results, and
subjects 2 and 10, for whom the proposed methodology obtains better results.

4.3. Discussion
The proposed basal recommender system is capable of accurately estimating the optimal

basal dose for all virtual subjects since it achieves similar results to the default basal doses (as-
sumed as optimal) of the simulator when the default BC is also used.

On the other hand, the stability and convergence demonstrated in Figure 2, and the fact that
the basal recommender system achieves better results than the default basal doses when it is
combined with the CBR BC, means that it can be easily used with other adaptive BC available
on the market or described in the literature.

The fast convergence of the algorithm shown in Figures 2 and 3 makes the algorithm very
attractive for people with T1DM and for endocrinologists, since its use can speed up the adjust-
ment of the insulin therapy, especially for new patients with T1DM. Moreover, the capacity of
adjusting the algorithm to avoid the need of CGM while maintaining the good results, also makes
it very attractive for people with T1DM and health insurance companies since it does not require
the purchase of CGM which may represent between e1000 and e6000 per person/per year.

The proposed basal recommender system is the first approach based on the use of the Kalman
filter, which is the best linear estimator. The literature presents only a few algorithms for basal
insulin recommendation, and they rely on run-to-run algorithms such as (Palerm et al., 2008;
Toffanin et al., 2017; Herrero et al., 2017). The variations in terms of the run-to-run algorithms
mainly depend on whether the system proposes the use of CGM or a sequence of capillary BG
measurements. The approach proposed in this paper relies on the use of CGM, but the paper also
presents an adaptation of the algorithm for non-CGM users.
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Figure 5: Proportion of time in the glycaemic target range using a bolus calculator with constant parameters and constant
basal dose, and the bolus calculator with the basal recommender system without using CGM.

Basal dosage may change due to change in routine or changes in the patient’s metabolism.
If these changes are faster than the convergence time of the presented methodology, then it may
fail to recommend appropriate basal doses. Furthermore, the proposed system does not consider
external factors beyond bolus insulin such as menstrual cycle, physical activity or stress that may
change the needed basal dose. Thus, a system considering these factors and modelling basal
changes on them may outperform the basal recommender presented in this paper. Unfortunately,
there are not sufficient clinical studies to model the impact of such factors. On the other hand,
(Herrero et al., 2017) proposes representing this variability throughout a case base of represen-
tative scenarios with a particular basal dosage for each case. This procedure may overcome this
limitations of the presented basal recommender system.

5. Conclusion

This paper presents a system based on Kalman filter theory aimed at recommending adaptive
and personalised basal doses for people with type 1 diabetes mellitus. The proposed system can
be used with or without a continuous glucose monitoring system. The system has been tested
with the UVa/PADOVA type 1 diabetes simulator, demonstrating its capacity to recommend op-
timal basal doses. Moreover, the system can be easily used in combination with adaptive bolus
calculators available on the market or noted in the literature, that help patients to optimise their
bolus doses. Finally, the presented system can be very useful for people with type 1 diabetes and
their endocrinologists since its use can speed up the adjustment of the basal dosage.

In terms of future research, the system should be tested in a real environment with real pa-
tients with type 1 diabetes in order to analyse the performance of the proposed approach out of
the the limitations of the UVA/PADOVA T1DM simulator.
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