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Abstract Multiple failures can have catastrophic consequences on the normal

operation of telecommunication networks. In this sense, guaranteeing network

robustness to avoid users and services being disconnected is essential. A wide range

of metrics have been proposed for measuring network robustness. In this paper the

taxonomy of robustness metrics in telecommunication networks has been extended

and a classification of multiple failures scenarios has been made. Moreover, a

structural and centrality robustness comparison of 15 real telecommunication net-

works experiencing multiple failures was carried out. Through this analysis the

topological properties which are common for grouping networks with similar

robustness are able to be identified.

Keywords Robustness analysis � Robustness metrics � Multiple failures � Targeted
attacks � Random failures � Telecommunications networks

1 Introduction

Telecommunication networks are crucial infrastructures required to support a

variety of human activities such as socialization, entertainment, information

gathering, health and well-being, learning, transportation and emergency commu-

nications. The consequences of multiple failures in telecommunication networks are
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dramatic as when they occur millions of users and services can be disconnected. In

this work, and to enhance robustness, the vulnerability of networks under multiple

failure scenarios has been addressed. Robustness can be defined as the ability of a

network to continue performing well when it is subject to failures. Failures can be

caused by fiber cuts, configuration errors, viruses and worms, cyber-attacks,

terrorism or natural disasters [1].

Some research into the robustness analysis of telecommunication networks and

data centers networks (DCN) has been carried out and different metrics to measure

the network robustness have been proposed. In [2] some classical and contemporary

robustness metrics are studied for a set of real telecommunication networks, and the

most robust networks are identified by comparing the metrics obtained from

simulations of failure scenarios. In [3] the robustness of real networks and generic

topologies (random, scale-free and exponent) in non-failure scenarios are compared.

Both, [2, 3] rank the better topologies based on their robustness metrics. In [4] an

analytical comparison of well-known robustness metrics in some model and

empirical networks, when random and targeted attacks occur, is performed. In [4] it

is shown that the node degree centrality metric can be used as an effective strategy

to remove nodes in simultaneous targeted attacks, whereas for sequential attacks it

is betweenness centrality. The temporal evolution of the topological robustness of

backbone telecommunication networks by identifying their trends is analyzed in [1].

In [1] it is found that modifying the structure of networks over time does not

guarantee a better robustness. In [5] the robustness of random models and real

networks under different scenarios is evaluated. The random and targeted attacks

affect the network performance and although networks may have similar average-

case performance under attack, they may differ significantly in their sensitivities to

certain attack sequences [5]. In [6] the characteristics of network topologies that

maintain a high level of throughput in spite of multiple attacks are studied.

As regards to DNC topologies, in [7] a multi-layered graph modeling of various

DCNs topologies is presented and the structural robustness metrics analysis

considering various failure scenarios is carried out. Moreover, in [7] a new

procedure to quantify the DCN robustness is proposed based on the deterioration

metric which evaluates the network robustness based on the percentage change in

the graph structure. Classic connectivity measures are inadequate for evaluating

DCN connectivity as shown in [8]. Therefore, a new connectivity metric called l-
A2TR (l-average two-terminal reliability) is proposed in [8], which evaluates how

difficult it is to break a network into components in the case of node or link failures.

The benefits of different DCN topologies taking the reliability and survivability

requirements into account are analyzed in [9]. The most robust DCN topology for

both link and node failure scenarios is also identified in [9].

The aim of this work is to analyze the structural and centrality robustness of 15

real telecommunication networks under multiple failures (random and targeted).

Through this analysis the topological properties for grouping networks with similar

robustness are identified and compared with the results found in previous work. This

paper is structured as follows. Section 2 extends the taxonomy to classify robustness

metrics. Section 3 shows the type of failures that can affect telecommunication

networks. In Sect. 4, the structural properties of the networks studied in this work
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are described while the simulation results of structural and centrality robustness

metrics under multiple failure scenarios are presented and analyzed in Sect. 5.

Finally, Sect. 6 provides conclusions and future work.

2 Taxonomy of Robustness Metrics

To classify robustness metrics we consider a taxonomy based on structural properties,

centrality measures and services supported by networks. A preliminary version of this

taxonomy can be found in [2]. Table 1 shows an extended taxonomy of robustness

metrics. A description of the robustness metrics is presented in this section.

2.1 Structural Metrics

Structural metrics are a well-known area in the conventional analysis of graphs.

