ÀLGEBRA MODERNA: CONJUNTS, RELACIONS I APLICACIONS
ÀLGEBRA MODERNA: CONJUNTS, RELACIONS I APLICACIONS

Carles Cassú
Joan Bonet
Xavier Bertran
J. Carles Ferrer

Universitat de Girona
Departament d'Economia
ISBN 84-88762-06-02
I. Cassú, Carles II. Universitat de Girona
I. Àlgebra lineal 2. Àlgebra lineal -- Problemes, exercicis, etc.
512.64

Segona edició: octubre de 1995
Amb la col·laboració del Comissionat per a Universitats i Recerca i del Departament de Cultura de la Generalitat de Catalunya
Edita: Servei de Publicacions de la Universitat de Girona
Assessorament lingüístic: Servei de Normalització Lingüística de la UdG

Universitat de Girona
Edifici les Àlguies
Pl. Sant Domènec, 3
17071 Girona
Tel. (972) 41 82 06 - Fax (972) 41 80 87

© Carles Cassú, Joan Bonet, Xavier Bertran, J. Carles Ferrer

ISBN: 84-88762-06-02
Dipòsit legal: GI-1.364-94

Carles Cassú és doctor en Ciències i catedràtic d'Escola Universitària de la UdG.
Joan Bonet, Xavier Bertran, i J. Carles Ferrer són llicenciats en Ciències Matemàtiques i professors titulants d'Escola Universitària del Departament d'Economia de la UdG.

Sota les sancions establertes per les lleis, queden rigorosament prohibides, sense l'autorització per escrit dels titulars del copyright, la reproducció total o parcial d'aquesta obra per qualsevol mitjà o procediment -inclouent-hi la reprografia i el tractament informàtic- i la distribució d'exemplars d'aquesta edició mitjançant lloguer o préstec públics.
PRÒLEG

Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d’Àlgebra Lineal i de Càlcul Infinitesimal.

Per raons de contingut el mòdul d’Àlgebra Lineal s’ha subdividit en les tres parts corresponents d’Àlgebra Moderna (dos volums: Conjunts i Estructures), Àlgebra Matricial (tres volums: Matrius, Determinants i Sistemes d’equacions) i Àlgebra Vectorial (tres volums: Vectors, Endomorfismes i Geometria Analítica), mentre que el mòdul de Càlcul Infinitesimal agrupa les tres parts corresponents a Càlcul Funcional (dos volums: Funcions i Continuitat), Càlcul Diferencial (quatre volums: Derivades, Corbes, Derivades parciales i Optimització) i Càlcul Integral (dos volums: Integrals i Equacions Diferencials).

El primer volum de la col·lecció, «Àlgebra Moderna: Conjunts, Relacions i Aplicacions», s'inicia amb les nocions primàries de conjunt, element i pertinença que constitueixen el pilar bàsic del llenguatge matemàtic. Tot seguit tractem el tema de les relacions binàries entre els elements d’un conjunt, destacant-hi entre elles les relacions d’equivalència que, com veurem en el proper volum, permetran la fonamentació de les diferents classes de nombres. Finalment, es tracten les aplicacions entre conjunts, un concepte que es desenvoluparà plenament en l’estudi del Càlcul Funcional.

Creiem que, en l’estudi de la Matemàtica, l’alumne universitari podrà servir-se d’aquesta guia didàctica tant per a la confecció dels seus propis apunts com en l’estudi dels diferents temes que conformen les assignatures corresponents a les matèries tractades. Per aquest motiu es presenta una breu Bibliografia escollida classificada en bàsica i addicional, segons el grau de dificultat que presenta.

Exposem el Programa i la Simbologia, on indiquem els conceptes que l'integren, conjuntament amb el simbolisme que farem servir al llarg de l'obra. Hem procurat fer un programa racional en què els conceptes es van deduir els uns dels altres de manera lògica.

En cada volum es destaca especialment el contingut en Conceptes i Exemples, de gran importància per a la comprensió de les matèries tractades, en les quals, sovint, es prescindeix de demostracions formalistes d'acord amb l'esperit de l'obra, que, com el seu títol indica, pretén ser una guia didàctica.
A continuació presentem una *Formulació matemàtica*, expressada en símbols formals dels conceptes estudiats, que ajudaran, sens dubte, a la rigorositat en la resolució de qüestions i problemes.

Segueim el desenvolupament amb la part dedicada a l'estudi de *Problemes resolts*. És important que l'estudiant comprengui fins a l'últim detall aquests problemes, que, en realitat, són una continuïtat en grau de dificultat dels exemples senzills estudiats anteriorment.

Presentem després una col·lecció de Problemes proposats amb la intenció que el lector els resolgui de manera natural mitjançant els coneixements adquirits als apartats anteriors.

A l'apèndix s'inclou una *Prova d'autoavaluació* que consta d'una sèrie de “problemes parametritzats”; és a dir, problemes que depenen d'un paràmetre \((a=1,2,3,4)\). Per a cada valor del paràmetre la solució serà diferent i estarà inclosa entre alguna de les vuit possibles. Aquest tipus de problemes es podrà resoldre quatre vegades amb números diferents.

Finalment, a més de la *Bibliografia escollida*, un *Glossari* de tots els conceptes matemàtics exposats al llarg de l'obra en facilita la ràpida localització.

Girona, octubre de 1995

Els autors
Conjunts, relacions i aplicacions

Cap.1. Teoria de conjunts 9
Cap.2. Relacions binàries 45
Cap.3. Aplicacions 85
Capítol 1: Teoria de Conjunts

a) Bibliografia escollida 10
b) Programa i simbologia 11
c) Conceptes i exemples 12
d) Formulació matemàtica 18
e) Problemes resolts 20
f) Problemes proposats 38
a) BIBLIOGRAFIA ESCOLLIDA

Básica:

Adicional:

YAMANE, T. Matemáticas para Economistas. P1/10.
ESPADA BROS, E. Problemas resueltos de Algebra. Tomo (I). P1/5 i 18/34.
b) PROGRAMA I SIMBOLOGIA

1.1 CONJUNTS I ELEMENTS.
1) Nocions primàries. Conjunts \((A,B,C,...)\), elements \((a,b,c,...)\), pertinença \((\in)\), no pertinença \((\notin)\), diagrames de Venn.
2) Determinació d'un conjunt. Determinació per extensió i per comprésió.

1.2 SUBCONJUNTS D'UN CONJUNT.
1) Símbols lògics. Conjuncions disjuntiva \((\lor)\) i copulativa \((\land)\), implicacions \((\Rightarrow i \Leftarrow)\), equivalència \((\Leftrightarrow)\).
2) Subconjunts. Definició, inclusió àmplia \((A \subseteq B)\) i estricta \((A \subset B)\). Conjunts comparables \((A \cong B)\). Subconjunts impropis i propis. Propietats de la inclusió de conjunts.
3) Conjunt de les parts. Definició \((\mathcal{P}(A))\), cardinal del conjunt de les parts \([n(\mathcal{P}(A))]\).

1.3 OPERACIONS CONJUNTISTES.
1) Operacions bàsiques. Complementació \((A')\), intersecció \((A \cap B)\) i unió \((A \cup B)\): definicions, propietats, cardinal de la unió \([n(A \cup B)]\).
2) Propietats operacionals. Lleis de Morgan, regla de la dualitat.
3) Partició d'un conjunt. Conjunts disjunts i disjunts dos a dos, conjunts recobridors, partició.
4) Diferència de conjunts. Diferència \((A - B)\) i diferència simètrica \((A \Delta B)\), propietats.
c) CONCEPTES I EXEMPLES

1.1 CONJUNTS I ELEMENTS

1.1.1 NOCIONS PRIMÀRIES. Un conjunt és una col·lecció ben determinada d'objectes, anomenats elements, que direm que pertanyen al conjunt.

Designarem els conjunts amb lletres majúscules A, B, C,... i els elements amb minúscules i, per expressar que un element forma part d'un conjunt, emprarem el símbol de pertinença (\(\in\)). Si no hi pertany, emprarem el de no pertinença (\(\notin\)).

Per reforçar la nostra imaginació, ens servirem de Diagrames de Venn, on els conjunts venen esquematitzats per rectangles o circumferències i els elements, per punts.

Exemple 1. Les vocals de l'alphabet formen un conjunt \(A\) que consta de cinc elements: a, e, i, o, u.
Com a és una vocal, escriurem \(a \in A\).
En canvi, com b no ho és, posarem \(b \notin A\).

1.1.2 DETERMINACIÓ D'UN CONJUNT. Un conjunt queda ben determinat si s'expressa per extensió, enumerant tots i cadascun dels seus elements i situant-los entre claus ({}).

També es pot determinar per comprensió, indicant una propietat que serveixi per determinar tots els elements del conjunt. En aquest cas farem servir el símbol "tal que" ({}).

Exemple 2. El conjunt \(C\) de les províncies de Catalunya el podem escriure per extensió:
\[C=\{\text{Barcelona, Tarragona, Lleida, Girona}\}\]
Per escriure'l per comprensió, emprarem l'indeterminada \(x\), que podrà ser qualsevol província:
\[C=\{x \in \text{provincies de Catalunya}\}\]

1.1.3 CARDINAL D'UN CONJUNT. S'anomena cardinal d'un conjunt \(A\), i el simbolitzem per \(n(A)\), el nombre d'elements que té el conjunt.

El conjunt que es pren com a base és el conjunt referencial. Si un conjunt d'aquest referencial consta de tots els elements possibles, s'anomena conjunt universal, i es simbolitza per \(U\). En canvi, si no té cap element, s'anomena conjunt buit, i es designa per \(\emptyset\).

Un conjunt unitari és l'integrat per un sol element, un conjunt binari tindria dos elements, etc.
Exemple 3. Si suposem com a referencial el conjunt de nombres ímparels positius, \(I = \{1, 3, 5, \ldots\} \), i considerem el conjunt
\[A = \{ \text{ímparels divisibles per } 1 \} \]
veurem que \(A = U = I \).

En canvi, si el conjunt fos
\[B = \{ \text{ímparels divisibles per } 2 \} \]
tindrem que \(B = \emptyset \).

Pianament, si els conjunts són ara
\[C = \{ \text{ímparels inferiors a } 3 \} \] i \(D = \{ \text{ímparels inferiors a } 5 \} \)
veurem que \(C \) és un conjunt unitari i \(D \) un de binari, perquè estan constituïts per un i dos elements, respectivament.

Per expressar correctament el fet que tots els elements pertanyin a un determinat conjunt, s'ha de fer servir l'anomenat quantificador universal, simbolitzat per \(\forall \), i que es llegeix “per a tot element”.

En el cas que sabem que almenys un element pertany al conjunt, utilitzarem el quantificador existencial (\(\exists \)), que es llegeix “ existeix almenys un element”.

En el cas que no hi hagi cap element que hi pertany, podrem escriure (\(\exists \)), que es llegeix “no existeix cap element”.

Si sabem que sols hi ha un element, llavors emprarem el quantificador existencial únic, (\(\exists ! \)) (o també \(\exists ^{*} \)) i que es llegeix “ existeix un sol element”.

Exemple 4. De l' exemple anterior, veiem que \(\forall x \in A \) es verifica que \(x \)
és un ímparell divisible per 1.

Del conjunt \(B \) podem escriure, \(\exists x \in I / x \in B \), és a dir, tal que \(x \) sigui un
ímparell divisible per 2.

Pel conjunt \(C \) tenim que \(\exists ^{*} x \in I / x \in C \), o sigui, existeix un sol ímparell
que pertany a \(C \).

Finalment, del conjunt \(D \) deduim, \(\exists x \in I / x \in D \). Expressat en paraules,
direm que existeix un element de \(I \) que pertany a \(D \).

Atenent al nombre d'elements, un conjunt pot ser finit, infinit numerable (si es poden comptar ordenadament tots els seus elements sense que ens en deixem cap) o infinit no numerable.

Entre els conjunts numèrics que emprarem, a més dels parells, ímparels i el dels nombres primers, destaquem els conjunts de nombres naturals \((N = \{1, 2, 3, \ldots\}) \), els naturals ampliats \((N_0 = \{0, 1, 2, 3, \ldots\}) \), els enters \((Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \), i també els racionals \((Q) \), els reals \((R) \) i els complexos \((C) \).

Exemple 5. El conjunt \(A = \{ \text{letrres del Quirot} \} \), encara que sigui molt gran és un conjunt finit. Per contra, tots els conjunts numèrics anteriors són infinitis.

Els quatre primers, \(N, N_0, Z \) i \(Q \) són infinites numerables, però els dos últims, \(R \) i \(C \), són infinites no numerables (més endavant estudiarem que no es poden comptar).
1.2 SUBCONJUNTS D'UN CONJUNT.

1.2.1 SÍMBOLS LÒGICS. Siguin P_1 i P_2 dues propietats que ens poden servir per a determinar conjunt per comprensió. Per a designar que un element compleix almenys una d'aquestes dues propietats, utilitzarem la conjunció disjuntiva (\lor) que es lleix “o”. És a dir, que es verifica P_1, o bé P_2, podent-se verificar a la vegada les dues propietats.

Si s'han de complir a la vegada les dues propietats, emprarem la conjunció copulativa (\land), que es lleix “i”.

Exemple 6. Del referencial dels nombres naturals \mathbb{N}, siguin les propietats $P_1=$"ser parell" i $P_2=$"ser imparell". Definim els conjunts

$$A=\{x \in \mathbb{N} / P_1 \lor P_2\}$$

$$B=\{x \in \mathbb{N} / P_1 \land P_2\}$$

És evident que obtinguem $A=\mathbb{N}$ i $B=\emptyset$.

Si de la propietat P_1 es dedueix lògicament P_2, el símbol que adoptarem serà el de la implicació lògica (\Rightarrow) que es lleix “si P_1 llavors P_2”.

A la inversa, si per complir-se P_2 fa falta P_1, ens servirem del símbol d'implicació lògica (\Leftarrow) que es lleix com “P_2 sols si P_1”.

En el cas que de P_1 es dedueixi P_2, i viceversa, emprarem el símbol d'equivalència lògica (\Leftrightarrow), que es pot llegir com “P_1 equivalent a P_2”, o també com “P_1 si i sols si P_2”.

Exemple 7. En \mathbb{N} siguin les propietats $P_1=$"ser imparell" i $P_2=$"ser múltiple de 2 menys 1". Observem que

$$P_1 \Rightarrow P_2$$

$$P_1 \Leftarrow P_2$$

Per tant, $P_1 \Leftrightarrow P_2$.

O sigui, les dues propietats són equivalents.

1.2.2 SUBCONJUNTS. Direm que A és un subconjunt del conjunt B, i escriurem $A \subseteq B$, si cada element de A es també un element de B. Aquest símbol de contingut s'anomena d'inclusió àmplia perquè pot donar-se el cas de $A=B$.

També es pot fer servir el símbol d'inclusió estricta, $A \subset B$, remarcant ara que $A \neq B$.

Exemple 8. Durant el mes de juny i en l'examen de Matemàtiques (Algebra i Càlcul), siguin el referencial $U=$"alumnes matriculats" i els conjunts $A=$"aprovats d'Algebra", $B=$"aprovats de Matemàtiques" i $C=$"aprovats de Càlcul". És clar que $B \subseteq A$ i també que $B \subseteq C$.

![Diagrama de Venn](image-url)
Direm que A i B són dos conjunts comparables, i ho podem simbolitzar per A\(\subseteq\)B, si i sols si A és un subconjunt de B o bé B és un subconjunt de A. És a dir, si un és a dins de l’altre.

Exemple 9. De l’exemple anterior veiem que A i C no són comparables, perquè ni A\(\subseteq\)C ni tampoc C\(\subseteq\)A, sempre i quan els dos examens parcials siguin independents.

Els conjunts buit \(\emptyset\) i universal U sempre són subconjunts de l’universal U; per aquest motiu s’anomenen subconjunts impropis. Evidentment, els altres subconjunts de U seran els subconjunts propis.

1.2.3 CONJUNT DE LES PARTS

Donat un conjunt A, anomenem **conjunt de les parts** de A, i el simbolitzem per \(\mathcal{P}(A)\), aquell conjunt que té per elements tots els subconjunts de A. Per trobar tots aquests subconjunts d’una manera ordenada podem fer servir un **diagrama en arbre**.

El **cardinal del conjunt de les parts**, \(n[\mathcal{P}(A)]\), és el nombre total de subconjunts de A i, degut a que cadascun dels n elements de A pot pertànyer o no al subconjunt, tendrem que \(n[\mathcal{P}(A)]=2^n\).

Exemple 10. Prenem el conjunt de vocals fortes, A=\{a, o, u\}. En total hi haurà \(2^3=8\) subconj. que els trobem amb un diagrama en arbre:

![Diagrama en arbre]

1.3 OPERACIONS CONJUNTISTES

1.3.1 COMPLEMENTACIÓ, INTERSECCIÓ I UNIÓ

Sigui un conjunt A del referencial U. El **conjunt complementari** del conjunt A, simbolitzat per A', és el format per tots els elements del referencial U que no pertanyen a A.

El **conjunt intersecció** de dos conjunts A i B, denotat per A\(\cap\)B, és el conjunt de tots els elements del referencial U que pertanyen a la vegada a A i a B.
De manera similar, el conjunt unió, simbolitzat per $A \cup B$, serà el conjunt de tots els elements de U que pertanyen a A o a B. Esquemàticament, els diagrames de Venn són:

Per a trobar el cardinal de la unió, o nombre d'elements de $A \cup B$, tindrem en compte que primer haurem de sumar els cardinals de A i B, però després haurem de restar-li el de la intersecció, perquè aquest s'haurà comptat dues vegades.

Exemple 11. En el referencial de les lletres de PITAGORES, siguin els conjunts $A=\{i, t, a, g, o\}$ i $B=\{g, o, r, e\}$. Els dos conjunts complementaris són $A'=\{p, r, e, s\}$ i $B'=\{p, i, t, a, s\}$.

El conjunt intersecció és $A \cap B=\{g, o\}$ i el conj. unió $A \cup B=\{i, t, a, g, o, r, e\}$.

Per altra banda, el cardinal de la unió, $n(A \cup B)$, que és 7, el podem trobar amb la fórmula:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 5 + 4 - 2 = 7.$$

1.3.2 PROPIETATS OPERACIONALS. Entre les propietats de les operacions conjuntistes, són importants les dues lleis de Morgan:

- **M$_1$** "El complementari de la intersecció és igual a la unió dels complementaris".

- **M$_2$** "El complementari de la unió és igual a la intersecció dels complementaris".

Exemple 12. En el referencial de les lletres de PITAGORES de l'exemple anterior, on $A=\{i, t, a, g, o\}$ i $B=\{g, o, r, e\}$, tenim que

$$(A \cap B)' = (A)' \cup (B)' = \{p, i, t, a, r, c, s\} \quad \text{i també} \quad (A \cup B)' = (A)' \cap (B)' = \{p, s\}.$$

També podem observar que es compleix la regla de la dualitat:

"Donada una certa propietat, si es permuten les operacions d'intersecció i d'unió, i també el buit i l'universal, en resulta una altra propietat que s'anomena propietat dual de l'anterior".

Exemple 13. En la operació d'intersecció tenim la propietat d'absorbció, $A \cap \emptyset = \emptyset$, on \emptyset és un element absorbent, ja que es "menja" qualsevol conjunt.

Canviant \cap per \cup i també \emptyset per U, tindrem la propietat dual: $A \cup \emptyset = U$.

És a dir, l'universal serà un element absorbent per la unió. Igualment es poden comprovar totes les altres propietats duals.
1.3.3 \textbf{PARTICIÓ D’UN CONJUNT.} Direm que A i B són dos \textit{conjunts disjunts} si no tenen cap element en comú; és a dir, si la seva intersecció és el conjunt buit. Més endavant estudiamrem un concepte similar d’intersecció de més de dos conjunts i en direm conjunts \textit{disjunts dos a dos}.

De manera similar, direm que A i B són dos \textit{conjunts recobridors} si la seva unió és igual al conjunt que ens serveix de referencial. Per a n conjunts, la definició és igual: els conjunts donats han “demplen” tot el conjunt referencial.

Si els conjunts \(A_1, A_2, \ldots, A_n\) són a la vegada disjunts dos a dos i recobridors, direm que formen una \textit{partició} del referencial.

\textit{Exemple 14.} Amb el referencial U={p, i, t, a, g, o, r, e, s}, formem els conjunts de síl·labes: \(A_1=\{p, i\}\), \(A_2=\{t, a\}\), \(A_3=\{g, o\}\) i \(A_4=\{r, e, s\}\). Es veu que aquests quatre conjunts formen una partició de U, perquè
\[
A_1 \cap A_2 = \emptyset, \quad A_1 \cap A_3 = \emptyset, \quad A_1 \cap A_4 = \emptyset, \quad A_2 \cap A_3 = \emptyset, \quad A_2 \cap A_4 = \emptyset, \quad A_3 \cap A_4 = \emptyset
\]
\[A_1 \cup A_2 \cup A_3 \cup A_4 = U\]

D’aquesta manera, el conjunt U ha quedat “partit” en quatre subconjunts, de manera similar als rajols que formen el terra d’una habitació.

1.3.4 \textbf{DIFERÈNCIA DE CONJUNTS.} Donats dos conjunts \(A\) i \(B\), definim el seu \textit{conjunt diferència}, i el denotem per A-B, com el conjunt de tots els elements que són de A, però que no són de B.

És evident que la differència de conjunts no té ni la propietat commutativa ni l’associativa. Per solventar aquesta dificultat, definim la \textit{diferència simètrica de conjunts}.

D’aquesta manera, el \textit{conjunt diferència simètrica}, simbolitzat per \(A \Delta B\), és el conjunt dels elements que pertanyen a la unió, però no a la intersecció. Es pot veure que el conjunt \(A \Delta B\) és la unió dels conjunts A-B i B-A. Aquesta nova operació disposa ja de les propietats associativa i commutativa.

\[
\begin{align*}
\text{U} & \quad \text{U} & \quad \text{U} \\
A & \quad A & \quad A \\
\text{B} & \quad \text{B} & \quad \text{B} \\
A-B & = & \\
B-A & = & \\
A \Delta B & = &
\end{align*}
\]

\textit{Exemple 15.} Continuant amb l’exemple on \(U=\{p, i, t, a, g, o, r, e, s\}\), \(A=\{i, t, a, g, o\}\) i \(B=\{g, o, r, e\}\), tenim que \(A-B=\{i, t, a\}\) i \(B-A=\{r, e\}\).

La diferència simètrica serà \(A \Delta B= (A \cup B) \setminus (A \cap B)\) i com que ja sabem que \(A \cap B=\{i, t, a, g, o\}\) i \(A \cup B=\{g, o\}\), tendrem \(A \Delta B=\{i, t, a, r, e\}\). Observem que, efectivament, \(A \Delta B=(A-B) \cup (B-A)\).
d) FORMULACIÓ MATEMÀTICA

Conjunts especials

| Conj. Universal: $U=\{x \ / \ x=x\}$ | Conj. Buit: $\emptyset=\{x \ / \ x\neq x\}$ |

Subconjunt d'un conjunt

Definició: $A \subseteq B \iff \forall x \in A \Rightarrow x \in B$

Conjunts comparables: $A=\sim B \iff [A \subseteq B \lor B \subseteq A]$

Propietats de la inclusió:
 - Reflexiva: $A \subseteq A$
 - Antissimètrica: $A \subseteq B \land B \subseteq A \Rightarrow A=\sim B$
 - Transitiva: $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
 - Acotació: $\emptyset \subseteq A \subseteq U$

Conjunt de les parts: $\wp(A)=\{X \ / \ X \subseteq A\}$
Cardinal: $n[\wp(A)]=2^{n(A)}$

Complementació

Conjunt complementari: $A'=\{x \in U \ / \ x \notin A\}$

Propietats de la complementació:
 - Involució: $(A')'=A$
 - Comp. del buit: $\emptyset'=U$
 - Inclusió: $A \subseteq B \iff B' \subseteq A'$
 - Compl. de l'universal: $U'=\emptyset$

Intersecció de conjunts

Definició: $A \cap B=\{x \ / \ x \in A \land x \in B\}$

Conjunts disjunts: $A \cap B=\emptyset$

Propietats de la intersecció:
 - Commutativa: $A \cap B=B \cap A$
 - Associativa: $(A \cap B) \cap C=A \cap (B \cap C)$
 - Inclusiva: $X \subseteq A \land X \subseteq B \iff X \subseteq A \cap B$
 - Conformitat: $A \subset B \iff A \cap B=A$
 - Idempotència: $A \cap A=A$
 - Absorció: $A \cap \emptyset=\emptyset$
 - El. neutre: $A \cap U=A$
 - Complementarietat: $A \cap A'=\emptyset$
Unió de conjunts

Unió de Conjunts: $A \cup B = \{x \mid x \in A \lor x \in B\}$
Cardinal de la unió: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$
Conjunts recobridors de A: $A_1 \cup A_2 \cup \ldots \cup A_n = A$
Propietats de la unió:

- Commutativa: $A \cup B = B \cup A$
- Associativa: $(A \cup B) \cup C = A \cup (B \cup C)$
- Inclusiva: $A \subseteq X \land B \subseteq X \Rightarrow A \cup B \subseteq X$
- Conformitat: $A \subseteq B \iff A \cup B = B$
- Idempotència: $A \cup A = A$
- Absorció: $A \cup \emptyset = A$
- El. neutre: $A \cup \emptyset = A$
- Complementarietat: $A \cup A' = U$

Partició d'un conjunt

Definició: $A_i \cap A_j = \emptyset \land i \neq j \land \bigcup_{i=1}^{n} A_i = A$

Altres propietats duals

- Distrib.: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \land A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Simplificació (o absorció): $A \cap (A \cup B) = A \land A \cup (A \cap B) = A$
- Lleis de Morgan: $(A \cap B)' = A' \cup B' \land (A \cup B)' = A' \cap B'$

Diferència de conjunts

Definicions: $A - B = \{x \mid x \in A \land x \notin B\} \land A - B = A \cap B'$
Propietats de la diferència: (En general)

- No commutativa: $A - B \neq B - A$
- No associativa: $(A - B) - C \neq A - (B - C)$

Diferència simètrica

Definicions: $A \Delta B = \{x \mid x \in A \land x \notin B \lor x \notin A \land x \in B\}$

$A \Delta B = (A \cup B) - (A \cap B) \land A \Delta B = (A - B) \cup (B - A)$

Propietats de la diferència simètrica:

- Commutativa: $A \Delta B = B \Delta A$
- Associativa: $(A \Delta B) \Delta C = A \Delta (B \Delta C)$
e) PROBLEMES RESOLTS

1.1 CONJUNTS I ELEMENTS

Determinació per extensió i comprensió

1. Determina per extensió els següents conjunts numèrics, donats per comprensió: \(A = \{ x / x \) és un nombre natural divisor de 36\}\), \(B = \{ x / x \) és un nombre primer inferior a 20\}\), \(C = \{ x / x^2 - 7x + 10 = 0 \} \) i \(D = \{ x / x \in \mathbb{Z} \text{ i } |x| < 3 \} \). Quin és el cardinal de cadascun d'aquests conjunts?

Solució.

A) Descomponem en factors primers obtenim 36 = 2\(^2\) \cdot 3\(^2\)

Els seus divisors naturals són:
\[
1 \quad 2 \quad 4 \\
3 \quad 6 \quad 12 \\
9 \quad 18 \quad 36
\]

Per tant, \(A = \{ 1, 2, 3, 4, 6, 9, 12, 18, 36 \} \)

El cardinal o nombre d'elements del conjunt serà \(n(A) = 9 \)

B) Fem la taula de nombres naturals primers fins a 20 i subratle els múltiples de 2, 3, 5,... Obtenim:

\[
1 \quad 2 \quad 3 \quad 4 \\
5 \quad 6 \quad 7 \\
8 \quad 9 \quad 10 \\
11 \quad 12 \quad 13 \\
14 \quad 15 \quad 16 \\
17 \quad 18 \quad 19 \\
20
\]

O sigui, els nombres primers, que quedaran sense subratllar seran: \(B = \{ 1, 2, 3, 5, 7, 11, 13, 17, 19 \} \) amb cardinal \(n(B) = 9 \)

C) Resolem l'equació de 2\(^{\text{a}}\) grau \(x^2 - 7x + 10 = 0 \) i obtindrem:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 10}}{2} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2}
\]

que dóna per solucions \(x_1 = 5 \) i \(x_2 = 2 \).

Així, \(C = \{ 2, 5 \} \) que té per cardinal \(n(C) = 2 \)

D) La desigualtat \(|x| < 3 \) equivalent a \(-3 < x < 3\), és a dir, a les dues desigualtats conjuntes \(x > -3 \) i \(x < 3 \). Co a cine pedagògica de \(|x| < 3 \) podem posar \(x < 3 \) i considerar primer el signe més, \(x < 3 \), i després el signe menys, \(x < 3 \), que, multiplicant per \(-1\) dóna, \(-x < -3\).

Com que els nombres han de ser enters \((x \in \mathbb{Z}) \) deduïm que el conjunt demanat és \(D = \{ -2, -1, 0, 1, 2 \} \) de cardinal \(n(D) = 5 \).

2. Digues si els quatre conjunts següents són finits, infinit numerables o infinit no numerables: \(A = \{ x / x \) és un estel de l'Univers\}\), \(B = \{ x / x \) és un nombre real\}\), \(C = \{ x / \cos(x) = 0 \} \) i \(D = \{ x / x \) és un nombre racional\}.

Solució. A) Sí suposem que són certes les teories actuals de la Cosmologia que consideren l'Univers finit però illimitat, serà doncs \(n(A) = \text{finit} \)

B) El conjunt dels reals \(\mathbb{R} \) és evidentment infinit i, com veurem més endavant, no és possible comptar els seus elements: Per qualsevol llista que féssim sempre ens en deixariem. Consegüentment, \(n(B) = \text{infinit no numerable} \)

C) Recordem la gràfica de la funció «cosinus» ja estudiada en cursos anteriors:

\[
\begin{array}{c}
\text{y} \\
\text{x}
\end{array}
\]

Observeu que aquesta corba tallarà l'eix \(X \) en infinit punts \(x_1 = \frac{\pi}{2}, x_2 = -\frac{\pi}{2}, x_3 = 3\frac{\pi}{2}, x_4 = -\frac{3\pi}{2}, x_5 = 5\frac{\pi}{2}, \ldots \), i que es podran comptar. D'aquesta manera \(n(C) = \text{infinit numerable} \)

D) El conjunt \(\mathbb{Q} \) de nombres racionals o fraccionaris és infinit i trobarem en el prob. 272 un mètode per a comptar-los, sense deixar-nos-en cap. Per tant, \(n(D) = \text{infinit numerable} \)

3. Dins el conjunt dels naturals, s'anomenen nombres triangulars aquells que es poden disposar geomètricament en forma de triangle. Així, per exemple, el 6 és un nombre triangular de base 3, primer pis 2 i segon pis 1.

Determina per extensió el conjunt \(A \) dels 10 primers nombres triangulars. Després troba una llei de formació i escriv el conjunt \(A \) per comprensió. Quina serà la base del nombre triangular 666?

Solució. Podem realitzar els diferents triangles i obtindrem

\[
\begin{array}{c}
\text{Continuament, obtindrem el de base 4 on el nombre de boles seria} \\
S_4 = 4+3+2+1 = 10, \text{ el de base 5 on } S_5 = 5+4+3+2+1 = 15, \text{ fins arribar} \\
do de base 10 on S_{10} = 10+9+8+\ldots+3+2+1 = 55.
\end{array}
\]

Es podrien fer servir progressions aritmètiques on la suma dels primers termes és \(S_n = (a_1 + a_n) \cdot n/2 \). Així \(S_{10} = (10+1) \cdot 10/2 = 55 \).

Per tant, \(A = \{1, 3, 6, 10, 15, 21, 28, 36, 45, \ldots \} \). Quant a la llei de formació, veiem que sempre \(a_1 = n \) i \(a_n = 1 \). O sigui \(S_n = (n+1) \cdot n/2 \) i el conjunt dels nombres triangulars serà \(A = \{ x / x = (n+1) \cdot n/2 \} \)
Finalment, trobarem la base del nombre apocalíptic \(x=666 \).
Substituïm en la llei de formació \(666=(n+1)\frac{n}{2} \), \(1332=n^2+n \), \(n^2+n-1332=0 \) de solucions \(x=\frac{-1\pm\sqrt{73}}{2} \). Com que el nombre ha de ser natural, agafarem el de valor positiu: \(n=36 \).

Tipus de conjunts

| 4. Troba els conjunts unitaris i binaris entre els següents conjunts
A={a,a,a}, B={x\in\mathbb{R} / x^2=9}, C={x\in\mathbb{N} / x és un nombre primer entre 90 i 100} i D={x / x és una muntanya de la ciutat comtal}. |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solució. El conjunt A és unitari, perquè consta d'un sol terme: l'element a. Resolet l'equació (x^2=9), tindrem dues solucions (x_1=3) i (x_2=-3), per la qual cosa (B={-3,3}) i com que (n(B)=2), serà un conjunt binari. Analitzarem els nombres entre 90 i 100 i veurem que (91=7.13), (92=2.46), (93=3.31), (94=2.47), (95=5.19), (96=2.48), (97=\ ?), (98=2.49) i (99=3.33). L'únic nombre primer és (97) i el conjunt serà (C={97}). Com (n(C)=1), C serà unitari. Com sabem, la ciutat de Barcelona té dues muntanyes importants: Montjuïc i Tibidabo. Com que (n(D)=2), el conjunt D serà binari.</td>
</tr>
<tr>
<td>En resum, Conjunts unitaris: A i D C. binaris: B i C.</td>
</tr>
</tbody>
</table>

| 5. Donats els quatre conjunts: A={x / x\in\mathbb{N}, \ 3<x<9}, B={-2,0,2}, C={x / x^3-4x=0} i D={x / x\in\mathbb{N} \ i \ |x-6|\leq2}, digues els que són iguals. |
|---|
| Solució. El conjunt A dels nombres naturals compresos entre 3 i 9 és clarament \(A=\{4,5,6,7,8\} \). Pensem aquest conjunt C per extensió: \(x^3-4x=0 \) , \(x.(x^2-4)=0 \) d'on \(x_1=0 \) o bé \(x^2-4=0 \) que dona \(x_2=2 \) i \(x_3=-2 \). Així \(C=\{-2,0,2\} \).
Trobem també els elements del conjunt D: \(|x-6|\leq2 \). Podem posar directament \(-2\leq(x-6)\leq2 \) i considerar les dues desigualtats
1) \(-2\leq x-6 \), d'on \(6-2\leq x \), o sigui \(4\leq x \).
2) \(x-6\leq2 \), d'on immediatament \(x\leq8 \).
El conjunt D serà \(D=\{x / x\in\mathbb{N} \ i \ 4\leq x \leq8\} \) que, expressat per extensió, ens queda \(D=\{4,5,6,7,8\} \).
Finalment conclouem que \(A=D \) i \(B=C \). |
6. Siguin els dos conjunts \(A=\{\text{Triangles equilàters rectangles}\}, \ B=\{x \in \mathbb{N}, \ x^3+6x^2+11x+6=0\}. \) Són iguals? Explica-ho.

Solució. Siguin un triangle equilàter de costats \(AB=AC=BC=x\). Si volem que també sigui rectangle, haurà de complir el Teorema de Pitàgores: \(AB^2+BC^2=AC^2\), o sigui \(x^2+x^2=x^2\), \(2x^2=x^2\) i com que \(x \neq 0\) simplificarem, \(2=1\), cosa que és un absurd. Això significa que no existeix cap triangle equilàter rectangle, és a dir \(A=\emptyset\).

Trobem ara els elements del conjunt \(B\) resolent l'equació cúbica \(x^3+6x^2+11x+6=0\):

\[
\begin{array}{rrrr}
1 & 6 & 11 & 6 \\
-1 & -1 & -5 & -6 \\
1 & 5 & 6 & 0
\end{array}
\]

Una arrel és \(x_1=-1\) i les altres dues seran les solucions de l'equació \(x^2+5x+6=0\) d'on s'obté \(x_2=-2\) i \(x_3=-3\). Com que no hi ha cap arrel natural, conclouem que \(B=\emptyset\).

D'aquesta manera, i prescindint de possibles implicacions filosòfiques, ens resulta matemàticament que \(A=B\).

1.2 **SUBCONJUNTS D'UN CONJUNT**

Subconjunts

7. En el referencial \(U\) de les figures geomètriques tenim els subconjunts \(A=\{\text{Quadrilàters}\}, \ B=\{\text{Quadrats}\}, \ C=\{\text{Rombes}\}\) i \(D=\{\text{Rectangles}\}. \) Estudia la relació d'inclusió que hi ha entre ells i dibuixa un diagrama de Venn. Quins no són comparables?

