
The Rantanplan planner: system description

Miquel Bofill, Joan Espasa and Mateu Villaret

Departament d’Informàtica, Matemàtica Aplicada i Estad́ıstica
Universitat de Girona, Spain.
E-mail: {miquel.bofill@udg.edu, joan.espasa@udg.edu, mateu.villaret@udg.edu}

Abstract

Rantanplan is a numeric planning solver that takes advantage of recent advances in SMT. It

extends reduction to SAT approaches with an easy and efficient handling of numeric fluents using

background theories. In this paper we describe the design choices and features of Rantanplan,

especially, how numeric reasoning is integrated in the system. We also provide experimental

results showing that Rantanplan is competitive with existing exact numeric planners.

1 Introduction

The problem of planning, in its most basic form, consists in finding a sequence of actions that

allow to reach a goal state from a given initial state. Although initially considered a deduction

problem, it was rapidly seen that it could be addressed by looking at it as a satisfiability (model

finding) problem (Kautz and Selman, 1992). Many (incomplete) heuristic methods can be found in

the literature to efficiently deal with this problem, most of them oriented towards finding models.

Exact methods were ruled out at the beginning due to their inefficiency. However, in (Kautz

et al., 1996) it was shown that modern off-the-shelf SAT solvers could be effectively used to

solve planning problems. In recent years, the power of SAT technology has been leveraged to

planning (Rintanen, 2012), making reduction into SAT competitive with heuristic search methods.

Although a lot of work has been devoted to the encoding of plans in propositional logic,

only a few works can be found in the literature on satisfiability based approaches to planning

in domains that require numeric reasoning. This is probably due to the difficulty of efficiently

handling at the same time numeric constraints and propositional formulas. Among the few works

dealing with planning with resources are (Hoffmann, 2003; Kautz and Walser, 1999; Gerevini

et al., 2008; Hoffmann et al., 2007). There have also been some works using constraint and

logic programming (Dovier et al., 2010; Barták and Toropila, 2010). However, the advances in

satisfiability modulo theories (SMT) (Barrett et al., 2009) in the last years make worth considering

this alternative. With Rantanplan we demonstrate that with SMT one can elegantly handle

numeric reasoning inside any PDDL domain, thanks to the integration of various background

theories with a SAT solver.

As the number of variables, and hence the search space, rapidly grows with the number of time

steps considered, a key idea to improve the performance of SAT-based planners is to consider

the possibility of executing several actions at the same time, i.e., the notion of parallel plans.

Parallel plans increase the efficiency not only because they allow to reduce the time horizon, but

also because it is unnecessary to consider all total orderings of the actions that are performed in

parallel. Nevertheless, in SAT-based planning, parallel plans are not intended to represent true

parallelism in time, and it is usually required that a sequential plan can be built from a parallel

plan in polynomial time. Two main types of parallel plans are considered: ∀-step plans, and ∃-step

plans. In ∀-step plans, any ordering of parallel actions must result in a valid sequential plan. In

The Rantanplan planner 1

∃-step plans, there must exist a total ordering of parallel actions resulting in a valid sequential

plan. We refer the reader to (Rintanen et al., 2006) for further details. Rantanplan supports ∀
and ∃-step plans, using various different encodings.

To ensure that a parallel plan is sound, it is necessary that all actions proposed to be executed

at the same time do not interfere. Different notions of interference have been defined, some more

restrictive, some more relaxed. As far as we know, for efficiency reasons, potential interference

between action is always determined statically, i.e., independently of any concrete state, hence

in a fairly restrictive way. Moreover, very few works deal with the notion of incompatibility

of actions in planning with resources, most of them with rather syntactic or limited semantic

approaches (Kautz and Walser, 1999; Fox and Long, 2003; Gerevini et al., 2008). Rantanplan

incorporates a novel method for determining interference between actions at compile time, using

an SMT solver as an oracle.

Summing up, Rantanplan is a numeric planner based on planning as satisfiability, which

translates PDDL problems into SMT formulas. It supports various types of parallelism, using a

novel notion of interference. Experimental results show that it is competitive with other exact

numeric planners and strictly better in non-trivial numeric domains.

2 Related Work

The pioneering work of LPSAT (Wolfman and Weld, 1999) on planning with resources can indeed

be considered one of the precursors of SMT, as the basic ideas of SMT (Boolean abstraction,

interaction of a SAT solver with a theory solver, etc.) were already present in it.

A comparison between SAT and SMT based encodings for planning in numeric domains can

be found in (Hoffmann et al., 2007). In the SAT approach, the possible values of numeric state

variables is approximated, by generating a set of values Dt(v) for every numeric variable v, so that

every value that v can have after t time steps is contained in Dt(v). These finite domains then

serve as the basis for a fully Boolean encoding, where atoms represent numeric variables taking

on particular values. With respect to SMT, where numeric variables and expressions are first

class citizens, the authors argue that the expressivity of the SMT language comes at the price of

requiring much more complex solvers than for SAT and, for this reason, their SAT-based method

is very efficient in domains with tightly constrained resources, where the number of distinct values

that a numeric variable can take is small.

Other approaches, related to SMT to some amount as well, have been developed more recently.

In (Belouaer and Maris, 2012), a set of encoding rules is defined for spatio-temporal planning,

taking SMT as the target formalism. On the other hand, in (Gregory et al., 2012) a modular

framework, inspired in the architecture of lazy SMT, is developed for planning with resources.

