Role of renal function in cardiovascular risk assessment: A retrospective cohort study in a population with low incidence of coronary heart disease

Maria García-Gil, Didac Parramon, Marc Comas-Cufi, Ruth Martí, Anna Ponjoan, Lia Alves-Cabratos, Jordi Blanch, Irene Petersen, Roberto Elousoa, Maria Grau, Betlem Salvador, Rafel Ramos.

ARTICLE INFO

Article history:
Received 4 November 2015
Received in revised form 18 May 2016
Accepted 5 June 2016
Available online 7 June 2016

Keywords:
Primary care
Cardiovascular risk assessment
Glomerular filtration rate
Electronic medical records

ABSTRACT

Background. Early-stage chronic kidney disease (CKD), a marker of cardiovascular risk, is susceptible to therapeutic intervention but need further study in populations with low incidence of coronary heart disease (CHD). Incorporating glomerular filtration rate (GFR) could improve cardiovascular risk prediction in these patients.

Objective. To determine if decreased GFR is associated with increased risk of cardiovascular morbidity and all-cause mortality and to analyse GFR effect on cardiovascular risk prediction in a population with low CHD incidence.

Methods. Retrospective, observational, population-based study of 1,081,865 adults (35–74 years old). Main exposure variable: GFR. Outcomes: CHD, cerebrovascular disease, cardiovascular diseases, all-cause mortality. Association between GFR categories of CKD (G1–G5) and outcomes was tested with Cox survival models. G1 was defined as the reference category. Predictive value of GFR was evaluated by integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indices.

Results. Beginning at stage-3a CKD, increased risk was observed for coronary (HR 1.27 (95%CI 1.14–1.43)), cerebrovascular (HR 1.19 (95%CI 1.06–1.34)), cardiovascular (HR 1.23 (95%CI 1.13–1.34)) and all-cause mortality risk (HR 1.17 (95%CI 1.07–1.27)). GFR did not increase discrimination and reclassification indices significantly for any outcome.

Conclusion. In general population with low CHD incidence and stage-3 CKD, impaired GFR was associated with increased risk of all cardiovascular diseases studied and all-cause mortality, but adding GFR values did not improve cardiovascular risk calculation. Despite a four-fold higher rate of CHD incidence at GFR G3a compared to G1, this represents moderate cardiovascular risk in our context.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. They account for 30% of global mortality and are expected to remain the leading cause of death in coming years (World Health Organization, 2011) (Mathers & Loncar, 2006). Although southern Europe has one of the lowest cardiovascular mortality and morbidity rates in the European Union (Nichols et al., 2012), these diseases constitute one of the main morbidity impacts, being the second leading cause of expected years of life lost and the first cause of hospitalization (INE, 2014) (Gènova-Maleras et al., 2011). Therefore, prevention of cardiovascular diseases remains a priority of health policies and biomedical research in this population.

Currently, one of the main disease prevention strategies is to intervene in the high-risk healthy population. Treating cardiovascular risk factors decreases the risk of cardiovascular diseases (Graham et al., 2007). Although risk functions are used to identify those individuals at higher risk, the functions are not sufficiently accurate (Marrugat et al., 2009-11).
Therefore, it is necessary to improve the predictive ability of risk functions by considering new risk factors.

Recently, several studies have shown that impaired renal function, even at very early stages, is independently associated with the occurrence of cardiovascular events (Go et al., 2004) (Brugts et al., 2005) (Meisinger et al., 2006) (Van Biesen et al., 2007) (Di Angelantonio et al., 2007) (Astor et al., 2008) (Cirillo et al., 2008) (Matsushita et al., 2010b). Thus, current clinical practice guidelines recommend maximizing cardiovascular prevention in patients with chronic kidney disease (CKD) at all stages (Group KDIGO (KDIGO) CW, 2013) (Bover-Sanjuán et al., 2014) (Rabar et al., 2014 Jan). Moreover, recent research has suggested that markers of CKD would help to improve the prediction of cardiovascular events in addition to traditional cardiovascular risk factors in populations with high cardiovascular risk (Di Angelantonio et al., 2014) (Rabar et al., 2014 Jan). Nevertheless, studies on the role of impaired renal function as a cardiovascular risk are mainly carried out in populations with high incidence of CHD. In this study, we aimed to examine the potential capacity of CKD, as defined by glomerular filtration rate (GFR), to improve the prediction of cardiovascular events and all-cause mortality in a general population with low incidence of CHD (Marrugat et al., 2011).