Solució. Observem les relacions següents: a) «Els quadrats, rombes i rectangles són quadrilàters perquè tots tenen quatre costats». b) «Els quadrats són rombes que tenen tots els angles rectes» i c) «Els quadrats són rectangles que tenen tots els costats iguals».

Resul·ten doncs les relacions d'inclusió següents:

\[
\begin{align*}
a) \ B & \subseteq A, \ C \subseteq A, \ D \subseteq A \\
b) \ B & \subseteq C, \ c) B \subseteq D \\
\text{També } & C \nsubseteq D \land D \nsubseteq C
\end{align*}
\]

Quant als conjunts \(C=\{\text{Rombes}\}\) i \(D=\{\text{Rectangles}\}\) notem que hi ha rombes que no són rectangles i viceversa. Per tant, podem afirmar que \(C \cap D\) no són comparables.
8. Demostra per doble inclusió que el conjunt dels nombres naturals imparells és igual al conjunt dels nombres naturals de quadrat imparell.

\textit{Solució.} Partim dels dos conjunts de l'enunciat:

\[A = \{ x \mid x = 2n - 1, \ n \in \mathbb{N} \} \quad \text{i} \quad B = \{ x \mid x^2 = 2m - 1, \ m \in \mathbb{N} \} \]

Demostrarem que \(A = B \) per doble inclusió, és a dir provant que:

1) \(A \subseteq B \quad \text{\&} \quad 2) \ B \subseteq A \)

1) Si \(x \in A \Rightarrow x = 2n - 1 \) on \(n \in \mathbb{N} \), \(x^2 = (2n-1)^2 \), \(x^2 = 4n^2 - 4n + 1 \), \(x^2 = (4n^2 - 4n + 2) - 1 \), \(x^2 = 2(2n^2 - 2n + 1) - 1 \). Anomenant \(m = 2n^2 - 2n + 1 \) tindrem \(x^2 = 2m - 1 \) i així \(x \in B \).

2) Si ara \(x \in B \) haurem de provar que \(x \in A \). Ho podem fer-ho pel contrempreciproc, és a dir, suposarem que \(x \in A \) i provarem que \(x \in B \). Això és fàcil perquè si \(x \in A \) voldrà dir que \(x = 2n \) i, elevant al quadrat, \(x^2 = 4n^2 \), la qual cosa ens indica que \(x \in B \).

Conjunt de les Parts

9. El cardinal de les parts d’un conjunt \(A \) és igual a 128. Quin és el cardinal de \(A \)? Pot ser que \(n(\mathcal{P}(A)) \) sigui impari? Per què?

\textit{Solució.} Sigui \(n \) el cardinal del conjunt \(A \), cosa que vol dir que \(A \) tindrà \(n \) elements: \(A = \{ a_1, a_2, a_3, \ldots, a_n \} \). Si volèm formar un subconjunt \(B \) de \(A \) veiem que per a l’element \(a_1 \) hi haurà dues possibilitats: \(a_1 \in B \) i \(a_1 \notin B \). El mateix podem dir dels \(n \) elements de \(A \). Per tant, el nombre de subconjunts de \(A \) serà: \(n(\mathcal{P}(A)) = 2^n \).

Com que per hipòtesi \(n(\mathcal{P}(A)) = 128 \), tenim \(2^n = 128 \). Si es descompon en factors tindrem \(128 = 2^7 \). O sigui \(2^n = 2^7 \) i per tant, \(n(A) = 7 \) elements

Fàcilment es veu que si \(A \neq \emptyset \) el valor \(n(\mathcal{P}(A)) \) no pot ser impari, ja que aquest cardinal de les parts d’un conjunt \(A \) val \(2^n \), que és parell si \(n \leq 1 \). És a dir, \(n(\mathcal{P}(A)) \neq \)Imparell.

10. Donat el conjunt \(A = \{ a, b \} \) determina els cardinals dels conjunts de les parts \(\mathcal{P}(A) \), i el de \(\mathcal{P}(\mathcal{P}(A)) \) que és el conjunt de les parts de \(\mathcal{P}(A) \). Escrigui tots els seus elements mitjançant un diagrama en arbre.
Solució. Formarem un diagrama en arbre pel conjunt \(\varnothing(A) \) i un altre per \(\varnothing(\varnothing(A)) \), on indiquem per "0" si l'element no pertany al conjunt i per "1" si hi pertany.

Conjunt de les parts:

\[a \quad b \quad \varnothing \]
\[0 \quad 1 \quad \{b\} \]
\[1 \quad 0 \quad \{a\} \]
\[1 \quad 1 \quad \{a,b\} \]

Conjunt de les parts de les parts:

\[M \quad N \quad P \quad \{\varnothing\} \quad \{\varnothing, \{P\}\} \quad \{\varnothing, \{P, \varnothing\}\} \quad \{\varnothing, \{P, \varnothing\}, \{N\}\} \quad \{\varnothing, \{P, \varnothing\}, \{N\}, \{N, \varnothing\}\} \quad \{\varnothing, \{P, \varnothing\}, \{N\}, \{N, \varnothing\}, \{N, P\}\} \quad \{\varnothing, \{P, \varnothing\}, \{N\}, \{N, \varnothing\}, \{N, P\}, \{N, P, \varnothing\}\} \]

Com podem veure en els diagrames anteriors, el conjunt de les parts de \(A=\{a,b\} \) serà \(\varnothing(\varnothing(A))=\varnothing, \{a\}, \{b\}, \{a,b\} \)

Si per facilitat anomenem \(P=\varnothing, M=\{a\}, N=\{b\} \) i \(P=A \), el conjunt de les parts de \(\varnothing(A) \) serà:

\[\varnothing(\varnothing(A))=\varnothing, \{\varnothing\}, \{P\}, \{P, \varnothing\}, \{N\}, \ldots, \{M, N, P\}, \{M, N, P, \varnothing\} \]

Quant al cardinal (o nombre d'elements) d'aquests conjunts resulta: \(n(\varnothing(A))=4 \) i \(n(\varnothing(\varnothing(A)))=16 \).

1.3 OPERACIONS CONJUNTISTES

Complementació

11. Determina per comprensió els complementaris dels següents conjunts en el referencial del conjunt dels nombres naturals: \(A=\{1,2,4,5,7,8,10,11,13,\ldots\} \), \(B=\{1,3,5,6,7,9,10,11,12,13,14,15,17,\ldots\} \).

Solució: Com \(N=\{1,2,3,4,5,6,7,8,9,10,11,\ldots\} \) és el conjunt dels naturals, el conjunt complementari de \(A \), simbolitzat per \(A' \) estarà format per tots els elements de \(N \) que no són de \(A \); és a dir, el conjunt \(A'=\{3,6,9,12,\ldots\} \).

El més lògic és que es tracti dels naturals múltiples de 3. Escriurem el conjunt \(A' \) per comprensió: \(A'=\{x \mid x=3n, n \in \mathbb{N}\} \).
Formem ara el complementari de B, \(B' = \{2, 4, 8, 16, \ldots\} \). Per tant suposem que el conjunt B' demanat és el conjunt dels naturals de les potències de dos. Per comprensió: \(B' = \{x / x = 2^n, n \in \mathbb{N}\} \).

12. En el referencial N dels nombres naturals, siguin A i B els conjunts dels múltiples de 6 i de 3, respectivament. Expressa’ls per extensió i estudia les relacions d'inclusió que hi ha entre A i B i també entre els seus complementaris A' i B'. Determina per comprensió aquests conjunts.

Solució. Els conjunts dels naturals múltiples de 6 i de 3 són respectivament \(A = A = \{6, 12, 18, 24, \ldots\} \) i \(B = \{3, 6, 9, 12, 15, \ldots\} \) o bé definitos per comprensió:

\[
A = \{x / x = 6n, n \in \mathbb{N}\} \quad \text{i} \quad B = \{x / x = 3m, m \in \mathbb{N}\}
\]

Els seus conjunts complementaris seran per, tant:

\[
A' = \{x / x \neq 6n, n \in \mathbb{N}\} \quad \text{i} \quad B' = \{x / x \neq 3m, m \in \mathbb{N}\}
\]

Per extensió tindrem \(A' = \{1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, \ldots\} \) i \(B' = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 15, \ldots\} \).

Si els representem per diagrames de Venn:

![Diagrama de Venn](attachment:image.png)

Observem que es verificaran les relacions d'inclusió següents:

\[A \subseteq B \quad \text{i} \quad B' \subseteq A' \]

Intersecció de conjunts

13. Siguin els conjunts \(A = \{a, b\} \) i \(B = \{b, c, d\} \). Forma els conjunts de les parts \(\varnothing \ (A \cap B), \varnothing \ (A) \) i \(\varnothing \ (B) \) i comprueba la relació que hi ha entre ells.

Solució. Formem primer la intersecció \(A \cap B = \{x / x \in A \ i \ x \in B\} \) que ens dóna \(A \cap B = \{b\} \). El seu conjunt de les parts tindrà en total \(2^2 = 2 \) subconjunts i serà \(\varnothing \ (A \cap B) = \{\varnothing, \{b\}\} \)
Per altra banda els cardinals de les parts de A i B seran $2^2=4$ i $2^3=8$ i tindran per elements respectius $\varphi(A)=\{\emptyset, \{a\}, \{b\}, A\}$ i $\varphi(B)=\{\emptyset, \{b\}, \{c\}, \{d\}, \{b,c\}, \{b,d\}, \{c,d\}, B\}$

Si fem la intersecció d'aquests conjunts trobats ens quedarà $\varphi(A) \cap \varphi(B)=\{\emptyset, \{b\}\}$.

Deduïm finalment la relació: $\varphi(A\cap B)=\varphi(A) \cap \varphi(B)$.

\section*{Unió de conjunts}

14. Si $A=\{1,3,5,7\}$, $B=\{2,3,4,5\}$ i $C=\{4,5,6,7\}$, comprova que es compleix la propietat associativa de la unió. Dibuix-ho en un diagrama de Venn en el referencial $U=\{0,1,2,3,4,5,6,7\}$.

\textbf{Solució.} La propietat associativa per a la unió se dona per $(A \cup B) \cup C = A \cup (B \cup C)$. Trobem primer $A \cup B$ i $B \cup C$

$A \cup B = \{x \ / \ x \in A \ o \ x \in B\} = \{1,3,5,7\} \cup \{2,3,6,7\} = \{1,2,3,5,6,7\}$

Anàlogament, $B \cup C = \{2,3,6,7\} \cup \{4,5,6,7\} = \{2,3,4,5,6,7\}$

\begin{center}
\begin{tikzpicture}
 \draw[very thick,->] (0,0) -- (3,0) node[midway,above] {\textcolor{blue}{B}};
 \draw[very thick,->] (0,0) -- (0,3) node[midway,right] {\textcolor{blue}{C}};
 \draw[very thick,->] (0,0) -- (0,-1) node[midway,left] {\textcolor{blue}{A}};
 \draw[very thick,->] (0,0) -- (3,-1) node[midway,above] {\textcolor{blue}{D}};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,above] {0};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,right] {1};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {2};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {3};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {4};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {5};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {6};
 \draw[very thick,->] (0,0) -- (0,0) node[midway,below] {7};
 \fill[blue] (1,2) circle (0.1) node[blue] {1} node[blue,below] {3} node[blue,right] {5} node[blue,above] {7};
 \fill[blue] (2,1) circle (0.1) node[blue] {0} node[blue,above] {2} node[blue,below] {4};
 \fill[blue] (3,0) circle (0.1) node[blue] {1} node[blue,below] {3} node[blue,right] {5} node[blue,above] {7};
 \fill[blue] (1,3) circle (0.1) node[blue] {1} node[blue,below] {3} node[blue,right] {5} node[blue,above] {7};
 \fill[blue] (2,2) circle (0.1) node[blue] {0} node[blue,above] {2} node[blue,below] {4};
 \fill[blue] (3,1) circle (0.1) node[blue] {1} node[blue,below] {3} node[blue,right] {5} node[blue,above] {7};
\end{tikzpicture}
\end{center}

Fem les dues unions demanades:

$\varphi(A \cup B) \cup C = \{1,2,3,4,5,6,7\}$

$A \cup (B \cup C) = \{1,2,3,4,5,6,7\}$

Per tant, $(A \cup B) \cup C = A \cup (B \cup C)$

15. Per a la família de conjunts $A_i=\{x \ / \ |x-2i| \leq 1 \ , \ x \in N\}$ on $i=1,2,3,4$, estudia si és una família de recobridors del conjunt $A=\{x \ / \ 0 \leq x \leq 10 \ , \ x \in N\}$. Comprova-ho en un diagrama de Venn.

\textbf{Solució.} Recordem que la desigualtat en valor absolut $|x-2i| \leq 1$ equival a $-(x-2i) \leq 1$, que es descompon en $(x-2i) \leq 1$ i $-(x-2i) \leq 1$. De la primera deduïm $x-2i \leq 1$, $x \leq 2i+1$ i de la segona $x-2i \geq 1$, $x \geq 2i-1$. En resum, es verificarà $2i-1 \leq x \leq 2i+1$.

Per $i=1,2,3,4$ s'obtindran els conjunts respectius de naturals $A_1=\{x \ / \ 1 \leq x \leq 3\}$, $A_2=\{x \ / \ 3 \leq x \leq 5\}$, $A_3=\{x \ / \ 5 \leq x \leq 7\}$ i $A_4=\{x \ / \ 7 \leq x \leq 9\}$ que, expressats per extensió, quedaràn $A_1=\{1,2,3\}$, $A_2=\{3,4,5\}$, $A_3=\{5,6,7\}$ i $A_4=\{7,8,9\}$.
Formant la seva unió \(A_1 \cup A_2 \cup A_3 \cup A_4 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \); és a dir, \(A_1 \cup A_2 \cup A_3 \cup A_4 = A \) i així els conjunts donats són recobridors del conjunt \(A \), com també podem veure gràficament:

\[
\begin{array}{cccccccccc}
\bullet & \bullet & A_2 & \bullet & \bullet & A_4 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A \\
\bullet & \bullet & A_1 & \bullet & \bullet & A_3 \\
\end{array}
\]

Notem que \(A_1, A_2, A_3 \) i \(A_4 \) no formen cap partició de \(A \) perquè hi ha interseccions diferents del conjunt buit:

\(A_1 \cap A_2 = \{3\}, A_2 \cap A_3 = \{5\}, A_3 \cap A_4 = \{7\} \).

Cardinal de la unió

16. Un professor imparteix les assignatures d’Àlgebra, Biologia i Càlcul a un curs d’Universitat. Després de fer un examen de cada matèria, ha comprovat que només 7 alumnes han aprovat les tres assignatures i que 35 les han suspès totes tres. També ha trobat que 45 alumnes han aprovat almenys l’Àlgebra, 53 almenys la Biologia i 52 almenys el Càlcul. D’aquests alumnes 17 sols han aprovat l’Àlgebra, 28 sols la Biologia i 22 sols el Càlcul.

Dibuixa un diagrama de Venn i determina els alumnes que només han aprovat dues assignatures. A quants alumnes ha examinat el professor?

Solució. Representem per \(A, B \) i \(C \) els alumnes que han aprovat almenys l’Àlgebra, almenys la Biologia o almenys el Càlcul, respectivament. Els seus conjunts complementaris \(A' \), \(B' \) i \(C' \) seran els dels alumnes suspesos en cadascuna d’aquestes assignatures.

Per hipòtesi tenim els cardinals \(n(A \cap B \cap C) = 7 \) i \(n(A' \cap B' \cap C') = 35 \). A més podem dibuixar un diagrama de Venn i plantear un sistema d’equacions, on \(x = n(A \cap B \cap C') \), o sigui, els alumnes que sols han aprovat l’Àlgebra i la Biologia, i el mateix per \(y = n(A' \cap B \cap C) \) i \(z = n(A \cap B' \cap C) \):

\[
\begin{array}{c}
U \\
A \\
B \\
C \\
28 \\
22 \\
35 \\
\end{array}
\]

\[
\begin{aligned}
17 + x + 7 + z & = 45 \\
x + 28 + y + 7 & = 53 \\
7 + y + 22 + z & = 52 \\
\end{aligned}
\]

\[
\begin{aligned}
x + z & = 21 \\
x + y & = 18 \\
y + z & = 23 \\
\end{aligned}
\]

Resolent el sistema donarà \(x = 8, y = 10 \) i \(z = 13 \). Per tant, el nombre d’alumnes que haurà examinat el professor serà el nombre total d’elements: \(n(U) = 7 + 35 + (17 + 28 + 22) + (8 + 10 + 13) = 140 \text{ alumnes} \)
17. En el conjunt dels nombres naturals inferiors o iguals a 1.000, quants n'hi ha que són múltiples de 2, de 3 o de 5? Quants que no seran múltiples ni de 2, ni de 3, ni de 5?

Solució. Sigui el referencial \(U=\{1,2,3,...,1.000\} \) i els conjunts dels múltiples de 2, 3 i 5 inferiors o iguals a 1.000, simbolitzats per \(A=\{2,4,6,...,1000\} \), \(B=\{3,6,9,...,999\} \) i \(C=\{5,10,15,...,1000\} \) respectivament.

Si observem que \(A=\{1,2,4,8,16,32,64,128,256,512,1024\} \), \(B=\{3,6,9,18,27,54,108,216,432,864\} \) i \(C=\{5,10,15,30,60,90,270,540,1620\} \) veurem que els cardinals d'aquests conjunts són: \(n(A)=500 \), \(n(B)=333 \) i \(n(C)=200 \).

D'aquesta manera, també podrem trobar els cardinals dels conjunts \(M=A\cap B \), \(N=A\cap C \) i \(P=B\cap C \) que seran els dels múltiples de 6, 10 i 15, respectivament, ja que per exemple, \(A\cap B=\{múltiples de 2 i 3\} \).

Formem ara aquests conjunts \(M=\{6,12,...,996\}=\{6,12,18,...,996\} \), \(N=\{10,20,...,1000\}=\{10,20,30,...,1000\} \) i \(P=\{15,30,...,990\}=\{15,30,45,...,990\} \). Els cardinals seran:

\[n(M)=166 \quad n(N)=100 \quad n(P)=66 \]

Igualment podem formar el conjunt \(Q=A\cap B\cap C=\{\text{múlt. 2, 3 i 5}\}=\{30,60,...,990\}=\{30,60,90,...,990\} \) que tindrà per cardinal \(n(Q)=33 \).

Formem un diagrama de Venn i fem una partició dels diferents conjunts que hi intervenen.

Tenim \(t=n(A\cap B\cap C)=n(Q)=33 \). De la gràfica i del que hem trobat abans es pot deduir que \(t+u=166 \), \(t+v=100 \) i \(t+w=66 \). O sigui \(u=133 \), \(v=67 \) i \(w=33 \). De la mateixa manera és \(t+u+v+x=500 \), \(t+u+w+y=333 \) i \(t+v+w+x=200 \), d'on resulta \(x=267 \), \(y=134 \) i \(z=67 \).

Trobem el cardinal dels múltiples de 2, 3 o 5 que serà la suma \(t+u+v+w+x+y+z=33+(133+67+33)+(267+134+67)=734 \). Per tant,

\[n(A\cup B\cup C)=734 \]

Finalment el cardinal del conjunt de nombres que no són múltiples ni de 2, ni de 3 ni de 5 serà el valor del cardinal de \(U \) menys el cardinal anterior. Per tant, \(m=1000-734=266 \).

Escriurem:

\[n(A'\cap B'\cap C')=266. \]
Partició d’un conjunt

18. Forma per comprensió els conjunts A, B i C determinats pels nombres naturals ampliats \(\mathbb{N}_0 \), que dividits per 3 donen de residu 0, 1 i 2, respectivament. Demostra que formen una partició de \(\mathbb{N}_0 \) i, finalment, comprova-ho en un diagrama de Venn, escrivint els conjunts per extensió.

Solució. Els conjunts donats, expressats per comprensió, són \(A = \{x \mid x = 3k, 0 \leq k < \infty \} \), \(B = \{x \mid x = 3k+1, 0 \leq k < \infty \} \) i \(C = \{x \mid x = 3k+2, 0 \leq k < \infty \} \), on la \(x \) és un nombre del conjunt \(\mathbb{N}_0 = \{0, 1, 2, 3, 4, \ldots \} \).

Els conjunts anteriors, expressats per extensió, vindran donats per \(A = \{0, 3, 6, 9, 12, \ldots \} \), \(B = \{1, 4, 7, 10, 13, \ldots \} \) i \(C = \{2, 5, 8, 11, 14, \ldots \} \). Fem una gràfica:

![Diagrama de Venn](image)

Es veu clarament que els conjunts A, B i C formen una partició de \(\mathbb{N}_0 \) perquè es verifiquen les dues condricions següents:

\[
A \cap B = A \cap C = B \cap C = \emptyset \quad \text{i} \quad A \cup B \cup C = \mathbb{N}_0
\]

És a dir, són disjunts dos a dos i formen un recobriment dels naturals ampliats.

Propietats duals

19. Siguin els conjunts \(A = \{x \mid |x-4| \leq 2\} \) i \(B = \{x \mid |x-6| < 3\} \) del referencial \(U = \{x \mid x \text{ és una xifra del sistema decimal}\} \). Determina els conjunts següents: \(A \cap B, A \cap B', A \cap B', (A \cap B)' \). Troba també els conjunts duals respecte a la unió, canviant les operacions i símbols pertinents.

Solució. El referencial és evidentment \(U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \) i els conjunts donats seran els nombres naturals compresos en l'interval tancat de centre 4 i radi 2 per A, i l'interval obert de centre 6 i radi 3 per B. És a dir, \(A = \{2, 3, 4, 5, 6\} \) i \(B = \{4, 5, 6, 7, 8\} \). Observem que en l'últim conjunt el 3 i el 9 no hi pertanyen doncs l'interval és obert.

Els seus complementaris seran \(A' = \{0, 1, 7, 8, 9\} \) i \(B' = \{0, 1, 2, 3, 9\} \). Formant les interseccions demanades:

\[
A \cap B = \{4, 5, 6\} \quad A' \cap B = \{7, 8\} \quad (A \cap B)' = \{2, 3\}
\]

\[
A' \cap B' = \{0, 1, 9\} \quad (A \cap B)' = \{0, 1, 2, 3, 7, 8, 9\}
\]
Podem veure en un diagrama de Venn totes les interseccions anteriors:

Per a les propietats duals canviem el símbol \(\cap \) pel \(\cup \). Els nous conjunts són

\[
\begin{align*}
A \cup B &= [2, 3, 4, 5, 6, 7, 8] \\
A' \cup B &= [0, 1, 4, 5, 6, 7, 8, 9] \\
A \cup B' &= [0, 1, 2, 3, 4, 5, 6, 9] \\
A' \cup B' &= [0, 1, 2, 3, 7, 8, 9] \\
(A \cup B)' &= [0, 1, 9].
\end{align*}
\]

20. Prova que la intersecció de dos conjunts és igual a la seva unió si i sols si els dos conjunts són iguals, és a dir prova que es verifica \(A \cap B = A \cup B \iff A = B \).

\[\text{Solució. Per a demostrar l'equivalència tindrem que provar les dues implicacions:} \]

1) \(A \cap B = A \cup B \Rightarrow A = B \quad \text{i} \quad A = B \Rightarrow A \cap B = A \cup B \)

1) Partim de \(A \cap B = A \cup B \) i demostrarem que \(A = B \). Ho farem per doble inclusió:

a) \(A \subseteq B \) \quad \text{Si} \quad x \in A \Rightarrow x \in A \cup B \quad \text{e com} \quad A \cup B = A \cap B \Rightarrow x \in A \cap B \Rightarrow x \in B \\

b) \(B \subseteq A \) \quad \text{Si} \quad x \in B \Rightarrow x \in A \cup B \quad \text{e com} \quad A \cup B = A \cap B \Rightarrow x \in A \cap B \Rightarrow x \in A \\

Com es verifica a la vegada el doble contingut, deduïm que \(A = B \).

2) Sigui ara \(A = B \) i provarem fàcilment que \(A \cap B = A \cup B \), ja que per idempotència \(A \cap B = A \cap A = A = A \cup A = A \cup B \)

En resum de 1) i 2) resulta \(A \cap B = A \cup B \iff A = B \).

21. En virtut de quina llei podem afirmar que els conjunts \(P = (A \cup B) \cap (B \cap C) \cap (C \cup A) \) i \(Q = (A \cap B) \cup (B \cap C) \cup (C \cup A) \) són iguals? Per què?

\[\text{Proba-ho emprant les propietats de la unió i de la intersecció.} \]

\[\text{Solució. Observem que} \quad Q \text{ resulta de} \quad P \text{ intercanviant entre elles les operacions d'unió i d'intersecció. Conseguentment, per la "llei de la dualitat" resultarà} \quad P = Q \]
Comprovem-ho aplicant les propietats de la unió i la intersecció de conjunts. Partirem de \(P \) i arribarem a \(Q \):
\[
P = (A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cup B) \cap (B \cup C) \cap (A \cup C)
\]
Traient factor comú \(P = (A \cup B) \cap ([B \cap A] \cup C) \)
Aplicant la propietat distributiva dues vegades següides
\[
P = [(A \cup B) \cap (B \cap A)] \cup [(A \cup B) \cap C]
\]
\[
P = [(A \cap B \cap A) \cup (B \cap B \cap A)] \cup [(A \cap C) \cup (B \cap C)]
\]
Simplificant, \(P = (A \cap B) \cup (A \cap C) \cup (B \cap C) \) És a dir, \(P = Q \).

22. Comprova en un diagrama de Venn la 2a llei de Morgan i aplica-ho després al cas particular dels conjunts \(A, B \) i el referencial \(U \), formats respectivament per les lletres de les tres paraules "problemes", "proposats" i "problemàtics".

Solució. Comprovem-ho per mitjà d’un diagrama de Venn:

El conjunts donats són \(A = \{p, r, o, b, l, e, m, s\} \), \(B = \{p, r, o, s, a, t\} \) del referencial \(U = \{p, r, o, b, l, e, m, a, t, i, c, s\} \). Formem els conjunts:

\(A \cup B = \{p, r, o, b, l, e, m, s, a, t\} \), \(A' = \{a, t, i, c\} \), \(B' = \{b, l, e, m, i, c\} \)

\((A \cup B)' = \{i, c\} \), \(A' \cap B' = \{i, c\} \)

Per tant, queda verificada la 2a llei de Morgan \((A \cup B)' = A' \cap B' \).

23. Definim la següent llei de simplificació per a conjunts: "Si \(A \cap B = A \cap C \) i \(A \cup B = A \cup C \) es dedueix que \(B = C \). Estudia si és certa.

Solució. Suposem que es verifica \(A \cap B = A \cap C \) i també \(A \cup B = A \cup C \) i provarem, per doble contingut, que \(B = C \).

1) \(B \subseteq C \) Si \(x \in B \Rightarrow \begin{cases} x \in A \Rightarrow x \in A \cap B \Rightarrow x \in A \cap C \Rightarrow x \in C \\ x \in A \Rightarrow x \in A \cup B \Rightarrow x \in A \cup C \Rightarrow x \in C \end{cases} \) \(\Rightarrow x \in C \)

2) \(C \subseteq B \) Si \(x \in C \Rightarrow \begin{cases} x \in A \Rightarrow x \in A \cap C \Rightarrow x \in A \cap B \Rightarrow x \in B \\ x \in A \Rightarrow x \in A \cup C \Rightarrow x \in A \cup B \Rightarrow x \in B \end{cases} \) \(\Rightarrow x \in B \)
Diferència de conjunts

24. Aplicant la definició de diferència de dos conjunts, troba els següents casos particulars: \(A - A \), \(A - \emptyset \), \(\emptyset - A \), \(A - U \) i \(U - A \).

Solució. Recordem que la definició de diferència conjuntista és \(A - B = A \cap B' \). Apliquem-ho a aquests casos indicats:

\[
\begin{align*}
A - A &= A \cap A' = \emptyset \\
A - \emptyset &= A \cap \emptyset' = A \cap U = A \\
\emptyset - A &= \emptyset \cap A' = \emptyset \\
A - U &= A \cap U' = A \cap \emptyset = \emptyset \\
U - A &= U \cap A' = A'
\end{align*}
\]

25. Per a tres conjunts qualssevol \(A, B \) i \(C \) prova que la intersecció és distributiva respecte a la diferència de conjunts, justificant totes les propietats que utilitzis. Fes un diagrama de Venn.

Solució. Es tracta de demostrar que \(A \cap (B - C) = (A \cap B) - (A \cap C) \). Fem la comprovació en un diagrama de Venn:

A\cap(B\cap C)={}\begin{array}{c}
\text{C}
\end{array}

\(A \cap (B - C) = \begin{array}{c}
\text{C}
\end{array} \)

\((A \cap B) - (A \cap C) = \begin{array}{c}
\text{C}
\end{array} \)

Anomenem M al segon membre, \(M = (A \cap B) - (A \cap C) \), fem operacions i arribem al primer membre. Apliquem en primer lloc la definició de diferència i tot seguit la 1a llei de Morgan:

\[M = (A \cap B) \cap (A \cap C)' = (A \cap B) \cap (A' \cup C') \]

Per distributivitat i pel fet de ser \(A \) i \(A' \) complementaris:

\[M = (A \cap B \cap A') \cup (A \cap B \cap C') = \emptyset \cup (A \cap B \cap C') = A \cap B \cap C' \]

Aplicant l'associativitat i la definició de diferència:

\[M = A \cap (B \cap C') = A \cap (B - C) \]

En resum, \(A \cap (B - C) = (A \cap B) - (A \cap C) \).

26. Comprova per diagrames de Venn que la diferència de conjunts és distributiva a la dreta respecte a la intersecció i també respecte a la unió. Demostra aquestes propietats aplicant la definició de diferència i les propietats de les operacions conjuntistes.
Solució. S’ha de demostrar que \((A \cap B) - (A - C) \cap (B - C)\) i també que \((A \cup B) - (A - C) \cup (B - C)\). Vegem-ho abans per diagrames de Venn:

\[(A \cap B) - (A - C) \cap (B - C)\]

\[(A \cup B) - (A - C) \cup (B - C)\]

Demostrem-ho ara fent servir les propietats conjuntistes i provant que el primer costat és igual que el segon:

1) \(\[(A \cap B) - C = (A \cap B) \cap C' = A \cap B \cap C' = (A \cap C') \cap (B \cap C') = (A - C) \cap (B - C)\]\n
2) \(\[(A \cup B) - C = (A \cup B) \cap C' = (A \cap C') \cup (B \cap C') = (A - C) \cup (B - C)\]\n
Diferència simètrica de conjunts

27. En el referencial \(N\) dels nombres naturals siguin els conjunts \(A =\{x / x=2n\}\) i \(B =\{x / x=3n\}\). Determina els conjunts \(P = (A \Delta B)\) i \(Q = (A \cap B) \cup (A' \cap B')\). Què observes? Demostra-ho.

Solució. Els conjunts donats són els dels naturals múltiples de 2 i de 3, respectivament. Si els escrivim per extensió tindrem:

\[A =\{2,4,6,8,10,12,14,16,18,...\}\] i \(B =\{3,6,9,12,15,18,...\}\)

El conjunt intersecció serà evidentment els dels múltiples de 6, i la diferència simètrica serà el conjunt dels múltiples de 2 o de 3, però no de 6:

\[A \Delta B = (A \cap B) - (A \cap B) = \{2,3,4,8,9,10,14,15,16,...\}\]

Per tant, \(P = (A \Delta B)' =\{1,5,6,7,11,12,13,17,18,...\}\)

Calculem ara el conjunt \(Q = (A \cap B) \cup (A' \cap B')\) format pels múltiples de 6 i pels que no són ni múltiples de 2 ni de 3:

\[Q =\{6,12,18,...\} \cup \{1,5,7,11,13,17,...\} =\{1,5,6,7,11,12,13,17,18,...\}\]

Observem que \(P = Q\), o sigui \[(A \Delta B)' = (A \cap B) \cup (A' \cap B')\]

Demostrem-ho. \(P = (A \Delta B)' = ((A \cup B) - (A \cap B))' = ((A \cup B) \cap (A \cap B))'\)

Aplicant les lleis de Morgan, \(P = (A \cup B)' \cup (A \cap B) = (A' \cap B') \cup (A \cap B)\)

Per commutativitat, \(P = (A \cap B) \cup (A' \cap B')\)

Que és precisament \(Q\). Llavors, \(P = Q\).
28. Donats tres conjunts qualsevol A, B i C, demostra que la diferència simètrica de conjunts verifica la propietat associativa.

Solució. Proveiem que \((A\Delta B)\Delta C = A\Delta (B\Delta C)\) i ho farem arreglant cada costat de manera que quedi com una unió d'interseccions, i veient que dóna el mateix conjunt.

PRIMER MEMBRE:

\[(A\Delta B)\Delta C = [(A-B)\cup (B-A)]\cup (C-[A\cap B\cup (B\cap A)])\]

Ens quedarà de la manera \((A\Delta B)\Delta C = M \cup N\) on

\[M = [(A-B)\cup (B-A)]\cap (C-[A\cap B\cup (B\cap A)]) = (A\cap B\cap C') \cup (B\cap A\cap C')\]

\[N = C-[A\cap (B-A)]\cap (A\cap B\cap (B\cap A)) = C - (A\cap B\cap (B-A)) = C - A\cap (B\cap (B-A)) = C - A\cap (B\cap C)\]

Per tant,

\[(A\Delta B)\Delta C = (A\cap B\cap C') \cup (A\cap B\cap C) \cup (A\cap B\cap C)\]

En el diagrama de Venn es veu que aquests quatre conjunts són els tramats de la següent figura de la dreta:

![Diagrama de Venn](image)

SEGON MEMBRE:

\[A\Delta (B\Delta C) = A\Delta [(B-C)\cup (C-B)] = [A-(B\cap C)\cup (C\cap B)] \cup [(B-C)\cup (C-B)] - A\]

Ens quedarà també de la manera \(A\Delta (B\Delta C) = P \cup Q\) on

\[P = A-(B\cap C)\cup (C\cap B) = A\cap [(B\cap C')\cup (C\cap B')] = A\cap [(B\cap C')\cup (C\cap B')] = A\cap [(B'\cap C')\cup (B\cap C)] = A\cap [(B\cap C')\cup (B\cap C)] = (A\cap B\cap C)\]

\[Q = [(B-C)\cup (C-B)] \cup A = [(B\cap C')\cup (C\cap B')] \cup (B\cap C') = (B\cap C') \cup (C\cap A')\]

Per tant, substituint tindrem:

\[A\Delta (B\Delta C) = (A\cap B\cap C') \cup (A\cap B\cap C) \cup (A\cap B\cap C)\]

Nota que es verifica l'associativitat \((A\Delta B)\Delta C = A\Delta (B\Delta C)\)

A més, fem notar que el càlcul de \(A\Delta (B\Delta C)\) és anàleg al càlcul de \((A\Delta B)\Delta C\), canviant \(A \rightarrow B\), \(B \rightarrow C\) i \(C \rightarrow A\).
29. Expressa com a unió d'interseccions, els següents conjunts
\[M = A \cup (B \Delta C) , \quad N = (A \cap C') \Delta (B \cap C') , \quad P = A -(B \Delta C) , \quad Q = (A \Delta B) - C , \]
\[R = (A \cap B \cap C) \cup (A' \cup B \cup C') \quad \text{i} \quad S = (A \cup B \cup C) - (A' \cap B \cap C). \]
Indica els conjunts que són iguals.