3 Preliminaries

A numeric planning problem is defined as a tuple 〈V, P, A, I, G〉 where V is a set of numeric

variables, P is a set of propositions (or Boolean variables), A is a set of actions, I is the initial

state and G is a formula over V ∪ P that any goal state must satisfy.

A state is a total assignment to the variables. Actions are formalized as pairs 〈p, e〉, where

p are the preconditions and e the effects. More formally, p is a set of Boolean expressions over

V ∪ P , while e is a set of (conditional) effects of the form f ⇒ d, where f is a Boolean expression

over V ∪ P and d is a set of assignments. An assignment is a pair 〈v, exp〉, where v is a variable

and exp is an expression of the corresponding type. For example, increasing a variable v by one

is represented by the pair 〈v, v + 1〉, indicating that v + 1 is the value that v will hold in the next

state. Unconditional effects are represented by setting f = true.

The active effects of an action a= 〈p, e〉 in a state s are ∪f⇒d∈e{d | s |= f}. An action a= 〈p, e〉
is executable in a given state s if s |= p and the active effects of a in state s are consistent. For

numeric variables, we restrict to the case where there is only one assigment per variable in the

active effects.

2 m. bofill, j. espasa and m. villaret

PDDL
Domain

PDDL
Instance

Parsing
and Pre-

processing
Encoding

Solving SMT Solver

Sol. Recovery Sol.
Serialization

Plan

Interference detection

SAT check

Figure 1: Basic architecture and solving process of the Rantanplan solver

The state resulting from executing action a in state s is denoted by apply(a, s) = s′. The new

state s′ is defined by assigning new values to the variables according to the active effects, and

retaining the values of the variables that are not assigned values by any of the active effects.

A sequential plan of length n for a given planning problem 〈V, P, A, I, G〉 is a sequence of

actions a1; a2; . . . ; an such that apply(an . . . apply(a2, apply(a1, I)) . . .) |=G.

A parallel plan of length n can be defined similarly to a sequential plan. Instead of having a

sequence of actions, we have a sequence of sets of actions σ1; σ2; . . . ; σn such that order(σ1)⊕
order(σ2)⊕ · · · ⊕ order(σn) is a sequential plan, where order(σi) is an ordering function which

transforms the set σi into a sequence of actions, and ⊕ denotes the concatenation of sequences.

Actions in the same set σi are said to occur in parallel.

The notion of parallelism of a ∀-step plan is defined as the possibility of ordering the actions of

each set to any total ordering, i.e., no two actions a, a′ in each σi are interfering (e.g., executing

a neither falsifies the precondition of a′ nor changes any of its active effects, and vice versa).

The ∃-step semantics weakens the ∀-step requirements, by only requiring the existence of some

correct ordering of the actions that results in a valid sequential plan.

In the planning as SAT approach, a planning problem is solved by considering a sequence of

formulas φ0, φ1, φ2, . . . , where φi encodes the feasibility of a plan that allows to reach a goal

state from the initial state in i steps. The solving procedure proceeds by testing the satisfiability

of φ0, φ1, φ2, and so on, until a satisfiable formula φn is found. It is a matter of the encoding

whether one or various (non interfering) actions are executed at each step.

4 Framework and System Architecture

Rantanplan supports a fragment of PDDL which is close to general numeric PDDL 2.1,

excluding the temporal extensions and metric optimizations. With respect to numeric effects,

we consider assign(x, exp), increase(x, exp) and decrease(x, exp), where exp is any constant

expression over linear integer (or real) arithmetic. With respect to preconditions and conditions

of numeric effects, we assume that the restrictions imposed on numeric fluents take the form of

any closed formula over linear integer (or real) arithmetic.

The structure of the Rantanplan system is represented in Figure 1. To encode the formulas

φ0, φ1, φ2, . . . , one of the two encodings described in the following sections (QF LIA or

QF UFLIA) is carried out, transforming the PDDL problem to a pure SMT problem. Then

the problem is iteratively solved, using the chosen SMT Solver as a black box.

A key aspect of the planner is the detection of interferences between parallel actions at compile

time, by means of calls to a SMT Solver. In case the user demands a parallel plan, a disabling

graph is computed. By disabling graph we refer to a directed graph, where nodes are the grounded

The Rantanplan planner 3

actions from the planning problem and an edge exists from action a to action a′ if the execution

of a can affect a′ (forbid its execution or change its active effects) (Rintanen et al., 2006). This

graph is used, depending on the notion of parallelism chosen, to encode the necessary constraints

restricting which actions can be carried out at the same time step. In particular, the solver

supports:

• A sequential encoding, achieved by using an at least one and an at most one constraint.

• The ∀-step semantics, using the quadratic encoding in (Rintanen et al., 2006)

• The ∃-step semantics, with two encodings. Using the quadratic encoding in (Rintanen et al.,

2006), and a linear-size encoding based on a fixed ordering of operators, also in (Rintanen

et al., 2006).

The system supports solving via API or plain text file using the Yices SMT solver and the

Z3 SMT solver. Once a solution has been found, then it is finally retrieved and serialized. In

the following subsections, the relevant aspects of the Rantanplan solver are explained in more

detail.