2. Materials and methods

2.1. Study design

2.1.1. Retrospective cohort study

2.1.1.1. Data source. Data were obtained from the Information System for the Development of Research in Primary Care (SIDIAP). This clinical database contains the anonymized, longitudinal medical records of nearly five million patients, comprising around 80% of the Catalan and 10.2% of the Spanish populations (Bollbar et al., 2012). The records contain demographic information, clinical diagnoses (International Classification of Diseases 10th revision [ICD-10]), referral and hospital discharge information (International Classification of Diseases 9th revision [ICD-9]), laboratory tests and treatments (drug prescriptions and drugs invoiced at the community pharmacy). General practitioners follow regulated protocols on data recording, and are assessed for its completeness and continuity: the records qualified protocols on data recording, and are assessed for its completeness.

2.2. Participants

In total, 1,081,865 people aged 35 to 74 years without previous history of cardiovascular disease, defined as myocardial infarction (MI), angina pectoris, stroke, transient ischemic attack (TIA), or peripheral arterial disease (PAD), and who were registered with a primary health care centre providing data to SIDIAP between January 2008 and December 2013, were eligible for inclusion in this study.

2.2.1. Follow-up and outcomes

The six-year study period was January 2008 to December 2013. The follow-up period was defined from January 2009 to 2013. For individuals with a creatinine measurement, we used the first record as an index date; without creatinine data, January 2009 was the index date. Baseline period was defined as 1-year before the index date.

Patients were censored at the earliest date of the diagnosis of interest, at transfer out of the primary health care centre or at the study end date (31 December, 2013). Time to first event was considered for all analyses.

Vascular diseases were identified in follow-up from relevant SIDIAP codes in the patients’ clinical files, both primary care and hospital discharge records. The cardiovascular codes have been previously validated in SIDIAP (Ramos et al., 2012).

The primary outcomes were coronary heart disease, a composite of myocardial infarction (MI) and angina; cerebrovascular disease, consisting of stroke and transient ischemic attack (TIA); cardiovascular diseases, a composite of MI, angina, stroke and TIA; and finally, all-cause mortality.

The presence of vascular disease was defined according to the following criteria:

- Coronary heart disease: MI (ICD-10 codes: I21-I23 and subcategories; ICD-9 code: 410) and angina (ICD-10 codes: I20 and subcategories; ICD-9: 411.1, 413); and
- Cerebrovascular disease: stroke (ICD-10 codes: I61-I64 and subcategories; ICD-9: 433, except for non-occlusive disease, so 433.00, 433.10, 433.20, 433.30, 433.80, 433.82, 433.90, 434.00, 434.10, 434.11, 434.90) and TIA (ICD-10 codes: G45-G46; ICD-9 code: 435).

2.2.2. Main exposure

- Standardized creatinine was used for CKD-Epidemiology Collaboration (CKD-EPI) calculations, according to “Kidney disease: Improving global outcomes” (KDIGO) guidelines (Group KDIGO (KDIGO) CW, 2013) (mg/dl).
- Glomerular filtration rate (GFR) was calculated by CKD-EPI equation (Levey et al., 2009).
- GFR categories in CKD were defined by the KDIGO guideline (Group KDIGO (KDIGO) CW, 2013):
 - G1 ≥ 90 ml/min/1.73 m²
 - G2 60–89 ml/min/1.73 m²
 - G3a 45–59 ml/min/1.73 m²
 - G3b 30–44 ml/min/1.73 m²
 - G4 15–29 ml/min/1.73 m²
 - G5 < 15 ml/min/1.73 m².

2.2.3. Covariates

A set of variables were defined a priori and obtained from SIDIAP at baseline:

- Age
- Sex
- Hypertension (yes/no) or record of antihypertensive drug invoicing
- Dyslipidaemia (yes/no)
- Smoking (yes/no)
- Obesity (yes/no) defined as BMI > 30 kg/m²
- Diabetes (yes/no) or record of antidiabetic drug invoicing
- Systolic blood pressure (SBP) (mm Hg)
- Diastolic blood pressure (DBP) (mm Hg)
- Laboratory tests: fasting glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides
- Body mass index (BMI) (kg/m²)
- Drug use: antihypertensive agents, antidiabetic agents, or statins and other lipid-lowering drugs
- Ten-year CHD risk, estimated using the Framingham function adapted and validated in the Spanish population by the REGICOR study (Marrugat et al., 2007).