They are also used to explain stability—or the lack of it—in a network, and

Table 1 Taxonomy of robustness metrics

Structural robustness Centrality measures Functional robustness

Average nodal degree ðhkiÞ Degree centrality (dc) Elasticity (E)

Average shortest path length ðhliÞ Eigenvector centrality

(ec)

Quantitative robustness metric

(QNRM)

Diameter (D) Closeness centrality (cc) Qualitative robustness metric

(QLRM)

Assortativity coefficient (r) Betweenness centrality

(bc)

Endurance (n)

Heterogeneity (rk) Cross-clique centrality R-value

Efficiency (e) Spreaders R*-value (robustness surfaces (X))

Vertex connectivity (j)

Edge connectivity (q)

Cluster coefficient ðhCiÞ
Symmetry ratio (SR)

Largest eigenvalue (k1)

Algebraic connectivity (k2)

Natural connectivity (k)

Effective graph resistance (EGR)

Graph diversity (GD)

Weighted spectrum (WS)

Percolation limit (qc)

Number of spanning trees (NST)

Average two-terminal reliability

(ATTR)

Viral conductance (VC)
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determine how viruses spread through a network under node/link removal [10].

Preliminary robustness analysis is carried out by considering the following basic

network properties: average nodal degree ðhkiÞ, average shortest path length ðhliÞ,
diameter (D) and assortative coefficient (r) [2]. In this sense, networks with higher

hki are considered better-connected on average and, consequently, are likely to be

more robust (i.e. there are more chances to establish new connections). In regards to

hli, it is calculated as an average of all the shortest paths between all the possible

origin–destination vertex pairs of the network. A network is more robust if hli is at
its lowest as it is likely to lose fewer connections. D is the longest of all the shortest

paths between pairs of nodes, thus one would want the diameter of networks to be

low. The r coefficient lies within the range [–1, 1] and it defines two types of

networks. Disassortative networks with r\ 0 have an excess of links connecting

nodes of dissimilar degrees. The opposite properties apply to assortative networks

with r[ 0 that have an excess of links connecting nodes of similar degrees [11]. As

can be found in [4], such networks exhibit greater vulnerability to certain types of

targeted attacks.

Based on hki, the heterogeneity (rk) is a coefficient of variation of the

connectivity. rk is defined as the standard deviation of the hki divided by the hki.
The lower rk value translates to higher network robustness. The Efficiency (e) as the
averaged sum of the reciprocal (multiplicative inverse) of the shortest paths is also

defined. The greater the e value, the greater its robustness is. Vertex connectivity (j)
represents the smallest number of nodes that must be removed to disconnect the

network. The same definition can be applied to edge connectivity (q) when

considering links instead of nodes. The clustering coefficient ðhCiÞ captures the

presence of triangles formed by a set of three nodes, and compares the number of

triangles to the number of connected triples.

In addition, structural metrics also use the adjacency and Laplacian matrices to

abstract and calculate the robustness of the networks. The symmetry ratio (SR) is

calculated as the quotient between the distinct eigenvalues of the network adjacency

matrix and the diameter D. Networks with low SR are considered more robust to

random failures or targeted attacks. The largest eigenvalue or spectral radius (k1) is
the largest nonzero eigenvalue of the adjacency matrix of a network [10]. Generally,

networks with high values of k1 have a small D and higher node distinct paths. The

k1 metric also provides information on network robustness [11] and captures the

virus propagation properties of networks defining an epidemic threshold of node

infection [12].

Algebraic connectivity (k2) is defined as the second smallest Laplacian

eigenvalue. k2 measures how difficult breaking the network into different

components is. Higher k2 values indicate better robustness [13]. Networks with

identical k2 can be compared using natural connectivity (k). The k metric

characterizes the redundancy of alternative paths by quantifying the weighted

number of closed walks of all lengths. In addition, k is expressed as the average of

the eigenvalues of the adjacency matrix, where a higher value indicates a more

robust network. [14]. Effective graph resistance (EGR), can be written as a function

of nonzero Laplacian eigenvalues. The EGR metric measures the number of paths
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between two nodes and their length. The smaller the EGR value is, the more robust

the network [15].

The graph diversity (GD) is related to the number of nodes shared with the

shortest path considering all possible paths between two nodes. This metric is equal

to one when paths do not share any common point of failure (node or link). The total

graph diversity (TGD) is the average of all effective path diversity (EPD) over all

paths. Consequently, calculating this metric requires significant computational

resources. Larger TGD indicates greater robustness [16].

The weighted spectrum (WS) metric is based on the eigenvalues (ki) of the

normalized Laplacian matrix and the N-cycle of a graph. Different values of

N indicate different topology properties to be analyzed e.g. N = 3 is associated to

the clustering coefficient, meanwhile N = 4 is related to the number of disjoint

paths in a network. The network robustness is calculated as W0-W, where

W denotes the default WS of the original graph and W0 denotes the WS of the

resulting graph after link or nodal failures [17].