4.1 QF LIA Encoding

Numeric planning problems with linear integer arithmetic expressions naturally fall into the

QF LIA logic. In the SMT-LIB standard, QF LIA stands for the logic of Quantifier-Free

Boolean formulas, with Linear Integer Arithmetic constraints. This logic has a good compromise

between expressivity and performance, and is the natural choice for this problem. We generalized

Rintanen’s (Rintanen, 2012) encoding of planning as SAT to include numeric variables as follows.

For each time step, every ground instance of a PDDL predicate and action is mapped to a

Boolean variable, and every ground instance of a PDDL function is mapped to an integer variable.

For instance, a predicate stating the position of an aircraft such as at(?a - aircraft, ?c -

city), with three cities c1, c2 and c3, and two planes p1 and p2, will result into six ground

instances at(p1,c1), . . . , at(p2,c3), that will be mapped to six Boolean variables at tp1 ,c1 ,

. . . , at tp2 ,c3 for each time step t. Following the same example, being at(?o - aircraft) -

city an object fluent, the mapping would result into two integer variables atp1 , atp2 with

the domains being the possible cities c1, c2 and c3 (these are internally mapped into three

distinct integers). Note that thanks to the SMT language, we can get a more compact encoding

of states in the presence of object fluents than using a plain SAT approach. The Boolean variables

resulting from actions will be used to denote what action is executed at each time step, and with

which parameters. The Boolean and integer variables resulting from grounding the predicates and

functions, respectively, will constitute the state variables. A superscript t is used to differentiate

the variables at each time step.

Given a formula φ, by φt we denote the same formula φ where all integer variables x have been

replaced by xt. For the case of assignments, we define:

〈x, true〉t def
= xt

〈x, false〉t def
= ¬xt

〈x, k〉t def
= (xt = k)

〈x, x+ k〉t def
= (xt = xt−1 + k)

〈x, x− k〉t def
= (xt = xt−1 − k)

4 m. bofill, j. espasa and m. villaret

For each ground1 action a= 〈p, e〉, we have the following constraints. First, its execution during

time step t implies that its precondition is met:

at→ pt ∀a= 〈p, e〉 ∈A (1)

Also, each of its conditional effects will hold at the next time step if the corresponding condition

holds:

(at ∧ f t)→ dt+1 ∀a= 〈p, e〉 ∈A, ∀f ⇒ d ∈ e (2)

Here we view sets d of literals as conjunctions of literals. Recall also that unconditional effects

will have true as condition f . Second, we need explanatory axioms to express the reason of a

change in state variables. For each variable x in V ∪ P :

xt 6= xt+1→
∨

a=〈p,e〉∈A

(
at ∧ (EPCx(a))t

)
(3)

where, given an action a= 〈p, e〉 and a variable x,

EPCx(a) =
∨

f⇒d∈e

{f | d contains an assignment for x}

that is, the effect precondition for the modification of x in action a, where the empty disjunction is

defined as false. For Boolean variables, the expression xt 6= xt+1 can be written as (xt ∧ ¬xt+1) ∨
(¬xt ∧ xt+1). These constraints have to be complemented depending on the parallelism we wish.

4.2 Interference Between Actions

As said in the introduction, a key concept in parallel plans is the notion of interference between

actions. This issue has been carefully considered by Rintanen et al. (Rintanen et al., 2006) in

the setting of planning as SAT. Given a disabling graph, where an edge exists from action a to

action a′ if the execution of a can affect a′, we know for example that the simultaneous execution

of all actions pertaining to a strongly connected component is not possible, as given all possible

orderings of actions, all of them contain a cycle (and thus they cannot be serialized). Note that

acyclicity is a sufficient but not necessary condition for a set of actions to be executable in some

order, since disabling graphs are computed independently of any state.

In (Rintanen et al., 2006), an action a1 is defined to affect another action a2 if a1 may prevent

the execution of a2 or change its active effects, and two actions a1 and a2 are considered to

interfere if a1 affects a2 or a2 affects a1. In ∀-step plans, where all possible serializations must be

valid, no two interfering actions can occur in parallel. In the more relaxed notion of parallelism

of ∃-step plans, where it is only required that no action affects a later one in some total ordering,

often much more parallelism is allowed in practice. For efficiency reasons, typically syntactic

(rather than semantic) restrictions are imposed on parallel actions. For example, in (Rintanen

et al., 2006), where only Boolean variables are considered, a1 = 〈p1, e1〉 is determined to affect

a2 = 〈p2, e2〉 if, for some variable a,

1. a is set to true in d1 for some f1⇒ d1 ∈ e1, and a occurs negatively in p2 or occurs in f2 for

some f2⇒ d2 ∈ e2, or

2. a is set to false in d1 for some f1⇒ d1 ∈ e1, and a occurs positively in p2 or occurs in f2 for

some f2⇒ d2 ∈ e2.

That is, a1 affects a2 if a1 can impede the execution of a2, or change its effects. Note that this is

not a symmetric relation.

1By a ground action 〈p, e〉 we refer to an action where p and e are built on the state variables that result
from grounding a PDDL model, as explained above.

The Rantanplan planner 5

This is a fully syntactic check which can be used to establish sufficient although not necessary

conditions for finding serializable parallel plans. We can observe that interference between effects

is not considered. This is because, in the case two actions have contradictory effects, any formula

encoding a plan with those two actions running in parallel will become unsatisfiable.