Solució. Fent els diagrames de Venn podem saber les parelles de conjunts que són iguals. Demostrem-ho, però, fent servir les propietats de les operacions entre conjunts:

\[M = A \cup (B \Delta C) = A \cup ((B - C) \cup (C - B)) = A \cup ((B \cap C') \cup (C \setminus B')) = A \cup (B \cap C') \cup (B \setminus C) \]

\[N = (A \cap C') \Delta (B \cap C') = (A \Delta B) \cap C' = [(A - B) \cup (B - A)] \cap C' = (A \cap B') \cup (B \setminus A') \cap C' = (A \cap B') \cup (B \setminus A') \cup (A' \cap B) \]

\[P = A -(B \Delta C) = A - [(B - C) \cup (C - B)] = A \cap ((B \cap C') \cup (C \setminus B')) = A \cap (B \cap C') \cup (B \setminus C) \cup (C \setminus B) \]

\[Q = (A \Delta B) - C = (A \setminus B) \cup (B \setminus A) \cup C = (A \cap B') \cup (B \setminus A') \cup C = (A \cap B') \cup (B \setminus A') \cup (A' \cap B) \]

\[R = (A \cap B \cap C) \cup (A' \cup B \cup C') = (A \cap B \cap C) \cup (A' \cup B \cup C') \]

\[S = (A \cup B \cup C) - (A' \cap B \cap C) = (A \cup B \cup C) \setminus (A' \cap B \cap C) = A \cup (B \cup C) \setminus (A' \cap B \cap C) \]

Són iguals, doncs, els conjunts \[M = S \quad \text{i} \quad P = R \quad \text{i} \quad N = Q. \]

30. Si A i B són dos conjunts qualsevol, demostra que les operacions d'intersecció i de diferència simètrica formen una partitció de la unió. Troba una altra partitció diferent de la unió.
Solució. Siguin els conjunts intersecció, \(M = A \cap B \), i diferència simètrica, \(N = A \Delta B \). Per provar que formen una partició del conjunt unió \(A \cup B \), veurem que es compleix: 1) \(M \cap N = \emptyset \) i 2) \(M \cup N = A \cup B \):

1) \(M \cap N = (A \cap B) \cap (A \Delta B) = (A \cap B) \cap [(A \cup B) - (A \cap B)] =
\[\{(A \cap B) \cap [(A \cup B) \cap (A \cap B)] = (A \cap B) \cap (A \cup B) \cap (A \cap B) =
\] \[= [(A \cap B) \cap (A \cap B)] \cap (A \cup B) = \emptyset \cap (A \cup B) = \emptyset \]

2) \(M \cup N = (A \cap B) \cup (A \Delta B) = (A \cap B) \cup [(A - B) \cup (B - A)] =
\[= (A \cap B) \cup [(A \cap B) \setminus (B \cap A)] = (A \cap B) \cup (A \cap B) \setminus (A \cap B) =
\] \[= [A \setminus (B \setminus A)] \cup (A \cap B) = A \cup (A \cap B) = A \cup (A \cap B) =
\] \[= (A \cup A) \cap (A \cup B) = A \cup (A \cup B) = A \cup B \]

Observem-ho en uns diagrames de Venn:

Un altra partició del conjunt unió \(A \cup B \) pot ser la formada pels conjunts \(M = A - B \), \(N = A \cap B \) i \(P = B - A \), que compliran les condicions:

1) \(M \cap N = M \cap P = N \cap P = \emptyset \) i 2) \(M \cup N \cup P = A \cup B \)

Visualitzem-ho amb diagrames de Venn similars als anteriors:

En realitat, aquesta partició és equivalent a l'anterior perquè la diferència simètrica \(A \Delta B \) és igual a la unió dels conjunts \(A - B \) i \(B - A \).
f) PROBLEMES PROPOSATS

1.1 CONJUNTS I ELEMENTS

Determinació per extensió i comprensió

31. En els següents conjunts determinats per extensió: A={n,o,m,b,r,e,s}, B={-3,2,7}, C={1,4,9,16,25,...} i D={Vermell, Taronja, Groc, Verd, Blau, Lila i Violeta), indica una llei de formació i determina'ls per comprensió.

Sol. A={x / x és una lletra de la paraula "nombres"}, B={x / (x+3)(x-2)(x-7)=0}, C={x / x=n², n€N} i D={x / x és un color de l'Arc de Sant Martí}.

32. Sigui A el conjunt de tots els nombres compresos entre 40 i 50, ambdós inclosos, que es poden descompondre com a suma de quadrats de dos nombres naturals.

Escriu el conjunt A per comprensió i, després per extensió. Quin dels nombres d'aquest conjunt es pot descompondre de dues maneres diferents?

Sol. A={x / x=a²+b², a,b€N, 40≤x≤50}, A={40,41,45,50}, el 50 perquè 50=1²+7²=5²+5².

Tipus de conjunts

33. Indica quins dels següents conjunts A={x / x és un nombre real de quadrat positiu}, B={x / x és un home de menys de 100 anys}, C={x / x és un peix que viu al mar} i D={x / (x-3)²=x²-6x+9} són el conjunt Universal.

Sol. A i D.

34. Estudia quins d'aquests conjunts són buits: A={x / x és una recta real perpendicular a ella mateixa}, B={x / x€R, x²=0}, C={x / x és un solter casat} i D={x / x²-5x+6=0, x€Q}.

Sol. A=C=Ø, B={0}, D={2,3}.
35. Apunta el cardinal de cadascun dels conjunts \(A=\{x \mid x.0=0\} \), \(B=\{x \mid x \text{ és una lletra de la paraula "matematiques"}\} \), \(C=\emptyset \) i \(D=\{\emptyset\} \), i digues si són buits o unitaris.

Sol. \(n(A)=\infty \), \(n(B)=8 \), \(n(C)=0 \) buit, \(n(D)=1 \) unitari.

36. En un poble molt petit hi vivia un barber que afaitava tots els homes del poble, menys els que s'afaitaven sols. Sigui \(A \) el conjunt dels homes que s'afaiten sols i \(B \) el dels que afaita el barber. Es pregunta: qui afaita al barber?

Sol. Si \(x \in A \Rightarrow x \in B \). Si \(x \in B \Rightarrow x \in A \). En cap. El barber no podiat ser afaitat ni deixar de ser afaitat. Ni pot portar barba, ni deixar de portar-ne. (Paradoxa de Russell).

1.2. SUBCONJUNTS D'UN CONJUNT

Subconjunts

37. Estudia si són comparables els conjunts \(A=\{x \mid x^4+36=13x^2\} \) i \(B=\{x \mid |x-1|<5\} \), on el referencial \(U \) és el conjunt dels enteros.

Sol. \(A=\{-3,-2,2,3\} \), \(B=\{-3,-2,-1,0,1,2,3,4,5\} \). Sí, \(B \supset A \).

Conjunt de les Parts

38. Donat el conjunt \(A=\{a,b,c\} \) determina el cardinal del conjunt de les parts \(\mathcal{P}(A) \) i escriu tots els seus elements utilitzant un diagrama en arbre. Quantes relacions d'inclusió estricta poden formar-se amb aquests subconjunts?

Sol. \(n(\mathcal{P}(A))=8 \), \(\mathcal{P}(A)=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, A\} \), 19 relacions d'inclusió.

39. Amb la paraula "economista" determina els conjunts \(A=\{\text{vocals}\} \) i \(B=\{\text{consonants}\} \). Troba els conjunts de les parts \(\mathcal{P}(A) \) i \(\mathcal{P}(B) \), escrivant els seus elements per mitjà de dos diagrames en arbre. Quants subconjunts propis tenen?
Sol. \(A = \{c, o, i, a\}, n(\emptyset(A)) = 16, \) Subc. propis = 14.
\(B = \{c, n, m, s, t\}, n(\emptyset(B)) = 32, \) Subc. propis = 30.

40. Se sap que un conjunt \(A \) està format per 62 subconjunts propis. De quants elements consta el conjunt \(A \)? Representa aquests elements per les últimes lletres de l’alfabet i digues quants subconjunts constaran únicament de la meitat dels seus elements. Apunta’ts tots.

Sol. \(n(\emptyset(A)) = 64, n(A) = 6, A = \{u, v, w, x, y, z\}, \) \(n = 20, A_1 = \{u, v, w\}, \) \(A_2 = \{u, v, x\}, \) \(\ldots, A_{20} = \{x, y, z\}. \)

1.3. OPERACIONS CONJUNTISTES

Complementació

41. Donada la paraula “complementació” i la propietat \(p = “s e r \) vocal”, troba els conjunts \(U = \{x / x \) és una lletra de la paraula donada\}, \(A = \{x / p(x)\} \) i \(B = \{x / p'(x)\}, \) on \(p' \) és la propietat contrària de \(p \). Quina relació hi ha entre \(A \) i \(B \)? I entre els seus cardinals? I entre els cardinals dels conjunts de les parts?

Sol. \(B = A' \) \(n(A) + n(B) = n(U) \) \((4 + 6 = 10) \) \(n(\emptyset(A)).n(\emptyset(B)) = n(\emptyset(U)). \)

Intersecció de conjunts

42. Els conjunts \(A = \{1, 3, 5, 7, 9, 11, 13, 15\}, B = \{2, 3, 6, 7, 10, 11, 14, 15\}, \) \(C = \{4, 5, 6, 7, 12, 13, 14, 15\} \) i \(D = \{8, 9, 10, 11, 12, 13, 14, 15\} \) estan formats per nombres naturals i tenen elements comuns. Troba les onze interseccions possibles que es poden formar entre aquests conjunts donats.

Sol. \(A \cap B = \{3, 7, 11, 15\}, A \cap C = \{5, 7, 13, 15\}, A \cap D = \{9, 11, 13, 15\}, \) \(B \cap C = \{6, 7, 14, 15\}, B \cap D = \{10, 11, 14, 15\}, C \cap D = \{12, 13, 14, 15\}, \) \(A \cap B \cap C = \{7, 15\}, A \cap B \cap D = \{11, 15\}, A \cap C \cap D = \{13, 15\}, \) \(B \cap C \cap D = \{14, 15\}, A \cap B \cap C \cap D = \{15\}. \)
43. En el referencial Z dels nombres enters, sigui A el conjunt dels nombres enters primers i B el conjunt dels nombres enters parells. Expressa per comprensió el conjunt intersecció A \cap B.

Sol. \(A = \{ \pm 1, \pm 2, \pm 3, \pm 5, \pm 7, \ldots \} \), \(B = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots \} \), \(A \cap B = \{ -2, +2 \} \),
\(A \cap B = \{ x / x^2 = 4 \} \).

Unió de conjunts

44. Donats els conjunts A=\{m,n,p\} i B=\{p,q\} troba A \cup B i els conjunts de les parts ϕ(A), ϕ(B) i ϕ(A \cup B). Estudia la relació d'inclusió que hi ha entre ϕ(A) \cup ϕ(B) i ϕ(A \cup B).

Sol. \(A \cup B = \{ m,n,p,q \} \) \(\varphi(A) \cup \varphi(B) \subseteq \varphi(A \cup B) \).

Cardinal de la unió

45. En un congrés espanyol d'economistes s'han reunit en total 160 persones i s'ha decidit que les llengües oficials siguin l'andalús, el basc i el català. Se sap que el 32,5% parla andalús, el 37,5% basc i el 42,5% català; el 10% parla andalús i basc, el 12,5% andalús i català i el 15% basc i català; per últim el 3,75% parla andalús, basc i català.

Quantes persones hi ha que no parlen cap de les tres llengües?

Sol. \(n(A) = 52 \), \(n(B) = 60 \), \(n(C) = 68 \), \(n(A \cap B) = 16 \), \(n(A \cap C) = 20 \),
\(n(B \cap C) = 24 \), \(n(A \cap B \cap C) = 6 \), \(n(A \cup B \cup C) = 126 \), \(N = 34 \) persones.

46. En una ciutat s'ha comprovat que el 42% dels seus habitants fumen, el 64% beuen alcohol i el 39% juguen al Bingo. A més a més se sap que almenys el 27% fumen i beuen, almenys el 17% fumen i juguen i almenys el 19% beuen i juguen. Finalment, resulta que només el 7% tenen tots tres vicis. Es pregunta:

Quin és el percentatge d'habitants que no té cap d'aquests tres vicis? Quin percentatge només en té un? Quin tant per cent en té únicament dos d'aquests tres vicis?

Sol. \(N = 100 \), \(n(F) = 42 \), \(n(B) = 64 \), \(n(J) = 39 \), \(n(F \cap B) = 27 \ldots \)
\(N(F \cup B \cup J) = 89 \), \(N_1 = 11\% \), \(N_2 = 40\% \), \(N_3 = 42\% \).
Partició d’un conjunt

47. Si el referencial és \(U=\{a, b, c, d, e\} \) troba totes les 15 particions possibles que es poden formar amb dos conjunts \(A \) i \(A' \).

Sol. \(P_1=\{a\}, \{b, c, d, e\} \) Simpl. notació: \(P_1=a/bcde, P_2=b/acde, \)
\(P_3=bc/abde, P_4=cd/abce, P_5=de/abce, \)
\(P_6=ad/bcde, P_7=ac/bcde, P_8=bd/abe, P_9=bd/ace, P_{10}=bc/ade, \)
\(P_{11}=bc/acd, P_{12}=bc/acd, P_{13}=cd/abe, P_{14}=ce/abd, P_{15}=de/abc. \)

48. Donat el conjunt dels nombres enters \(Z \) i els quatre conjunts \(A=\{x / x=4k\}, B=\{x / x=4k+1\}, C=\{x / x=4k+2\} \) i \(D=\{x / x=4k+3\}, \) on \(k \in Z \), expresse’ls per extensió i comprova que formen una partició del conjunt d’enters doant \(Z \). Fes un esquema.

Sol. \(A=\{..., -8, -4, 0, 4, 8, ..., \}, B=\{..., -7, -3, 1, 5, 9, ..., \}, \)
\(C=\{..., -6, -2, 2, 6, 10, ..., \}, D=\{..., -5, -1, 3, 7, 11, ..., \}, A \cap B=\emptyset, A \cap C=\emptyset, ..., A \cup B \cup C \cup D=Z. \)

Propietats duals

49. Mitjançant diagrames de Venn comprova la 1a llei de Morgan. Després, en el referencial \(N \), i amb els conjunts \(A=\{x / x=2n\} \) i \(B=\{x / x=3n\} \), troba el complementari de la intersecció i també la unió dels complementaris, comprovant que són iguals.

Sol. \(A \cap B=\{x / x=6n\}, (A \cap B)'=A' \cup B'=\{x / x \neq 6n\}. \)

50. Amb un diagrama de Venn troba el valor de la següent expressió conjuntista \(M=(A' \cap B) \cup (A \cap B') \cup (A \cap B) \cup (A' \cap B') \). Demostra-la també aplicant les propietats estudiades.

Sol. \(M=U, M=(A' \cap B) \cup (A \cap B) \cup (A \cap B') \cup (A' \cap B') = \)
\(([A' \cup A] \cap B) \cup ([A \cup A'] \cap B') = (U \cap B) \cup (U \cap B') = B \cup B' = U. \)

51. Prova, emprant diagrames de Venn, que la unió és distributiva respecte a la intersecció. Aplica-ho als conjunts \(A=\{a, b, e, f\}, B=\{b, c, d, e\} \) i \(C=\{d, e, f, g\} \) del referencial \(U=\{a, b, c, d, e, f, g, h\} \).

Sol. \(A \cup (B \cap C)=(A \cup B) \cap (A \cup C)=\{a, b, d, e, f\}. \)
52. Aplicant les propietats de la unió i de la intersecció, demostra que \((A \cup B) \cap (A' \cup B') = (A \cap B') \cup (A' \cap B)\). Sabries trobar l'equació dual de l'anterior?

Sol. \(M = (A \cup B) \cap (A' \cup B')\) ...

Propietat dual: \((A \cap B) \cup (A' \cap B') = (A \cup B') \cap (A' \cup B)\).

53. Simplifica l'expressió conjuntista \(M = (A \cup B) \cap (A' \cup B) \cap (A \cup B')\). Comprova la simplificació obtinguda emprant diagrames de Venn.

Sol. Assoc. i fact. comú B. \(M = A \cap B\).

Diferència de conjunts

54. Donats els conjunts \(A = \{b, c, d, e, f\}\), \(B = \{d, e, g, h, i\}\) i \(C = \{e, f, i, j, k\}\) del referencial \(U = \{a, b, c, d, e, f, g, h, i, j, k, l\}\) comprova que no es verifica l'associativitat de la diferència de conjunts. Fes un diagrama de Venn. Quina relació d'inclusió dedueixes?

Sol. \((A-B)-C \subseteq \{b, c\}\), \(A-(B-C) = \{b, c, c, f\}\), \((A-B)-C \subseteq A-(B-C)\).

55. Tenint en compte les propietats de les operacions conjuntistes i donats els quatre conjunts \(M = A \cap (B \cup C)\), \(N = (A-B) \cup (A-C)\), \(P = A \cap (B \cap C)\) i \(Q = (A-B) \cap (A-C)\), simplifica'ls i troba la relació que hi ha entre ells.

Aplica-ho després als conjunts dels múltiples de 2, 3 i 5, en el referencial dels naturals compresos entre 1 i 30, ambdós inclosos.

Sol. \(A = \{x \mid x = 2n\}\), \(B = \{x \mid x = 3n\}\) i \(C = \{x \mid x = 5n\}\)

\(U = \{x \mid 1 \leq x \leq 30, x \in \mathbb{N}\}\). \(M = Q = A \cap B' \cap C' = \{2, 4, 8, 14, 16, 22, 26, 28\}\)

\(N = P = A \cap (B \cap C)' = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28\}\).

56. De dos conjunts donat A i B se sap que \(A-(A-B) = \emptyset\) i també que \(A \cup (B-A) = U\). Què podem deduir de A i B? Demostra-ho. aplicant la definició de diferència.

Sol. \(A-(A-B) = A \cap B\), \(A \cup (B-A) = A \cup B\), Partició, \(A = B'\).
Diferència simètrica de conjunts

57. A partir de la definició de la diferència simètrica com la unió dels conjunts menys la seva intersecció, troba els conjunts següents: \(A\Delta A \), \(A\Delta \emptyset \), \(A\Delta U \) i \(A\Delta A' \).

\[\text{Sol. } A\Delta A = \emptyset \ , \ A\Delta \emptyset = A \ , \ A\Delta U = A' \ , \ A\Delta A' = U. \]

58. Prova que la intersecció és distributiva respecte a la diferència simètrica. Aplica-ho als conjunts \(A=[m,q,r,u,x,z] \), \(B=[m,q,s,v,x,z] \) i \(C=[p,r,s,w,x,z] \) del referencial \(U=[m,n,o,p,q,r,s,t,u,v,x,y,z] \). Fes la comprovació per diagrames de Venn.

\[\text{Sol. } A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C) = (A \cap B \cap C)' \cup (A \cap B' \cap C) = [m,q,r]. \]

59. Donat el referencial \(U=[x \ / \ x \in N \ , \ x \leq 16] \) i els conjunts \(A=\{2,6,7,8,12,13,14,16\} \), \(B=\{3,6,9,10,12,13,15,16\} \), \(C=\{4,7,9,11,12,14,15,16\} \) i \(D=\{5,8,10,11,13,14,15,16\} \), troba \(M=A \cap [B \cup (C \Delta D)] \), \(N=(A \cap B) \Delta (C \cap D) \), \(P=[A \cup (B \cap C)] \Delta D \) i \(Q=A \cap [(B \Delta C) \cap D] \).

\[\text{Sol. } M=\{2,14\} \ , \ N=\{6,11,12,13,14,15\} \ , \ P=\{2,5,6,7,9,10,11,12\} \ i \ Q=\{6,7\}. \]

60. Es defineix "l'anel de conjunts" com una classe de conjunts \(\mathcal{A} \) tals que si \(A \cap B \) són dos conjunts de \(\mathcal{A} \), també \(A \cap B \) i \(A \cap B \) pertanyen a \(\mathcal{A} \). Prova que la unió \(A \cup B \) també pertanyerà a \(\mathcal{A} \).

\[\text{Sol. } \text{Proveu que } A \cup B = (A \cap B) \Delta (A \Delta B). \text{ Fem } M=(A \cap B) \Delta (A \Delta B)=\ldots=A \cup B, \text{ aplicant la def. dif. sim., Morgan, distrib, assoc, etc.} \]
Capítol 2: Relacions binàries

a) Bibliografia escollida 46
b) Programa i simbologia 47
c) Conceptes i exemples 48
d) Formulació matemàtica 55
e) Problemes resolts 58
f) Problemes proposats 78
a) BIBLIOGRAFIA ESCOLLIDA

Básica:

Adicional:

LIFSCHUTZ, S. Teoría de Conjuntos y Temas Afines. P81/103.

ESPADA BROS, E. Problemas resueltos de Algebra. Tomo (I). P60/83.

b) PROGRAMA I SIMBOLOGIA

2.1 GRAFOS I CORRESPONDÈNCIES
1) **Producte cartesià.** Parell ordenat ((a,b)), 1r i 2n elements. Producte cartesià de conjunts (AxB), conjunt producte, diagrama cartesià, cardinal del conjunt producte (n(AxB)).

2) **Grafo d’un producto cartesià.** Concepte de grafo (F, G, H,...). Operacions amb grafos, grafo compost (G•F), recíproc (F⁻¹) i diagonal (D).

3) **Correspondències i funcions.** Correspondència (f, g, h,...). Conjunts inicial (A) i final (B). Elements original (a) i imatge (f(a)). Domini (D(f)) i Recorregut (R(f)). Funcions, gràfica i taula de valors.

2.2 RELACIONS BINÀRIES
1) **Definició i propietats.** Relació binària (R), diagrames sagital i de circulació. Propietats reflexiva, simètrica, antisimètrica, transitiva i circular.

2) **Relacions d'equivalència.** Relació d'equivalència (≈), conjunts equivalents. Classes d'equivalència (C(a)), representant de la classe (a). Propietats, classes disjuntes i recobridores. Conjunt quocient (A/≈). Congruències o classes residuals mòdul n.

3) **Relacions d'orden.** Relació d'ordre (≤). Conjunt totallyment ordenat, ordre total; conjunt parcialment ordenat, ordre parcial. Conjunt lineal, intervals, extrems de l'interval. Conjunt acotat, intervals fits i infinitis. Classes d'intervals. Elements notables d'un conjunt: Cotes superior (c. s.) i inferior (c. i.). Elements suprem (sup) i ínfim (inf). Elements màxim (màx.) i mínim (min.), conjunt ben ordenat. Diagrames de Hasse per l'ordre parcial, elements maximal i minimal.
c) CONCEPTES I EXEMPLES

2.1 GRAFOS I CORRESPONDÈNCIES

2.1.1 PRODUCTE CARTESIÀ. Donat el conjunt \(\{a,b\} \) es defineix el concepte de \textit{parell ordenat}, simbolitzat per \((a, b)\), com el conjunt de parts \(\{\{a\}, \{a, b\}\} \) que, evidentment, estan "ordenats" per inclusió ja que \([a] \) és un subconjunt de \([a, b] \). L'element \(a \) és el \textit{primer element} i el \(b \) el \textit{segon element}. Observem que \((a, b) \neq (b, a)\).

Tenim ara dos conjunts qualssevol \(A \) i \(B \). El \textit{producte cartesià} d'aquests dos conjunts, anomenat també \textit{conjunt producte}, i simbolitzat per \(A \times B \), és el conjunt de tots els parells ordenats que es poden formar agafant el primer element del conjunt \(A \) i el segon del conjunt \(B \). Si els dos conjunts són iguals, l'anomenarem \(A^2 \).

Per representar el conjunt producte farem servir un \textit{diagrama cartesià}, és a dir un sistema de coordenades cartesianes, on l'eix horitzontal és el primer conjunt i el vertical, el segon. A la seva gràfica es veu directament que el \textit{cardinal del conjunt producte} és igual al producte dels cardinals dels conjunts, \(n(A \times B) = n(A) \cdot n(B) \).

\textit{Exemple 16}. Siguin els conjunts \(A = \{a, b, c\} \) i \(B = \{m, n\} \). El conjunt producte és \(A \times B = \{(a, m), (a, n), (b, m), (b, n), (c, m), (c, n)\} \) de cardinal \(n(A \times B) = 3 \cdot 2 = 6 \). També podríem trobar \(B \times A = \{(m, a), (m, b), (m, c), (n, a), (n, b), (n, c)\} \), format també per 6 parelles d'elements. És clar que es verifica \(A \times B \neq B \times A \), tal com es pot veure fent els diagrames cartesians corresponents:

![Diagrama de \(A \times B \)](image1)

2.1.2 GRAFO D’UN PRODUCTE CARTESIÀ. Donats dos conjunts \(A \) i \(B \), definirem el \textit{grafó} com un subconjunt del conjunt producte \(A \times B \). Simbolitzarem els grafsos per \(F, G, H \), etc. Com que els grafsos són subconjunts podrem efectuar amb ells qualsevol operació conjuntista.

\textit{Exemple 17}. Tenim els conjunts \(A = \{a, b, c\} \) i \(B = \{m, n\} \) que formen el conjunt producte \(A \times B = \{(a, m), (a, n), (b, m), (b, n), (c, m), (c, n)\} \). Dos grafsos poden ser \(F = \{(a, m), (a, n), (b, n)\} \) i \(G = \{(b, n), (c, m), (c, n)\} \):

![Diagrama de \(A \times B \)](image2)
Una altra operació que es pot efectuar és la de composició de grafsos. Siguin els conjunts A, B i C i els grafsos F i G dels conjunts productes $A \times B$ i $B \times C$, respectivament. El grafo compost de F i G, simbolitzat per $G \circ F$ (observeu-ne l’ordre!), és el conjunt de tots els parells $(a, c) \in A \times C$ que es poden formar sempre que hi hagi un element $b \in B$ que "els serveixi de pont", és a dir, que $(a, b) \in F$ i $(b, c) \in G$.

Exemple 18. Partim dels conjunts $A = \{m, n, p, q\}$, $B = \{u, v\}$ i $C = \{x, y, z\}$ i dels grafsos $F = \{(m, u), (n, v), (p, v)\}$ d' $A \times B$ i $G = \{(u, x), (v, y), (u, z)\}$ de $B \times C$. Formem el grafo compost $G \circ F$ veient que a F hi ha el parell (m, u) i a G, el parell (u, x), "simplificant" les us, en resulta el parell (m, x), que serà del conjunt producte $A \times C$.

Procedint d’aquesta manera podrem obtenir el grafo compost $G \circ F = \{(m, x), (n, z), (m, y), (p, y)\}$. Presentem-ho esquemàticament:

![Diagrama de composició de grafsos](image)

També ho podem haver fet en l’espai. La figura hauria quedat una mica més complicada:

![Diagrama de composició de grafsos en l'espai](image)

Siguï F un grafo d'$A \times B$. S’anomena grafo recíproc de F, i es coneix com a F^{-1}, aquell grafo de $B \times A$ format permutant les coordenades del primer. Si componem un grafo amb el seu recíproc ens ha de quedar un grafo contingut en el grafo diagonal, D, d'$A \times A$, que és el format per totes les parelles de coordenades iguals.

Exemple 19. Siguin els conjunts $A = \{m, n, p, q\}$, $B = \{u, v\}$ i el grafo $F = \{(m, u), (n, v), (p, v)\}$ de $A \times B$ de l'exemple anterior. El grafo recíproc és $F^{-1} = \{(u, m), (v, n), (v, p)\}$, que és un subconjunt de $B \times A$.

El grafo compost és $F \circ F^{-1} = \{(m, m), (n, n), (p, p)\}$, que és un subconjunt del grafo diagonal $D = \{(m, m), (n, n), (p, p), (q, q)\}$.

2.1.3 CORRESPONDÈNCIES I FUNCIONS

Partim dels conjunts A i B i d’un grafo F d'$A \times B$. Anomenarem correspòndencia la terna ordenada formada per aquests tres elements. Les correspòndencies es simbolitzen per f, g, h... Així, $f = (A, B, F)$.
El conjunt A es diu \textit{conjunt inicial} i el B, \textit{conjunt final}. A més, si el parell \((a, b)\in F\) ho indicarem amb la notació \(f(a) = b\), on \(a\) es diu \textit{element original} i \(b\), \textit{element imatge}. Perquè la comprensió sigui més senzilla emprarem un \textit{diagrama sagital}.

\textit{Exemple 20.} Tenim el conjunt inicial \(A = \{a, b, c, d\}\), el conjunt final \(B = \{x, y, z\}\) i el grafo \(F = \{(a, x), (b, x), (b, y), (d, y)\}\) d’\(A\times B\). Com que \((x, y)\in F\) podem escriure \(f(a) = x\) i dir que l’element original a té per element imatge l’\(x\). Fem els diagrames cartesià i sagital:

![Diagrama sagital](image)

Donada una correspondència \(f = (A, B, F)\) anomenem \textit{domini}, \(D(f)\), el subconjunt d’\(A\) format per tots els elements originals; és a dir, el conjunt de tots els elements “d’on surten fletxes”.

Per altra banda, el \textit{recorregut}, \(R(f)\), és el subconjunt de \(B\) format per tots els elements imatge; és a dir, el conjunt de tots els elements “on arriben fletxes”. Per aquest motiu també se li sol dir “conjunt imatge”.

\textit{Exemple 21.} Seguint l’exemple anterior veiem que el domini és el conjunt \(D(f) = \{a, b, d\}\), ja que del c no en surt cap fletxa; mentre que el recorregut és \(R(f) = \{x, y\}\). Observem que l’element \(z\) no hi pertany perquè no hi arriba cap fletxa.

Anomenarem \textit{funçió} tota correspondència entre conjunts de nombres reals, \(f = (R, R, F)\). El seu grafo \(F\) es dirà ara \textit{gràfica de la funció} i pot ser qualsevol corba del pla. El seu diagrama sagital, particularitzat per a uns certs valors, no serà res més que la corresponent \textit{taula de valors}.

\textit{Exemple 22.} Suposem que tenim el conjunt \(A = \{0, 1, 2, 3, 4\}\) i la correspondència \(f = (A, A, F)\) de grafo \(F = \{(0, 2), (1, 1), (1, 3), (4, 0), (4, 4)\}\) que, amb un diagrama cartesià, es veu que està format per punts aïllats.

Una generalització d’aquesta correspondència és la funció \(g = (R, R, G)\), on \(G = \{(x, y) / y = 2 + \sqrt{x}\}\). Com que, sent la taula de valors resulta que els elements originals poden tenir diverses imatges, direm que es tracta d’una \textit{funçió multiforme}. (Alguns autors no consideren funcions aquests tipus de corbes). La gràfica d’aquesta funció és una paràbola horitzontal.
2.2 RELACIONS BINÀRIES

2.2.1 DEFINICIÓ I PROPIETATS. Sigui A un conjunt, F, un grafo del conjunt producte A^2 i la seva correspondència associada, $f=\{(a,A,F)\}$. Direm que existeix una relació binària entre dos elements de A, a i b, ho simbolitzarem per $a \mathrel{R} b$ i ho llegirem com “a està relacionat amb b” si es verifica que $f(a)=b$.

Per ser una relació binària una correspondència entre elements del mateix conjunt, podrem esquematitzar-la amb un diagrama sagital similar a un diagrama de circulació, que uneix diferents pobles.

Exemple 23. Tenim la correspondència $f=\{(A,A,F)\}$ on el conjunt és $A=\{a,b,c\}$ i el grafo, $F=\{(a,a), (b,a), (b,c), (c,b)\}$. Fem els diagrames:

![Diagrama de circulació](attachment:diagrama.png)

Observem que com que $(a,a)\in F$, serà $f(a)=a$, o millor $a \mathrel{R} a$, que en el diagrama de circulació, que constarà de tres pobles, representarà una “carretera de circunval·lació”. De la mateixa manera, $(b,a)\in F$ serà $b \mathrel{R} a$ i així la carretera que uneix a i b és de “un sol sentit”, el de $b \mathrel{R} a$.

Finalment, com que $b \mathrel{R} c$ i $c \mathrel{R} b$, la carretera de $b \mathrel{R} c$ té “doble sentit”.

Exposem i comentem, amb les propietats que poden tenir, les relacions binàries definides entre els elements d’un conjunt A: (pel seu simbolisme matemàtic consulteu la part de Formulació):

1) **REFLEXIVA.** Tots els pobles han de tenir carreteres de circunval·lació.

2) **SIMÈTRICA.** Tota carretera que uneixi dos pobles ha de ser de doble sentit.

3) **ANTISIMÈTRICA:** Tota carretera que uneixi dos pobles ha de ser de sentit únic.

4) **TRANSITIVA.** Si es pot anar d’un poble a un altre i d’aquest a un tercer, també ha de ser possible anar del primer a l’últim, sense passar pel del mig.

5) **CIRCULAR.** Si es pot anar d’un poble a un altre i d’aquest a un tercer, s’ha de poder tornar directament d’aquest últim al primer.

2.2.2 RELACIONS D’EQUIVALÈNCIA. Donada una relació binària \mathcal{R}, es dirà que és una relació d’equivalència si és a la vegada reflexiva, simètrica i transitiva. Expressarem l’equivalència amb (\equiv).

Exemple 24. En el conjunt d’alumnes de la nostra classe, la relació binària $\mathcal{R} = "Tenir la mateixa edat"$ és una relació d’equivalència.
Anomenem \(\text{conjunts equivalents, } A = B \), dos conjunts on tot element d'un és equivalent a qualsevol element de l'altre.

Exemple 25. Sigui la mateixa relació de l'exemple anterior i suposem els conjunts \(A = \text{nois de 18 anys} \) i \(B = \text{noles de 18 anys} \). És evident que seran equivalents perquè cada persona del primer tindrà la mateixa edat que qualsevol persona del segon.

Una relació d'equivalència \(\mathcal{R} \) definida en un conjunt \(A \) subdivideix aquest conjunt en altres subconjunts dits \textit{classes d'equivalència}, que estaran formats per tots els elements equivalents a un element determinat, el \textit{representant de la classe}. Si aquest últim el simbolitzem per \(a \), la classe d'equivalència vindrà designada per \(C(a) \).

Exemple 26. Anomenem \(A \) el conjunt dels alumnes de la nostra classe de primer curs, i \(\mathcal{R} \) és la relació d'equivalència "tenir la mateixa edat". Si les edats dels alumnes oscil·len entre 17 i 20 anys, obindrem quatre \(\text{classes d'equivalència, } C(a_1), C(a_2), C(a_3) \) i \(C(a_4) \).

Així, \(C(a_1) = \{ \text{alumnes de 17 anys} \} \), on \(a_1 \) serà el representant d'aquest subconjunt, és a dir qualsevol persona de 17 anys. Podem fer un diagrama de Venn:

```
\begin{align*}
\text{PRIMER CURS} & \quad \begin{array}{|c|}
\hline
C_1 & 17 \\
\hline
C_2 & a_2 \\
\hline
C_3 & a_3 \\
C_4 & a_4 \\
\hline
\end{array}
\end{align*}
```

Comentem les \textit{propietats} que tenen les classes d'equivalència:

(I) \textbf{EQUIVALENCIA DELS ELEMENTS}. Tots els elements d'una mateixa classe són equivalents entre ells.

(II) \textbf{INDEPENDÈNCIA DEL REPRESENTANT}. Es pot agafar com a representant de la classe qualsevol dels seus elements.

(III) \textbf{CLASSES DISJUNTES}. No hi pot haver cap element que pertanyi a la vegada a dues classes diferents.

(IV) \textbf{CLASSES RECÓBRIDES}. Qualsevol element del conjunt ha de pertànyer a una de les classes.

Donat un conjunt \(A \) i una relació d'equivalència \(\mathcal{R} \), es defineix el \textit{conjunt quocient}, simbolitzat per \(A/\mathcal{R} \), com aquell conjunt que té per elements les classes d'equivalència.

Exemple 27. Continuant amb l'exemple de l'edat, sabem que hem obtingut \(C_1 = \text{"alumnes de 17 anys"} \), \(C_2 = \text{"alumnes de 18 anys"} \), \(C_3 = \text{"alumnes de 19 anys"} \) i \(C_4 = \text{"alumnes de 20 anys"} \). El conjunt quocient constarà doncs dels subconjunts, \(A/\mathcal{R} = \{ C_1, C_2, C_3, C_4 \} \).

Un exemple molt típic és el de les \textit{congruències mòdul} \(n \). Aquesta relació d'equivalència ens ve definida en el conjunt dels enters per:

\begin{itemize}
 \item \textit{Dos enters són congruents mòdul} \(n \) si i solament si la seva \textit{diferència} és \textit{múltiple de} \(n \).
\end{itemize}
Les seves classes d'equivalència s'anomenen \textit{classes residuals mòdul n}, ja que estan formades per números que dividits per n donen el mateix residu.

\textit{Exemple 28.} Siguen les congruències mòdul 5. Per formar les classes d'equivalència, dividirem un enter qualsevol per 5 i ens fixarem en el residu. Com que aquest només podrà ser 0, 1, 2, 3 i 4, obtingrem els conjunts \(C(0) = \{ \ldots, 0, 5, 10, 15, \ldots \} \), \(C(1) = \{ \ldots, 1, 6, 11, 16, \ldots \} \), \(C(2) = \{ \ldots, 2, 7, 12, 17, \ldots \} \), \(C(3) = \{ \ldots, 3, 8, 13, 18, \ldots \} \) i \(C(4) = \{ \ldots, 4, 9, 14, 19, \ldots \} \).

També es simbolitzen per 0, 1, 2, 3 i 4. Si fem un diagrama de Venn, podrem comprovar les propietats de les classes d'equivalència:

<table>
<thead>
<tr>
<th>Z</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textbf{2.2.3 RELACIONS D'ORDRE.} Es diu que una relació binària \(R \) definida en un conjunt \(A \) és una \textit{relació d'ordre} si és a la vegada reflexiva, antisimètrica i transitiva. Ho designem pel símbol (\(\leq \)), i d' \(a \leq b \), diem en general que a és “més petit o igual que” b. La relació associada seria (\(\geq \)), que es llegiria “més gran o igual que”.