2.3. Statistical analysis

Categorical variables are presented as percentages and continuous variables as mean (standard deviation) and 95% confidence intervals (95%CI) when calculated.
Missing data were imputed using 20 multiple imputations by chained equations (White et al., 2011) to replace baseline missing values in the logarithm of total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, glucose, systolic blood pressure and the difference between systolic and diastolic blood pressure, weight, height and creatinine. We also performed a case-complete sensitivity analysis to assess the proper functioning of the multiple imputation process. The association between GFR and cardiovascular events/all-cause mortality was assessed by multivariate Cox survival models adjusted for age, sex, smoking habit, diabetes, blood pressure levels, total cholesterol and, HDL cholesterol levels. GFR ≥ 90 ml/min/1.73 m² (category G1) was defined as the reference value. We tested the proportional hazards assumption and analysed linearity between GFR and all outcomes.

We calculated Harrell’s C index to assess the discrimination for censored time-to-event data and reclassification measures to assess the prediction of risk for all outcomes with GFR. Integrated discrimination improvement index (IDI) in continuous form and net reclassification improvement index (NRI) calculated at five years. Bootstrap estimation was performed to calculate 95% confidence intervals of the NRI.

Models for CHD and cardiovascular disease without angina were also built to assess the possible diluting effect of angina. Sensitivity analysis with models defining CKD only as GFR < 60 ml/min/1.73 m² were also performed.

We used R-package (version 3.2) and the survinrix and nricens packages (Team R Core, 2014) for statistical analyses, with two-sided tests and p < 0.05.

3. Results

3.1. Baseline results

In total, 1,081,865 primary care patients aged 35–74 years were included between 2008 and 2013. In more than 75% of patients, follow-up was 5 years.

Table 1 presents overall baseline characteristics of the study population according to GFR categories of CKD and the percentage of missing values for the imputed variables. The percentage of missing values for weight, height and glucose were 44.7%, 46.1%, and 53.6%, respectively. These variables are not presented in Table 1 but were used in the multiple imputation process. The mean age was 49.5 (11.6) years, and women constituted 51% of the cohort. Diabetes was present in about 7% of participants, obesity in 31%, hypercholesterolemia in 20% and hypertension in 21%; about one third were smokers. Mean 10-year coronary risk was 3%. The most frequently prescribed medications were antihypertensive agents (15.7%), followed by statins (9.3%), antidiabetic agents (4.5%), and aspirin (2.7%). In general, the proportion of all these factors increased as GFR decreased, apart from patients in GFR category G5. Mean GFR was 95 ml/min/1.73 m² (SD: 16.1). However, the distribution was skewed and 1,057,283 patients in GFR categories G1 and G2 accounted for nearly 97% of the total population. There were 24,582 (2.2%) participants with a GFR below 60 ml/min/1.73 m²; 20,465 (83%) of them belonged to GFR category G3a.

The proportion of missing data in the variables considered for the risk function prediction and a comparison of the complete-case dataset and imputed dataset are shown in the Supplementary file (Tables S1–S3). Mean values of these variables remained similar after multiple imputations.

3.2. Outcome incidences

Within the period 2009–2013, overall unadjusted incidences per 100,000 persons-year at risk (PYAR) of coronary heart disease, cerebrovascular disease, cardiovascular diseases and all-cause mortality were 205.1 (95%CI 201.1–209.1), 182.0 (95%CI 178.2–185.7), 381.2 (95%CI 375.7–386.7) and 264.0 (95%CI 259.4–268.5), respectively. The risks increased with stage of renal function, except that individuals in stage 5 had a lower incidence of stroke (Table 2).

3.3. Multivariate associations

Adjusted hazard ratios significantly differed between GFR categories (CKD) for coronary heart disease, cerebrovascular disease, cardiovascular diseases and all-cause mortality (Fig. 1). Patients with lower GFR were more likely to have higher incidence of coronary and cerebrovascular events and higher all-cause mortality. Hazards ratios ranged from 1.07 (95%CI 1.01–1.14) to 3.02 (95%CI 1.51–6.07) for coronary heart disease, 1.02 (95%CI 0.96–1.09) to 2.06 (95%CI 0.92–4.59) for cerebrovascular disease, 1.05 (95%CI 1.00–1.09) to 2.58 (95% 1.52–4.36) for multiple imputation.
cardiovascular diseases and 0.91 (95%CI 0.86–0.97) to 5.26 (95%CI 3.51–7.86) for all-cause mortality. From the GFR category G3a upwards, the increase in risk was significant for all outcomes – coronary heart disease (HR 1.27 (95%CI 1.14–1.43)), cerebrovascular disease (HR 1.19 (95%CI 1.06–1.34)), cardiovascular diseases (HR 1.23 (95%CI 1.13–1.34)), and all-cause mortality (HR 1.17 (95%CI 1.07–1.27)). Models without angina showed no relevant differences compared to the models including this outcome (data not shown).