The previous approach could be naively generalized to the case of numeric variables as follows:

an action a1 = 〈p1, e1〉 affects an action a2 = 〈p2, e2〉 if, for some variable x, x is modified in d1
for some f1⇒ d1 ∈ e1, and x occurs in p2 or occurs in f2 for some f2⇒ d2 ∈ e2.

Performing only syntactic checks like the previous seems too much restrictive for numeric

variables, even in the case that we determine interference at compile time, i.e., independently

of any concrete state. For this reason, we propose a new idea2, which is to use SMT technology

to perform semantic checks of interference at compile time, in order to increase the amount of

parallelization of numeric plans.

Our method is independent of any test suite and does not require any special purpose

algorithm, as it relies on encoding the possible interference situations between pairs of actions as

SMT formulas and checking their satisfiability, by calling an SMT solver, at compile time. For

example, an important difference with the purely syntactic definition of interference of (Rintanen

et al., 2006) is that we include the preconditions of the actions in the semantic checks.

More precisely, two actions can occur in parallel only if their preconditions can be satisfied

simultaneously, regardless of the variables they contain. This way, we are able to avoid many

“false positive” interference relationships.

All in all, we obtain a much more fine-grained notion of interference, that we will see how

it helps us to increase the parallelization of actions. Note that the interference relationships

determined semantically will always be a subset of the interference relationships determined

syntactically. Interestingly, we will be using an SMT solver both at compile time, as an oracle

to predict interference relationships, and at solving time. For efficiency reasons, to perform the

interference checks we do not consider grounded actions, but the original actions in the PDDL

model. Since now actions are not instantiated, we need to unify the parameters of the same type

in the actions for which we check interference.

Imagine we have two actions, say move(?d - ship ?a ?b - location) and dock(?e - ship

?c - location). We will be interested to know, for example, if the actions interfere in the case

that ?d and ?e are the same ship. Or in the case that locations ?a and ?c are the same, etc. We will

have to check all the possible combinations of equalities and disequalities between the parameters.

These combinations are all the possible partitions of the sets formed by all the parameters of the

two considered actions grouped by its most general declared type. Once the set partitions have

been generated for each set of parameters, each parameter is substituted by an integer. When we

intent for two parameters to be equal (i.e. they are in the same partition), we substitute them

for the same integer, and by different integers when we want them to be different. Finally, the

formulas encoding the incompatibility between the actions are checked for satisfiability.

These consistency checks can be done in a reasonable time with an SMT solver, and the amount

of parallelism achieved is significantly higher than with syntactic approaches. To illustrate the

situations where our new notion of interference (thoroughly explained in (Bofill et al., 2016))

is especially accurate, consider the following example. The Planes domain in Figure 2 consists

in transporting people between cities using planes. Each plane has a limited number of seats

and a given fuel capacity. We focus on the fly and board actions. A plane can only fly if it is

transporting somebody and it has enough fuel to reach its destination, and boarding is limited

by seat availability.

The syntactic notion of interference would determine interference between fly and board,

since board modifies the onboard function (number of passengers) and fly checks the value of

this function in its precondition. On the contrary, with the semantic technique, we would find out

that there is no interference at all, since it is impossible that the preconditions of board and fly

2A full work devoted to this interference notion is currently submitted for publication.

6 m. bofill, j. espasa and m. villaret

were true at the same time, and after executing board the precondition of fly became false. Note

that the precondition of fly requires (> (onboard ?a) 0) and the effect (increase (onboard

?a) 1) of board can never falsify (> (onboard ?a) 0).

(define (domain planes)
(:requirements :typing :fluents)
(:types city locatable - object

aircraft person - locatable)
(:functions
(at ?x - locatable) - city
(in ?p - person) - aircraft
(fuel ?a - aircraft) - number
(seats ?a - aircraft) - number
(capacity ?a - aircraft) - number
(onboard ?a - aircraft) - number
(distance ?c1 ?c2 - city) - number)

(:action board
:parameters (?p - person ?a - aircraft

?c - city)
:precondition (and (= (at ?p) ?c)

(= (at ?a) ?c)
(> (seats ?a) (onboard ?a)))

:effect (and (assign (at ?p) undefined)
(assign (in ?p) ?a)
(increase (onboard ?a) 1)))

(:action debark
:parameters (?p - person ?a - aircraft

?c - city)

:precondition (and (= (in ?p) ?a)
(= (at ?a) ?c))

:effect (and (assign (in ?p) undefined)
(assign (at ?p) ?c)
(decrease (onboard ?a) 1)))

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (= (at ?a) ?c1)

(> (onboard ?a) 0)
(>= (fuel ?a) (distance ?c1 ?c2)))

:effect (and (assign (at ?a) ?c2)
(decrease (fuel ?a)

(distance ?c1 ?c2))))

(:action refuel
:parameters (?a - aircraft)
:precondition (and (< (* (fuel ?a) 2)

(capacity ?a))
(= (onboard ?a) 0))

:effect (assign (fuel ?a) (capacity ?a))))

Figure 2: PDDL model of the Planes domain.

4.3 Sequential and Parallel Plans

The sequential encoding allows exactly one action per time step. This is achieved by imposing

an exactly one constraint on the action variables at each time step. We tested some well-known

encodings, and we settled with the binary encoding (Frisch and Giannaros, 2010) as it gave us

the best performance.