\textit{Exemple 29.} En el conjunt dels alumnes de la nostra classe la relació binària \(R \) “ser més baix o igual que” és una relació d'ordre.

Un \textit{conjunt totalment ordenat} és un conjunt on qualsevol parella d'elements en té un més petit o igual que l'altre; és a dir, tots ells són comparables i diem que es tracta d'un \textit{ordre total}. En cas contrari és un \textit{conjunt parcialment ordenat}, i amb un \textit{ordre parcial}.

\textit{Exemple 30.} La relació “ser més baix o igual que” és clarament d'ordre total perquè per a dos alumnes qualsevol sempre podrem dir que un d'ells és més baix o igual que l'altre; sols ens caldrà agafar la cinta métrica i veure les seves alçades.

Agafem ara la llista de la classe, on cada alumne té un número determinat, i suposem la relació “ser múltiple de “. Aquesta relació també és d'ordre, però es tracta d'un ordre parcial, ja que la majoria d'alumnes no seran comparables, per exemple el 2 i el 3.

Considerem la relació d'ordre total (\(\leq \)) definida en el conjunt dels nombres reals. Per simbolitzar que \(a \leq b \) i que \(a \neq b \) fem servir el nou símbol (<), que es dirà “més petit que”.

En \(R \), la utilització d'aquests símbols origina uns \textit{conjunts lineals} de la recta que s'anomenen \textit{intervals} i es simbolitzen per \([a,b]\), \((a,b)\), etc., on a i b són els \textit{extrems de l'interval}. Si els dos extrems són finits, es tractarà d'un \textit{conjunt acotat} i es dirà \textit{interval finit}. En cas contrari es dirà \textit{interval infinit}. Els intervals poden ser dels següents tipus: Tancat, obert, semitancat, semiobert, tancat-infinit, etc.

\textit{Exemple 31.} Anomenem semitancat l'interval \([-1,3]\) perquè és primer tancat, i estarà format per tots els nombres reals que estan compresos entre el -1 i el 3, el primer inclòs.
Tenim que X és un subconjunt del conjunt A on s'ha definit una relació d'ordre total (≤). Anomenarem *cota superior* del subconjunt X tot element d'A que sigui més gran o igual que qualsevol element del subconjunt X. De la mateixa manera, una *cota inferior* del subconjunt X serà un element d'A que sigui més petit o igual que qualsevol element d'X.

Exemple 32. Sigui X={3,7} i A={1,10}. Les cotes superiors poden ser 9, 8, 8', 7, 7', 96, etc. ja que observem que totes són més grans o iguals que els números del subconjunt X. Les cotes inferiors poden ser 2, 1, 1', 3, 2', 6, etc., perquè tots aquests nombres són més petits o iguals que qualsevol element del subconjunt X. Gràficament:

![Diagrama de Hasse](image)

Anomenarem *suprem* la més petita de les cotes superiors. En canvi, l'infim serà la més gran de les cotes inferiors.

Exemple 33. De l'exemple anterior veiem que el suprem és 7, mentre que l'infim és 3.

Mirem ara només els elements del subconjunt X. Direm que un element d'X és el *màxim* si és més gran o igual que tots els elements d'X. Per altra banda, un element serà el *minim* si és més petit o igual que qualsevol element d'X.

Diem que un conjunt A és un *conjunt ben ordenat* si qualsevol dels seus subconjunts X, diferent del buit, té mínim.

Exemple 34. El conjunt dels nombres naturals amb la relació d'ordre usual, ≤, és un conjunt ben ordenat, ja que qualsevol dels seus subconjunts té un mínim.

En canvi no ho és el conjunt dels reals amb la mateixa relació d'ordre. Per exemple, el subconjunt [3, 5] no té mínim.

Considerem ara una relació d'ordre parcial en un conjunt X. Podem dibuixar aquesta relació d'ordre mitjançant un esquema de fletxes anomenat *diagrama de Hasse*. Direm que un element del subconjunt X és *màxim* si no hi ha cap altre element que sigui més gran que ell. De la mateixa manera, un element serà *mínim* si no hi ha cap altre element que sigui més petit que ell.

Exemple 35. Considerem el conjunt X={2,4,6,8,12,18,36} i la relació d'ordre parcial "ser divisor de". Com que per exemple 2 és divisor de 4, simbolitzat per 2|4, dibuixarem una fletxa que vagi del 2 al 4. Procedint així ens quedarà el diagrama de Hasse:

![Diagrama de Hasse](image)

Observem que hi ha dos elements mòxims: el 8 i el 36. Són com les estacions finals del metro. Només hi ha un element minimal: el 2, que representaria una estació de començament. Velem que aquest conjunt té mínim (el 2), però no té màxim.
d) FORMULACIÓ MATEMÀTICA

Producte cartesià

Parell ordenat: \((a,b)= [(a), (a,b)]\) \((a,b)\neq (b,a)\)

Prod. cartesià: \(A\times B= [(a,b) \ / \ a\in A \ \land \ b\in B]\) \(A^2= A\times A\)

\(A^n= A\times A \times ... \times A \times A\) \(A_1 \times A_2 \times ... \times A_n= [(a_1, a_2, ..., a_n) \ / \ a_i\in A_i, \ \forall i=1,2, ..., n]\)

Propietats:

Cardinal: \(n(A\times B)= n(A) \cdot n(B)\)

No commut.: \(A\times B \neq B\times A\) Associativa: \((A\times B)\times C= A\times (B\times C)\)

Inclusió: \(X\subseteq A \ \land \ Y\subseteq B \Rightarrow X\times Y\subseteq A\times B\)

Distributivitat:

\(A\times (B\cap C)= (A\times B)\cap (A\times C)\)

\(A\times (B\cup C)= (A\times B)\cup (A\times C)\)

\(A\times (B\setminus C)= (A\times B)\setminus (A\times C)\)

\(A\times (B\Delta C)= (A\times B)\Delta (A\times C)\)

Grafo d'un producte cartesià

Grafo: \(F\subseteq A\times B\) Grafo diagonal: \(D= [(a, a)\in A^2 \ / \ a\in A]\)

Operacions amb els grafos \(F,G\subseteq A\times B\)

\(F'= [(a,b)\in A\times B \ / \ (a,b)\in F]\)

\(F\cap G= [(a,b)\in A\times B \ / \ (a,b)\in F \ \land \ (a,b)\in G]\)

\(F\cup G= [(a,b)\in A\times B \ / \ (a,b)\in F \ \lor \ (a,b)\in G]\)

\(F\setminus G= [(a,b)\in A\times B \ / \ (a,b)\in F \ \land \ (a,b)\in G]\)

\(F\Delta G= [(a,b)\in A\times B \ / \ (a,b)\in F\cup G \ \land \ (a,b)\in F\cap G]\)

Composició d' \(F\subseteq A\times B\) amb \(G\subseteq B\times C\):

\(G\cdot F= [(a,c)\in A\times C \ / \ \exists b\in B, \ (a,b)\in F \ \land \ (b,c)\in G]\)

Grafo recíproc: \(F^{-1}= [(b,a)\in B\times A \ / \ (a,b)\in F]\)

Correspondències i funcions

Definició de correspondència: \(f= (A, B, F)\) \(f(a)= b\)

\(A= C. \ \text{Inici}, B= C. \ \text{Final}, F= \text{Grafo}, a= \text{el. original}, b= \text{el. imatge}\)

Domini: \(D(f)= [a\in A \ / \ \exists b\in B, \ b= f(a)]\)

Recorregut: \(R(f)= [b\in B \ / \ \exists a\in A, \ b= f(a)]\)

Funció: \(f= (R, R, F)\)
Relacions binàries

Correspondència: \(f=(A, A, F) \) \(\Rightarrow \) Relació binària: \(a \mathcal{R} b \Leftrightarrow f(a)=b \)

Propietats que poden tenir:

- Reflexiva: \(\forall a \in A \Rightarrow a \mathcal{R} a \)
- Simètrica: \(\forall a, b \in A, a \mathcal{R} b \Rightarrow b \mathcal{R} a \)
- Antisimètrica: \(\forall a, b \in A, a \mathcal{R} b \Rightarrow a=b \)
- Transitiva: \(\forall a, b, c \in A, a \mathcal{R} b \land b \mathcal{R} c \Rightarrow a \mathcal{R} c \)
- Circular: \(\forall a, b, c \in A, a \mathcal{R} b \land b \mathcal{R} c \Rightarrow c \mathcal{R} a \)

Relacions d'equivalència

Definició: \(\mathcal{R}=\text{equivalència(\(-\))} \iff \mathcal{R}=\text{Refl.}+\text{Simèt.}+\text{Trans.} \)

Propietats del grafo: \(F \cdot F=F \quad F=F^{-1} \)

Classes d'equivalència

Conjunts equivalents: \(A=\mathcal{R} \iff \forall x \in A \land \forall y \in \mathcal{R} x=y \)

Classe d'equivalència: \(C(x)=\{x \in A / x=x\} \)

Propietats:

(I): \(x \in C(a) \land y \in C(a) \Rightarrow x=y \) (Equivalència dels elements)

(II): \(x \in C(a) \Rightarrow C(x)=C(a) \) (Independència del representant)

(III): \(x \in C(a) \land x \in C(b) \Rightarrow C(a)=C(b) \) (Classes disjuntes)

(IV): \(\bigcup_{a \in A} C(a)=A \) (Classes recobridores)

Conjunt quociènt: \(A/\mathcal{R}=\{C(a), C(b),...\} \)

Congruències mòdul \(n \): \(\forall a, b \in Z, a \equiv b \mod{n} \iff a-b=n \)

Relacions d'ordre

Definició: \(\mathcal{R}=\text{ordre(\(\leq\))} \iff \mathcal{R}=\text{Refl.}+\text{Antisimèt.}+\text{Trans.} \)

Propietats del grafo: \(F \cdot F=F \quad F \cap F^{-1}=D \)

Conj. totalmente ordenat: \(\forall a, b \in A \Rightarrow a \leq b \lor b \leq a \)

Conj. parcialment ordenat: \(\forall a, b \in A \nRightarrow a \leq b \lor b \leq a \) (Or. no total)

(0 també \(\exists a, b \in A / a \not\leq b \land b \not\leq a \))
Clases d'intervals

Intervals finits:
- Tancat: \([a,b]=[x \in A / a \leq x \leq b]\)
- Semitancat: \([a,b]=[x \in A / a \leq x < b]\)
- Obert: \((a,b)=(x \in A / a < x < b)\)
- Semiobert: \((a,b)=(x \in A / a < x \leq b)\)

Intervals infinitos:
- Tancat-Inf.: \([a,\infty)=[x \in A / a \leq x]\)
- Obert-Inf.: \((a,\infty)=[x \in A / a < x]\)
- Inf.-Tancat: \((\infty,a)=[x \in A / x \leq a]\)
- Inf.-Obert: \((\infty,a)=[x \in A / x < a]\)

Elements notables d'un conjunt ordenat

Elements notables d'un subconjunt: \(X \subseteq A\)
- Cota superior: \(a=c.s. \iff [a \in A \land \forall x \in X \Rightarrow x \leq a]\)
- Cota inferior: \(b=c.i. \iff [b \in A \land \forall x \in X \Rightarrow b \leq x]\)
- Suprem: \(s=\sup. \iff [s \in A \land \forall a \in A \land a=c.s. \Rightarrow s \leq a]\)
 (El suprem és la cota superior més petita)
- Infim: \(i=\inf. \iff [i \in A \land \forall b \in A \land b=c.i. \Rightarrow b \leq i]\)
 (L'infim és la cota inferior més gran)
- Màxim: \(a=\max. \iff [a \in X \land \forall x \in X \Rightarrow x \leq a]\)
 (El màxim és l'element més gran del conjunt)
- Mínim: \(b=\min. \iff [b \in X \land \forall x \in X \Rightarrow b \leq x]\)
 (El mínim és l'element més petit del conjunt)
- Conjunt ben ordenat: \(\forall X \subseteq A \Rightarrow \exists a,b \in X / a=\max. \land b=\min.\)

Ordre parcial:
- Maximal: \(a=\text{maximal} \iff [\forall x \in X, a \leq x \Rightarrow x=a]\)
 (No hi ha cap element superior al maximal)
- Minimal: \(b=\text{minimal} \iff [\forall x \in X, x \leq b \Rightarrow x=b]\)
 (No hi ha cap element inferior al minimal)
e) PROBLEMES RESOLTS

2.1 GRAFOS I CORRESPONDÈNCIES

Producte cartesià de conjunts

61. Es coneixen dos parells ordenats (m,n) i (p,q) dels 16 que constitueixen el conjunt producte A^2. Quins són els 14 que faltan?

Solució. Sigui x el cardinal o nombre d'elements del conjunt A, és a dir $n(A) = x$. Com ja sabem $n(A^2) = 16$, però

$$n(A^2) = n(A \times A) = n(A) \cdot n(A) = x \cdot x = x^2 \Rightarrow x^2 = 16 \quad x = 4\text{ elements}$$

Per tant, és clar que el conjunt serà $[A = \{m,n,p,q\}]$

A $A^2 = \{(m,m), (m,n), (m,p), (m,q), (n,m), (n,n), (n,p), (n,q), (p,m), (p,n), (p,p), (p,q), (q,m), (q,n), (q,p), (q,q)\}$

Com que tenim els dos parells (m,n) i (p,q), simbolitzats per •, ens faltarán els altres 14 parells, simbolitzats per O. És a dir:

$$C = \{(m,m), (m,p), (m,q), (n,m), (n,n), (n,p), (n,q), (p,m), (p,n), (p,p), (q,m), (q,n), (q,p), (q,q)\}$$

62. Amb els conjunts $A_1 = \{x \mid 1 \leq x \leq 4\}$ i $A_2 = \{x \mid 2 \leq x \leq 6\}$ de l'eix X i $B_1 = \{y \mid 2 \leq y \leq 4\}$ i $B_2 = \{y \mid 3 \leq y \leq 5\}$ de l'eix Y, comprova la relació que hi ha entre els conjunts $M = (A_1 \cap A_2) \times (B_1 \cap B_2)$ i $N = (A_1 \times B_1) \cap (A_2 \times B_2)$. Fes una gràfica. Suposa primer que $x \in N$ i després, que $x \in R$.

Solució. Formem en primer lloc els conjunts demanats.

PER A NOMBRES NATURALS:

Conjunts $A_1 = \{1,2,3,4\}$, $A_2 = \{2,3,4,5,6\}$, $B_1 = \{2,3,4\}$ i $B_2 = \{3,4,5\}$.

Interseccions: $A_1 \cap A_2 = \{2,3,4\}$, $B_1 \cap B_2 = \{3,4\}$.

C. producte: $M = (A_1 \cap A_2) \times (B_1 \cap B_2)$

$$M = \{(2,3), (2,4), (3,3), (3,4), (4,3), (4,4)\}$$

C. productes: $A_1 \times B_1 = \{(1,2), (1,3), (1,4), (2,2), (2,3), (3,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\}$

$$A_2 \times B_2 = \{(2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4), (5,5), (6,3), (6,4), (6,5)\}.$$
Intersecció: \(N=(A_1 \times B_1) \cap (A_2 \times B_2)\)

\[N=\{(2,3), (2,4), (3,3), (3,4), (4,3), (4,4)\}\]

Observem que \(M=N\).

Dibuixem ara els dos diagrames de Venn: El primer és per a nombres naturals i el segon, per a reals.

PER A NOMBRES REALS:

Conjunts \(A_1=[1,4], A_2=[2,6], B_1=[2,4] i B_2=[3,5]\)

Interseccions: \(A_1 \cap A_2=[2,4], B_1 \cap B_2=[3,4]\)

C. producte: \(M=(A_1 \cap A_2) \times (B_1 \cap B_2)\)

\[M=\{(x,y) / x \in [2,4] \land y \in [3,4]\}\]

C. productes: \(A_1 \times B_1=\{(x,y) / x \in [1,4] \land y \in [2,4]\}\)

\(A_2 \times B_2=\{(x,y) / x \in [2,6] \land y \in [3,5]\}\)

Intersecció: \(N=(A_1 \times B_1) \cap (A_2 \times B_2)\)

\[M=\{(x,y) / x \in [2,4] \land y \in [3,4]\}\]

Observem que també \(M=N\).

63. Donades les ternes \(T_1=(5x+2y-2z-3, 8x+3y-z-1, 3x+9y-5z-13), T_2=(x+5y-4z+6, 6x-2y+2z+3, -2x+3y-3z+5)\) sabem que coincideixen en un punt de l'espai \(P(x,y,z)\). Troba'n les coordenades.

Solució. Dues ternes \(T_1=(a_1, b_1, c_1)\) i \(T_2=(a_2, b_2, c_2)\) són iguals si i solament si són iguals les seves components, \(a_1=a_2, b_1=b_2\) i \(c_1=c_2\).

Per tant, haurem de resoldre el sistema:

\[
\begin{align*}
5x+2y-2z-3 &= x+5y-4z+6 & (4x-3y+2z=9) (1) \\
8x+3y-z-1 &= 6x-2y+2z+3 & (2x+5y-3z=4) (2) \\
3x+9y-5z-13 &= -2x+3y-3z+5 & (5x+6y-2z=18) (3)
\end{align*}
\]

Multiplicant la (1) per 3, la (2) per 2 i sumant tindrem una nova equació (1'). Sumant (1) i (3) ens quedarà l'equació (2'):

\[
\begin{align*}
12x-9y+6z=27 & \quad 4x-3y+2z=9 \\
4x+10y-6z=8 & \quad 5x+6y-2z=18 \\
16x+y=35 & \quad 9x+3y=27
\end{align*}
\]
Simplificant (2') tindrem el sistema:
\[
\begin{align*}
16x + y &= 35 \\
3x + y &= 9
\end{align*}
\]
Restant queda: 13x=26
O sigui, x=2 i y=3

Substituint en (1): 4.2-3.3\(2z=9\), 8-9\(2z=9\), 2z=10, z=5. El punt de l'espai demanat serà \(P(2,3,5)\).

64. Donats els conjunts \(A=[a,b,c]\), \(B=[m,n,p]\) i \(C=[p,q]\), dibuixa els conjunts producte \(A \times (B \Delta C)\) i \((A \times B) \Delta (A \times C)\) en dos diagrames cartesians i comprova que el producte cartesià és distributiu respecte a la diferència simètrica.

Solució. Tenim \(B \Delta C=[m,n,p,q]\) i \(B \cap C=[p]\), i així la diferència simètrica serà \(B \Delta C=[m,n,p,q]-[p]=[m,n,q]\). El producte cartesià \(M=A \times (B \Delta C)\) d'\(A=[a,b,c]\) per \(B \Delta C=[m,n,q]\) estarà format per:
\[
M=\{(a,m), (a,n), (a,q), (b,m), (b,n), (b,q), (c,m), (c,n), (c,q)\}
\]

Per altra banda, si formem en primer lloc els dos productes cartesians \(A \times B=[a,b,c] \times [m,n,p]\) i \(A \times C=[a,b,c] \times [p,q]\), tindrem:
\[
A \times B=\{(a,m), (a,n), (a,p), (b,m), (b,n), (b,p), (c,m), (c,n), (c,p)\}
\]
\[
A \times C=\{(a,p), (a,q), (b,p), (b,q), (c,p), (c,q)\}
\]

La diferència simètrica \(N=(A \times B) \Delta (A \times C)\) consistirà en la unió menys la intersecció dels dos conjunts anteriors:
\[
N=\{(a,m), (a,n), (a,q), (b,m), (b,n), (b,q), (c,m), (c,n), (c,q)\}
\]

Grafo d'un producte cartesià

65. Sigui els conjunts \(A=[a,b,c]\) i \(B=[m,n,p]\) que formen el conjunt producte \(A \times B\) i sigui els grafs \(F=[(a,n), (b,m), (b,n), (c,p)]\) i \(G=[(a,m), (b,n), (b,p), (c,n), (c,p)]\). Troba els grafs complementaris \(F'\) i \(G'\), el grafo intersecció \(F \cap G\) i el grafo unió \(F \cup G'\). Fes-ne la gràfica corresponent i comprova la primera llei de Morgan.
Solució. Dibuixem els grafsos F i G donats conjuntament amb el grafo intersecció \(F \cap G = \{(b,n), (c,p)\} \). El seu complementari serà:

\[
(F \cap G)' = \{(a,m), (a,n), (a,p), (b,m), (b,p), (c,m), (c,n)\}
\]

Els grafsos complementaris \(F' \) i \(G' \) estaran formats per les rodones blanques del dibuix anterior, o sigui:

\(F' = \{(a,m), (a,p), (b,p), (c,m), (c,n)\} \quad G' = \{(a,n), (a,p), (b,m), (c,m)\} \)

La seva unió serà:

\[
F' \cup G' = \{(a,m), (a,n), (a,p), (b,m), (b,p), (c,m), (c,n)\}
\]

Queda comprovada, doncs, la 1a llei de Morgan, \((F \cap G)' = F' \cup G'\); és a dir, «el complementari de la intersecció és igual a la unió dels seus complementaris».

66. Del conjunt \(A = \{a,b,c\} \) considerem el conjunt producte \(A^2 \) i els grafoos \(F = \{(a,a), (b,b), (c,a), (c,c)\} \) i \(G = \{(a,a), (b,b), (b,c), (c,b)\} \). Calcule els grafoos compostos \(G \cdot F \) i \(F \cdot G \). Es verifica la commutativitat? Dibuixa'n els diagrames cartesianos.

Solució. Calculem el grafo compost \(G \cdot F \) com indica la següent gràfica, on \(A_1 \) és el conjunt inicial, \(A_2 \), el mitjà i \(A_3 \), el final:
Evidentment, els conjunts A_1, A_2 i A_3 són el mateix $A=\{a,b,c\}$, però s'ha indicat així per una millor comprensió de la composició de grafos. Obtenim:

$$G\cdot F=\{(a,a), (b,b), (b,c), (c,a), (c,b)\}$$

Determinem ara el grafo compost $F\cdot G$, on primer aplicarem G i després F. La figura quedarà:

El grafo compost $F\cdot G$ vindrà donat per

$$F\cdot G=\{(a,a), (b,a), (b,b), (b,c), (c,b)\}$$

Observem que en general no es verifica la commutativitat de la composició de grafos: $G\cdot F \neq F\cdot G$.

67. Amb els conjunts $A=\{a,b,c\}$, $B=\{m,n,p\}$ i $C=\{x,y,z\}$ i grafos $F=\{(a,m), (a,n), (b,p), (c,n)\}$ i $G=\{(m,z), (n,y), (p,x), (p,z)\}$, troba $G\cdot F$ i $(G\cdot F)^{-1}$. Troba també els dos grafos reciproc F^{-1} i G^{-1} i el grafo compost $F^{-1} \cdot G^{-1}$. Quina relació hi ha entre $F^{-1} \cdot G^{-1}$ i $(G\cdot F)^{-1}$?

Solució. Trobem primer el grafo $G\cdot F$: $A \rightarrow C$, composició dels dos grafos F: $A \rightarrow B$ i G: $B \rightarrow C$. La següent figura és un esquema de com es calcula el grafo compost $G\cdot F$. Aquest és:

$$G\cdot F=\{(a,y), (a,z), (b,x), (b,z), (c,y)\}$$

El seu grafo reciprocal $(G\cdot F)^{-1}$ es trobarà permutant els elements de cada parell del grafo $G\cdot F$. Geomètricament representa fer una simetria respecte a la bissecat del primer quadrant, $y=x$:

$$(G\cdot F)^{-1}=\{(y,a), (z,a), (x,b), (z,b), (y,c)\}$$
De manera análoga podrem determinar els dos grafos recíprocs $F^{-1}:B\rightarrow A$ i $G^{-1}:C\rightarrow B$ que ens donaran:

$F^{-1}={(m,a), (n,a), (p,b), (n,c)}$

$G^{-1}={(z,m), (y,n), (x,p), (z,p)}$

Calculant per últim el grafo compost $F^{-1}\circ G^{-1}:C\rightarrow A$ com es mostra en la figura de sota, ens quedarà:

$F^{-1}\circ G^{-1}={(x,b), (y,a), (y,c), (z,a), (z,b)}$

Grafo producte

En ser iguals els dos conjunts del requadre podem veure com es verifica en aquest cas la propietat general: «El grafo recípro de la composició és igual a la composició dels recípros en ordre invers».

Expresant-ho matemàticament, $[G\circ F]^{-1}=F^{-1}\circ G^{-1}$.

Correspondències i funcions

68. Donats els conjunts $A=\{a,b,c\}$, $B=\{m,n,p\}$, $C=\{x,y,z\}$ i les correspondències $f=\{(A,B,F)$, $g=(B,C,G)$ associades als grafos $F=\{(a,m), (b,p), (c,n)\}$ i $G=\{(m,x), (m,y), (n,y), (p,z)\}$, respectivament, troba la correspondència composta $h=g\circ f$ associada al grafo compost $H=G\circ F$. Utilitza diagrames sagitals. Apunta finalment les correspondències recíproques f^{-1}, g^{-1} i h^{-1}.

Solució. Anem a construir la correspondència composta $h=g\circ f$ directament, fent servir diagrames sagitals. Així, per exemple, com que $(a,m)\in F$ i $(m,x)\in G$, es tindrà que $(a,x)\in G\circ F$. En diagrames de fletxes serà similar; si $a\rightarrow m\rightarrow x$, tindrem $a\rightarrow x$. D’aquesta manera podem formar el següent esquema:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>f</td>
<td>m</td>
</tr>
<tr>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

\oplus

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>e</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>p</td>
<td>z</td>
</tr>
</tbody>
</table>

$=\oplus$

<table>
<thead>
<tr>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>h</td>
</tr>
<tr>
<td>b</td>
<td>x</td>
</tr>
<tr>
<td>c</td>
<td>y</td>
</tr>
</tbody>
</table>

La correspondència h serà $h=\{(A,C,H)$, on el grafo $H=G\circ F$ és

$H=\{(a,x), (a,y), (b,z), (c,y)\}$
Formem a continuació les correspondències reciproques d'f i g. Seran $f^{-1}=(B,A,F^{-1})$ i $g^{-1}=(C,B,G^{-1})$, de grafs:

$$F^{-1}=\{(m,a), (n,c), (p,b)\} \quad i \quad G^{-1}=\{(x,m), (y,m), (y,n), (z,p)\}$$

Realitzem la composició $f^{-1} \cdot g^{-1}$ de les dues correspondències anteriors i observem que coincideix amb h^{-1}:

$$h^{-1}=f^{-1} \cdot g^{-1}$$

En conseqüència la correspondència $h^{-1}=f^{-1} \cdot g^{-1}$ ens vindrà donada per la terna $h^{-1}=(C,A,H^{-1})$ on aquest grafo H^{-1} és:

$$H^{-1}=\{(x,a), (y,a), (y,c), (z,b)\}.$$

69. Pels conjunts $A=\{a,b,c\}$ i $B=\{m,n,p\}$ i els grafs donats per $F=\{(a,m), (b,m), (b,n), (c,n), (c,p)\}$ i $G=\{(a,n), (b,m), (b,n), (c,m)\}$ dibuixa les correspondències associades f, g: $A \rightarrow B$ i després troba les seves diferències $f\cdot g$, $g\cdot f$ i $f\Delta g$ per mitjà dels grafs $F-G$, $G-F$ i $F\Delta G$. Troba també $(f\Delta g)^{-1}$.

Solució. Dibuixem en primer lloc les dues correspondències donades, $f=(A,B,F)$ i $g=(A,B,G)$, per mitjà dels seus grafs:

Els dos grafs diferència seran $F-G=F\cap G'=\{(a,m), (c,n), (c,p)\}$ i $G-F=G\cap F'=\{(a,n), (c,m)\}$. Les correspondències associades seran:

Ara ja es podrà formar el grafo diferència simètrica $F\Delta G$ donat per $F\Delta G=(F-G)\cup (G-F)=\{(a,m), (a,n), (c,m), (c,n), (c,p)\}$. Les dues correspondències $f\Delta g$ i $(f\Delta g)^{-1}$ són:
70. En els conjunts \(X=Y=\{0,1,2,3,4,5\} \), tenim que \(f \) és la funció determinada pel grafo \(F=\{(x,y) \mid x\in X, y\in Y, x^2+y^2=25\} \). Escrigui per extensió el grafo i dibuixa'l en un diagrama cartesià. En quin tipus de corba es troben els punts del grafo? Dibuixa també la funció \(f \) en un diagrama sagital i determina la funció recíproca \(f^{-1} \). Què passaria si els conjunts fossin els intervals reals \(X=Y=[-5,5] \)?

Solució. La correspondència \(f=(X,Y,F) \) vindrà associada al grafo \(F=\{(0,5), (3,4), (4,3), (5,0)\} \). Si dibuixem aquest grafo veurem que els quatre punts estan sobre un arc de circumferència de radi 5.

La correspondència recíproca (o funció inversa) es pot trobar permutant els elements de cada parell d'\(F \), o bé fent una simetria del grafo respecte a la bisectriu del primer quadrant. Obtindrem \(f^{-1}=(Y,X,F^{-1}) \), on \(F^{-1}=\{(5,0), (4,3), (3,4), (0,5)\} \).

És clar que \(f^{-1}=f \). Fem les gràfiques demanades:

![Diagrama](image)

Si \(X \) i \(Y \) són els intervals \(X=\{x\in \mathbb{R} \mid -5\leq x\leq 5\} \) i \(Y=\{y\in \mathbb{R} \mid -5\leq y\leq 5\} \), llavors el nou grafo \(F=\{(x,y)\in X\times Y \mid x^2+y^2=25\} \) serà una corba del pla anomenada ja no grafo sinó "gràfica", que en aquest cas es tractarà d'una circumferència de radi 5 centrada a l'origen.

2.2 RELACIONS BINÀRIES

Propietats de les relacions binàries

71. Sigui \(A \) el conjunt dels quatre primers nombres naturals i \(F \), el grafo d'\(A^2 \) definit per \(F=\{(x,y) \mid x+y\leq 5\} \). Quin és el grafo recíproc de \(F \)? Sabres explicar el resultat? Quin és el grafo complementari \(F' \)? Escrigui per comprensió la relació binària associada a \(F' \).

Solució. El conjunt donat és \(A=\{1,2,3,4\} \). En el seu conjunt producte \(A^2 \), trobarem el grafo \(F \) format per totes les parelles de suma inferior o igual a 5.
Aquest grafo serà \(F = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1)\} \). Com que aquest grafo és simètric respecte a la bisectriu del primer quadrant, el seu grafo recíproc \(F^{-1} \), obtingut en permutar els elements de cada parell, serà el mateix que \(F \). Podrem escriure \(F^{-1} = F \).

Quant al grafo complementari \(F' = \{(x,y) \in A^2 / (x,y) \notin F\} \) serà el format per les rodones blanques d'\(F \). Per tant,

\[
F' = \{(2,4), (3,3), (3,4), (4,2), (4,3), (4,4)\}
\]

Gràficament, ens resulta:

La relació binària associada a \(F' \), donada per la terna \(R' = (A, A, F') \) es pot definir per comprensió com el conjunt dels parells d'\(A \) de suma superior a cinc: \(F' = \{(x,y) \in A^2 / x+y>5\} \).

72. Considerem el conjunt producte \(A^2 \), on \(A = \{m, n, p, q\} \), i els grafsos definits per \(F = \{(m,m), (m,n), (n,n), (n,p), (p,p), (q,q)\} \), \(G = \{(m,p), (m,q), (n,m), (n,n), (n,p), (p,q), (q,q)\} \) i \(H = \{(m,m), (m,q), (n,m), (n,n), (n,q), (p,q), (q,q)\} \). En un diagrama sagital estudia si es verifiquen les propietats reflexiva i transitiva per a les relacions binàries \(R_F, R_G \) i \(R_H \) determinades per aquests grafs.

Solució. Els diagrames sagitals de les relacions binàries \(R_F, R_G \) i \(R_H \) en \(A^2 \) associades als grafsos \(F, G \) i \(H \), respectivament, són els següents:

1) \(R_F \) és reflexiva perquè \(F \) conté els parells \((m,m), (n,n), (p,p) \) i \((q,q) \), però no és transitiva ja que \(mRn \) i \(nRp \), però no \(mRp \).
2) \(R_G \) no és reflexiva (p. ex. \(mRm \)), però sí que és transitiva.
3) \(R_H \) és reflexiva i també transitiva (\(nRm \) i \(mRp \) \(\Rightarrow \) \(nRp \)).
73. En el conjunt de les rectes de l'espai $R=(a,b,c,...)$, considerem les tres relacions binàries d'intersecció ($a \cap b$), paral·lelisme ($a \parallel b$) i perpendicularitat ($a \perp b$). Analitzem les propietats que té cadascuna.

Solució. Les propietats que estudiarem seran la reflexiva, la simètrica, l'antisimètrica, la transitiva i la circular. Comencem fent una gràfica que ens podrà ajudar:

1) **INTERSECCIÓ.** Reflexiva (cada recta es talla amb ella mateixa). Simètrica (si la recta a talla la b, també la b talla la a). No té la transitiva (pot ser que a talli b i b talli c, però que a i c no es tallin sinó que siguin paral·leles o es crequin en l'espai). Tampoc no té l'antisimètrica ni la circular. En resum, R_\cap és reflexiva i simètrica.

2) **PARAL·LELISME.** Comprovem fàcilment, mirant la gràfica i recordant que dues rectes són paral·leles si i solament si tenen la mateixa direcció, que R_\parallel és reflexiva, simètrica, transitiva i circular.

3) **PERPENDICULARITAT.** No té la reflexiva (una recta no pot ser perpendicular a ella mateixa). Té la simètrica (si la recta a és perpendicular a la b també la b és perpendicular a a). No té la transitiva (si a és perpendicular a b i b a c, pot ser que a i c siguin paral·leles). No té tampoc l'antisimètrica ni la circular. Per tant, es tindrà que R_\perp és simètrica.

Relacions d'equivalència

74. Sigui R la relació binària determinada pel grafo $F=\{(a,a), (a,b), (b,a), (b,b), (c,c), (c,d), (d,c), (d,d)\}$ en el conjunt producte A^2 on $A=\{a,b,c,d\}$. Dibuixa el diagrama cartesià corresponent i estudia si serà d'equivalència. Es verifica que $F\circ F=F$ i que $F=F^{-1}$?

Solució. A la plana següent hem dibuixat el diagrama cartesià conjuntament amb el diagrama sagital. També hi hem explicat les característiques geomètriques de les propietats reflexiva i simètrica. La propietat transitiva es veu millor en el diagrama sagital.
Expliquem-ho tot en aquest tipus de diagrama on els punts poden simbolitzar "pobles" i les fletxes "camins".

REFLEXIVA. Tots els pobles tenen un camí de circunvalació.

SIMÈTRICA. Tot camí d'anàdia té un camí de tornada.

TRANSITIVA. Si es pot anar a un poble per dos camins consecutius també si pot anar directament.

Per tant, al tenir aquestes tres propietats, podem dir que:

\[\mathcal{R} \] és una relació d'equivalència

Formant la composició de grafs \(F \circ F \) i determinant el grafo recíproc \(F^{-1} \), es veu clarament que \(F \circ F = F \) i \(F^{-1} = F \)

És a dir, el grafo \(F \) d'una relació d'equivalència és idempotent i autorecíproc.

75. De les relacions binàries \(\mathcal{R}_1 = \)"Paral·lelisme", \(\mathcal{R}_2 = \)"Paternitat", \(\mathcal{R}_3 = \)"Tenir el mateix pes que", \(\mathcal{R}_4 = \)"Nacionalitat", \(\mathcal{R}_5 = \)"Desigualtat", \(\mathcal{R}_6 = \)"Perpendicularitat", \(\mathcal{R}_7 = \)"Tenir la mateixa paritat que", \(\mathcal{R}_8 = \)"Ser el quadrat de", \(\mathcal{R}_9 = \)"Tenir igual cognom que" i \(\mathcal{R}_{10} = \)"Ser germà de", justifica les que són d'equivalència.

Solució. Estudiem en cadascuna de les relacions anteriors les propietats reflexiva (R), simètrica (S) i transitiva (T):

1) PARAL·LELISME. En un problema anterior ja hem vist que es tenien les propietats (R), (S) i (T). \[\text{Relació d'equivalència} \]

2) PATERNITAT. No és (R), doncs cap persona és pare d'ell mateix. Tampoc és (S), perquè si a és pare de b, b no pot ser pare de a. Tampoc serà (T), ja que si a és pare de b i b ho és de c, llavors a serà avi de c, i no pare.