The percolation limit or percolation threshold (qc) returns the critical fraction of

nodes that need to be removed before the network disintegrates. The degree

diversity is taken into account to calculate the percolation limit, as can be seen in

[3]. Hence, the higher degree diversity is, the higher the percolation limit is. Then, a

higher qc indicates the fraction of vertices that can be removed without

disconnecting the network is higher, which means the network is more robust.

The number of spanning trees (NST) counts all possible spanning trees that exist for

a graph. It has been proven that the number of spanning trees can be written as a

function of the unweighted Laplacian eigenvalues [3].

The average two-terminal reliability (ATTR) delivers the probability of

connectivity between a randomly chosen node pair [18]. ATTR is one when the

network is fully connected; otherwise ATTR is the number of node pairs in every

connected component divided by the total number of node pairs in the network.

ATTR also gives the fraction of node pairs that are connected to each other [19]. At

failure scenarios, the higher the average two-terminal reliability is, the higher the

robustness is.

The last structural metric is viral conductance (VC), where the robustness is

measured with respect to virus spread [20]. This metric is measured by considering

the area under the curve that provides the fraction of infected nodes in steady-state

for a range of epidemic intensities. The lower the VC in a network, the more robust,

with respect to virus spread, it is. However, as this work is focused on random

failures and targeted attacks, the VC metric is not evaluated.

2.2 Centrality Metrics

This group of metrics attempts to identify which elements in a network are the most

important or central [4]. Consequently, they could help disseminate information in

the network faster, stopping epidemics, and protecting the network from breaking.

These metrics also define the network centralization as a measure of how central the

most central node is in relation to how central all the other nodes are [21].

Centralization, which is a key characteristic of a network, can be used to measure
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network robustness as the differences between the centrality of the most central

node and that of all others [21]. In general, the most central network is the most

robust i.e. if the network has more nodes with similar centrality values, there are

then several spots to attack when centrality metrics are used to select the elements to

be removed.

A wide number of centrality metrics has been proposed to identify the most

central nodes in networks. However, the following are the most common: degree

centrality, eigenvector centrality, closeness centrality, betweenness centrality and

spreaders. In degree and eigenvector centralities the importance of a node is given

in terms of its neighbors, whereas in closeness and betweenness centralities the

importance is related to the path lengths.

Degree centrality (dc) is the simplest measure of nodal centrality, and is

determined by the number of neighbors connected to a node [22]. The larger the

degree, the more important the node is. However, if a node with a high nodal degree

fails, potentially higher numbers of connections are also prone to being affected. In

many real networks only a small number of nodes have high degrees. Accordingly,

eigenvalue centrality (ec) is based on the notion that a node should be viewed as

important if it is linked to other important nodes [22]. The ec is proportional to the

sum of the centrality scores of its neighbors, where the centrality corresponds to the

largest eigenvector of the adjacency matrix. Thus, ec can take a large value either by

the node being connected to many other nodes or by it being connected to a small

number of important nodes.

With closeness centrality (cc) the nodal importance is measured by how close a

node is to other nodes [22]. It is based on the length of the shortest path between a

given node and all other nodes in the network. An important node is typically close

to the other node if it can reach the whole network more quickly than non-close

nodes. Betweenness centrality (bc) is when the number of shortest paths that pass

through a given node is counted [22]. A node may have a high betweenness

centrality while being connected to only a small number of other vertices (not

necessarily important/central). This is due to the fact that nodes that act as bridges

between groups of other nodes typically have high bc. Thus, nodes with high bc play

a broker role in the network and are important in communication and information

diffusion [22]. Similar to bc, the link betweenness centrality (lc) can be also

calculated as the degree to which a link makes other connections possible.

Centrality metrics also take into account measures in epidemic scenarios where

the best spreaders of an epidemic do not correspond to the most central nodes.

Instead, the most efficient spreaders are those located within the core of the network

according to a k-shell decomposition analysis [23]. This metric is not evaluated in

this work as it is focused on random and targeted attacks.

2.3 Functional Metrics

This set of metrics quantifies the variation of the performance of a network in

response to multiple failures by focusing on the Quality of Service (QoS)

parameters of the established connections. Elasticity (E), the quantitative robustness

metric (QNRM) and the qualitative robustness metric (QLRM) measure the
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robustness based on a single QoS parameter such as the throughput, the number of

blocked connections or the established connections as a function of hli, respectively,
[6, 24]. The higher these metric values are, the more robust the network is. Using

the R-value, the network robustness is given by an arbitrary topological vector and a

weight vector. The topological vector components take into consideration one or

more QoS parameters, network properties or any other structural robustness metric

e.g. hop-count, average shortest path length ðhliÞ, maximum nodal degree (kmax) or

algebraic connectivity (k2). The weight vector components reflect the importance of

the topological vector for network service. The higher the R-value, the greater the

robustness is [25].