A ∀-step plan is defined as the possibility of ordering the actions of each time step to any

total order. Therefore, at each time step t we simply add a mutex between any pair of interfering

actions ai and aj :

¬(ati ∧ atj) if ai affects aj or aj affects ai (4)

In ∃-step plans, there must exist at least a total ordering of parallel actions resulting in a

valid sequential plan. Rantanplan implements a quadratic encoding for this purpose. It takes as

ingredient an arbitrary total ordering < on the actions, and the parallel execution of two actions

ai and aj such that ai affects aj is forbidden only if i < j:

¬(ati ∧ atj) if ai affects aj and i < j (5)

The linear-size encoding for ∃-step plans described in (Rintanen et al., 2006), is also supported.

Since ∃-step plans are less restrictive than ∀-step plans, as they do not require that all orderings

of parallel actions result in valid sequential plan, they normally allow more parallelism.

4.3.1 Plan Serialization

To obtain a sequential plan from the solution, for each time step with more than one action, a

subgraph of the disabling graph is extracted, containing only the actions at that time step. A

valid order between actions can then be computed. Since in all implemented parallel encodings

acyclicity is guaranteed between the executed actions, a reversed topological order of the subgraph

is always as a valid order.

The Rantanplan planner 7

5 Extension: QF UFLIA Encoding

As the previously introduced QF LIA encodings grows considerably with the time horizon, to the

point of getting unmanageable instances, we started to develop a more compact encoding, using

the theory of uninterpreted functions to express predicates, functions and actions. This encoding

is reminiscent of the lifted causal encodings in (Kautz et al., 1996).

In the SMT-LIB standard, QF UFLIA stands for the logic of Quantifier-Free Boolean formulas,

with Linear Integer Arithmetic constraints and Uninterpreted Functions. Uninterpreted functions

have no other property than its name and arity, and are only subject to the following axiom:

x1 = x′1 ∧ · · · ∧ xn = x′n→ f(x1, . . . , xn) = f(x′1, . . . , x
′
n).

The encoding goes as follows. Every defined object in the problem is mapped to an integer. For

each function, predicate and action, an uninterpreted function is declared, with each parameter

being declared as an integer. Also, a new integer parameter is added to each of them, representing

a time step. Uninterpreted functions corresponding to predicates and actions return a Boolean

value, whilst the ones for functions return an integer value. Moreover, for each action, parameter

and time step, a new integer variable is defined, representing the value of that parameter in the

action if executed at the corresponding time step.

For example, the Boolean function ϕa(xta,1, . . . , x
t
a,n, t) determines whether action a with

parameters xta,1, . . . , x
t
a,n is executed at time step t. The parameter t is a constant, which is

shared between all uninterpreted functions for the actions, predicates and functions in the same

time step. Contrarily, xta,1, . . . , x
t
a,n are variables with finite domains, and constraints are added

to restrict their possible values. Regarding predicates and functions, no new variables are defined,

since their arguments will be either constants or variables occurring in some action.

We remark that, in this new setting, a state is defined by the value of the uninterpreted

functions corresponding to predicates and functions, for a given value of their arguments.

Equations (1) and (2) of the QF LIA encoding are generalized here as:

ϕa(xta,1, . . . , x
t
a,n, t)→ pt ∀a= 〈p, e〉 ∈A (6)

ϕa(xta,1, . . . , x
t
a,n, t) ∧ f t→ dt+1 ∀a= 〈p, e〉 ∈A, ∀〈f, d〉 ∈ e (7)

Note that this results in a much more compact encoding than if we restrict to QF LIA, since

here we are using variables as arguments of functions, and it is the SMT solver who is in charge

of guessing the concrete values of the parameters of the executed actions. The considered set of

actions A is now parametrized, and hence similar to that of PDDL, with actions like fly(x , y , z),

instead of grounded actions like flyp1 ,c1 ,c1 , flyp1 ,c1 ,c2 , etc. Equation (3) is generalized as:

ϕh(ch,1, . . . , ch,n, t) 6= ϕg(ch,1, . . . , ch,n, t+ 1)→∨
a∈touch(g)

(
ϕa(xta,1, . . . , x

t
a,m, t)

∧
i ∈ 1..n, j ∈ 1..m

name(h, i) = name(a, j)

(xta,j = ch,i)
)

∀h ∈H, ∀ch,1, . . . , ch,n ∈ S1 × · · · × Sn (8)

where H is the set of predicates and functions, touch(h) is the set of actions that may modify h,

Si is the domain of the i-th argument of ϕh, and name(h, k) is the name in the PDDL model of

the k-th argument of the functor h. To help the reader understand the formula, we provide an

example. Suppose we have the following simple PDDL problem:

• objects: A,B - truck, L1,L2,L3 - loc

• predicate: at(?t - truck, ?l - loc)

• actions: travel(?t - truck, ?from ?to - loc) and refuel(?x - truck, ?where - loc)

• function: fuel(?t - truck) - number

8 m. bofill, j. espasa and m. villaret

where travel has (decrease (fuel ?t) 10) among its effects, and refuel has (increase

(fuel ?x) 20) as its only effect. Constraint (8) for the fuel function would be encoded into

SMT at time step 0 as follows:

(=> (distinct (fuel A 0) (fuel A 1))

(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 A))

(and (refuel x4_0 x5_0 0) (= x4_0 A))))

(=> (distinct (fuel B 0) (fuel B 1))

(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 B))

(and (refuel x4_0 x5_0 0) (= x4_0 B))))

That is, we are saying that if the fuel of truck A (or B) has changed this should be because

it has been the protagonist of some action implying a modification in its fuel, namely traveling

or refueling. Again, this is much more compact than its QF LIA counterpart. With respect

to the parallelism, for now this encoding only supports the sequential plan semantics, as

encoding parallelism using this encoding is not straightforward. This approach is currently under

development, as we obtained encouraging preliminary experimental results (Bofill et al., 2014).