3) "\text{TENIR EL MATEIX PES QUE}". Fàcilment es veu que es compleixen les (R), (S) i (T). Per tant, \[\text{Relació d'equivalència} \]

4) NACIONALITAT. És clar que tothom té la mateixa nacionalitat que ell mateix, es complirà (R). Les altres dues es verifiquen i així serà \[\text{Relació d'equivalència} \].
5) DESIGUALTAT. No es compleix (R) perquè cap cosa és diferent d’ella mateixa. Sí que es compliria (S), però no (T), ja que pot ser \(a \neq b \) i \(b \neq a \) i podria donar-se el cas que \(a = a \).

6) PERPENDICULARITAT. També s’ha estudiat i s’ha vist que sols es complia la simetria.

7) "TENIR LA MATEIXA PARITAT QUE". El terme “paritat” significa ser parell o imparell. Es compleix (R), (S) i (T), tal com es veu fàcilment. Així és [Relació d’equivalència].

8) "SER EL QUADRAT DE". No es compleix ni (R), perquè no tots els nombres són el quadrat d’ell mateix (sols el 0 i 1'), ni (S), perquè p. ex. \(4 = 2^2 \) però \(2 \neq 4^2 \), ni (T) ja que p. ex. \(16 = 4^2 \) i \(4 = 2^2 \), però \(16 \neq 2^2 \).

9) "TENIR IGUAL COGNOM QUE". Es compleix (R) ja que qualsevol persona té el mateix cognom que ell mateix, i també (S) i (T), tal com es veu fàcilment. Per tant serà una [Relació d’equivalència].

10) "SER GERMÀ DE." No es compleix (R) perquè considerem que ningú és germà d’ell mateix (un fill únic no té cap germà). Si agafem el concepte de vertader germà i no de “germanastre”, si que es compleix (S) i (T).

Classes d’equivalència. Conjunt quocient

76. En el conjunt dels nombres enters \(Z \) es defineix la relació binària aRb si i solament si a.(a+1)=b.(b+1). Estudia les propietats reflexiva, simètrica i transitiva. És d’equivalència? Quines són les classes d’equivalència? Quin és el conjunt quocient?

Solució. Apuntem en un esquema el procés de deduir si dos enters són equivalents, i també les classes d’equivalència i el conjunt quocient que trobem tot seguit:

\[
\begin{align*}
C(a) &= C(b) \\
\begin{array}{c}
 \cdot & \equiv & \cdot \\
 a & & b+1 \\
 a+1 & & b \\
\end{array}
\end{align*}
\]

Sabem que \(R \) serà una relació d’equivalència si es verifiquen les propietats demanades. Mirem-ho.

Reflexiva: Com que \(a.(a+1)=a.(a+1) \) \(\forall a \in Z \), tindrem que \(aRa \).

Simètrica: Si \(aRb \) serà \(a.(a+1)=b.(b+1) \) o també \(b.(b+1)=a.(a+1) \). i això vol dir que \(bRa \).
Transitiva: Si a\(\mathcal{R}\) b i b\(\mathcal{R}\) c, serà a.(a+1)=b.(b+1) i b.(b+1)=c.(c+1) respectivament. Per tant, a.(a+1)=c.(c+1), i així, a\(\mathcal{R}\) c.

Deduïm que \(\mathcal{R}\) és una relació d'equivalència

CLASSES D'EQUIVALÈNCIA. Sigui a un enter qualsevol. Volem trobar tots els enters x equivalents a ell, C(x)=C(a).

Es verificarà \(x.(x+1)=a.(a+1)\), \(x^2+x=a^2+a\) , \(x^2+1.x+(-a^2-a)=0\), que és una equació de segon grau en x.

\[
x = \frac{-1\pm\sqrt{1-4.(-a^2-a)}}{2} = \frac{-1\pm\sqrt{4a^2+4a+1}}{2} = \frac{-1\pm\sqrt{(2a+1)^2}}{2} = \frac{-1\pm(2a+1)}{2}
\]

Tindrem dues solucions \(x=(-1+2a+1)/2=(2a)/2=a\), la qual cosa és lògica ja que a=a, i \(x=(-1-2a-1)/2=(-2-2a)/2=-1-a\). Per tant, la classe d'equivalència d'a serà \([a,a-1]\).

Per exemple C(0)=[0,-1], C(1)=[1,-2], C(2)=[2,-3], etc. El conjunt quocient estarà format per aquestes classes d'equivalència, o sigui \([\mathbb{Z}/\mathcal{R}]=[C(0), C(1), C(2),...]\).

77. Sigui el conjunt \(A\{1,2,3,4\}\) i la relació binària \(\mathcal{R}=(A, A, F)\) on \(F=\{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,3), (4,1), (4,2), (4,4)\}.

Dibuixa un diagrama cartesià i un de sagital. És d'equivalència? Troba les classes d'equivalència i el conjunt quocient.

Solució. Dibuixem els diagrames cartesians i sagitals. Observem que el grafo F té les propietats reflexiva (la diagonal pertany al grafo) i simètrica (el grafo és simètric respecte a la diagonal):

![Diagrama](image)

També es transitiva, tal com es veu ràpidament en el diagrama sagital. Per tant, \(\mathcal{R}\) és una relació d'equivalència.

Hi ha dues classes d'equivalència: la classe formada pels números 1, 2, i 4 i la formada sols pel número 3. Podem apuntar que \(C(1)=[1,2,4]\) i \(C(3)=[3]\).

El conjunt quocient consistirà en els subconjunts, o classes d'equivalència, en què ha quedat classificat el conjunt donat A; és a dir, \([A/\mathcal{R}]=[C(1), C(3)]\).
78. A \(\mathbb{R}^2 \) definim la relació binària \(S \) per \((a,b)S(c,d)\) si i solament si es verifica que \(a^2+b^2=c^2+d^2\). Comprova que és d'equivalència i troba les classes d'equivalència i el conjunt quocient. Explica'n el resultat.

Solució. Anem a comprovar que \(S \) és una relació d'equivalència, demostrant les tres propietats següents:

Reflexiva: \(\forall (a,b) \in \mathbb{R}^2 \) tenim \((a,b)S(a,b)\) ja que \(a^2+b^2=a^2+b^2\).

Simètrica: Si \((a,b)S(c,d)\) serà \(a^2+b^2=c^2+d^2\) o sigui \(c^2+d^2=a^2+b^2\), la qual cosa significa que \((c,d)S(a,b)\).

Transitiva: Si \((a,b)S(c,d)\) i \((c,d)S(e,f)\) es complirà \(a^2+b^2=c^2+d^2\) i \(c^2+d^2=e^2+f^2\). De les dues igualtats anteriors deduïm que \(a^2+b^2=e^2+f^2\); és a dir, \((a,b)S(e,f)\).

Així resulta que \(S \) és una relació d'equivalència.

El significat geomètric d'aquesta relació és que els punts \(P(a,b)\) i \(Q(c,d)\) estaran relacionats si i solament si pertanyen a la mateixa circumferència de radi \(R=\sqrt{a^2+b^2}=\sqrt{c^2+d^2}\).

Donat un punt qualsevol \(P(a,b)\), el conjunt de tots els punts equivalents a ell, o sigui la classe d'equivalència, consistirà en tots els punts \(Q(x,y)\) que pertanyen a la mateixa circumferència:

\[
C(a,b) = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2=a^2+b^2\}
\]

Per exemple, la classe \(C(1,0) = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2=1\}\) seria una circumferència de radi 1.

El **conjunt quocient** serà el conjunt format per totes les classes d'equivalència, és a dir el conjunt de totes les circumferències del pla que tenen per centre l'origen de coordenades.

79. Direm que dos nombres enters estan relacionats \((a\equiv b)\) si i solament si dividits per 3 donen el mateix residu. Comprova que és d'equivalència i que les classes són les mateixes que les congruències mòdul 3. Quin és el conjunt quocient?
Solució. Per la llei de la divisió sabem que el dividend (D) és igual al divisor (d) pel quocient (q), més el residu (r): \[D = d \cdot q + r. \]

Si dos enters, a i b, dividits per 3 tenen el mateix residu r, existiran dos enters m i n tals que \[a = 3m + r \quad \text{i} \quad b = 3n + r. \]

Fem la seva diferència, \[a - b = (3m + r) - (3n + r) = 3m - 3n = 3(m - n) = 3k, \]
podrem dir que:

«Els enters a i b estan relacionats, \(a \in b \), si i solament si la seva diferència és múltiple de 3».

Comprovarem que compleix les propietats (R), (S) i (T) i serà així una relació d'equivalència:

REFLEXIVA. \(a \in a \) perquè \(a - a = 0 \) que és múltiple de 3 \((0 = 3 \cdot 0) \).

SIMÈTRICA. Si \(a \in b \), serà \(a - b = 3k \). Podem escriure \(b - a = 3(-k) \) i, com que \(b - a \) també és múltiple de 3, serà \(b \in a \).

TRANSITIVA. Si \(a \in b \) i \(b \in c \) tindrem \(a - b = 3k \) i \(b - c = 3m \). Sumant tindrem \((a - b) + (b - c) = 3k + 3m \), o sigui \(a - c = 3(k + m) \). Com que \(a - c \) és múltiple de 3, resultarà \(a \in c \).

Queda provat doncs que la relació \(\in \), simbolitzada també pel signe (=), és una relació d'equivalència.

Les classes d'equivalència estaran formades pels números que dividits per 3 donen residu 0 (els múltiples de 3) que serà la classe \(C(0) \), els que donen residu 1 de classe \(C(1) \) i, finalment, els que donen de residu 2 de classe \(C(2) \).

\[
\begin{array}{ccc}
C(0) & C(1) & C(2) \\
\vdots & \vdots & \vdots \\
Z & \ldots, -6, -3, 0, 3, 6, 9, \ldots & \ldots, -5, -2, 1, 4, 7, 10, \ldots & \ldots, -4, -1, 2, 5, 8, 11, \ldots
\end{array}
\]

El conjunt quocient representa la classificació a què ha estat sotmès el conjunt \(Z \) degut a la relació d'equivalència anterior.
Aquest conjunt quocient serà \(Z/(=) = \{ C(0), C(1), C(2) \} \).

Relacions d'ordre

80. En el conjunt \(A = \{ a / a = 2^n, \ n \in N_0 \} \) definim la relació binària \(\sim \) "Ser múltiple de" per \(a \in b \) si i solament si existeix un \(k \) de \(A \) tal que \(a = b \cdot k \). Demostra que \(\sim \) és una relació d'ordre.

Solució. Com que \(N_0 = \{ 0, 1, 2, 3, 4, \ldots \} \) és el conjunt dels nombres naturals amparats, el conjunt \(A \) serà el de les potències de 2, \(A = \{ 1, 2, 4, 8, 16, 32, 64, \ldots \} \). Proven que la relació "ser múltiple de" és una relació d'ordre:

REFLEXIVA. \(a \in a \) perquè existeix \(k = 1 = 2^0 \in A \) tal que \(a = a \cdot 1 \).
ANTISIMÈTRICA. Si aRb, existirà un kεA tal que a=b.k, on k=2^n. Si al mateix temps fos bRa, existiria un pεA tal que b=a.p, on p=2^n. En resum, a=b.2^n i b=a.2^m. Substituint, a=(a.2^m).2^n, a=a.2^m+n, 2^m+n=1, m+n=0. Com que m,nεN₀ ha de succeir que m=n=0 i per tant, a=b.2^0, a=b.1, a=b.

TRANSITIVA. Si aRb i bRc, existiran n,mεN₀ tals que compliran a=b.2^n i b=c.2^m. Substituint, a=(c.2^m).2^n, a=c.2^m+n i com 2^m+n també pertany a A, resultarà que aRc.

Queda provat així que R és una relació d'ordre en el conjunt A.

81. De les següents relacions binàries R₁="Pesar igual o menys que" per a objectes, R₂="Estar contingut" per a conjunts, R₃="Ser el cub de" per a nombres reals, R₄="Ser igual o més llarg que" per a segments i R₅="Ser descendent de" per a persones, estudia les que són d'ordre i digues si es tracta d'ordre total o parcial.

Solució. Estudiem en cadascuna de les relacions donades les propietats reflexiva (R), antisimètrica (A) i transitiva (T).

"PESAR IGUAL O MENYS QUE" (R₁). Sigui dos objectes a i b. Serà (R) perquè cada objecte pesa igual que ell mateix, però no serà (A) ja que si suposem que p és el pes, en ser a la vegada p(a)≤p(b) i p(b)≤p(a), es pot deduir que p(a)=p(b), però no que a=b, perquè els objectes poden ser diferents. Observem que sí que seria (T).

"ESTAR CONTINGUT" (R₂). Donats els conjunts A, B i C, sabem pel primer capítol que és reflexiva, antisimètrica i transitiva, ja que:

\[A \subset A \quad A \subset B \land B \subset A \Rightarrow A=B \quad A \subset B \land B \subset C \Rightarrow A \subset C \]

Es tracta d'una relació d'ordre parcial, perquè donats dos conjunts A i B pot ser molt bé que no siguin comparables, és a dir, que ni A està contingut en B ni B en A.

"SER EL CUB DE" (R₃). No és (R) ja que sols la verifiquen els nombres 0, 1 i -1 (aquests nombres són iguals que el seu cub). Tampoc ho és (A) ni (T), i no serà cap relació d'ordre.

"SER IGUAL O MÉS LLARG QUE" (R₄). És (R) perquè cada segment té la mateixa longitud que ell mateix. Serà (A) i (T) tal com fàcilment es veu. Així R₄ és una relació d'ordre total, ja que els segments són comparables (sempre es pot dir que un és més llarg que l'altre).
"SER DESCENDENT DE" (R₅). Per començar, no és (R) perquè cap persona és descendente d'ella mateixa. Com és absurd dir que a és descendent de b i, al mateix temps, b descendent d'a, és antisimètrica perquè verifica perfectament la seva definició. També és transitiva.

En resum, \(R₂ \) rel. ordre parcial, \(R₄ \) rel. ordre total.

82. Donat el conjunt \(A=\{a,b,c\} \), forma el conjunt de les parts \(\wp(A) \) i, mitjançant un diagrama de Hasse, ordena els seus elements per inclusió.

Solució. Apuntem en primer lloc el conjunt de les parts \(\wp(A) \), o de subconjunts d'\(A \):

\[\wp(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, A\} \]

Apuntem ara totes les relacions de contingut que trobem:

Aquestes inclusions les podem reflectir en el diagrama de Hasse adjunt, per mitjà de fletxes que indiquen el contingut.

Conjunts lineals

83. Dibuixa l'interval de la recta real i expressa el conjunt solució que verifica les següents inequacions de segon grau pels quatre casos següents:

a) \(\left(\frac{x+1}{2} \right)^2 < 6 - x \)

b) \(x^2 > \frac{(x+1)(x+6)}{6} \)

c) \(\left(\frac{3}{4} x + 9 \right) \left(\frac{3}{4} x - 9 \right) \geq 1008 \)

d) \((2x-92)x \leq x^2 + 800 \)

Solució. Resoldrem cadascuna de les inequacions de segon grau donades trobant també els dos punts frontera i mostrant gràficament l'interval solució.
a) \[
\frac{\left(\frac{x}{2} + 1\right)^2}{6-x} , \frac{x^2}{4} + 2 \cdot \frac{x}{2} + 1 < 6-x , \ x^2 + 4x +4 < 24-4x
\]
\[x^2+8x-20<0. \text{ Els punts frontera sortiran de } x^2+8x-20=0 \text{ d'on obtenim } x_1=-10 \text{ i } x_2=2.\]
Provant per \(x=0\) en la inequació \(x^2-8x-20<0\) serà \(0^2-8\cdot0-20<0\), \(-20<0\). Cert. Vol dir que l'interval solució és \([a=\{-10, 2\}\]
La seva gràfica serà

b) \(x^2 > \frac{(x+1)(x+6)}{6}\)

Tenim \(6x^2>(x+1)(x+6)\), \(6x^2>x^2+7x+6\), \(5x^2-7x-6>0\). Si trobem els punts frontera obtindrem \(x_1=-0.6\) i \(x_2=2\).
Provant per \(x=0\) en la inequació tenim \(0^2>6/6\), \(0>1\). Fals. Això vol dir que \(x=0\) no pertany a l'interval solució.
Per tant \([b=\{-\infty, 0.6\})\cup(2,\infty])\.
La seva gràfica serà:

\[
\begin{array}{c}
\infty & \circ & 0 & \circ & 1 & \circ & 2 & \infty
\end{array}
\]

\(c) \left(\frac{3x}{4} + 9\right)\left(\frac{3x}{4} - 9\right) \geq 1008 , \ 9x^2 - 81 \geq 1008 \ , \ 9x^2 \geq 17424\)

Els punts frontera seran: \(9x^2=17424\), \(x^2=1936\), d'on \(x_1=-44\) i \(x_2=44\). Provant per \(x=0\) en la inequació, \(9.0^2\geq17424\), \(0\geq17424\).
Fals. En conseqüència l'interval solució serà \([c=\{-\infty, -44\}]\cup[44,\infty]\) i la seva gràfica és:

\[
\begin{array}{c}
\infty & \circ & -44 & 0 & 44 & \circ & \infty
\end{array}
\]

d) \((2x-92)x \leq x^2+800\), \(2x^2-92x \leq x^2+800\), \(x^2-92x-800\leq0\). Els punts frontera seran la solució de \(x^2-92x-800=0\) que dóna \(x_1=-8\) i \(x_2=100\). Provem per \(x=0\) en \(x^2-92x-800\leq0\), \(0^2-92\cdot0-800\leq0\). En ser \(-800\leq0\) cert, tenim que l'interval solució serà \([d=\{-8, 100\}]\).

La gràfica d'aquesta inequació és:

\[
\begin{array}{c}
-8 & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100
\end{array}
\]

Notem que els punts pintats de negre indiquen que el punt frontera està inclòs en el conjunt i, en canvi, els blancs significaran que està exclòs.
Conjunts acotats

84. Sigui $X=[5,9)$ un subconjunt de la recta real i sigui \leq la relació d'ordre “inferior o igual”. Estudia les cotes superiors, les inferiors, el suprem, l'infim, el màxim i el mínim.

Solució. Aplicant la definició de cota (o fita) superior observem que tots els nombres del conjunt $S=[9, +\infty)$ seran cotes superiors perquè si a, S i $x \in X$ es verificarà que $a \leq x$. El mateix podem dir de les cotes inferiors que pertanyeran al conjunt $I=[-\infty, 5]$ ja que si $a \in I$, tindrem $a \leq x$ per a tot $x \in X$.

El suprem és la més petita de les cotes superiors, $\sup(X)=9$, mentre que l'infim és la més gran de les cotes inferiors. Així tindrem $\inf(X)=5$.

El màxim és el més gran dels elements del conjunt I, com està obert superiorment, no n'hi haurà. Si que hi haurà mínim, que és el més petit dels elements del conjunt. Aquest vindrà donat per $\min(X)=5$.

85. En el conjunt N dels nombres naturals i amb la relació “ser divisor de” considerem el subconjunt $X=[2,3,4,8,12]$. Estudia les cotes superiors, les inferiors, el suprem, l'infim, el màxim, el mínim i els elements maximals i minimals. Fes un diagrama de Hasse explicant els diferents elements.

Solució. Fem en primer lloc un diagrama de Hasse, ajuntant per mitjà de fletxes dos nombres, el primer dels quals és divisor del segon. Així, la fletxa que va del 2 al 8, passant pel 4, ens indica que 2 és divisor de 8.

Les cotes superiors del conjunt X seran naturals múltiples a la vegada de 8 i de 12, o sigui, de 24: $S=[24,48,72,...]$.

De cota inferior, en canvi, només n'hi ha una que sigui a la vegada divisor de 2 i de 3, l'1: $I=[1]$.
El *suprem*, que és la cota superior més petita, és \(\sup(X)=24 \) i l’*infim*, o cota inferior més alta, és evidentment \(\inf(X)=1 \).

No hi ha ni màxim ni mínim ja que el 8 i el 12 per una banda, i el 2 i el 3 per l’altra, no són comparables (ni 8 és divisor de 12, ni al revés). Aquests dos nombres més alts i més baixos són els *maximals* i *minimals*, respectivament:

\[
\text{maximals}(X)=[8,12] \quad \text{i} \quad \text{minimals}(X)=[2,3].
\]
f) PROBLEMES PROPOSATS

2.1 GRAFOS I CORRESPONDÈNCIES

Producte cartesià de conjunts

86. Utilitza un diagrama en arbre per trobar tots els elements del conjunt producte \(A \times B \times C \), on \(A = \{a, b, c\} \), \(B = \{m, n\} \) i \(C = \{x, y, z\} \).

\(\text{Sol.} \quad n(A \times B \times C) = 18 \), \(A \times B \times C = \{(a, m, x), (a, m, y), (a, n, x), \ldots, (c, n, z)\} \).

87. Partint dels conjunts \(A = \{1, 2\} \), \(B = \{a, b\} \) i \(C = \{b, c\} \), troba els productes cartesians \(M = A \times (B \cap C) \), \(N = (A \times B) \cap (A \times C) \), \(P = A \times (B \cup C) \) i \(Q = (A \times B) \cup (A \times C) \). Fes també una gràfica. Quina relació hi pots veure?

\(\text{Sol.} \quad M = N = \{(1, b), (2, b)\} \),
\(P = Q = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\} \).

88. Siguin els conjunts \(A = \{a, b, c, d\} \) de l'eix \(X \) i \(B = \{m, n, p\} \) i \(C = \{p, q\} \) de l'eix \(Y \). Comprova gràficament que el producte cartesià té la propietat distributiva respecte a la diferència de conjunts.

\(\text{Sol.} \quad A \times (B - C) = (A \times B) - (A \times C) = \{(a, m), (a, n), (b, m), \ldots, (d, n)\} \).

Grafo d'un producte cartesià

89. En el producte cartesià \(A \times B \), on \(A = \{1, 2, 3, 4\} \) i \(B = \{2, 4, 6, 8\} \), determina els següents grafs: \(F = \{(x, y) \mid x = y\} \), \(G = \{(x, y) \mid y = 2x\} \) i \(H = \{(x, y) \mid x = 2n + 1\} \).

\(\text{Sol.} \quad F = \{(2, 2), (4, 4)\} \), \(G = \{(1, 2), (2, 4), (3, 6), (4, 8)\} \)
\(H = \{(1, 2), (1, 4), (1, 6), (1, 8), (3, 2), (3, 4), (3, 6), (3, 8)\} \).

90. Amb els mateixos conjunts i grafs del problema 65, troba la diferència de grafs \(F - G \) i \(G - F \) i també la unió d'aquests dos últims. Troba també la diferència simètrica \(F \Delta G \). Què observes?

\(\text{Sol.} \quad F - G = \{(a, n), (b, m)\} \), \(G - F = \{(a, m), (b, p), (c, n)\} \),
\(F \Delta G = \{(a, m), (a, n), (b, m), (b, p), (c, n)\} \) , \(F \Delta G = (F - G) \cup (G - F) \).
91. Donats els conjunts \(A=\{a,b,c\} \), \(B=\{m,n,p\} \) i \(C=\{x,y,z\} \) i els grafs \(F \) d"\(A \times B \) i \(G \) de \(B \times C \) determinats pels parells ordenats \(F=\{(a,m), (a,n), (b,p), (c,n)\} \) i \(G=\{(m,z), (n,y), (p,x), (p,z)\} \), troba el grafo compost \(G \bullet F \) i el grafo reciproc \((G \bullet F)^{-1} \).

\[\text{Sol. } G \bullet F=\{(a,y), (a,z), (b,x), (b,z), (c,y)\} \]
\[(G \bullet F)^{-1}=\{(x,b), (y,a), (y,c), (z,a), (z,b)\}. \]

Correspondències i funcions

92. Siguin els conjunts \(A=\{a,b,c\} \), \(B=\{m,n,p,q\} \), i \(F \), el grafo donat per \(F=\{(a,m), (b,p), (b,q)\} \) al qual se li associa la correspondència \(f=\{(A,B,F)\} \). Dibuixa un diagrama sagital. Quins són els conjunts inicial i final? Quins són el domini i el recorregut de \(f \)?

\[\text{Sol. } C. \text{ Inicial}=A, \ C. \text{ final}=B, \ D(f)=\{a,b\}, \ R(f)=\{m,p,q\}. \]

93. Tenim tres conjunts \(A=\{a,b,c\} \), \(B=\{m,n,p\} \) i \(C=\{x,y,z\} \) i dues correspondències \(f:A \rightarrow B \) i \(g:B \rightarrow C \) determinades pels grafs \(F=\{(a,m), (b,n), (b,p)\} \) i \(G=\{(m,x), (m,y), (p,z)\} \). Dibuixa el diagrama sagital i determina desprès la correspondència composta \(g \circ f \) i la seva reciproca \((g \circ f)^{-1} \). Troba també \(f^{-1}, g^{-1} \) i \(f^{-1} \circ g^{-1} \). Demostra finalment que \((g \circ f)^{-1}=f^{-1} \circ g^{-1} \).

\[\text{Sol. } G \bullet F=\{(a,x), (a,y), (b,z)\} \]
\[(G \bullet F)^{-1}=\{(x,a), (y,a), (z,b)\}, \]
\[F^{-1}=\{(m,a), (n,b), (p,b)\} \]
\[G^{-1}=\{(x,m), (y,m), (z,p)\} \]
\[F^{-1} \circ G^{-1}=\{(x,a), (y,a), (z,b)\} \]
\[(g \circ f)^{-1}=f^{-1} \circ g^{-1}. \]

94. Tenim que \(F=\{(a,m), (b,m), (b,p), (c,n)\} \) és un grafo del conjunt producte \(A \times B \), on \(A=\{a,b,c\} \) i \(B=\{m,n,p\} \). Dibuixa en un diagrama sagital la correspondència \(f=\{(A,B,F)\} \). Si definim la correspondència complementària de \(f \) per \(f'=\{(A,B,F')\} \), on \(F' \) és el grafo complementari de \(F \), troba \(f, f^{-1}, (f')^{-1} \) i \((f')^{-1} \). Quina conclusió obtens?

\[\text{Sol. } F'=\{(a,n), (a,p), (b,n), (c,m), (c,p)\} \]
\[F^{-1}=\{(m,a), (m,b), (p,b), (n,c)\} \]
\[(F')^{-1}=\{(n,a), (p,a), (n,b), (m,c), (p,c)\} \]
\[(f')^{-1}=(f^{-1})'. \]
2.2 RELACIONS BINÀRIES

Propietats de les relacions binàries

95. Tenim els grafsos \(F = \{(a,a), (b,b), (b,c), (c,a), (c,c), (d,d)\} \) i \(G = \{(a,a), (a,c), (b,a), (b,b), (c,a), (c,c), (d,d)\} \) del conjunt producte \(A^2 \) on \(A = \{a,b,c,d\} \). Dibuixa els seus diagrames cartesians i els de la seva intersecció \(F \cap G \) i unió \(F \cup G \).

Si \(R \) i \(S \) són les relacions binàries associades als grafsos \(F \) i \(G \), respectivament, troba les relacions \(R \cap S \) i \(R \cup S \) i dibuixa-les en un diagrama sagital.

Sol. \(R \cap S = \{(a,a), (b,b), (c,a), (c,c), (d,d)\} \)
\(R \cup S = \{(a,a), (a,c), (b,a), (b,b), (b,c), (c,a), (c,c), (d,d)\} \).

96. En el conjunt dels éssers humans, tenim les relacions \(R_1 = \)"Ser germà de", \(R_2 = \)"Ser pare de" i \(R_3 = \)"Ser amic de". Digues quines propietats reflexiva, simètrica, antisimètrica o transitiva, es compleixen.

Sol. \(R_1 = \) sim.+ trans. \(R_2 = \) cap \(R_3 = \) ref.

97. Al conjunt \(A^2 \), on \(A = \{m,n,p,q\} \), comprova que les relacions binàries \(R_1, R_2 \) i \(R_3 \) determinades pels grafsos \(F_1 = \{(m,m), (m,n), (n,m), (n,p), (p,n), (q,q)\}, F_2 = \{(m,m), (m,n), (m,q), (n,m), (n,n), (p,p), (q,m), (q,q)\} \) i \(F_3 = \{(m,m), (m,n), (m,q), (n,m), (n,n), (n,q), (q,m), (q,n), (q,q)\} \), compleixen les propietats reflexiva, simètrica i transitiva.

Sol. \(R_1 = \) sim. \(R_2 = \) ref.+ sim. \(R_3 = \) sim.+ trans.

98. Si \(A \) és el conjunt de les persones i \(R \), la relació binària "ser avi de", quina és la relació contrària \(R' = (A,A,F) \)? I la relació recíproca donada per \(R^{-1} = (A,A,F^{-1}) \)? Prova que en general si \(R \) és una relació binària definida en el conjunt producte \(A^2 \), la relació \(R \cup R^{-1} \) és sempre simètrica.

Sol. \(R' = \)"No ser avi de"
\(R^{-1} = \)"Ser nét de"
\((a,b) \in R \cup R^{-1} \Leftrightarrow (b,a) \in R \cup R^{-1} \).
Relacions d'equivalència

99. A $Z\times Z^*$, on $Z^*=Z\setminus\{0\}$ i Z és el conjunt dels enters, direm que el parell (a,b) està relacionat amb el (c,d) si es verifica que $a\cdot d=b\cdot c$. Esbrina si serà d'equivalència i posa alguns exemples numèrics.

Sol. Sí, R+S+T. $(3,4)\mathcal{R}(6,8)\ (-1,5)\mathcal{R}(\ -3,15)$ etc. Fraccions.

100. Per mitjà d'un diagrama cartesià estudia si el grafo F del conjunt producte A^2, on $A=\{a,b,c\}$, definit per $F=\{(a,a), (a,c), (b,b), (c,a), (c,c)\}$ compleix que és idempotent i que coincideix amb el seu recíproc. Dibuixa després en un diagrama sagital la relació binària associada $\mathcal{R}=\langle A,A,F \rangle$ i comprova que es d'equivalència.

Sol. Sí, $F\cdot F=F$. $F=F^{-1}$ $\mathcal{R}=$ref.+sim.+trans. $\mathcal{R}=$Equiv.

Classes d'equivalència. Conjunt quocient

101. Si $P_1(x_1, y_1)$ i $P_2(x_2, y_2)$ són dos punts del pla \mathbb{R}^2, definim el vector d'origen P_1 i extrem P_2 com el vector que té per components $v_1=(a_1, b_1)$, on $a_1=x_2-x_1$ i $b_1=y_2-y_1$. Per dos altres punts $Q_1(x'_1, y'_1)$ i $Q_2(x'_2, y'_2)$ obtindrem el nou vector $v_2=(a_2, b_2)$, on les components són $a_2=x'_2-x'_1$ i $b_2=y'_2-y'_1$.

A més, dos vectors es diuen equipolents si i solament si tenen les mateixes components: $a_1=a_2$ i $b_1=b_2$. Prova que aquesta relació és d'equivalència, representa-la per (\sim) i determina les classes d'equivalència i el conjunt quocient.

Sol. Ref.+Sim.+Trans. \sim Equiv. Si $v=(a,b) \Rightarrow C(v)=\{w=(x,y) / x=a \land y=b\}$. $\mathbb{R}^2/\sim=\{C(v_1), C(v_2), C(v_3), ...\}$.

102. Direm que dos nombres naturals estan relacionats, $a\mathcal{R}b$, si i solament si són iguals les parts entres de les seves arrels quadrades; és a dir, $E(\sqrt{a})=E(\sqrt{b})$. Estudia si és una relació d'equivalència i, en cas afirmatiu, troba les classes d'equivalència i el conjunt quocient.

Sol. Si. $C(1)=\{1,2,3\}, C(4)=\{4,5,6,7,8\}$
$C(9)=\{9,10,11,12,13, 14,15\},...$
$N/\mathcal{R}=\{C(1), C(4), C(9), ...\}$.
103. En el conjunt dels nombres reals positius \mathbb{R}^+ es tenen les
relacions d'equivalència R_1="Tenir el mateix sinus que" i R_2="Tenir
la mateixa tangent que". Quines són les seves classes d'equivalència?

Sol. $a R_1 b \iff \sin(a) = \sin(b)$. $C_1(a) = \{x \in \mathbb{R} / x = a + 2k\pi, k \in \mathbb{Z}\}$
$a R_2 b \iff \tan(a) = \tan(b)$. $C_2(a) = \{x \in \mathbb{R} / x = a + k\pi, k \in \mathbb{Z}\}$.

Relacions d'ordre

104. Si $F = \{(a,a), (b,b), (c,a), (c,c)\}$ és un grafo definit en el conjunt
producte A^2, on $A = \{a,b,c\}$, estudia si la relació associada R és d'ordre
i, en cas afirmatiu, comprova que el grafo F verifica les propietats
$F \cdot F = F$ i $F \cap F^{-1} = D$, on D és el grafo diagonal. Utilitza diagrames.

105. En el conjunt N dels nombres naturals i amb la relació "ser
divisor de" simbolitzada per \mid i definida per $a \mid b$ si i solament si
 existeix un nombre natural k tal que $b = k \cdot a$, comprova que és una
relació d'ordre. És total o parcial aquest ordre? Dóna un exemple que
expliqui aquest ordre.

106. Fes servir un diagrama de Hasse per ordenar els elements del
conjunt $A = \{2,3,4,6,9,12,27\}$ per la relació d'ordre $\mid =$"Ser divisor
de". Quins són els elements inferiors, els mitjans i els superiors?

Conjunts lineals

107. Les següents inequacions de primer grau tenen per solució un
interval infinit de la recta real. Dibuixal'1 en cadascun dels quatre
casos següents:

a) $x - 11 \geq \frac{x}{4} + \frac{x}{6} + \frac{x}{8}$

b) \(\frac{7(x-26)(x-1)}{7} \leq (x-3)(x-2)\)

c) $\frac{x+3}{7} < \frac{x+1}{5}$

d) $\frac{1}{3}|x-5| - \frac{3}{5}|x-4| + \frac{7}{2} > 0$

Sol. $I_a = \{24, +\infty\}$, $I_b = \{-\infty, 8\}$, $I_c = \{4, +\infty\}$, $I_d = \{-\infty, 13\}$.
108. Resoldre un sistema d'inequacions equivalent a realitzar una intersecció de conjunts. Troba l'interval solució dels següents sistemes d'inequacions:

\begin{align*}
a) & \begin{cases}
3x - 2 & \geq \frac{4}{1} \\
2.\{x + 1\} & - 3x + 4 < -6
\end{cases} \\
\quad b) & \begin{cases}
2x + 10 & \leq 4 \\
3x - 4 & + \frac{x + 1}{2} < 4
\end{cases} \\
\quad c) & \begin{cases}
4x + 1 & - 5x > 11 \\
\frac{2x + 6}{3} & \geq 4
\end{cases} \\
\quad d) & \begin{cases}
\frac{x^2 - 16 \leq 0}{x^2 > 2x}
\end{cases}
\end{align*}

Sol. \(I_a = [2, +\infty) \cap (4, +\infty) = (4, +\infty) \)
\(I_b = (-\infty, 1) \cap (-\infty, 5) = (-\infty, 1) \)
\(I_c = (-\infty, -2) \cap [3, +\infty) = \emptyset \)
\(I_d = [-4, 4] \cap ((-\infty, 0) \cup (2, +\infty)) = [-4, 0) \cup (2, 4] \)

Conjunts acotats

109. Si \((R, \leq)\) és el conjunt dels nombres reals amb la relació d'ordre "inferior o igual" i si considerem el subconjunt \(X = \{x \in R / x = 1/n, n \in N\}\), estudia el màxim i el mínim. Està ben ordenat? Té cotes superiors i inferiors? I suprem i infímin?

Sol. Màx.: 1 \quad Mín.: No en té. No està ben ordenat.
\quad c. s.: 1, 11, 12, ... \quad c. i.: 0, -0, 1, -1, -2, ... \quad sup.: 1 \quad inf.: 0

110. En el conjunt \(A = \{2, 3, 4, 6, 12, 18, 36\}\) considerem la relació d'ordre "ser divisor de". Dibuixa un diagrama de Hasse i determina el màxim, el mínim i els elements maximals i minimals. Prenem ara el subconjunt \(X = \{2, 4, 6, 12\}\) d'A. Estudia les cotes i els extrems (suprem i infímin) d'aquest subconjunt.