3.4. Discrimination and reclassification measures with glomerular filtration rate

GFR did not increase the NRI index significantly in any outcome: coronary heart disease (NRI 0.3%, 95%CI −0.45–1.11), cerebrovascular disease (NRI 0.2%, 95%CI −0.63–1.04), cardiovascular diseases (NRI −0.005%, 95%CI −0.46–0.45) and all-cause mortality (NRI 0.03%, 95%CI −0.71–0.73).
95%CI — 0.00–0.94 (Table 3). A sensitivity analysis that defined CKD only as GFR < 60 ml/min/1.73 m² instead of the GFR categories of CKD stages produced similar results (data not shown).

4. Discussion

The present study in a general population without previous cardiovascular disease and with low incidence of coronary disease shows that impaired levels of GFR are associated with an increased incidence of cardiovascular events and all-cause mortality. Risk of suffering either coronary or cerebrovascular events was clinically significant higher beginning at GFR category G3a, the level that defines CKD onset. However, including GFR did not improve the predictive ability of cardiovascular risk functions.

In relation to coronary events, previous studies in populations with low cardiovascular risk showed similar results. Cirillo et al. (Cirillo et al., 2008) found an increased cardiovascular risk with an impaired GFR from GFR category G3a upwards. As expected, the magnitude of this association was lower than that found in populations with higher cardiovascular risk (Di Angelantonio et al., 2010).

Our findings on cerebrovascular events are consistent with a recent meta-analysis (Lee et al., 2010) examining the association between impaired GFR (G3a and higher) and the incidence of cerebrovascular disease.

For all-cause mortality, our findings suggested significantly increased risk for patients in GFR category G3a, which was also reported by Matsushita et al. (Matsushita et al., 2010b). However, they reported a greater magnitude of the association. In our study, GFR category G2 was more likely to be protective for all-cause mortality. It is possible, however, that some individuals might have been misclassified as G2 (>60 ml/min/1.73 m²) and the finding may not be reliable due to the CKD-EPI equation’s lack of precision in GFR estimation (Levey et al., 2009; Matsushita et al., 2010a).

Most of the current international guidelines consider patients with CKD to be at high risk of cardiovascular events and death, independent of their estimated cardiovascular risk and, consequently, recommend reducing the goals for other cardiovascular risk factors when evaluating these individuals (Perk et al., 2012; Group KDIGO (KDIGO) CW, 2013; Rabar et al., 2014). Nonetheless, this recommendation would apply these individuals (Perk et al., 2012; Group KDIGO (KDIGO) CW, 2013; Rabar et al., 2014). Therefore, the main concern remains finding the best way to deal with the excess of risk in this population in the clinical practice. One strategy could be to take GFR information into account in individuals with borderline (Regicor 8–9% or Score 3–4%) cardiovascular risk (Conroy et al., 2003) in order to reclassify them more accurately when assessing their individual risk. Some prevention guidelines (Perk et al., 2012) recommend this strategy to account for other risk factors, such as sedentary behaviour or family history of premature cardiovascular disease, as a part of the decision-making process in clinical practice.

4.1. Strengths and limitations

A major strength of this study is that it was based on validated, high-quality, electronic medical records that provided a large sample size and reflected real-life conditions. Instead of excluding individuals with missing data, we chose to use multiple imputation of the missing values for continuous variables. This method intends to avoid selection bias if the population with missing data somehow differs from those with complete data (White et al., 2011).

Albuminuria and uric acid are also predictors of all-cause and cardiovascular mortality and atherosclerosis (Puddu et al., 2012; Sambon et al., 2011; Krishnan et al., 2011). However, we were unable to fully examine the renal function because we could not get albuminuria and uric acid data. These screening tests are performed only in certain clinical conditions such as diabetes or hypertension. Moreover, data from