6 Experimental Evaluation

The goal of the experiments is to evaluate if Rantanplan is competitive with state of the art

exact numeric planners, as well as showing the benefits of having a good notion of interference.

We report on experiments with Rantanplan using Yices (Dutertre and De Moura, 2006) v1.0.38

as back-end solver. All experiments have been run on 8GB Intel R© Xeon R© E3-1220v2 machines

at 3.10 GHz.

For the sake of simplicity, only QF LIA ∃-step plans are considered, using a quadratic encoding

for expressing incompatibility of actions. We experimentally observed that the solver behavior

was more stable when using a quadratic encoding than when using a linear encoding.

We consider four distinct domains: the numeric versions of ZenoTravel and Depots, the real-life

challenging Petrobras domain, and the crafted Planes domain, shown in Figure 2. All instances

have been translated to make use of object fluents, in order to obtain a compact representation in

the translation to SMT. The Planes domain was crafted due to the limited interest of the other

domains with respect to numeric interactions between actions. This new domain was derived

from ZenoTravel, by adding some plausible numeric constraints that will help us demonstrate the

goodness of the semantic approach when determining potential interference between actions.

We compare the performance of Rantanplan with the exact numeric planner Num-

Reach/SAT (Hoffmann et al., 2007) using MiniSAT 2.2.0, and NumReach/SMT using Yices

v1.0.38. For NumReach/SMT, we had to adapt its output so it could be used with modern SMT

solvers. Moreover, since NumReach supports neither object fluents nor conditional effects, the

models have been properly adapted.

Table 1 shows the results for the domains considered using the Rantanplan system. The

Syntactic column shows the results using the generalization of the interference notion of (Rintanen

et al., 2006), described at the beginning of Section 4.2 , additionally forbidding any two actions

to occur in parallel if they modify the same numeric variable. The Semantic column shows the

results with the introduced new semantic notion of interference. In these two columns the number

of parallel steps of the valid plan is found between parentheses. In case of a time out (TO) the

number between parentheses is the last plan length considered.

The Time column shows how much faster each instance is solved with the semantic notion

of interference, and the Edges column shows which percentage of edges of the disabling graph

can be avoided thanks to this new interference notion. Note that even in instances that need the

same amount of time steps, the reduction of edges in the disabling graph affects positively on

the solving time. This is probably because we are reducing the number of clauses that do not

contribute at all to the problem.

Table 2 shows the results for the domains considered, comparing NumReach with the semantic

version of Rantanplan. NumReach does a good job with the Depots and ZenoTravel domains,

The Rantanplan planner 9

Table 1 Time in seconds followed by the number of parallel steps of the plan found between parentheses,
for each instance. TO stands for time out and MO for memory out. Cutoff set to 3600 seconds. The Time
and Edges columns show the reduction in time and edges of the disabling graph, respectively, when using
the semantic approach. Instances where all approaches timed out are omitted.

(a) Results of the Depots domain

n Syntactic Semantic Time Edges

1 4.1 (6) 2.8 (6) 31.4% 41.7%
2 32.0 (9) 18.3 (8) 42.8% 44.2%
3 166.9 (13) 108.9 (13) 34.8% 44.9%
4 438.3 (14) 323.0 (14) 26.3% 45.1%
5 TO (8) TO (17) - 45.1%
6 TO (-) MO (1) - -
7 188.1 (10) 131.0 (10) 30.4% 44.0%
8 MO (3) MO (10) - 44.5%

(b) Results of the Planes domain

n Syntactic Semantic Time Edges

1 1.0 (13) 0.3 (10) 71.5% 84.5%
2 6.0 (16) 1.1 (12) 81.2% 84.5%
3 49.9 (18) 8.3 (13) 83.4% 86.5%
4 431.1 (21) 40.0 (15) 90.7% 86.5%
5 117.2 (20) 27.0 (15) 77.0% 86.1%
6 1294.6 (23) 193.3 (18) 85.1% 86.1%
7 621.9 (21) 70.9 (16) 88.6% 85.8%
8 834.2 (22) 105.7 (17) 87.3% 85.8%
9 TO (23) 2889.1 (20) - 88.0%

(c) Results of the Zenotravel domain

n Syntactic Semantic Time Edges

1 0.0 (0) 0.0 (0) 35.3% 76.3%
2 0.1 (3) 0.0 (3) 23% 74.3%
3 0.2 (3) 0.1 (3) 34.6% 66%
4 0.3 (4) 0.1 (4) 43.5% 66.2%
5 0.5 (4) 0.3 (4) 38.9% 71.5%
6 0.8 (6) 0.5 (6) 43.5% 72.1%
7 0.8 (5) 0.4 (5) 47% 72.6%
8 2.8 (5) 1.7 (5) 38.5% 68.3%
9 26.5 (8) 31.0 (8) -16.9% 69.6%
10 41.6 (8) 61.9 (8) -48.7% 70.7%
11 7.1 (6) 4.5 (6) 37.2% 69%
12 105.8 (7) 95.1 (7) 10.1% 70.4%
13 1288.3 (9) 1291.5 (9) -0.2% 72.6%