Sol. Màx.: 36. \quad Mín.: No en té. \quad Maximal: 36. \quad Minimals: 2, 3.
\quad c. s.: 12, 36. \quad c. i.: 2. \quad sup.: 12. \quad inf.: 2.
Capítol 3: Aplicacions i Combinatòria

a) Bibliografia escollida 86
b) Programa i simbologia 87
c) Conceptes i exemples 88
d) Formulació matemàtica 99
e) Problemes resolts 102
f) Problemes proposats 117
a) BIBLIOGRAFÍA ESCOLLIDA

Básica:

Adicional:

ESPADA BROS, E. Problemas resueltos de Algebra. Tomo (I). P38/60.

b) PROGRAMA I SIMBOLOGIA

3.1 TIPUS D'APLICACIONS
1) **Aplicació.** Concepte d'aplicació (f, g, ...), funció uniforme. Aplicacions iguals. Restricció de l'aplicació a un subconjunt (f(X)), propietats.

2) **Aplicació exhaustiva.** Definició i conseqüències. Aplicació característica.

3) **Aplicació injectiva.** Definició i conseqüències. Monotonia de les aplicacions, aplicacions estrictament creixents, creixents, estrictament decreixents i decreixents.

4) **Aplicació bijectiva.** Definició i conseqüències. Aplicació idèntica.

3.2 COMPOSICIÓ D'APLICACIONS
1) **Aplicació recíproca.** Definició (f⁻¹), conseqüència. Restricció de la imatge recíproca a un subconjunt, imatge recíproca (f⁻¹(X)).

2) **Aplicació composta.** Composició d'aplicacions, aplicació composta (g ◦ f), condició necessària, propietats.

3.3 COMBINATÒRIA
1) **Variacions.** Nombre total d'aplicacions injectives, variacions simples (V_{m,n}). Nombre total d'aplicacions, variacions amb repetició (VR_{m,n}).

2) **Permutacions.** Nombre total d'aplicacions bijectives, factorial d'un número (m!), permutacions simples (P_{m}). Nombre total d'aplicacions condicionades, permutacions amb repetició (PR_{m,r;s;t}).

3) **Números combinatoris.** Nombre total de subconjunts de n elements, número combinatori, casos particulars. Triangle de Tartaglia, propietats.

4) **Combinacions.** Nombre total d'apl. estrictament creixents, combinacions simples (C_{m,n}). Nombre total d'aplicacions creixents, combinacions amb repetició (CR_{m,n}).
c) CONCEPTES I EXEMPELES

3.1 TIPUS D'APLICACIONS

3.1.1 APLICACIÓ. Una correspondència \(f = (A, B, F) \) es dirà aplicació si i sols si tot element del conjunt inicial té una sola imatge. Es denotaran les aplicacions amb els mateixos símbols \(f, g, h, \ldots \). Si la correspondència és una funció, en el cas que sigui una aplicació li direm funció uniforme.

El seu diagrama cartesià corresponent es caracteritzarà pel fet que totes les columnes tenen una sola “bola”; en canvi, en el diagrama sagital, de tots els punts en sortirà una sola fitxa.

Es veu que el domini d'una aplicació és igual al conjunt inicial, \(D(f) = A \) i que, com succeeix en tota correspondència, el recorregut és igual al conjunt imatge, \(R(f) = f(A) \).

Exemple 36. Pel conjunt inicial \(A = \{a, b, c, d, e\} \), el final \(B = \{m, n, p, q\} \) i el grafo \(F = \{(a, p), (b, n), (c, n), (d, p), (e, q)\} \) ens resulta la correspondència \(f = (A, B, F) \). Els dos diagrames són:

![Diagrama de correspondència](https://via.placeholder.com/150)

Observeu que \(f \) serà una aplicació, perquè es compleixen tots dos requisits: TOT element del conjunt inicial té UNA SOLA imatge. Notem que el domini és \(D(f) = A \) i que el recorregut és \(R(f) = f(A) = \{n, p, q\} \).

Siguin \(f, g : A \rightarrow B \) dues aplicacions. Direm que \(f \) i \(g \) són dues **aplicacions iguals** si i sols si són iguals les imatges per \(f \) i per \(g \) de tots els elements. Per tant, si ens resulta \(f(a) = g(a) \) per a qualsevol \(a \), deduirem que \(f = g \).

La **restriccio de l'aplicació a un subconjunt** \(X \) del conjunt inicial \(A \) ens vindrà determinada per la imatge del subconjunt, \(f(X) \), que serà el conjunt de totes les imatges dels elements de \(X \). Entre les **propietats** destaquem que “la imatge de la intersecció està inclosa en el conjunt format per la intersecció de les imatges”.

Exemple 37. Seguint l'exemple anterior, considerem els subconjunts \(X = \{a, b, c\} \) i \(Y = \{b, c, d, e\} \) del conjunt \(A \). Tenim que \(X \cap Y = \{b, c\} \) que té per imatge \(f(X \cap Y) = \{b, c\} \), \(f(c) = \{n, n\} = \{n\} \).

En canvi, \(f(X) = \{f(a), f(b), f(c)\} = \{p, n, n\} = \{p, n\} \) i \(f(Y) = \{m, n, q\} \). Si fem la intersecció, \(f(X) \cap f(Y) = \{n, p, q\} \). Resulta, doncs, que \(f(X \cap Y) \) és un subconjunt de \(f(X) \cap f(Y) \).

Pots comprovar, no obstant, que “la imatge de la unió sí que és igual a la unió de les imatges.”

ÀLGEBRA MODERNA

3.1.2 APLICACIÓ EXHAUSTIVA. Direm que \(f : A \rightarrow B \) és una aplicació exhaustiva si i solament si tots els elements del conjunt final són imatge d’almenys un original.

En un diagrama cartesià, una aplicació exhaustiva ha de complir que totes les files tinguin almenys una “bola”. En el diagrama sagital tots els punts del conjunt final els ha d’arribar almenys una fletxa.

Com a consequències d’aquesta definició podem dir que «la imatge del conjunt inicial és igual al conjunt final». O sigui, \(f(A) = B \). També, si volem que \(f \) sigui una aplicació exhaustiva, serà necessari que «el cardinal del conjunt inicial sigui més gran o igual que el del conjunt final». En símbols, \(n(A) \geq n(B) \).

Exemple 38. Sigui ara \(A = \{a, b, c\} , B = \{x, y\} \) i \(F = \{(a, x), (b, y), (c, y)\} \) i la correspondència \(f = (A, B, F) \) que és una aplicació exhaustiva tal com indiquen els seus diagrames:

Un altre exemple d’aplicació exhaustiva és l’aplicació característica definida en un subconjunt \(X \) d’un conjunt \(A \). El conjunt final sempre és \(B = \{1, 0\} \). La imatge de qualsevol dels elements d’\(X \) serà 1, mentre que si l’element no pertany a \(X \) serà 0.

Exemple 39. Tenim el conjunt \(A = \{a, b, c, d, e\} \) i el subconjunt \(X = \{a, b, c\} \).
L’aplicació característica d’\(X \) tindrà per imatges: \(f(a) = 1 \), \(f(b) = 1 \), \(f(c) = 1 \), \(f(d) = 0 \) i \(f(e) = 0 \).

3.1.3 APLICACIÓ INJECTIVA. Direm que \(f : A \rightarrow B \) és una aplicació injectiva si i solament si tots els elements del recorregut són imatge d’un sol original. Dibuixant el diagrama cartesià d’una aplicació injectiva observarem que les files que tenen bola, només en tenen una. Si el diagrama és sagital, llavors als punts del conjunt final els arriba com a màxim una fletxa.

Com a consequències podem destacar el fet (important per fer demostracions), que «imatges iguals exigeixen originals iguals»; és a dir, si tenim \(f(a) = f(b) \) i si \(f \) és injectiva, llavors es deduirà que \(a = b \). Per a establir una aplicació injectiva és necessari que «el cardinal del conjunt inicial sigui més petit o igual que el del final», \(n(A) \leq n(B) \).

Exemple 40. Tenim \(A = \{a, b\} , B = \{x, y, z\} \) i \(F = \{(a, x), (b, y)\} \). Llavors, la correspondència \(f = (A, B, F) \) és una aplicació injectiva tal com podem veure fent els diagrames corresponents:
Un exemple de la utilització d'aplicacions injectives el trobem en l'estudi de la monotonia de les aplicacions (o funcions), on suposem que A i B són dos conjunts ordenats amb una relació d'ordre (s).

Direm que f: A → B és una aplicació estrictament creixent si i sols si donats dos originals tals que el primer és més petit que el segon, llavors la imatge del primer sigui més petita que la imatge del segon; és a dir, una aplicació estrictament creixent conserva l'ordre.

Si per comptes de "ser més petit" ho generalitzem en "més petit o igual" direm que es tracta d'una aplicació creixent, que podrà no ser injectiva.

Exemple 41. En els conjunts A=\{0,4\} i B=\{0,2\} i donades les funcions \(f(x)=x/2 \) i la \(g \) definida per intervals com \(g(x)=x/2 \) si \(0<x<2 \), \(g(x)=1 \) si \(2<x<3 \) i \(g(x)=x-2 \) si \(3<x<4 \), podem veure fent les seves gràfiques que la funció f és estrictament creixent i la g creixent:

![Gràfics de l'exemple 41](image)

En canvi, direm que f és una aplicació estrictament decreixent si i sols si donats dos originals tals que el primer és més petit que el segon, llavors la imatge del primer és més gran que la imatge del segon; és a dir, en aquest cas una aplicació estrictament decreixent permuta l'ordre.

Si ara també ho generalitzem en "més petit o igual" obtindrem una nova aplicació que li direm aplicació decreixent.

Exemple 42. En els mateixos conjunts A=\{0,4\} i B=\{0,2\} i amb les noves funcions \(f(x)=4-x/2 \) i la \(g \) definida \(g(x)=2-x \) si \(0<x<1 \), \(g(x)=1 \) si \(1<x<2 \) i \(g(x)=(4-x)/2 \) si \(2<x<4 \), preveiem que la funció f és estrictament decreixent i que la g és decreixent:

![Gràfics de l'exemple 42](image)

3.1.4 APLICACIÓ BIJECTIVA
Una aplicació f: A → B es dirà que és una aplicació bijectiva si i sols si tots els elements del conjunt final són imatge d'un sol original. Observant el seu diagrama cartesià veurem que totes les files tenen una sola bola. Si el diagrama és el sagital, llavors ens adonarem que tots els elements del conjunt final els hi arriba una sola fletxa.

Remarquem també dues consequències. La primera és que la condició de ser aplicació bijectiva equivall a ser a la vegada aplicació exhaustiva i aplicació injectiva.
També, per construir una aplicació bijectiva entre dos conjunts és necessari que aquests siguin equipotents, és a dir, que tingui el mateix nombre d'elements, \(n(A) = n(B) \).

Exemple 43. Siguin els conjunts \(A = \{a, b, c\} \), \(B = \{x, y, z\} \) i el grafo \(F \) donat per \(F = \{(a, y), (b, z), (c, x)\} \). Dibuixem els dos diagrames i veurem que es tracta d'una aplicació bijectiva:

![Diagrama de bijectivitat](image)

Un exemple important d'applicació bijectiva és l'applicació idèntica d'un conjunt \(A \), simbolitzada per \(i_A \), i definida de tal manera que la imatge d'un element del conjunt és igual al mateix element, \(i_A(a) = a \).

3.2 COMPOSICIÓ D'APLICACIONS

3.2.1 APLICACIÓ RECÍPROCA

Partirem de l'applicació \(f = (A, B, F) \) i formarem la seva corresponència recíproca \(f^{-1} = (B, A, F^{-1}) \). En el cas que \(f^{-1} \) sigui aplicació li direm aplicació recíproca.

Com que tant \(f \) com \(f^{-1} \) seran aplicacions, es dedueix la important conseqüència que «perquè existeixi l'applicació recíproca és necessari que l'applicació original sigui bijectiva».

Exemple 44. Tinguem en compte l'exemple anterior i formem el grafo recípro f^{-1} = \{(y, a), (z, b), (x, c)\}. Si dibuixem f^{-1} = (B, A, F^{-1}) veurem que és l'applicació recíproca:

![Diagrama de recíproca](image)

Si comparem els grafs d'\(F \) i d'\(F^{-1} \) veurem que són simètrics respecte al grafo diagonal.

També es pot parlar de la restricció de la imatge recíproca a un subconjunt \(X \) del conjunt final \(B \): la imatge recíproca \(f^{-1}(X) \) és el conjunt de totes les imatges recíproques dels elements del conjunt. Entre les propietats dirèm que «la imatge recíproca de la intersecció (o unió) de subconjunts de \(B \) és igual a la intersecció (o unió) de les seves imatges recíproques».

Exemple 45. Si considerem el conjunt \(X = \{x, y\} \) del conjunt final \(B \), tindrem que \(f^{-1}(X) = \{f^{-1}(x), f^{-1}(y)\} = \{c, a\} = \{a, c\} \). Per altra banda, si \(Y = \{y, z\} \), llavors \(f^{-1}(Y) = \{a, b\} \). Pots comprovar de seguida les dues propietats esmentades anteriorment:

\[
\begin{align*}
 f^{-1}(X \cap Y) & = f^{-1}(X) \cap f^{-1}(Y) \quad \text{i} \\
 f^{-1}(X \cup Y) & = f^{-1}(X) \cup f^{-1}(Y)
\end{align*}
\]
3.2.2 APLICACIÓ COMPOSTA. Siguen tres conjunts \(A, B \) i \(C \) i dues aplicacions \(f: A \to B \) i \(g: B \to C \). Entenem la composició d'aplicacions com l'operació d'efectuar successivament totes dues aplicacions. Si per exemple apliquem primer \(f \) i després \(g \), ens resultarà una nova aplicació \(g \circ f: A \to C \), anomenada aplicació composta, tal que verifica \((g \circ f)(x) = g(f(x)) \) per a tot \(x \) del conjunt inicial \(A \).

Fem notar que perquè existeixi una correspondència composta s'ha de complir la condició necessària, la qual exigeix que el recorregut de la primera correspondència estigui inclòs en el domini de la segona. En aquest, en ser aplicacions ja és compleix, perquè \(D(g) = B \).

Exemple 46. Suposem els conjunts \(A = \{a, b\}, B = \{m, n, p, q\} \) i \(C = \{x, y, z\} \) i les aplicacions \(f: A \to B \) i \(g: B \to C \) definides pels grafs \(F = \{(a, p), (b, q)\} \) i \(G = \{(m, x), (n, y), (p, z), (q, z)\} \). Observem que l'aplicació composta \(g \circ f \) s'obté aplicant successivament \(f \) i la \(g \).

Remarquem que escriuríem \(g \circ f \) en ordre contrari al natural, ja que primer s'aplica \(f \) i després \(g \). Finalment, és clar que la composició d'aplicacions no és commutativa.

Exemple 47. Siguen les funcions de “multiplicar per 2”, \(f(x) = 2x \), i de “sumar-li 3”, \(g(x) = x + 3 \). És evident que no és el mateix “multiplicar per 2 i sumar-li 3”, \((g \circ f)(x) = 2x + 3 \), que “sumar-li 3 i multiplicar per 2”, \((f \circ g)(x) = (x + 3) \cdot 2 \).

Entre les propietats de la composició d'aplicacions cal destacar el fet que els conceptes d'aplicació exhaustiva, injectiva i bijectiva es conserven en la composició. També diem que la composició d'una aplicació amb la seva inversa ens donen l'aplicació identitat.

Exemple 48. Podem fer la composició de les aplicacions \(f \) i \(f^{-1} \) exposades en els exemples 43 i 44. Ens resultarà \(f^{-1} \circ f = i_A \).

Si haguéssim fet \(f \circ f^{-1} \) ens hauria resultat \(i_A \). Notem que en el cas que els conjunts fóssin iguals, \(A = B \), es verificaría la commutativitat.
Per últim, entre les propietats de la composició apuntem que la reciproca de la composició és igual a la composició de les seves reciproques escrites en ordre contrari, \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\).

Exemple 49. Tenim les funcions \(f(x) = (x+1)/2\) i \(g(x) = (x+3)/4\). Trobem-ne les reciproques, així que \(x = 2 \cdot f(x) - 1\) i \(x = 4 \cdot g(x) - 3\). Emplen la seva composició en ordre contrari:

\[(f \circ g)^{-1}(x) = f^{-1}(g^{-1}(x)) = f^{-1}(4 \cdot x - 3) = 2 \cdot (4 \cdot x - 3) = 8 \cdot x - 7 \]

Si primer haguéssim fet la composició:

\[(g \circ f)(x) = g(f(x + 1)/2) = [(x + 1)/2 + 3]/4 = (x + 1 + 6)/8 = (x + 7)/8 \]

Trobant ara la seva recomada \((g \circ f)^{-1}(x) = 8 \cdot x - 7\), és a dir, el mateix resultat que abans.

Ho podem veure també emprant un "diagrama de blocs", i particularitzant per un nombre determinat, per exemple \(x=9\):

![Diagrama de blocs](image)

3.3 COMBINATÒRIA

3.3.1 VARIACIONS

Donats els conjunts \(A\) i \(B\), de cardinals \(n\) i \(m\) respectivament, on \(m\geq n\), voltem trobar el **nombre total d'aplicacions injectives** que hi ha entre els dos conjunts. La imatge del 1r element d'\(A\) es pot escollir entre els \(m\) elements de \(B\), la del 2r entre els \(m-1\) restants, la del 3r entre els \(m-2\),... i la de l'enèssim entre els \(m-(n-1)\) que queden. Per tant, tindrem que:

\[n(Ap. \text{ Inj.}) = m \cdot (m-1) \cdot (m-2) \cdot ... \cdot (m-n+1) \]

És a dir, multiplicarem \(m\) pels seus naturals anteriors fins que en resultin \(n\) factors.

Exemple 50. Si \(A = \{a, b\}\) i \(B = \{u, v, x, y\}\) de cardinals \(n=2\) i \(m=4\), el nombre d'aplicacions injectives d'\(A\) a \(B\) és \(n(Ap. \text{ Inj.}) = 4 \cdot 3 \cdot 2 \cdot 1 = 12\).

Una d'aquestes pot ser \((u, v)\), amb el significat que \(f(a) = u\) i \(f(b) = v\).

Amb aquesta notació podem apuntar-les totes:

\((u,v) \) \((u,x) \) \((u,y) \) \((v,u) \) \((v,x) \) \((v,y) \) \((x,u) \) \((x,v) \) \((y,u) \) \((y,v) \) \((y,x) \)

Suposem que ara tenim un sol conjunt \(A\) d'\(m\) elements i voltem trobar totes les ordenacions d'\(n\) elements no repetits que es poden efectuar entre els \(m\) elements donats. Aquest nombre es diu **nombre de variacions simples** de \(m\) elements agafats de \(n\) en \(n\) i el simbolitzem per \(V_{m,n}\).

Es veu fàcilment que \(V_{m,n}\) coincideix amb el nombre d'aplicacions injectives d'un conjunt d'\(n\) elements en un d'\(m\) elements.

Exemple 51. Amb els 7 colors de l'arc de Sant Martí volem dibuixar banderes tricols de franges horitzontals d'igual amplitude, amb la condició que en totes hi hagi el groc i en cap, el lila.

Si sempre pintem amb el groc i descartem el lila ens quedaran 5 colors per utilitzar i 2 franges per pintar. Com que l'ordre és important, es tractarà de variacions simples de 5 colors agafat de dos en dos.
Comprovem que també són aplicacions injectives del conjunt indexat i de franges al conjunt A de colors restants:

- a) Vermell
- b) Taronja
- c) Groc
d) Verd
e) Blau
f) Any

g) Lila

Tenim \(V_{5,2} = n(\text{Ap.Inj.}) = 5 \cdot 4 = 20 \). Ara bé, com que el groc es pot pintar en qualsevol de les tres franges, el nombre de banderes que es podran pintar serà el triple, o sigui \(3 \cdot 20 = 60 \) banderes.

Proposem-nos trobar el nombre total d’aplicacions entre els conjunts A i B, de cardinals \(n \) i \(m \), resp. El \(1^\text{r} \) element de A el podrem escollir entre els \(m \) de B, el \(2^\text{r} \) també entre els \(m \), ..., i l’enèsim també entre els \(m \). Per tant, només caldrà multiplicar \(n \) vegades la \(m \) per si mateixa; és a dir \(n(\text{Ap}) = m^n \).

Exemple 52. Suposem que \(A = \{a, b\} \) i \(B = \{u, v, x, y\} \) on \(n(A) = 2 \) i \(n(B) = 4 \). El nombre total d’aplicacions entre \(A \) i \(B \) serà \(n(\text{Ap}) = 4^2 = 16 \). Apuntem les ordenacions: el primer terme és la imatge d’\(a \) i el segon \(b \), posant de manera simplificada \(uv \) per comptes de \((u,v) \):

\[
\begin{array}{c}
\text{uu} \\
\text{uv} \\
\text{ux} \\
\text{uy} \\
\text{vu} \\
\text{vw} \\
\text{vx} \\
\text{vy} \\
\text{wu} \\
\text{wx} \\
\text{wy} \\
\text{uy} \\
\text{yx} \\
\text{yy}
\end{array}
\]

Si tenim un sol conjunt A de cardinal \(m \), el nombre total d’ordenacions d’n elements, repetits o no, que es poden fer entre aquests \(m \) elements, es diu nombre de variacions amb repetició de \(m \) elements presos d’n en i és simbolitzat per \(VR_{m,n} \).

Es prova que \(VR_{m,n} \) coincideix amb el nombre total d’aplicacions entre un conjunt d’elements a un d’m; és a dir, \(VR_{m,n} = m^n \).

Exemple 53. Amb les xifres 6, 7 i 8 volem saber quants nombres parells de 5 xifres hi ha. És clar que s’hauran de repetir les xifres, perqué en necessitem 5 i només ens en donen 3. Seran variacions amb repetició de 3 xifres preses de 5 en 5: \(VR_{3,5} = 5^3 = 125 \).

No hem tingut en compte que han de ser parells. Com que de les 3 xifres que podran acabar, 6, 7 i 8, n’hi han dues de parells, el nombre demanat serà \(N = (243) \cdot 2/3 = 162 \).

3.3.2 PERMUTACIONS. Volem trobar el nombre total d’aplicacions bijectives entre els dos conjunts A i B que, naturalment, tenen el mateix cardinal \(m \). Aquest problema és un cas particular del de trobar el nombre d’aplicacions injectives, en el qual ara \(n = m \). Per tant, tindrem \(n(\text{Ap.Bij.}) = m(\text{m}-1)(\text{m}-2)\ldots3.2.1 \).

Aquesta operació de multiplicar un nombre natural per tots els seus anteriors, s’anomena factorial, i se simbolitza per mitjà d’un signe d’admiració. Tindrem, doncs, \(n(\text{Ap.Bij.}) = m! \).

Exemple 54. El nombre total d’aplicacions bijectives del conjunt \(A = \{a, b, c\} \) al \(B = \{x, y, z\} \) serà \(n(\text{Ap.Bij.}) = 3! = 3 \cdot 2 \cdot 1 = 6 \). Aquestes són:

\(\{x,y,z\} \) \(\{x,z,y\} \) \(\{y,x,z\} \) \(\{y,z,x\} \) \(\{z,x,y\} \) \(\{z,y,x\} \)
Sigui un conjunt \(A \) d'\(m \) elements. El nombre total d'ordenacions possibles d'aquests \(m \) elements, sense que es puguin repetir, es diu nombre de permutacions simples i es simbolitza per \(P_m \).

Ràpidament es veu que \(P_m = V_m, m = m! \), ja que aquest és un cas particular de les variacions simples en què \(n = m \).

Exemple 55. Amb les lletres de la paraula GIRONÈS volem formar totes les ordenacions possibles sense repetir les lletres de manera que no hi hagi mai ni dues consonants ni dues vocals juntes.

Comencem per les consonants \(\{G, R, N, S\} \), que es poden permutar de \(P_4 = 4! = 4.3.2.1 = 24 \) maneres. Per les vocals, \(\{I, O, E\} \), tindrem \(P_3 = 3! = 6 \) permutacions. Com que s'hauran d'intercalar, el nombre demanat serà \(24.6 = 144 \).

Amb els conjunts de sempre \(A \) i \(B \) de cardinals \(n \) i \(m \) respectivament, on ara \(n \geq m \), i com a cas particular suposant que \(m = 3 \), trobem el nombre total d'aplicacions condicionades pel fet que el 1\(\text{er} \) element de \(B \) tingui \(r \) elements originals, el 2\(\text{er} \), s i el 3\(\text{er} \), t; on evidentment \(r + s + t = n \). Aquest nombre ve donat per \(n!/(r!s!t!) \).

Exemple 56. Tenim els conjunts \(A = \{a, b, c, d, e, f\} \) i \(B = \{x, y, z\} \) i volem trobar el nombre total d'aplicacions condicionades pel fet que a la \(x \) li arribin tres flets, a la \(y \), dues i a la \(z \), una. Aquest nombre serà

\[
N = \frac{6!}{3!2!1!} = \frac{6.5.4.3.2.1}{3.2.1} = 60
\]

Una possible aplicació \(g \) seria \(abc-de-f \), on aquesta notació significa que \(g(a) = g(b) = g(c) = x \), \(g(d) = g(e) = y \) i \(g(f) = z \).

Si partim d'un conjunt \(A \) d'\(m \) elements podem calcular el nombre total d'ordenacions possibles, dividides en \(n \) subgrups, de manera que en el primer subgrup n'hi hagi \(r \), en el segon, \(s \) i en el tercer, \(t \). Aquest nombre s'anomena nombre de permutacions amb repetició i el podem simbolitzar per \(PR_m, r; s; t \).

Es pot veure que \(PR_m, r; s; t \) coincideix amb el nombre d'aplicacions condicionades que en aquest cas és \(m!/(r!s!t!) \). Naturalment, hem particularitzat per a \(3 \) subgrups, però es podrà generalitzar per a qualsevol nombre, sempre tenint en compte que la suma dels termes del denominador ha de ser igual al numerador.

Exemple 57. Una urna conté 5 boles: 3 són blanques i les altres 2, negres. Es treuen les boles una a una i es posen ordenadament en fila en un casellera numerat. Ens preguntem quants resultats possibles hi pot haver.

Un resultat possible és el \((B, B, B, N, N) \), esquematitzat per BBBNN. Observeu que són permutacions amb repetició de 5 lletres on la \(B \) està 3 vegades repetida i la \(N \), 2. Per tant, aquest nombre serà \(5!/(3!2!) \), que ens dona 10. Apuntem aquests resultats:

\[
\begin{align*}
&\text{BBBNN} \quad \text{BBENN} \quad \text{BBBNN} \quad \text{NBBEN} \quad \text{BBENN} \\
&\text{BNBBN} \quad \text{NBBNB} \quad \text{BBNNB} \quad \text{NBNBB} \quad \text{NNEBB}
\end{align*}
\]
3.3.3 NÚMEROS COMBINATORIS. Donat un conjunt A de m elements, ens proposem trobar el nombre total de subconjunts de n elements que es poden formar amb els m elements del conjunt A. Per a trobar-lo podem recordar l'aplicació característica.

Exemple 58. Suposem el cas particular m=5 i n=3. Pel conjunt \(A = \{a, b, c, d, e\} \) hem de trobar el nombre total de subconjunts de 3 elements. Fem l'aplicació característica:

\[
\begin{array}{c}
A \\
\{a\} & \{b\} & \{c\} & \{d\} & \{e\} \\
\{a, b\} & \{a, c\} & \{a, d\} & \{a, e\} & \\
\{b, c\} & \{b, d\} & \{b, e\} & \\
\{c, d\} & \{c, e\} & \\
\{d, e\} & \\
\end{array}
\]

Veiem que la gràfica anterior és una aplicació condicionada que a tres termes els correspongui l'1 i a dos el 0. D'aquesta manera, el nombre demanat serà \(5!/[3!2!] = 10 \). Aquests subconjunts seran:

\[
\begin{align*}
\{a, b, c\} & \quad \{a, b, d\} & \quad \{a, b, e\} & \quad \{a, c, d\} & \quad \{a, c, e\} & \quad \{a, d, e\} \\
\{b, c, d\} & \quad \{b, c, e\} & \quad \{b, d, e\} & \\
\{c, d, e\} & \\
\end{align*}
\]

En general, dels m elements del conjunt A a n li correspondrà el 1 i a m-n el 0. En consecüència, el nombre total de subconjunts de n elements vindrà donat per \(m!/[n!(m-n)!] \). Aquest valor rep el nom de número combinatori, simbolitzat per una "fracció simbòlica" de numerador m i denominador n i que es llegix per "m sobre n". ESCRIUREM:

\[
\binom{m}{n} = \frac{m!}{n!(m-n)!}
\]

Com a casos particulars tenim que:

\begin{itemize}
 \item a) Si el denominador és nul o igual al numerador, llavors el número combinatori és igual a la unitat, ja que per conveni 0!=1.
 \item b) Si el denominador és igual a la unitat, llavors el nombre combinatori és igual al numerador.
\end{itemize}

Exemple 59. Del conjunt \(A = \{a, b, c\} \), i dels números combinatoris

\[
\binom{m}{0} \quad \binom{m}{1} \quad \binom{m}{2}
\]

veiem que el primer és el nombre de subconjunts de 0 elements. Com només hi ha el \(\emptyset \), aquest número combinatori valdrà 1.

El mateix podem dir del segon, perquè de subconjunts de 3 elements només hi ha el mateix conjunt A.

Quant al tercer, el n\(^{\text{a}}\) de subconjunts unitaris coincideix amb el n\(^{\text{a}}\) m d'elements. En aquest cas serien 3 subconjunts, \(\{a\}, \{b\} \text{ i } \{c\} \).

Col·locant ordenadament tots els nombres combinatoris, ens queda un triangle anomenat *triangle de Tartaglia* (o de Pascal):

\[
\begin{array}{cccccc}
1 & 1 & & & & \\
0 & 1 & 1 & & & \\
0 & 1 & 2 & 1 & & \\
\hline
0 & 1 & 3 & 3 & 1 & \\
1 & 4 & 6 & 4 & 1 & \\
1 & 5 & 10 & 10 & 5 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\]
Les propietats dels números combinatoris es poden comprovar fàcilment, observant les següents consideracions en el triangle de Tartaglia:

(I) Els nombres combinatoris de les files són capicúa.

(II) Cada número combinatori és igual a la suma dels dos nombres que té a sobre ell.

(III) La suma dels nombres combinatoris de cada fila és una potència de 2, amb exponent igual al numerador.

Exemple 60. Si agafem la fila de numerador m=6, veurem que és capicúa, 1-6-15-20-15-6-1, que el 20, per exemple, és igual a la suma dels que té a sobre, 10+10, i que fent la suma 1+6+15+20+15+6+1=64 és igual a 2^6.

3.3.4 COMBINACIONS.

Siguin els conjunts A i B, de cardinals n i m, respectivament, on $m>n$ i on B se suposa que està ordenat. Si calculem el nombre total d'aplicacions estrictament creixents veurem que coincideix amb el número combinatori m sobre n.

Exemple 61. Suposem que $A=\{a,b\}$ i $B=\{u,v,x,y,z\}$. Una possible aplicació és la (u,v), és a dir, $f(a)=u$ i $f(b)=v$. En canvi no ho seria (v,u) perquè no segueix l'ordre que, en aquest cas, podem considerar alfabètic. Per tant, és com si haguéssem agafat un subconjunt de dos elements $\{u,v\}$. En total hi haurà:

$$\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} = \binom{5}{2} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} = 10$$

Aplicacions estrictament creixents

Aquestes seran:

$$(u,v) (u,x) (u,y) (u,z) / (v,x) (v,y) (v,z) / (x,y) (x,z) / (y,z)$$

**Donat un conjunt A d'm elements, anomenarem nombre de combinacions simples d'aquests m elements agafats d'*n en *n*, i ho representarem per $\binom{m}{n}$, el nombre d'agrupacions d'm elements que es poden formar a partir dels m elements d'A. Si parlem d'agrupacions significa que no s'haurà de tenir en compte l'ordre i que, per trobar $\binom{m}{n}$, fem servir el nombre combinatori m sobre n.

Observem que les combinacions $\binom{m}{n}$ són igual al quocient entre les variacions $V_{m,n}$ i les permutacions P_n, com pots provar senzillament.

Exemple 62. Suposem que tenim 7 begudes alcohòliques i volem preparar còctels barrejant 3 begudes diferents amb la mateixa quantitat de licor. Quants còctels podrem preparar?

Com que no depèn de l'ordre seran combinacions de 7 begudes agafades de tres en tres:

$$\binom{7}{3} = \frac{7!}{3!(7-3)!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 7 \times 5 \times \frac{2}{2} = 35$$

També podem haver trobat les variacions $V_{7,3}=7 \times 6 \times 5 = 210$ i les permutacions $P_3=3 \times 2 \times 1=6$. El quocient és $\frac{V_{7,3}}{P_3} = 7 \times 6 = 210.

Formem-los tots suposant que tenim les begudes $A=\{a,b,c,d,e,f,g\}$:

$$(a,b,c) (a,b,d) (a,b,e) (a,b,f) (a,b,g) (a,c,d) (a,c,e) (a,c,f) (a,c,g) (a,d,e) (a,d,f) (a,d,g) (a,e,f) (a,e,g) (a,f,g) (b,c,d) (b,c,e) (b,c,f) (b,c,g) (b,d,e) (b,d,f) (b,d,g) (b,e,f) (b,e,g) (b,f,g) (c,d,e) (c,d,f) (c,d,g) (c,e,f) (c,e,g) (c,f,g) (d,e,f) (d,e,g) (d,f,g) (e,f,g).$$
Es pot provar que el nombre total d’aplicacions creixents del conjunt A de cardinal n al B de cardinal m, coincideix amb el nombre total d’aplicacions estrictament creixents del conjunt A a un nou conjunt C de cardinal m+n-1.

\[\binom{m+n-1}{n} = \binom{6}{3} = \frac{6!}{3! \cdot 3!} = \frac{6
cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 20 \text{ aplic. creixents} \]

Aquestes seran:
{(w,w,w), (w,w,y), (w,w,z), (w,x,x), (w,x,y), (w,x,z), (w,y,y),
(w,y,z), (w,z,z), (x,x,x), (x,x,y), (x,x,z), (x,y,x), (x,y,y), (x,y,z), (x,y,z),
(y,y,y), (y,z,z), (y,z,z), (z,z,z).