Table 3

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>C-index model 1 (95% CI)</th>
<th>C-index model 2 (95% CI)</th>
<th>IDI (%) (95% CI)</th>
<th>NRI (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease²</td>
<td>0.8003 (0.7945–0.8061)</td>
<td>0.8007 (0.7949–0.8065)</td>
<td>0.0201 (−0.0057 to 0.0049)</td>
<td>0.3289 (−0.450 to 1.115)</td>
</tr>
<tr>
<td>Cerebrovascular disease³</td>
<td>0.8070 (0.8010–0.8131)</td>
<td>0.8074 (0.8013–0.8134)</td>
<td>0.0090 (−0.0071 to 0.0251)</td>
<td>0.2042 (−0.6342 to 1.0426)</td>
</tr>
<tr>
<td>Cardiovascular disease⁴</td>
<td>0.7975 (0.7933–0.8017)</td>
<td>0.7979 (0.7937–0.8021)</td>
<td>0.0269 (0.0005 to 0.0532)</td>
<td>−0.0052 (−0.4609 to 0.4506)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>0.7866 (0.7816–0.7916)</td>
<td>0.7878 (0.7824–0.7924)</td>
<td>0.1502 (0.0146 to 0.2859)</td>
<td>0.0390 (−0.0087 to 0.9441)</td>
</tr>
</tbody>
</table>

CI: Confidence interval.

² Model 1: Adjusted for age, sex, smoking habit, diabetes, blood pressure levels, total cholesterol and HDL cholesterol.

³ Model 2: Model 1 plus glomerular filtration rate.

⁴ Acute myocardial infarction and angina.

⁵ Stroke and transient ischemic attack.
other more accurate methods for estimating GFR, such as Cystatin C measurement (Coll et al., 2000) were not available. However, our aim was to find a kidney function marker for improving cardiovascular risk assessment in the general population, and these methods are not easily accessible in primary care. Therefore, GFR estimated by the CKD-EPI equation is a more suitable measurement for this purpose than albuminuria or GFR measured by Cystatin C. We could not use a race variable to calculate GFR; however, Caucasian race is predominant in our population, and thus we assume that this limitation does not modify our findings. We were also unable to analyse the effect of renal function on cardiovascular death, as cause of death information is not available in the SIDIAP database. Although GFR estimation is not recommended in pregnant women, individuals with acute renal failure, or type 1 diabetes (Perrone et al., 1992; Rule & Teo, 2009), these individuals were not excluded from our study. Nonetheless, it is unlikely that their GFR estimation had a major impact on our results as these individuals represented less than 1% of the total population. The relationship between GFR and the outcomes was non-linear. Although arbitrary categorisations (e.g., quartiles, dichotomisation) may not accurately describe non-linear relationships, categories defined according to KDIGO guidelines have been validated/are appropriate for use in CVD risk management (Group KDIGO (KDIGO) CW, 2013).

5. Conclusion

In general population with low incidence of CHD and CKD stage 3a or higher, impaired GFR implies an increased risk of cardiovascular diseases, both coronary and cerebrovascular, as well as an increased risk of all-cause mortality. However, the addition of GFR in a cardiovascular risk model did not improve prediction. Despite a four-fold higher incidence rate of CHD at GFR category G3a, compared to G1, it remained close to 0.55% annually (i.e., 5.5% at 10 years), which is a moderate cardiovascular risk in our context. Thus, individuals with impaired GFR from a population with a low incidence of CHD should not automatically be considered at high cardiovascular risk.

Funding

This project was supported by grants from the Spanish Government’s 2011 Health Ministry call for clinical research proposals (EC11-349), the 2012 Ministry of Science and Innovation call through the Carlos III Health Institute (Net RD12/0005/0002), and the 2013 call from the Carlos III Health Institute for clinical research proposals related to the Health Strategic Action Plan, 2013–2016, under the Program on Research Related to Society’s Challenges, within the framework of Spain’s 2013–2016 Plan for Scientific and Technical Research and Innovation (PI13/01,511, co-funded by the European Fund for Regional Development (EFRD) of the European Union). Additional funding was provided by the 2012 IDIAP Jordi Gol scholarship call (9º ajut a l’implantació d’estratègies de recerca a l’atenció primària mitjançant la intensificació d’investigadors). M.G. is funded by a FEDER contract from Carlos III Health institute (FIS CP12/03287).

Conflict of interest

The authors declare that they have no conflict of interest.

Transparency document

The Transparency document related to this article can be found in the online version.

Acknowledgments

We thank Elaine Lilly, Ph.D., of Writer’s First Aid for her feedback on English language usage.

Appendix A. Supplementary data

This article can be found online at http://dx.doi.org/10.1016/j.ypmed.2016.06.004.

References

INE, 2014. Defunciones según la causa de muerte [Internet]. INE. [cited 2014 Sep 6].

Matsushita, K., Selvin, E., Bash, L.D., Astor, B.C., Coresh, J., 2010a. Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the