(d) Results of the Petrobras Domain

n Syntactic Semantic Time Edges

1 14.7 (3) 8.8 (3) 40.7% 50.4%
2 19.3 (4) 11.2 (4) 42.2% 51.8%
3 24.6 (5) 14.0 (5) 43.2% 53.2%
4 47.0 (8) 28.2 (8) 40.1% 54.5%
5 74.9 (9) 59.5 (9) 20.5% 55.8%
6 133.9 (10) 108.7 (10) 18.8% 57.1%
7 700.1 (13) 475.1 (13) 32.1% 58.3%
8 833.4 (13) 800.0 (13) 4.0% 59.5%

but its performance decreases in more complex numeric domains like Petrobras and Planes, where

the range of possible values for numeric fluents tends to grow. It can be seen that on the Planes

domain, containing only a few non-trivial numeric constraints, classical approaches (Syntactic

and NumReach) tend to be overly restrictive with respect to incompatibility between actions. In

most instances it can be observed an important gap between the number of time steps needed

to find a valid plan by NumReach and our semantic approach. This is also generally reflected in

terms of solving time.

Table 3 lists the total number of instances of each family, the number of instances solved

by NumReach/SAT, NumReach/SMT, and the presented semantic approach. It also gives the

number of accumulated parallel time steps used to reach a valid plan on the commonly solved

instances by NumReach/SMT and the two methods implemented in Rantanplan. Finally, the

other columns show the averaged solving time reduction and disabling graph edge reduction on

the solved instances. Even in domains that maintain the same number of time steps, the reduced

disabling graphs make solving times notably smaller.

Note that the amount of parallelism in Rantanplan is notable. With respect to the number

of steps, Rantanplan is strictly more parallel than NumReach/SAT and NumReach/SMT in

nearly all instances.

The only domain where the Rantanplan planner is not competitive is the Depots domain.

It is obvious that the reachability approach of NumReach is more adequate for this domain.

10 m. bofill, j. espasa and m. villaret

Table 2 Time in seconds followed by the number of parallel steps of the plan found between parentheses,
for each instance. TO stands for time out and MO for memory out. Cutoff set to 3600 seconds. Instances
where all systems timed out are omitted.

(a) Results of the Depots domain

n NReach/SAT NReach/SMT Semantic

1 0.0 (6) 1.5 (6) 2.8 (6)
2 0.5 (9) 8.4 (9) 18.3 (8)
3 5.7 (13) 43.1 (13) 108.9 (13)
4 10.1 (15) 134.7 (15) 323.0 (14)
7 2.5 (11) 35.1 (11) 131.0 (10)
8 TO (-) 362.7 (15) MO (10)
10 4.8 (11) 101.2 (11) MO (-)
13 2.9 (10) 96.3 (10) TO (-)
14 25.1 (16) 1650.0 (13) TO (-)
16 2.2 (9) 118.8 (9) TO (-)
17 6.8 (8) 313.2 (8) TO (-)
19 18.1 (11) 849.4 (11) TO (-)

(b) Results of the Zenotravel domain

n NReach/SAT NReach/SMT Semantic

1 0.0 (2) 0.2 (2) 0.0 (0)
2 0.0 (7) 1.5 (7) 0.0 (3)
3 0.1 (6) 3.7 (6) 0.1 (3)
4 0.0 (6) 2.4 (6) 0.1 (4)
5 0.1 (7) 7.0 (7) 0.3 (4)
6 0.0 (7) 4.2 (7) 0.5 (6)
7 0.1 (8) 9.1 (8) 0.4 (5)
8 0.4 (7) 8.1 (7) 1.7 (5)
9 0.3 (9) 18.1 (9) 31 (8)
10 0.7 (9) 24.2 (9) 61.9 (8)
11 3.5 (8) 18.4 (8) 4.5 (6)
12 3.8 (10) 99.6 (10) 95.1 (7)
13 22.2 (11) 555.6 (11) 1291.5 (9)
14 TO (-) 537.4 (9) TO (7)

(c) Results of the Petrobras domain

n NReach/SAT NReach/SMT Semantic

1 0.4 (6) 39.8 (6) 8.8 (3)
2 9.8 (9) 56.4 (6) 11.2 (4)
3 17.8 (10) 93.9 (7) 14.0 (5)
4 118.3 (11) 256.5 (9) 28.2 (8)
5 317.9 (14) 312.3 (9) 59.5 (9)
6 325.4 (14) 277.2 (9) 108.7 (10)
7 TO (-) 818.1 (11) 475.1 (13)
8 TO (-) 2753.6 (12) 800.0 (13)

(d) Results of the Planes domain

n NReach/SAT NReach/SMT Semantic

1 TO (-) 36.4 (15) 0.3 (10)
2 3.3 (18) 37.9 (18) 1.1 (12)
3 TO (-) 229.9 (20) 8.3 (13)
4 4.4 (22) 632.0 (23) 40.0 (15)
5 TO (-) 768.4 (22) 27.0 (15)
6 TO (-) 1183.7 (25) 193.3 (18)
7 TO (-) 1241.2 (23) 70.9 (16)
8 5.0 (24) 1278.2 (24) 105.7 (17)
9 TO (-) TO (-) 2889.1 (20)
12 15.5 (21) TO (-) TO (19)

Table 3 Summarized results for the domains considered using NumReach/SAT, NumReach/SMT and
Rantanplan with the syntactic and the semantic notions of interference. For each domain we report
the number of solved instances and their accumulated time steps of the commonly solved ones. We also
show their averaged reductions in solving time and number of edges of the disabling graph.