Donat el conjunt A de cardinal m anomenarem nombre de combinacions amb repetició de m elements presos d’en n, i ho simbolitzarem per CR_{m,n}. A les diferents agrupacions de n elements, repetits o no, que es poden prendre entre els m elements del conjunt A. Trobarem aquest valor a partir de les combinacions simples, CR_{m,n}=C_{m+n-1,n}.

\[\text{Exemple 64. Suposem que a partir de 5 begudes diferents es volen fer cócteis de 3 begudes, però que, a causa del mareig del protagonista, es poden repetir. Quantes en repetirà com a màxim? Evidentment, 2, perquè el cóctel és de 3 begudes. Així doncs, és com si tingués } 5+2=7 \text{ begudes. El nombre de cócteis serà: } \]
\[\text{CR}_{3,3}=C_{5+3-1,3}=C_{7,3} = \binom{7}{3} = 35 \text{ cócteis} \]

Per a determinar-los, si el conjunt de begudes és A={a,b,c,d,e}, tindrem:
\{a,a,a\} \{a,a,b\} \{a,a,c\} \{a,a,d\} \{a,a,e\} \{a,b,b\} \{a,b,c\} \{a,b,d\} \{a,b,e\} \{a,c,c\} \{a,c,d\} \{a,c,e\} \{a,c,f\} \{a,d,d\} \{a,d,e\} \{a,d,f\} \{a,e,e\} \{a,e,f\} \{b,b,b\} \{b,b,c\} \{b,b,d\} \{b,b,e\} \{b,c,c\} \{b,c,d\} \{b,c,e\} \{b,c,f\} \{b,d,d\} \{b,d,e\} \{b,d,f\} \{b,e,e\} \{b,e,f\} \{b,f,f\} \{c,c,c\} \{c,c,d\} \{c,c,e\} \{c,c,f\} \{c,d,d\} \{c,d,e\} \{c,d,f\} \{c,e,e\} \{c,e,f\} \{c,f,f\} \{d,d,d\} \{d,d,e\} \{d,d,f\} \{d,e,e\} \{d,e,f\} \{d,f,f\} \{e,e,e\} \{e,e,f\} \{e,f,f\}.
d) FORMULACIÓ MATEMÀTICA

Aplicació

Definició: \(f: A \to B \) aplicació \(\iff \forall a \in A \, \exists b \in B / b = f(a) \)

Domini: \(D(f) = A \)
Recorregut: \(R(f) = f(A) \)

Aplicacions iguals:
\(f, g: A \to B , f = g \iff [\forall a \in A \Rightarrow f(a) = g(a)] \)

Imatge d'un subconjunt \(X \) d'\(A \): \(f(X) = \{ f(a) / a \in X \} \)

Propietats: \((X,Y \subseteq A) \)
 - Inclusió: \(X \subseteq Y \Rightarrow f(X) \subseteq f(Y) \)
 - Unió: \(f(X \cup Y) = f(X) \cup f(Y) \)
 - InterseCCIó: \(f(X \cap Y) \subseteq f(X) \cap f(Y) \)

Aplicació exhaustiva

Definició: \(f: A \to B \) exhaustiva \(\iff \forall b \in B , \exists a \in A / b = f(a) \)

Conseqüències: \(f: A \to B \) exhaustiva \(\Rightarrow f(A) = B \)
\[f: A \to B \text{ exhaustiva } \Rightarrow n(A) \geq n(B) \]

Aplicació característica d'un subconjunt \(X \):
\(f: A \to B , B = \{ 1, 0 \} \land X \subseteq A \Rightarrow f(x) = 1 \text{ si } x \in X \land f(x) = 0 \text{ si } x \notin X \)

Aplicació injectiva

Definició: \(f: A \to B \) injectiva \(\iff \forall b \in f(A) , \exists a \in A / b = f(a) \)

Conseqüències:
\(f: A \to B \) injectiva \(\iff \forall a,b \in A / f(a) = f(b) \Rightarrow a = b \)
\[f: A \to B \text{ injectiva } \Rightarrow n(A) \leq n(B) \]

Monotonia de les aplicacions:
 - Aplicació estricte creixent: \(\forall a,b \in A / a < b \Rightarrow f(a) < f(b) \)
 - Aplicació creixent: \(\forall a,b \in A / a < b \Rightarrow f(a) \leq f(b) \)
 - Aplicació estricte decreixent: \(\forall a,b \in A / a < b \Rightarrow f(a) > f(b) \)
 - Aplicació decreixent: \(\forall a,b \in A / a < b \Rightarrow f(a) \geq f(b) \)
Aplicació bijectiva

Definició: \(f : A \rightarrow B \) bijectiva \(\iff \forall b \in B, \exists a \in A \ / \ b = f(a) \)

Conseqüències: Bijectiva = Exhaustiva + Injectiva
\(f : A \rightarrow B \) bijectiva \(\Rightarrow n(A) = n(B) \)

Aplicació idèntica: \(i_A : A \rightarrow A \ / \ \forall a \in A \Rightarrow i_A(a) = a \)

Aplicació recíproca

Definició:
\(f^{-1} : B \rightarrow A \) ap. recíp. \(f : A \rightarrow B \iff f^{-1}(A,B,F) / f^{-1}(B,A,F^{-1}) \) és aplic.

Conseqüència: \(f^{-1} : B \rightarrow A \) ap. recíp. \(\Rightarrow f : A \rightarrow B \) ap. biject.

Subconjunt: \(X \subseteq B \)
Imatge recíproca: \(f^{-1}(X) = \{ a \in A \ / \ f(a) \in X \} \)

Propietats: \((X,Y \subseteq B) \)
- Inclusió: \(X \subseteq Y \Rightarrow f^{-1}(X) \subseteq f^{-1}(Y) \)
- Unió: \(f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y) \)
- Intersecció: \(f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y) \)

Composició d'aplicacions

Definició:
\(f : A \rightarrow B \land g : B \rightarrow C \Rightarrow g \circ f : A \rightarrow C \ / \ (g \circ f)(x) = g(f(x)) \), \(\forall x \in A \)

Condició necessària: \(\exists g \circ f : A \rightarrow C \Rightarrow R(f) \subseteq D(g) \)

Propietats de la composició:

- (I) \(f, g \) aplic. \(\Rightarrow g \circ f \) aplic.
- (II) \(f, g \) exh. \(\Rightarrow g \circ f \) exh.
- (III) \(f, g \) inj. \(\Rightarrow g \circ f \) inj.
- (IV) \(f, g \) bij. \(\Rightarrow g \circ f \) bij.
- (V) \(f : A \rightarrow B, g : B \rightarrow C, h : C \rightarrow D \Rightarrow (h \circ g) \circ f = h \circ (g \circ f) \)
- (VI) \(f \circ i_A = f \land i_B \circ f = f \)
- (VII) \(f^{-1} \circ f = i_A \land f \circ f^{-1} = i_B \)
- (VIII) \((g \circ f)^{-1} = f^{-1} \circ g^{-1} \)

Variacions

- V. simples (Nombre ap. inj.): \(V_{m,n} = m \cdot (m-1) \cdot (m-2) \ldots (m-n+1) \)
- V. amb repetició (Nombre total aplicacions): \(VR_{m,n} = m^n \)
Permutacions

Factorial d’un número: \(m! = m(m-1)(m-2)\cdots2\cdot1 \)

P. simples (Nombre ap. bijectives): \(P_m = m! \)

P. amb repetició (Nombre apl. condicion.): \(PR_{m,r,s,t} = m!/(r!\cdot s!\cdot t!) \)

Combinacions

N. Combinatoris (Nombre subc. n elem.): \(\binom{m}{n} = \frac{m!}{n!(m-n)!} \)

Casos particulars: \(\binom{m}{0} = 1 \quad \binom{m}{1} = m \quad \binom{m}{m} = 1 \)

Propietats: (I) \(\binom{m}{n} = \binom{m}{m-n} \)
(II) \(\binom{m}{n} = \binom{m-1}{n-1} + \binom{m-1}{n} \)

(III) \(\binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{m} = 2^m \)

Comb. Simples (Nombre ap. estict. creixents): \(C_{m,n} = \binom{m}{n} \)

Propietat: \(C_{m,n} = V_{m,n}/P_n \)

C. amb repetició (Nombre ap. creixents): \(CR_{m,n} = C_{m+n-1,n} \)

Esquema general de combinatòria

- **Hi entren tots els elements?**
 - Sí: Variacions Simples \(V_{m,n} = m!/(m-n)! \)
 - NO: Permutacions simples \(P_m = m! \)

- **Poden repetir-se?**
 - Sí: Variacions amb repetició \(VR_{m,n} = m^n \)
 - NO: Permutacions amb repetició \(PR_{m,r,s,t} = \frac{m!}{r!\cdot s!\cdot t!} \)

- **Es indiferent l'ordre?**
 - Sí: Combinacions simples \(C_{m,n} = \binom{m}{n} \)
 - NO: Combinacions amb repetició \(CR_{m,n} = \binom{m+n-1}{n} \)
e) PROBLEMES RESOLTS

3.1 TIPUS D’APLICACIONS

Concepte d’aplicació

111. Si \(A=\{a,b,c\} \) és el conj. inicial i \(B=\{m,n,p\} \) el final, dibuixa en un diagrama cartesià les correspondències \(f_1, f_2, f_3 \) i \(f_4 \) definides pels grafos \(F_1=(\{a,n\}, \{b,m\}, \{b,p\}) \), \(F_2=(\{a,p\}, \{b,n\}) \), \(F_3=(\{a,m\}, \{b,p\}, \{c,p\}) \) i \(F_4=(\{a,n\}, \{a,p\}, \{b,p\}, \{c,m\}) \). Quines seran aplicacions?

Solució. Dibuixem els diferents grafos donats \(F_1, F_2, F_3 \) i \(F_4 \) en un diagrama cartesià

Per veure si les correspondències associades \(f_i=(A,B,F_i) \), on \(i=1,2,3,4 \), són aplicacions, ens fixarem en cadascuna de les diferents columnes dels diagrames anteriors. Recordem que

\[f: A \rightarrow B \text{ aplicació } \iff \forall a \in A, \exists b \in B \text{ / } b=f(a) \]

Això significa gràficament que perquè un grafo \(F \) determini una aplicació «cada columna haurà de tenir una sola rodona negra». Deduïm, doncs, que només \(f_3=(A,B,F_3) \) serà aplicació. També podem fer els diagrames sagitals corresponents:

En aquest cas perquè \(f \) sigui aplicació, de cada element del conjunt inicial \(A \) n’ha de sortir una sola fletxa. Evidentment, l’única correspondència que compleix aquesta condició és la \(f_3 \).

112. Troba les antimatges de la funció exponencial \(f:R \rightarrow R \), \(f(x)=3+(1/2)^x \), si les imatges són \(y_1=7, y_2=4, y_3=3'25, y_4=5 \) i \(y_5=3'5 \). Dibuixa’n el grafo. Serà o no una aplicació? Quin és el recorregut d’aquesta funció?
Solució. Com que la funció és \(y = f(x) \), per trobar les antiimatges o elements originals igualarem la \(y \) donada amb la funció \(y = 3 + (1/2)^x \) i después determinarem el valor de la \(x \) que ho verifiqui. Observem que podem escriure \(y = 3 + (2^{-1})^x \) o millor \(y = 3 + 2^{-x} \):

1) \(y_1 = 7 \Rightarrow 7 = 3 + 2^{-x} \), \(4 = 2^{-x} \), \(2^2 = 2^{-x} \), \(2 = -x \), \(x_1 = -2 \)

2) \(y_2 = 4 \Rightarrow 4 = 3 + 2^{-x} \), \(1 = 2^{-x} \), \(2^0 = 2^{-x} \), \(0 = -x \), \(x_2 = 0 \)

3) \(y_3 = 3'25 \Rightarrow 3'25 = 3 + 2^{-x} \), \(0'25 = 2^{-x} \), \((1/4) = 2^{-x} \), \(4^{-1} = 2^{-x} \), \((2^2)^{-1} = 2^{-x} \), \(2^{-2} = 2^{-x} \), \(-2 = -x \), \(x_3 = 2 \)

4) \(y_4 = 5 \Rightarrow 5 = 3 + 2^{-x} \), \(2 = 2^{-x} \), \(2^1 = 2^{-x} \), \(1 = -x \), \(x_4 = -1 \)

5) \(y_5 = 3'5 \Rightarrow 3'5 = 3 + 2^{-x} \), \(0'5 = 2^{-x} \), \((1/2) = 2^{-x} \), \(2^{-1} = 2^{-x} \), \(-1 = -x \), \(x_5 = 1 \)

Fem el diagrama sagital d'aquesta correspondència entre reals, o aplicació, i obtinguem una \textit{taula de valors}. Dibuixem també el seu grafo en un diagrama cartesià, que serà la \textit{gràfica} de la funció.

La correspondència donada \(f : \mathbb{R} \rightarrow \mathbb{R} \) serà una \textit{aplicació} perquè a cada nombre real \(\mathbb{R} \) correspon un sol nombre real. S'observa gràficament que totes les rectes verticals tallen la corba en un sol punt.

El recorregut, o conjunt imatge, serà el conjunt de totes les imatges. De la gràfica es veu que \(R(f) = \{3, +\infty\} \).

\textbf{113.} Donada l'aplicació \(f(x) = x^2 + 1 \) troba les imatges dels conjunts \(A = \{-3, -2, -1, 1\} \), \(B = \{-2, 2, 3\} \) i \(A \cap B \). Quin tipus de relació hi ha entre \(f(A \cap B) \) i \(f(A) \cap f(B) \)?

\textit{Solució.} Trobem en primer lloc les imatges dels diferents valors donats de la \(x \):

\[
\begin{array}{llll}
\text{f(-3)} &= (-3)^2 + 1 &= 10 \\
\text{f(-2)} &= (-2)^2 + 1 &= 5 \\
\text{f(-1)} &= (-1)^2 + 1 &= 2 \\
\text{f(1)} &= 1^2 + 1 &= 2 \\
\text{f(2)} &= 2^2 + 1 &= 5 \\
\text{f(3)} &= 3^2 + 1 &= 10 \\
\end{array}
\]
En conseqüència, les imatges dels conjunts \(A, B \) i \(A \cap B \) seran
\[
f(A) = \{f(-3), f(-2), f(-1), f(1)\} = \{10, 5, 2, 2\} \quad \Rightarrow \quad f(A) = \{2, 5, 10\}
\]
\[
f(B) = \{f(-2), f(2), f(3)\} = \{5, 10\} \quad \Rightarrow \quad f(A \cap B) = f(-2) = \{5\}
\]

Com \(f(A) \cap f(B) = \{5, 10\} \) deduim que es pot escriure la següent relació d'inclusió:
\[
f(A \cap B) \subseteq f(A) \cap f(B)
\]

114. A \(\mathbb{R}^2 \) considerem el grafo \(F = (x, y) / x^2 + y^2 = 25 \) i els conjunts inicials i finals següents: (1) \(A_1 = \mathbb{R}, B_1 = \mathbb{R} \), (2) \(A_2 = \mathbb{R}, B_2 = [-5, 5] \), (3) \(A_3 = [-5, 5], B_3 = \mathbb{R} \), (4) \(A_4 = [-5, 5], B_4 = [-5, 5] \), (5) \(A_5 = [-5, 5], B_5 = [0, 5] \) i (6) \(A_6 = [0, 5], B_6 = [0, 5] \). Dibuixa les correspondències \(f_i = (A_i, B_i, F) \) en un diagrama cartesià i estudia quines seran aplicacions.

Solució. Sabem que perquè la correspondència \(f: A \rightarrow B \) sigui una aplicació ha de succeir que a tot element del conjunt inicial li ha de correspondre un sol element del conjunt final. Geomètricament, això vol dir que en el conjunt \(A \) tota recta vertical ha de tallar la corba en un sol punt. Les gràfiques són circumferències de centre l'origen i radi 5:

A \(f_1: A_1 \rightarrow B_1 \) hi ha rectes verticals que no tallen la corba (les que es troben fora del domini \(D(f_1) = [-5, 5] \)), rectes que tallen la corba en un sol punt (són les tangents en els punts \(x = -5 \) i \(x = 5 \)) i rectes que tallen la corba en dos punts (les situades en l'interior de l'interval d'extremes -5 i 5). Així \(f_1 \) no serà aplicació.

Fent un raonament similar en les altres correspondències, observem que només compliran aquesta condició \(f_5 \) i \(f_6 \). Per tant, apuntem \(\text{Aplicacions: } f_5 \) i \(f_6 \).
115. Donada l’aplicació $f: \mathbb{Z} \to \mathbb{Z}$ definida per $f(x)=(x-1)(x^2+1)(x+1)$, simplifiquem l’expressió que la defineix i troba els subconjunts imatges de $X=\{-3,-2,-1,0,1,2,3\}$ i $Y=\{-1,0,1,2\}$ del conjunt inicial. És cert que $f(X-Y) \neq f(X)-f(Y)$?

Solució. Simplifiquem la funció donada

$$f(x)=(x-1)(x^2+1)(x+1)=(x-1)(x^2+1)=(x^2-1)(x^2+1)=x^4-1$$

Trochem les imatges dels diferents elements:

- $f(-3)=(-3)^4-1=80$
- $f(-2)=(-2)^4-1=15$
- $f(-1)=(-1)^4-1=0$
- $f(0)=0^4-1=-1$ i també $f(1)=0$
- $f(2)=15$
- $f(3)=80$

Per tant, les imatges dels conjunts donats X i Y i la de la seva diferència $X-Y=X \cap Y=\{-3,-2,3\}$ seran

- $f(X)=(f(-3),f(-2),f(-1),f(0),\ldots)={(80,15,0,-1,0,15,80)}={-1,0,15,80}$
- $f(Y)={(0,-1,0,15)}={-1,0,15}$
- $f(X-Y)={80,15,80}={15,80}$

Per altra banda, $f(X)-f(Y)={-1,0,15,80}-{(-1,0,15)}={80}$

Notem que $f(X-Y) \neq f(X)-f(Y)$.

Aplicacions Exhaustives

116. Es defineix la funció “part entera” d’un nombre real x, i simbolitzada per $E(x)$, com el major enter menor o igual que x. Així, $E: \mathbb{R} \to \mathbb{Z}$. Fes la seva gràfica. És una aplicació? És exhaustiva?

Solució. Formem una taula de valors, observant que per a valors positius d’x per trobar la funció part entera traiem la part decimal. I si x és negatiu, la funció part entera és l’enter immediatament anterior al número.

La gràfica de la funció “part entera” és una funció escalonada. Com que a cada real li correspon una sola imatge, la funció és una aplicació.

Com el recorregut és $R[0]=\ldots,-2,-1,0,1,2,\ldots$ i coincideix amb el conjunt imatge \mathbb{Z}, aquesta aplicació sí que serà exhaustiva.
Aplicacions Injectives

117. Donats el conjunt inicial \(A = \{a, b, c\} \) i el final \(B = \{m, n, p, q\} \) dibuixar el diagrama cartesià de les dues aplicacions determinades pels grafs de \(A \times B \), \(F_1 = \{(a, p), (b, m), (c, m)\} \) i \(F_2 = \{(a, n), (b, q), (c, p)\} \) i troba una regla per veure directament si aquestes aplicacions són injectives. Quin és el recorregut de cadascuna?

Solució. Dibuixem els grafs en dos diagrames cartesiens i, de passada, també fem els corresponsants diagrames sagitals.

Sabem que una aplicació \(f \) serà injectiva si als elements del conjunt final \(B \) els arriba com a màxim una sola fletxa (pot ser que n’hi hagi que no els n’arribi cap).

Aquesta idea ens porta a la conclusió que perquè una aplicació sigui injectiva les línies horitzontals d’un diagrama cartesià han de tallar al grafo en un punt com a màxim.

Resulta, doncs, que sols \(f_2 \) serà injectiva.

Quant al recorregut, o conjunt imatge, estarà format per tots els elements del conjunt final als quals arribin flexes. Així

\[
R(f_1) = \{m, p\} \quad \text{i} \quad R(f_2) = \{n, p, q\}.
\]

118. Dibuixa la funció exponencial \(f: \mathbb{R} \to \mathbb{R} \) definida per \(f(x) = 2^x \). És injectiva? Quin és el seu recorregut? Quina és la antimatge de 256?

Solució. Si dibuixem la corba per mitjà d’una taula de valors, ens quedarà

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = 2^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0.125</td>
</tr>
<tr>
<td>-2</td>
<td>0.25</td>
</tr>
<tr>
<td>-1</td>
<td>0.5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>
A la gràfica es veu que és injectiva perquè totes les rectes horitzontals que tallen la corba, la tallen en un sol punt. Demostrarem-ho analiticament:

\[f(x) = f(y) \iff 2^x = 2^y \iff x = y \]

El recorregut representa la variació de la imatge \(f(x) \) i l'hem de trobar en el conjunt \(Y \). Observem que \[R(f) = \{ y \in Y, 0 < y < +\infty \} \]

Trobem la antimatge \(x \) de \(f(x) = 256 \). Substituint per la funció veiem que \(2^x = 256 \), i descomponent en factors que \(2^x = 2^8 \), o sigui \(x = 8 \).

Aplicacions bijectives

119. Sigui l'aplicació \(f: \mathbb{R} \to \mathbb{R} \) definida per \(f(x) = 2 + (x-1)^3 \). Dibuixà-la i estudia si és bijectiva. Quina és l'antimatge de \(f(x) = 29 \)?

Solució. Donem, per exemple, valors enters de l'interval \(A = [-1, 3] \) i tindrem les imatges: \(f(-1) = 2 + (-1-1)^3 = 2 + (-2)^3 = 2 - 8 = -6 \). Fent el mateix pels altres valors deduïm la següent taula de valors:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\mathbb{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

De la gràfica obtinguda es desprèn que \(f \) és una aplicació exhaustiva perquè totes les rectes horitzontals tallen a la corba. És també injectiva ja que com a màxim la tallen en un punt. Finalment, degut al fet que és exhaustiva i injectiva, serà també bijectiva.

Per trobar la imatge recíproca de \(f(x) = 29 \), la substituirem a la funció i aïllarem la \(x \):

\[29 = 2 + (x-1)^3 \quad , \quad 27 = (x-1)^3 \quad , \quad 3^3 = (x-1)^3 \quad , \quad 3 = x - 1 \quad , \quad x = 4 \]

120. Sigui l'aplicació \(f: \mathbb{Z} \to \mathbb{Z} \) on \(f(x) = x/2 \) si \(x \) és parell i \(f(x) = x \) si \(x \) és impar. Dibuixà-la i estudia si és exhaustiva, injectiva o bijectiva.
Solució: Fem dues taules de valors: la dels nombres parells i la dels imparolls i dibuixem el grafo d'aquesta aplicació

Parells:

<table>
<thead>
<tr>
<th>x</th>
<th>...</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>...</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Imparells:

<table>
<thead>
<tr>
<th>x</th>
<th>...</th>
<th>-5</th>
<th>-3</th>
<th>-1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>...</td>
<td>-5</td>
<td>-3</td>
<td>-1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Es tracta d'una aplicació exhaustiva pel fet que totes les ratlles horitzontals d'alçada entera tallen al grafo. No serà injectiva perquè, per exemple, f(1)=f(2), és a dir, dos originals tenen la mateixa imatge. Consegüentment, tampoc no pot ser bijectiva.

3.2 COMPOSICIÓ D'APLICACIONS

Correspondència reciproca

121. Estudia les correspondències f i g entre els conjunts A={a,b,c,d} i B={m,n,p,q} determinades pels grafsos F={(a,m), (b,p), (c,p), (d,q)} i G={(a,m), (b,p), (c,q), (d,n)}. Quines són les seves correspondències recíproques f⁻¹ i g⁻¹? També seran aplicacions recíproques?

Solució. Construïm el grafo F en un diagrama cartesià i al mateix temps la correspondència f d'A a B, associada a aquest grafo.

Es pot veure que f no és una aplicació exhaustiva (a n no hi arriba cap fletxa) ni injectiva (a p li n'arriben dues) i, per tant, tampoc no serà bijectiva.
Si fem el grafo recíproc \(F^{-1} \), que és simètric respecte a la diagonal del grafo \(F \) anterior, observarem que la correspondència associada \(f^{-1}:B \rightarrow A \) no és cap aplicació per dos motius: 1) No surt cap flèxta d'\(n \) i 2) De \(p \) en surten dues.

Podem escriure \([f^{-1} \text{ és correspondència recíproca}]\)

Fem el mateix amb el grafo \(G \) i la seva correspondència \(g:A \rightarrow B \) associada que és, al igual que \(f \), una aplicació:

![Diagrama de grafo](image)

En aquest cas \(g \) és una aplicació exhaustiva i injectiva i, per tant, bijectiva. Això ens indica que existeix la seva aplicació recíproca (o inversa) \(g^{-1}:B \rightarrow A \), com efectivament ho comprovem en el diagrama sagital anterior.

En definitiva, \([g^{-1} \text{ és aplicació recíproca}]\).

122. Si \(f(x) = x^5 - 5x^4 - 15x^3 + 65x^2 + 74x - 120 \) és una funció \(f:Z \rightarrow Z \), determina la imatge recíproca del subconjunt \(Y=\{0\} \). És a dir, troba el conjunt \(f^{-1}(0) \) de la funció \(f \), que és el conjunt dels originals \(x \) tals que \(f(x) = 0 \).

Solució. Es tracta lògicament de trobar les arrels enteres de l’equació de cinquè grau \(x^5 - 5x^4 - 15x^3 + 65x^2 + 74x - 120 = 0 \). El seu significat gràfic és el de trobar els punts de tall de la corba donada amb l’eix d’abscisses \(X \). Aquests punts de tall se solen anomenar “zeros” de la funció.

![Diagrama de funció](image)

Trohem ara aquests punts per la regla de Ruffini, provant pels diferents divisors del terme independent, 120:

\[
\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, ..., \pm 120
\]
Aplicant la regla de Ruffini:

\[\begin{array}{cccccc}
1 & -5 & -15 & 65 & 74 & -120 \\
1 & 1 & -4 & 19 & 46 & 120 \\
-2 & 1 & -2 & 12 & 14 & -120 \\
1 & -6 & -7 & 60 & (0) \\
-3 & -3 & 27 & -60 & (0) \\
1 & -9 & 20 & (0) \\
\end{array}\]

Podem resoldre l'equació de segon grau resultant \(x^2 - 9x + 20 = 0\) que dona \(x_1 = 4\) i \(x_2 = 5\).

El conjunt demanat serà \(f^{-1}(0) = \{1, -2, -3, 4, 5\}\).

123. Donada l'aplicació d'equació \(f(x) = 12x/(x^2 + 1)\) del conjunt inicial \(A = \mathbb{R}\) fins al conjunt final \(B = [-6, 6]\), determina si serà injectiva aplicant la seva definició. Dibuixa'n el grafo. És exhaustiva? Troba també la imatge recíproca del subconjunt \(Y = \{1, 6\}\). És \(f^{-1}\) una aplicació?

Solució. Si fem la taula de valors i la gràfica de la funció veurem que \(f\) és una aplicació (totes les ratlles verticals tallen a la corba en un sol punt), és exhaustiva (totes les ratlles horitzontals del conjunt final \(B = [-6, 6]\) tallen a la corba), però no injectiva (hi ha ratlles horitzontals que tallen a la corba en dos punts).

Proveiem que, efectivament, no és injectiva prenent dues imatges iguals, \(f(a) = f(b)\), i trobant que pot resultar \(a \neq b\).

\[f(a) = f(b) \Rightarrow \frac{12a}{a^2 + 1} = \frac{12b}{b^2 + 1} \Rightarrow a(b^2 + 1) = b(a^2 + 1) \Rightarrow a.b^2 + a = a^2.b + b\]

Es pot posar com una equació de segon grau: \(a.b^2 - (a^2 + 1)b + a = 0\)

\[b = \frac{(a^2 + 1) \pm \sqrt{(a^2 + 1)^2 - 4.1.a.a}}{2a} = \frac{(a^2 + 1) \pm \sqrt{a^4 + 2a^2 + 1 - 4a^2}}{2a} = \frac{(a^2 + 1) \pm \sqrt{a^2 - 1}^2}{2a} = \frac{(a^2 + 1) \pm (a^2 - 1)}{2a} = \frac{2a}{2a}\]

\[\frac{2a}{2a} = \frac{2a}{2a}\]
Amb el signe més, \(b = \frac{(a^2+1)+(a^2-1)}{2a} = \frac{2a^2+2a^2}{2a} = \frac{2a^2}{2a} = a \)

I amb el signe menys, \(b = \frac{(a^2+1)-(a^2-1)}{2a} = \frac{2a^2}{2a} = 1 \)

Com que a més de la solució \(b = a \) també ens ha donat \(b = 1/a \), resultarà que l'aplicació \(f \) no és injectiva.

Trobem ara la imatge recíproca del subconjunt \(Y = \{1'68\} \); és a dir, calculem tots els \(x \) tals que \(f(x) = 1'68 \).

\[
x = \frac{12 \pm \sqrt{12^2 - 4 \cdot 1'68}}{2} = \frac{12 \pm \sqrt{144 - 1'68}}{2} = \frac{12 \pm 7}{2}
\]

Agafant el signe més, \(x = (12 + 7)/2 = 7 \).

I amb el signe menys, \(x = (12 - 7)/2 = 2.5 \).

Finalment, com que \(f \) no és una aplicació bijectiva, dedueixem que la correspondència recíproca \(f^{-1} \) no és aplicació.

Funció composta

124. Donades les funcions \(f \) i \(g \) definites per \(f(x) = (x/2) + 3 \) i \(g(x) = x^2 - 28 \), calcula les funcions compostes \(g \circ f \) i \(f \circ g \). Per a quins valors d'\(x \) es verifica la commutativitat de la composició?

Solució. Farem un esquema de la composició de funcions:

Trobem ara les funcions compostes \((g \circ f)(x) \) i \((f \circ g)(x) \) i veurem que, en general, són diferents

\[
(g \circ f)(x) = g(f(x)) = g\left(\frac{x}{2} + 3\right) = \left(\frac{x}{2} + 3\right)^2 - 28 = \frac{x^2}{4} + \frac{3x}{2} + 3 - 28 = \frac{x^2}{4} + \frac{3x}{2} - 25
\]

\[
(f \circ g)(x) = f(g(x)) = f(x^2 - 28) = \frac{x^2 - 28}{2} + 3 = \frac{x^2}{2} + 2 - 14 + 3 = \frac{x^2}{2} - 11
\]

Si volem trobar els valors d'\(x \) pels quals es verifica la commutativitat de la composició, hem d'igualar les expressions anteriors:

\[
\frac{x^2}{4} + 3 - 19 = \frac{x^2}{2} - 11 \Rightarrow \frac{x^2}{2} + 12x - 76 = 2x^2 - 44 \Rightarrow x^2 - 12x + 32 = 0
\]

Que té per solucions \(x_1 = 8 \) i \(x_2 = 4 \).
125. Donades les funcions definides per \(f(x) = 2x + 3 \), \(g(x) = 4x + 5 \) i \(h(x) = 6x + 7 \), comprova que verifiquen la propietat associativa de la composició. Comprova també que la recíproca de la composta és igual a la composta de les recíproques canviades d'ordre.

Solució. Per veure que es compleix la propietat associativa trobarem primer

\[
(g \circ f)(x) = g(f(x)) = g(2x + 3) = 4(2x + 3) + 5 = 8x + 12 + 5 = 8x + 17
\]

\[
(h \circ g)(x) = h(g(x)) = h(4x + 5) = 6(4x + 5) + 7 = 24x + 30 + 7 = 24x + 37
\]

Observem en un esquema les operacions de composició que haurem de fer per provar que \((\circ)\) és associativa:

\[
\begin{array}{c}
\xrightarrow{f} \xrightarrow{g} \xrightarrow{h} \xrightarrow{g \circ f} \\
\xrightarrow{h \circ g} \\
\end{array}
\]

S'haurà de comprovar que \((h \circ g) \circ f = h \circ (g \circ f)\) per a tot x. Trobem, doncs, les aplicacions compostes

\[
[(h \circ g) \circ f](x) = (h \circ g)[f(x)] = (h \circ g)(2x + 3) = 24(2x + 3) + 37 = 48x + 109
\]

\[
[h \circ (g \circ f)](x) = h[(g \circ f)(x)] = h(8x + 17) = 6(8x + 17) + 7 = 48x + 109
\]

Calculem ara les aplicacions recíproques \(f^{-1}\), \(g^{-1}\), \(h^{-1}\) i també la recíproca de la composta trobada anteriorment, \((h \circ g)\)^{-1}.

Per a trobar la recíproca de \(f(x) = 2x + 3\), posarem \(y = 2x + 3\), aïllarem la x, \(x = (y - 3)/2\), i canviarem variables, \(y = (x - 3)/2\). Per tant, la recíproca serà \(f^{-1}(x) = (x - 3)/2\).

Si fem el mateix amb les altres funcions, obtindrem

\[
g^{-1}(x) = (x - 5)/4, \quad h^{-1}(x) = (x - 7)/6, \quad [(h \circ g)\]^{-1}(x) = (x - 109)/48
\]

Determinem també la composició de les recíproques en ordre invers, tal com mostra el diagrama següent:

\[
\begin{array}{c}
\xrightarrow{f^{-1}} \xrightarrow{g^{-1}} \xrightarrow{h^{-1}} \\
\xrightarrow{(h \circ g)\]^{-1}} \\
\end{array}
\]

Fent operacions ens resultarà

\[
(f^{-1} \circ g^{-1} \circ h^{-1})(x) = (f^{-1} \circ g^{-1})(h^{-1}(x)) = (f^{-1} \circ g^{-1})(x - 7/6) = f^{-1}(g^{-1}(x - 7/6)) =
\]

\[
= f^{-1}

\[
\frac{(x - 37)/24 - 3}{4} = f^{-1}(x - 37)/24 = (x - 37)/2 = \frac{(x - 109)}{48}
\]

En conseqüència, queda provat que \([(h \circ g)\]^{-1} = f^{-1} \cdot g^{-1} \cdot h^{-1}\).
3.3 COMBINATÒRIA

Variacions

126. Sigui el conjunt de nombres naturals $A = \{1,2,3\}$ i el conjunt de vocals $B = \{a,e,i,o,u\}$. Una possible aplicació injectiva és la de grafo $F_1 = \{(1,a),(2,e),(3,i)\}$, que l'anomenem "a-e-i". Quantes aplicacions injectives podries formar? Apunta-les en forma simplificada en un diagrama en arbre. Quin és el nombre total d'aplicacions?

Solució. Observem que la imatge del número 1 pot ser escollida de 5 maneres diferents $\{a,e,i,o,u\}$. Si per exemple agafem la lletra a, resultarà que la imatge del 2 podrà ser escollida de 4 maneres, que són $\{e,i,o,u\}$, ja que, si es repetís la a, no seria una aplicació injectiva.

Si agafem la e, tindrem que la imatge del 3 podrà triar-se de tres maneres diferents, $\{i,o,u\}$, etc.

Del diagrama en arbre anterior es dedueix que el nombre d'aplicacions injectives d'A a B és igual al nombre de variacions simples de 5 elements agafats de 3 en 3:

$$V_{5,3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 10 \cdot 6 = 60$$

Trobam-les ordenadament seguint el mètode indicat en el següent esquema.

- $a-e-i$ $a-e-o$ $a-e-u$
- $a-i-e$ $a-i-o$ $a-i-u$
- $a-o-e$ $a-o-i$ $a-o-u$
- $a-u-e$ $a-u-i$ $a-u-o$
- $e-a-i$ $e-a-o$ $e-a-u$
- $e-i-a$ $e-i-o$ $e-i-u$
- $e-o-a$ $e-o-i$ $e-o-u$
- $e-u-a$ $e-u-i$ $e-u-o$
- $i-a-e$ $i-a-o$ $i-a-u$
- $i-e-a$ $i-e-o$ $i-e-u$
- $i-o-a$ $i-o-e$ $i-o-u$
- $i-u-a$ $i-u-e$ $i-u-o$
- $o-a-e$ $o-a-i$ $o-a-u$
- $o-e-a$ $o-e-i$ $o-e-u$
- $o-i-a$ $o-i-e$ $o-i-u$
- $o-u-a$ $o-u-e$ $o-u-i$
- $u-a-e$ $u-a-i$ $u-a-o$
- $u-e-a$ $u-e-i$ $u-e-o$
- $u-i-a$ $u-i-e$ $u-i-o$
- $u-o-a$ $u-o-e$ $u-o-i$

Fem notar que en el primer requadre hi ha totes les que comencen per la lletra a, en el segon les que comencen per e, etc.
127. En una jornada de futbol, quantes travesses diferents d'una sola columna hauràs d'emplenar per estar segur d'obtenir un "catorze"? Suposa que s'hi estigui un minut per emplenar una sola travessa. Quant temps trigarés per fer-les totes?

Solució. Imaginem-nos una travessa qualsevol com la mostrada en el dibuix inferior:

<table>
<thead>
<tr>
<th></th>
<th>Español-València</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Barça-R.Madrid</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Sevilla-At.Bilbao</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D.Coruña-Tenerife</td>
<td>2</td>
</tr>
</tbody>
</table>

Com que la travessa \((X,1,2,...,2)\neq(1,X,2,...,2)\) voldrà dir que dependran de l’ordre, i a més podran ser repetits. Tenim per tant variacions amb repetició de 3 elements agafats de 14 en 14:

\[VR_{3,14}=\frac{3^{14}}{14!} = 4.1782.969 \text{ travesses} \]

Si necessitem un minut per a fer cadascuna tardarem:

\[t=4.1782.969 \text{ min} \cdot \frac{1\text{h}}{60\text{min}} \cdot \frac{1\text{dia}}{24\text{h}} \cdot \frac{1\text{any}}{365\text{dies}} = 9'1\text{ anys} \]

Que resulta ser aproximadament uns 9 anys, 1 mes i 6 dies!

Permutacions

128. Amb les xifres 1, 2, 3, 4, 5, 6 i 7, troba totes les ordenaciones diferents que s’hi poden formar, tenint en compte que s'ha de complir la condició que les xifres parelles ocupin els llocs parells i les imparlles els imparlls.

Solució. Entendrem més bé el problema si fem uns esquemes previs:

Per a les quatre xifres imparlles \((1,3,5,7)\) resulta que les hem de col.locar en quatre espais buits. Com que depenen de l'ordre, doncs \((5,1,7,3)\neq(5,7,1,3)\), entreix tots els elements (hi ha quatre xifres i quatre forats), i no poden ser repetits, resultaran ser permutacions simples de 4 elements:

\[P_4=4!=4.3.2.1=24 \]
Podem dir el mateix de les xifres parells (2,4,6), que seran permutacions simples de 3 elements:

$$P_3=3!=3\cdot2\cdot1=6$$

Finalment, com que les xifres imparells s’han d’intercalar amb les parells, per a cadascuna de les primeres en tindrem 6 de les segones. Per tant,

$$N=P_4\cdot P_3=24\cdot6=144$$ ordenacions.

Combinacions

129. Troba el nombre d'elements que té un conjunt sabent que posseeix 84 subconjunts ternaris. Calcula després els subconjunts de 0,1,2,...,m elements. Quants subconjunts hi haurà en total?

Solució. Sigui m el nombre d'elements. Si els agafem de tres en tres sabem que hi hauran 84 subconjunts diferents. En no depender de l'ordre, (a,b,c)=(b,a,c), i no ser repetits, seran combinacions simples d'm elements agafats de 3 en 3:

$$C_{m3}=\frac{m!}{3!} = \frac{m\cdot(m-1)(m-2)}{3\cdot2\cdot1} = \frac{m^3-3m^2+2m}{6} = 84$$

Ens queda l'equació de tercer grau, $$m^3-3m^2+2m-504=0$$, on l'únic solució és $$m=9$$, ja que les altres dues són imaginàries.

Per trobar els subconjunts de diferents elements, podem construir el triangle de Tartaglia, on cada nombre és igual a la suma dels dos que té a sobre:

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
```

Es veu que a l'última fila hi ha precisament els nombres que ens demanen. Trobem però, formalment, el nombre de subconjunts que contenen 0, 1,..., m elements:

$$N_0=C_{9,0}=1$$ (Seria \emptyset) , $$N_1=C_{9,1}=9$$, $$N_2=C_{9,2}=\frac{9.8}{2.1}=36$$

$$N_3=C_{9,3}=\frac{9.8.7}{3.2.1}=84$$, $$N_4=C_{9,4}=\frac{9.8.7.6}{4.3.2.1}=126$$
N₅=C₉,₂= 9.8.7.6.5 \overline{5.4.3.2.1} =126 , N₆=C₉,₆= ...=84
N₇=C₉,₇= ... =36 , N₈=C₉,₈= ... =9 , N₉=C₉,₉= ... =1

Quant a la suma N=N₀+N₁+N₂+N₃+N₄+N₅+N₆+N₇+N₈+N₉ serà
N=(1+9+36+84+126).2=256.2=512.

Notem que coincideix amb 2 elevat al nombre de fila, 2⁹=512.

130. Calcula per combinatòria el nombre de fitxes que té el joc del
dòmino i després apunta-les totes seguint una regla determinada.

Solució. Hi ha 7 puntuacions diferents en el joc del dòmino: 0, 1,
2, 3, 4, 5 i 6, les quals s'han de prendre de dos en dos. En ser
independents de l'ordre (la fitxa [0,1]=[1,0]) i poder-se repetir
([1,1]), es tracta de combinacions amb repetició de 7 elements
presos de dos en dos:

\[CR_{7,2} = \binom{7+2-1}{2} \binom{8}{2} \frac{8.7}{2.1} = 28 \text{ fitxes} \]

També ho podíem haver fet per combinacions simples, sumant
després les fitxes dobles, N=C₇,₂+7=(7.6)/(2.1) +7=21+7=28.

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Les hem apuntades totes d'una manera ordenada, comprovant
que realment són 28 les fitxes que té el joc del dòmino.
f) PROBLEMES PROPOSATS

3.1 TIPUS D'APLICACIONS

Conceps d'aplicació

131. Sigui \(f: \mathbb{R} \to \mathbb{R} \) la correspondència definita per la funció \(f(x) = +\sqrt{x} \). Dibuixa'n el grafo i estudia si és una aplicació. Què passaria si el conjunt inicial fos el del reals positius, \(\mathbb{R}^+ \)?

Sol. \(f(x) = +\sqrt{x} \) \(f: \mathbb{R} \to \mathbb{R} \) No aplicació, \(f: \mathbb{R}^+ \to \mathbb{R} \) Aplicació.

132. Si \(A = [10, 100] \) i \(B = [1, 1000] \) són dos subconjunts de \(\mathbb{R}^+ \) i si \(f(x) = \log(x) \) és la correspondència logarítmica, \(f: \mathbb{R}^+ \to \mathbb{R} \), estudia si \(f \) és una aplicació. Troba després les imatges de les restriccions de la correspondència \(f \) als subconjunts \(A \) i \(B \).

Comprova que com que \(A \) és un subconjunt de \(B \) també haurà de passar el mateix amb les seves imatges, o sigui que \(f(A) \) serà un subconjunt de \(f(B) \).

Sol. \(f=\text{aplicació} \) \(A \subseteq B \Rightarrow f(A) \subseteq f(B) \).

133. En la funció \(f(x) = \sqrt[3]{x-1} \) calcula les imatges de \(x_1 = -7, x_2 = 0, x_3 = 1, x_4 = 2 \) i \(x_5 = 9 \) i dibuixa el seu grafo en un diagrama cartesià. És aquesta correspondència una aplicació? I si en comptes d'una arrel cúbica fos una arrel quadrada, seria llavors una aplicació? Explica els motius de la teva resposta.

Sol. a) \(y_1 = -2, y_2 = -1, y_3 = 0, y_4 = 1, y_5 = 2 \) f=aplicació

b) No aplicació, no exist. per \(\mathbb{R}^- \), doble signe arrel quad.

134. Sigui la correspondència de proporcionalitat inversa \(f: \mathbb{R} \to \mathbb{R} \), definida per \(f(x) = 12/x \). Fes-ne la gràfica en un sistema de coordenades cartesians. Serà f una aplicació? Quin hauria de ser el conjunt inicial perquè ho fos? Troba les imatges \(f(X) \) i \(f(Y) \) dels conjunts \(X = (-\infty, 0) \) i \(Y = (0, +\infty) \) del conjunt final. Quina relació hi ha entre la imatge de la unió i la unió de les imatges?

Sol. No, \(A = \mathbb{R} - \{0\} \) \(f(X) = (-\infty, 0) \) \(f(Y) = (0, +\infty) \)
\(f(X \cup Y) = f(X) \cup f(Y) \).
Aplicacions Exhaustives

135. Sigui \(f: \mathbb{R} \to \mathbb{R} \) la funció definida per \(f(x) = ax^2 + bx + c \). Se sap que les imatges de \(x_1 = -1 \), \(x_2 = 3 \) i \(x_3 = 4 \) són \(f(x_1) = -2 \), \(f(x_2) = -6 \) i \(f(x_3) = 3 \). Determina els coeficients \(a \), \(b \) i \(c \) de la funció, estudia si serà una aplicació exhaustiva.

Sol. Sistema \(a = 2 \), \(b = -5 \), \(c = -9 \) F.unif.(aplic.) No exhaust.

136. Sigui la funció “part decimal” d’un nombre real \(x \) definida com aquest nombre menys la seva part entera, \(D(x) = x - E(x) \). Dibuixa-la i estudia si és aplicació. És també exhaustiva? (Recorda que la funció part entera està explicada en el problema 116).

Sol. Funció en forma de “dent de serra”.

Aplicació no exhaustiva.

Aplicacions Injectives

137. Demostra que l’aplicació \(f(x) = x^3 \) és injectiva, partint de la seva definició. Estudia després la seva monotonia; és a dir, el seu creixement o decreixement.

Sol. Injectiva: \(f(a) = f(b) \Rightarrow a = b \). Estrictament creixent.

138. Prova que l’aplicació \(f(x) = x \cdot (x^2 - 3)/2 \) és exhaustiva. Comprova també que no és injectiva obtenint tots els elements originals que tenen per imatge \(f(x) = -1 \).

Sol. \(x^3 - 3x - 2y = 0 \) Almenys un \(x \in \mathbb{R} \) Exhaust.; \(x_1 = x_2 = 1 \) \(x_3 = -2 \).

Aplicacions Bijectives

139. Donada la funció \(f(x) = \cos(x) \), estudia quina classe d’aplicació serà en els casos següents, on \(A_1 \) és el c. inicial i \(B_4 \) el c. final de \(f

1. \(A_1 = [0^\circ, 360^\circ] \) \(B_1 = \mathbb{R} \)
2. \(A_2 = [90^\circ, 270^\circ] \) \(B_2 = [-1, 0] \)
3. \(A_3 = [0^\circ, 180^\circ] \) \(B_3 = [-1, 1] \)
4. \(A_4 = [0^\circ, 90^\circ] \) \(B_4 = \mathbb{R}^+ \)

Sol. \(f_1 \) = No exh., no inj. \(f_3 \) = bijective

\(f_2 \) = exhaust., no inject.

\(f_4 \) = No exhaust., inject.
140. Dibuixant-les en un diagrama sagital, dedueix si són injectives, exhaustives o bijectives les següents aplicacions:

(1) \(F_1=[(1,a),(2,a)] \quad A_1=[1,2] \quad B_1=[a,b] \quad f_1=(A_1,B_1,F_1) \)

(2) \(F_2=[(1,a),(2,b),(3,b)] \quad A_2=[1,2,3] \quad B_2=[a,b] \quad f_2=(A_2,B_2,F_2) \)

(3) \(F_3=[(1,a),(2,c),(3,b)] \quad A_3=[1,2,3] \quad B_3=[a,b,c] \quad f_3=(A_3,B_3,F_3) \)

(4) \(F_4=[(1,a),(2,c)] \quad A_4=[1,2] \quad B_4=[a,b,c] \quad f_4=(A_4,B_4,F_4) \)

Sol. \(f_1 \) aplic., \(f_2 \) ap. exh., \(f_3 \) ap. biject. i \(f_4 \) ap. inject.

3.2. COMPOSICIÓ D'APLICACIONS

Correspondència recíproca

141. Donada la funció \(f: \mathbb{R} \to \mathbb{R} \) definida per \(f(x)=(x^2+1)/2 \), troba la seva funció recíproca \(f^{-1} \) i dibuixa-les totes dues en una mateixa gràfica. És \(f^{-1} \) una aplicació recíproca?

Sol. \(f^{-1}(x)=\sqrt{2x-1} \quad f=\text{Ap. no exh. ni inj.} \quad f^{-1}=\text{No aplic.} \)

142. De la funció \(f: \mathbb{R} \to \mathbb{R} \) definida per \(f(x)=x^2-7x+10 \), calcula la imatge del subconjunt \(X=[2,5] \) i la imatge recíproca del subconjunt \(Y=[y \, | \, y \geq 4] \). Fes-ne la gràfica.

Sol. Paràbola \(f(X)=[-2'25,0] \quad f^{-1}(Y)=(-\infty,1] \cup [6,\infty) \).

143. Sigui la funció \(f(x)=0'6\sqrt{25-x^2} \) i \(A=[0,5] \) i \(B=[0,3] \), els seus conjunts inicial i final, i sigui també \(X=[0,1'8] \), un subconjunt de \(B \). Fes la seva gràfica i comprova que es verifica la propietat de complementació donada per \(f^{-1}(X')=[f^{-1}(X)]' \).

Sol. Tros d'el. elipse. \(X'=[1'8,3] \quad f^{-1}(X')=[0,4] \quad f^{-1}(X)=[4,5] \).

Funció composta

144. De les aplicacions \(f \) i \(g \) se sap que \(g(x)=2x+5 \) i que \((g\circ f)(x)=2x^2-6x+13 \). Calcula \(f(x) \) i després \((f\circ g)(x) \). Troba també l'aplicació \(g^2(x)=(g\circ g)(x) \).

Sol. \(f(x)=x^2-3x+4 \), \((f\circ g)(x)=4x^2+14x+14 \), \(g^2(x)=4x+15 \).
145. De la funció g definida per $g(x) = x^2 + x + 3$ se sap que existeixen dues funcions f_1 i f_2 que compleixen $(g * f_1)(x) = (g * f_2)(x) = x^2 - 3x + 5$. Troba-les.

Sol. $f_2(x) + f(x) + 3 = x^2 - 3x + 5$ $f_1(x) = x - 2$ $f_2(x) = -x + 1$.

3.3. COMBINATÒRIA

Variacions

146. Quants números de tres xifres hi ha en el sistema decimal que no repeteixin cap xifra?

Sol. $V_{10,3} - V_{9,2} = 648$.

Permutacions

147. Partim dels conjunts $A = \{1, 2, 3, 4\}$ i $B = \{a, m, o, r\}$. Són equipotents? Quantes aplicacions bijectives diferents pots formar entre aquests dos conjunts? Escrui-les totes de manera simplificada, fent servir un diagrama en arbre.

Digues també aquelles paraules formades que tenen sentit en castellà o en català.

Sol. Si, N° ap.bij.=$P_4 = 4! = 24$ a-m-o-r, a-m-r-o, ..., r-o-m-a.

amor, armo, roma, ramo, mora.

148. Donats els conjunts $A = \{1, 2, 3, 4, 5\}$ i $B = \{a, b\}$, determina quantes aplicacions exhaustives hi ha, condicionades a que l'element a tingui 3 originals i el b només 2.

Amb aquesta idea, resol el problema següent: «Un partit de futbol va acabar amb el resultat de 4 a 2 a favor de l'equip de casa. De quantes maneres diferents es pot haver arribat a aquest resultat final, segons l'orde en què es feren els gols?» Escrui tots els casos possibles.

Sol. $N_1 = PR_{5,3,2} = 5!/(3!2!) = 10$. $A_2 = \{1, 2, 3, 4, 5, 6\}$ $B_2 = \{c, f\}$.

$N_2 = PR_{6,4,2} = ... = 15$

Combinacions

149. Quants triangles podem formar en ajuntar els vèrtexs d'un dodecàgon? I quants pentàgons?
Sol. $N_1=C_{12,3}=220$ $N_2=C_{12,5}=792$

150. Suposem que tenim ordenats els conjunts $A=\{1,2,3\}$ i $B=\{a,b,c,d,e,f\}$, el primer de més petit a més gran i el segon, per ordre alfabètic. Quantes aplicacions injectives estrictament creixents es poden fer entre ells? Apunta-les totes. I quantes aplicacions creixents es poden fer? Escriviu-les.
Sol. $N_1=C_{6,3}=20$ a-b-c, a-b-d, a-b-e, a-b-f, b-c-d, ..., d-e-f
Sol. $N_2=CR_{6,3}=56$ a-a-a, a-a-b, a-a-c, ..., f-f-f
APÈNDIX

A) Prova d'autoavaluació

B) Bibliografia escollida

C) Glossari de conceptes
PROVA D'AUTOAVALUACIÓ

PROBLEMES PARAMETRITZATS

Presentem a continuació una sèrie de dotze problemes que, com es pot suposar, no són pas representatius de la gran varietat d'exercicis que es podrien proposar. Tots aquests problemes de conjunts, relacions binàries i aplicacions, depenen d'un paràmetre "a", que pot valer 1, 2, 3 o 4. Per a cadascun dels anteriors valors obtindràs una resposta diferent entre les vuit possibles donades.

En els següents problemes parametritzats substitueix en primer lloc el paràmetre a per 1, resol el problema, escull l'opció correcta i després fes una creu en el quadre de respostes:

Conjunts

1. Tenim els conjunts:
 \[A = \{1, 2, 3, 4, 4+a\}, \quad B = \{5, 6, 7, 8\} \quad \text{i} \quad C = \{a, a+1, a+2, a+3\}. \]
 Si determines el nou conjunt \(X = (A \cup B) - (A \cap C) \), obtindràs:

 A) \(X = \{4\} \)

 B) \(X = \{1, 2, 3, 4, 6, 7, 8\} \)

 C) \(X = \{1, 2, 3, 4, 5, 6, 7, 8\} \)

 D) \(X = \emptyset \)

 E) \(X = \{2, 3, 4, 5, 6, 7\} \)

 F) \(X = \{3, 4, 8\} \)

 G) \(X = \{2, 3, 4, 7, 8\} \)

 H) \(X = \{3, 4, 5\} \)

2. Si A, B i C són subconjunts del mateix conjunt universal, i A', B' i C' els seus complementaris, determina el conjunt que s'obté al simplificar l'expressió indicada M, segons el valor del teu paràmetre:

 Si \(a = 1 \), \(M = (A' \cup B)' \cap (A \cup B) \)

 Si \(a = 2 \), \(M = (A' \cup B) \cup (A \cup B)' \)

 Si \(a = 3 \), \(M = (A' \cap B)' \cup (A \cap B) \)

 Si \(a = 4 \), \(M = (A' \cup B)' \cap (A \cap B)' \)

 A) \(M = A' \cup B \)

 B) \(M = A' \cup B' \)

 C) \(M = A' \cap B \)

 D) \(M = A \cup B \)

 E) \(M = A \cap B' \)

 F) \(M = A \cap B \)

 G) \(M = A \cup B' \)

 H) \(M = A' \cap B' \)

3. Hem comprat un lot de camises de 3 colors: blaves, grogues i verdes. Algunes són d'un sol color, d'altres, de dos i d'altres, de tres. Hi ha 12+4.a camises que tenen el color verd, 10+3.a que tenen el groc i 13 que tenen el blau. A més, n'hi ha 8 que tenen el verd i el groc, 9 que tenen el verd i el blau, 4 amb el groc i el blau i, per últim, 3 tenen els tres colors. Quin és el nombre total de camises del lot?

 A) 63 B) 42 C) 49 D) 45 E) 24 F) 38 G) 56 H) 31
4. Pels conjunts M, N i P, determina si són vertaderes (V) o falses (F) les següents igualtats on, per suposat, només has de fer l'aparàt que et correspon:

\[a_1 \] M∩N=M∩M' , M∩(N-P)=(M-N)∪(M∩P) i M∩(N∪P)=(M-N)∪(M∩P) \\
\[a_2 \] M∩M=∅ , M∩(N-P)=(M-N)∩(M∩P) i (M∪N∪P)∩(M∪N∪P)′=M∪P \\
\[a_3 \] M∩M=M , M∪(N-P)=(M∪N)-(M-P) i (M∪N∪P)∩(M∪N∪P)′=P-M' \\
\[a_4 \] M∩N=M'-N' , M∪(N-P)=(M∪N)-(P-M) i M∩(N∪P)=(M-N)∩(M∩P) \\
El resultat serà

A) V-F-V B) V-V-V C) V-F-F D) F-V-F \\
E) F-V-V F) F-F-V G) V-V-F H) F-F-F

Relacions binàries

5. En el conjunt X={1, 2, 3, 4} definim la relació binària Ra següent:

Si a=1, Ra={((1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (4,4)}
Si a=2, Ra={((1,1), (2,2), (3,3), (4,4)}
Si a=3, Ra={((1,1), (1,2), (2,2), (3,3), (4,4)}
Si a=4, Ra={((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (3,3), (4,4)}

De les propietats reflexiva (R), simètrica (S), antisimètrica (A) i transitiva (T), la relació Ra verifica només les següents propietats:

E) S. F) R. G) R i S. H) T.

6. En el conjunt Z dels nombres enters definim la següent relació binària R per a tot x, y entiers:

x R y ⇔ a·x·a·y és múltiple de 12

Determina si es tracta d'una relació d'equivalència (R.E.) o d'una d'ordre (R.O.). En el cas que sigui d'equivalència, determina el nombre n de classes d'equivalència i, si és d'ordre, indica si l'ordre és total o parcial i compara els entiers 3 i 15 emprant la relació (<).

A) R.E. n=4 B) R.O.T. 15<3 C) R.O.P 3<15 D) R.E. n=3 \\

7. Considerem el conjunt A={1, 2, 3, 4} en el que definim la relació binària Ra, donada segons el valor del seu paràmetre:

Ra={((1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4), (4,4))
Ra={((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4), (4,3), (4,4))
Ra={((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4), (4,3), (4,4))
Ra={((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4), (4,3), (4,4))
(Cont.)
Treballant només amb la relació R_a que et correspon, estudia quines de les propietats reflexiva [Ref], simètrica [Sim], antisimètrica (Ant) i transitiva (Tra) verifica, indicant, si és el cas, si es tracta d'una relació d'equivalència (Equiv.) o bé d'ordre (Ord.).

$$\begin{array}{llllll}
A) & \text{Equiv.} & B) & \text{Ref.} & C) & \text{Sim} \\
D) & \text{Ref. i Tra.} & E) & \text{Ref. i Sim} & F) & \text{Ant.} \\
G) & \text{Ref. i Ant} & H) & \text{Ord.} \\
\end{array}$$

8. En el conjunt N dels nombres naturals, definim les següents relacions binàries R i S per:

$$xRy \iff y=(a+1)x \quad \text{i} \quad xSy \iff x \text{ i } y \text{ tenen la darrera xifra igual}$$

Estudia les propietats de cadascuna. Si considerem també la relació de composició $R\cdot S$, digues quin dels següents apartats és el correcte:

- A) S és reflexiva i $\{(1,2), (2,24), (3,6), (4,18), (5,10)\} \subseteq R\cdot S$
- B) R és simètrica i $\{(1,3), (2,16), (3,19), (4,12), (5,25)\} \subseteq R\cdot S$
- C) S és transitiva i $\{(1,24), (2,28), (3,32), (4,36), (5,40)\} \subseteq R\cdot S$
- D) S és simètrica i $\{(1,13), (2,16), (3,19), (4,22), (5,25)\} \subseteq R\cdot S$
- E) S és d'equivalència i $\{(1,15), (2,20), (3,25), (4,30), (5,35)\} \subseteq R\cdot S$
- F) R és reflexiva i $\{(1,2), (2,14), (3,16), (4,8), (5,20)\} \subseteq R\cdot S$
- G) R és d'ordre i $\{(1,5), (2,20), (3,15), (4,40), (5,30)\} \subseteq R\cdot S$
- H) R és transitiva i $\{(1,4), (2,18), (3,12), (4,26), (5,30)\} \subseteq R\cdot S$

Aplicacions

9. Considera el conjunt $A=\{1, 2, 3, 4, 5\}$ i les dues correspondències $f, g: A \to A$ definides pels grafs F i G, respectivament, que són

$$\begin{align*}
F &= \{(1,a), (2,3), (3,2), (4,a+1), (5,5)\} \\
G &= \{(1,a+1), (2,3), (3,2), (4,5), (5,a)\}
\end{align*}$$

Determineu el conjunt d'elements commutables, és a dir, calculeu els elements x que verifiquen la condició $(f\cdot g)(x) = (g\cdot f)(x)$, on (\cdot) és l'operació de composició. Obtindràs el conjunt

$$\begin{array}{llllll}
A) & \{2, 3, 4\} & B) & \{1, 4, 5\} & C) & \{1, 2, 3\} \\
D) & \{1, 4\} & E) & \{1, 5\} & F) & \{2, 3\} \\
G) & \{4, 5\} & H) & \{2, 3, 5\}
\end{array}$$

10. Donades les correspondències $f, g: \mathbb{R} \to \mathbb{R}$ definides per:

$$f(x) = a \cdot (2+x^2) \quad \text{i} \quad g(x) = (x-a)/2$$

considerem la composició $h = f \cdot g$. Si determinem l'expressió de la seva correspondència inversa veurem que et quedarà de la següent forma $h^{-1}(x) = m \pm \sqrt{n}$ on els valors de m i n són, respectivament:

$$\begin{array}{llllll}
A) & 1, 4x-8 & B) & 4, x-8 & C) & 4, 4x-16 \\
D) & 2, (x-4)/3 & E) & 3, 3x-9 & F) & 2, 2x-8 \\
G) & 3, 4(x-6)/3 & H) & 1, x-1
\end{array}$$
11. Donades les funcions \(f, g, h: \mathbb{R} \to \mathbb{R} \) definides per \(f(x) = x^2 + a \), \(g(x) = 2a \cdot x + 3 \) i \(h(x) = a \cdot (x - a) \), determina la nova funció \(k = (f^{-1} \cdot g^{-1} \cdot h^{-1})^2 \).
 A) \(k = (x - 9)/3 \)
 B) No existeix la funció \(k \).
 C) \(k = (x - 18)/8 \)
 D) \(k = (x - 4)/2 \)
 E) \(k = (x - 54)/18 \)
 F) \(k = (x - 124)/32 \)
 G) \(k = (x - 16)/4 \)
 H) \(k \) = Funció identitat.

12. Una urna consta en total de \(N = (10 \cdot a^3 - 75 \cdot a^2 + 167 \cdot a - 66)/6 \) boles, on \(a + 1 \) d'elles són blanques, i les restants, negres. Es treuen una a una les boles i es posen ordenadament en fila en un casell mostrat. El nombre possible de resultats és:
 A) 37
 B) 56
 C) 48
 D) 5
 E) 21
 F) 10
 G) 15
 H) 64

QUADRE DE RESPOSTES:

Després de resoldre tots els problemes, tatxa amb una creu les respostes que consideris correctes.

Si creus que la resposta no està entre les vuit donades, posa la creu en el cercle central.
Respostes correctes en funció del paràmetre:

P₁: B-G-F-A
P₂: E-A-G-C
P₃: E-H-F-D
P₄: G-C-F-E
P₅: G-F-B-D
P₆: G-H-A-D
P₇: B-E-A-H
P₈: A-D-C-E
P₉: H-F-A-C
P₁₀: A-F-G-B
P₁₁: D-C-E-F
P₁₂: G-B-D-E

Puntuació:

Respostes encertades: []
Punts positius (x4): []

equivocades: []
negatius (x-1): []

Puntuació total: []

Qualificació:

Per a obtenir la nota N farem servir la "Part entera", on prendrem l'enter inferior a la puntuació donada. Així E(5'3)=5. En quant a la qualificació ens basarem en el següent barem:

- Susp.(N<5)
- Apr.(5≤N<7)
- Not.(7≤N<9)
- Exc.(N≥9)

Nota \(N=E(P+3)/5\): []
Qualificació: []

Si la puntuació no ha estat suficientment alta, es pot tornar a resoldre la prova, repassant abants els conceptes i exemples, però ara emprar el paràmetre \(a=2\). Després es pot fer servir el paràmetre \(a=3\) i, per últim, el paràmetre \(a=4\).
BIBLIOGRAFÍA ESCOLLIDA

GLOSSARI DE CONCEPTES

Exposem a continuació un recull dels termes matemàtics emprats, seguits de la plana en què es poden trobar. Els números en negreta indiquen que la paraula està a la part de "Formulació matemàtica". En cas contrari, estan a la part de "Conceptes i exemples":

- A -

Absorció 18 19
Acotació 18
Acotat, conjunt 53
Àmplia, inclusió 14
Antisimètrica, prop. 18 51 56
Aplicacions 88 99
condicionades 95
iguals 85 99
Aplicacions, compos. 92 100
monotònia 90 99
nombre total 94
Aplicació bijectiva 90 100
característica 89 99
composta 92
creixent 90 99
decreixent 90 99
estrict. creixent 90 99
estrict. decreixent 90 99
exhaustiva 89 99
idèntica 91 100
injectiva 89 99
recíproca 91 100
Aplicació, restricció d'una 88
Arbre, diagrama en 15
Associativa, prop. 18 19 55

d'un conjunt 12
de la unió 16 19
de les parts 15 18
Cartesià, diagrama 48
producte 48 55
Circulació, diagrama 51
Circular, prop. 51 56
Classe, representant 52
Classes d'equivalència 52 56
d'intervals 57
disjuntes 52 56
recobridors 52 56
residuals 53
Combinacions 97 101
amb repetició 98 101
simples 97 101
Combinatòria 93
Combinatoris, nombres 96 101
Commutativa, prop. 18 19
Comparables, conjunts 15
Complementació, prop. 18
Complementari del buit 18
universal 18
conjunt 15 18
Complementarietat 18 19
Complexos, conjunt 13
Composició d'aplicació 92 100
de grafs 49 55
Composició, propietats 100
Compost, grafo 49
Composta, aplicació 92
Comprensió, determinació 12
Condicionades, aplicacions 95
Conformitat 18
Congruències mòdul 52 56
Conjunció copulativa 14
disjuntiva 14
Conjunt acotat 53
ben ordenat 54 57
buit 12 18

- B -

Ben ordenat, conjunt 54 57
Bijectiva, aplicació 90 100
Binària, relació 51 56
Buit, complementari del 18
conjunt 12 18

- C -

Característica, aplicació 89 99
Cardinal conj. producte 48 55
complementari 15 18
de les parts 15 18
de les parts, cardinal 15
dels complexes 13
dels entes 13
dels naturals 13
dels naturals ampliats 13
dels racionals 13
dels reals 13
diferència 17
diferència simètrica 17
final 50
finít 13
infinit no numerable 13
infinit numerable 13
inicial 50
intersecció 15
parcialment ordenat 53 56
producte 48
producte, cardinal 48
quocient 52 56
referencial 12
totally ordenat 53 56
unió 16
unitari 12
universal 12 18
Conjunt, cardinal d’un 12
concepte 12
partició 17 19
Conjuntistes, operacions 15
Conjunts comparables 15
disjunts 17 18
equivalents 52 56
especials 18
lineals 53 57
umèrics 13
recobridors 17 19
Conjunts, diferència de 17 19
intersecció de 18
unió de 19
Copulativa, conjunció 14
Correspondència 49 55
Cota inferior 54 57
superior 54 57
Creixent, aplicació 90 99

- Δ -
Decreixent, aplicació 90 99
Determinació comprensió 12

- E -
Element imatge 50
infím 54 57
maximal 54 57
màxim 54 57
minimal 54 57
minim 54 57
neutre 18 19
original 50
suprem 54 57
Element, primer 48
segon 48
Elements 12
notables 57
Elements, equivalència 56
Enters, conjunt 13
Equivalència d’elements 52 56
lògica 14
Equivalència, classes 52 56
relació 51 56
Equivalents, conjunts 52 56
Especials, conjunts 18
Estricta, inclusió 14
Estrictament creix., apl. 90 99
decreixent, apl. 90 99
Exhaustiva, aplicació 89 99
Existencial, quantificador 13
Extensió, determinació 12
Extrems d'un interval 53

Factorial d'un número 94 101
Final, conjunt 50
Finit, conjunt 13
Finitos, intervals 53 57
Funció 55
multiforme 50
uniforme 88
Funció, gràfica 50

Gràfica de la funció 50
Grafo composit 49
d'un prod. cartesià 48 55
diagonal 49 55
recipro 49 55
Grafo, propietats 56
Grafos, composición 49 55
operacions 55

Hasse, diagrama 54

Idempotència, prop. 18 19
Idèntica, aplicació 91 100
Iguals, aplicacions 88 99
Imatge d'un subconjunt 88 99
recipro 91
Imatge, element 50
Implicacions lògiques 14
Impropis, subconjunts 15
Inclusió 18 55
àmplia 14
estreta 14
Inclusió, propietats 18
Inclusiva 18 19
Independència repres. 52 56
Inferior, cota 54 57
Infim, element 54 57
Infinif no numer. 13
numerable 13

Infinites, intervals 53 57
Inicial, conjunt 50
Injectiva, aplicació 89 99
Intersecció de conjunts 15 18
Intersecció, conjunt 15
propiets 18
Interval obert 57
semiobert 57
semitancat 57
tancat 57
Interval, extrems 53
Intervals 53
finitos 53 57
infinitos 53 57
Intervals, classes 57
Involució, prop. 18

Lineals, conjunts 53 57
Lleis de Morgan 16 19
Lògica, equivalència 14
Lògics, símbols 14
Lògiques, implicacions 14

Màxim, element 54 57
Maximal, element 54 57
Mínim, element 54 57
Minimal, element 54 57
Mòdul n, congruències 52 56
Monotonia aplicacions 90 99
Morgan, lleis de 16 19
Multiforme, funció 50

Naturals ampliats 13
Naturals, conjunt dels 13
Neutre, elem. 18 19
No associativa 19
No commutativa 19 55 92
No pertinença 12
No total, ordre 56
Nombre combinatori 101
total d'aplicacions 94
Nombres combinatoris 96
Notables, elements 57
Numèrics, conjunts 13
Número combinatori 96 101
Número, factorial d'un 94 101

- O -

Obert, interval 57
Operacionals, propietats 16
Operacions amb grafs 55
conjuntistes 15
Ordenat, parell 48 55
Ordre no total 56
parcial 53 57
total 53
Ordre, relació 53 56
Original, element 50

- P -

Parcial, ordre 53 57
Parcialm. ordenat, conj. 53 56
Parell ordenat 48 55
Partició d'un conjunt 17 19
Parts, cardinal de les 18
conjunt de les 15 18
Permutacions 101
amb repetició 95 101
simples 95 101
Pertinença 12
Primer element 48
Producte cartesià 48 55
cartesià, grafó 48 55
Producte, conjunt 48 164
Propietats composició 100
de la inclusió 18
de la intersecció 18
de la unió 19
del grafo 56
duals 16 19
operacionals 16
Propietats, complementació 18
Propis, subconjunts 15

- E -

Quantificador existencial 13
universal 13
Quocient, conjunt 52 56

- S -

Racionals, conjunt 13
Reals, conjunt 13
Recíproc, grafó 49 55
Recíproca, aplicació 91 100
imatge 91
Recobridors, classes 52 56
Recobridors, conjunts 17 19
Recorregut 50 55 99
Referencial d'un conjunt 12
Reflexiva, prop. 18 51 56
Regla de la dualitat 16
Relació binària 51 56
d'equivalència 51 56
d'ordre 53
Repetició, combin. 98 101
permutacions 95 101
variacions 94 100
Representant de la classe 52
Representant, indep. 56
Residuals, classes 53
Restricció d'una aplicació 88

- Sagital, diagrama 50 51
Segon element 48
Semiobert, interval 57
Semitancat, interval 57
Símbols lògics 14
Simètrica, diferència 19
prop. 51 56
Simples, combinacions 97 101
permutacions 95 101
variacions 93 100
Simplificació 19
Subconjunt, definició 18
imatge 88 99
Subconjunts 14
impropis 15
propis 15
Superior, cola 54 57
Suprem, element 54 57
- T -
Tancat, interval 57
Tartaglia, triangle 96
Taula de valors 50
Total, ordre 53
Totalment ordenat, conj. 53 56
Transitiva, prop. 18 51 56
Triangle de Tartaglia 96

- U -
Uniforme, funció 88
Unió de conjunts 16 19
Unió, cardinal 16 19

conjunt 16
propietats 19
Unitari, conjunt 12
Universal, complementari 18
conjunt 12 18
quantificador 13

- V -
Valors, taula 50
Variacions 93 100
amb repetició 94 100
simples 93 100
Venn, diagrames 12
ÍNDICE
1. TEORIA DE CONJUNTS .. 9

BIBLIOGRAFIA ESCOLLIDA ... 10

PROGRAMA I SIMBOLOGIA ... 11

CONCEPTES I EXEMPLES ... 12

1.1 Conjunts i elements ... 12
 1.1.1 Nocions primàries .. 12
 1.1.2 Determinació d'un conjunt 12
 1.1.3 Cardinal d'un conjunt 12

1.2 Subconjunts d'un conjunt 14
 1.2.1 Símbols lògics ... 14
 1.2.2 Subconjunts ... 14
 1.2.3 Conjunt de les parts 15

1.3 Operacions conjuntistes 15
 1.3.1 Complementació, intersecció i unió 15
 1.3.2 Propietats operacionals 16
 1.3.3 Partició d'un conjunt 17
 1.3.4 Diferència de conjunts 17

FORMULACIÓ MATEMÀTICA ... 18

PROBLEMES RESOLTS ... 20

PROBLEMES PROPOSATS ... 38

2. RELACIONS BINÀRIES ... 45

BIBLIOGRAFIA ESCOLLIDA ... 46

PROGRAMA I SIMBOLOGIA ... 47

CONCEPTES I EXEMPLES ... 48

2.1 Grafsos i correspondències 48
 2.1.1 Producte cartesià .. 48
 2.1.2 Grafo d'un producte cartesià 48
 2.1.3 Correspondències i funcions 49

2.2 Relacions binàries .. 51
 2.2.1 Definició i propietats 51
 2.2.2 Relacions d'equivalència 51
 2.2.3 Relacions d'ordre 53

FORMULACIÓ MATEMÀTICA ... 55

PROBLEMES RESOLTS ... 58

PROBLEMES PROPOSATS ... 78
3. APLICACIONS... 85

BIBLIOGRAFIA ESCOLLIDA.. 86
PROGRAMA I SIMBOLOGIA... 87
CONCEPTES I EXEMPLES... 88
 3.1 Tipus d'aplicacions.. 88
 3.1.1 Aplicació... 88
 3.1.2 Aplicació exhaustiva................................ 89
 3.1.3 Aplicació injectiva................................ 89
 3.1.4 Aplicació bijectiva................................ 90
 3.2 Composició d'aplicacions................................ 91
 3.2.1 Aplicació recíproca................................. 91
 3.2.2 Aplicació composta................................ 92
 3.3 Combinatòria.. 93
 3.3.1 Variacions... 93
 3.3.2 Permutacions... 94
 3.3.3 Números combinatoris.............................. 96
 3.3.4 Combinacions.. 97

FORMULACIÓ MATEMÀTICA.. 99
PROBLEMES RESOLTS.. 102
PROBLEMES PROPOSATS.. 117

APÈNDIX.. 123
 A) Prova d'autoavaluació..................................... 125
 B) Bibliografia escoltida..................................... 130
 C) Glossari de conceptes..................................... 131