Solved instances Accum. steps Averaged reductions
N/SAT N/SMT Sem. N/SMT Sem. Syn. Time Edges

Depots 22 11 12 5 54 51 52 33.1% 44.2%
Zenotravel 20 13 14 13 97 68 68 22.0% 70.8%
Petrobras 15 6 8 8 69 65 65 30.2% 59.1%
Planes 12 4 8 9 170 116 154 84.3% 86.8%

Moreover NumReach/SAT dominates NumReach/SMT in this domain. This happens because

the numeric reasoning present in the domain is nearly null: the only functions present are for

controlling load limits of trucks, and thus this domain is perfectly adequate for the approach used

by NumReach/SAT. The use of a Linear Integer Arithmetic solver in the Rantanplan planner

is overkill and a leaner and more efficient approach should be taken for problems of this kind.

The Rantanplan planner 11

7 Conclusions

We have presented Rantanplan, a new system for the setting of exact numeric planning. The

planner is based on translation into SMT using a planning as satisfiability approach. It takes

advantage of background theories in SMT to easily and transparently handle numeric fluents.

Moreover it uses an SMT solver at compile time to detect in advance incompatibility between

actions. This incompatibility results from lifting the interference notion of (Rintanen et al.,

2006) to the setting of planning with resources. We have argued why the presented approach

to interference between actions with numeric fluents is better than purely syntactically based

ones, and provided empirical evidence of its usefulness. We have also shown that our system is

competitive with the state of the art exact numeric planner NumReach.

8 Acknowledgments

All authors supported by the Spanish Ministry of Economy and Competitiveness through project

HeLo (ref. TIN2012-33042) and project LoCoS (ref. TIN2015-66293-R).

References

Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C. (2009). Satisfiability Modulo Theories. In Handbook
of Satisfiability, volume 185, chapter 26, pages 825–885. IOS Press.

Barták, R. and Toropila, D. (2010). Solving sequential planning problems via constraint satisfaction.
Fundamenta Informaticae, 99(2):125–145.

Belouaer, L. and Maris, F. (2012). SMT Spatio-Temporal Planning. In ICAPS Workshop on Constraint
Satisfaction Techniques for Planning and Scheduling Problems (COPLAS 2012), pages 6–15.

Bofill, M., Espasa, J., and Villaret, M. (2014). Efficient SMT Encodings for the Petrobras Domain. In
Proceedings of the 13th International Workshop on Constraint Modelling and Reformulation (ModRef
2014), pages 68–84.

Bofill, M., Espasa, J., and Villaret, M. (2016). A Semantic Notion of Interference for Planning Modulo
Theories. In Proceedings of the Twenty-Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, pages 56–64.

Dovier, A., Formisano, A., and Pontelli, E. (2010). Multivalued action languages with constraints in
CLP (FD). Theory and Practice of Logic Programming, 10(02):167–235.

Dutertre, B. and De Moura, L. (2006). The Yices SMT Solver. Technical report, Computer Science
Laboratory, SRI International. Available at http://yices.csl.sri.com.

Fox, M. and Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. J. Artif. Intell. Res.(JAIR), 20:61–124.

Frisch, A. M. and Giannaros, P. A. (2010). SAT Encodings of the At-Most-k Constraint. Some Old,
Some New, Some Fast, Some Slow. In 10th International Workshop on Constraint Modelling and
Reformulation (ModRef 2010).

Gerevini, A. E., Saetti, A., and Serina, I. (2008). An approach to efficient planning with numerical fluents
and multi-criteria plan quality. Artificial Intelligence, 172(8):899–944.

Gregory, P., Long, D., Fox, M., and Beck, J. C. (2012). Planning Modulo Theories: Extending
the Planning Paradigm. In Twenty-Second International Conference on Automated Planning and
Scheduling (ICAPS 2012). AAAI.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric
State Variables. Journal of Artificial Intelligence Research, pages 291–341.

Hoffmann, J., Gomes, C. P., Selman, B., and Kautz, H. A. (2007). SAT Encodings of State-Space
Reachability Problems in Numeric Domains. In 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), pages 1918–1923.

Kautz, H. and Selman, B. (1992). Planning as Satisfiability. In 10th European Conference on Artificial
Intelligence (ECAI 92), pages 359–363. John Wiley & Sons, Inc.

Kautz, H. and Walser, J. P. (1999). State-space planning by integer optimization. In AAAI/IAAI, pages
526–533.

Kautz, H. A., McAllester, D. A., and Selman, B. (1996). Encoding Plans in Propositional Logic. In
Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 96),
pages 374–384.

Rintanen, J. (2012). Planning as Satisfiability: Heuristics. Artificial Intelligence, 193:45–86.
Rintanen, J., Heljanko, K., and Niemelä, I. (2006). Planning as satisfiability: parallel plans and algorithms

for plan search. Artificial Intelligence, 170(12-13):1031–1080.
Wolfman, S. A. and Weld, D. S. (1999). The LPSAT Engine & Its Application to Resource Planning.

In Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 99), pages 310–317.