Endurance (n) is also calculated by one or more QoS parameters (e.g. delay) or

topological metrics (e.g. size of the largest connected component). In contrast to the

R-value, n places greater importance on perturbations affecting low percentages of

elements in a network. n is normalized to the interval [0, 1], where n = 1 denotes

the non-existence of robustness, whereas n = 0 is correlated to the maximum

possible degree of robustness [26]. The last functional metric is R*-value which is

the R-value computed via a normalized eigenvector or principal component (PC).

The PC gives dimension and non-arbitrary weights to each of the robustness

metrics. Without failures the R*-value is set to one and can take values in the

interval [0, ??) when failures are considered [27]. A graphical representation of

the R*-value is called the robustness surface (X), and enables a visual assessment of

network robustness variability [27] to be made.

3 Multiple Failure Scenarios

Failures can affect the normal operation of network elements (nodes or links).

Therefore, services supported by a network and users connected to it may

experience catastrophic consequences. Figure 1 shows how multiple failures can be

classified. According to temporal dimension, failure types can be either static or

dynamic. Static multiple failures are essentially one-off failures that affect one or

more elements at any given moment. Dynamic failures have a temporal dimension

and they can be determined as being epidemic or cascading failures [2].

Other failure scenarios are induced with the strategy used to remove nodes or

links. Thus, when an object that causes an attack knows and uses precise

information from the network’s topological structure, it is called an attack with

white-information (targeted). However, when the attacker has little or no

Multiple 
failures

Element

Strategy 

Temporal
dimension

Node

Link
Static
Dynamic Epidemic-like

Cascading
Random
Targeted

Sequential
Simultaneous

(propagation)

Fig. 1 Taxonomy of multiple
failures
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information, it is considered a black-information attack (random). The former

would be more related to intentional failures, while the latter would be with

unintentional failures [2].

In random failures, nodal or link failures occurs randomly e.g. a fiber cut by a

natural disaster. While in targeted failures, network elements are attacked

(removed) with the purpose of maximizing the impact of the attack over the

network e.g. in backbone telecommunication networks the most vulnerable routers

can be identified by the number of shortest paths passing through a given router or

by the number of physical links from one router to others [4]. Moreover, other ‘‘real

world’’ features, such as the number of potentially affected users and socio-political

and economic considerations are also used to rank the nodes to be removed in

telecommunication networks [2].

In targeted failures there are two distinct schemes for selecting the elements to be

removed. In a simultaneous targeted attack, the centrality metric is calculated for all

elements (node or link) in the network and then a specified fraction of the elements

is removed in order of the centrality measure, from highest to lowest [4]. In a

sequential targeted attack the centrality measure is calculated for all the elements in

the initial network, and the element with the highest centrality value is then

removed. Next, the centrality measures of all the elements in the resulting network

are recalculated and once again the highest ranked element is removed. This process

of recalculating the centrality measures and removing the highest ranked element is

continued until the desired fraction of elements has been removed [4].

4 Network Topologies

In this section the topological properties of the 15 real telecommunication networks

are described. This set of networks was selected through a careful search in

specialized databases considering the number of times that they were used in

relevant publications e.g. a preliminary robustness analysis of this set of topologies

can be found in [1–3]. The topologies are part of important telecommunication

networks repositories such as [28, 29]. Thus, the 15 real telecommunication

networks serve as a standardized benchmark for testing, evaluating, and comparing

several network robustness metrics.

Some of these networks are backbone transport networks (representing real

physical links), whereas others are logical networks (representing the IP layer).

Then, the selected networks offer a wide range of topological properties which

allow structural and centrality robustness analysis to be carried out. By comparing

their network robustness, the common topological properties that can be used to

group networks with similar robustness under random failures and target attacks are

identified.

Each network topology is modeled by a graph G (V, E), which is given by a

vertex set V ¼ v1; v2; . . .; vnf g and an edge set E ¼ e1; e2; . . .; emf g. Vertex (i.e.

nodes) can be routers, switches, hosts, or any telecommunication equipment, and

edges (i.e. links) can be optical fiber cables, wired or wireless links (physical or

virtual). The graph representation and topological map of this set of networks can be
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found in [28, 29]. Table 2 presents the main topological properties of the 15 real

telecommunication networks: number of nodes (n), number of links (m), average

nodal degree ðhkiÞ ± standard deviation (StDev), maximum nodal degree (kmax),

average shortest path length ðhliÞ, diameter (D) and assortativity coefficient (r). The
networks have different sizes ranging from 11 to 754 nodes and from 14 to 899

links. ABILENE is the smallest network with 11 nodes and 14 links, whereas the

KDL network is the largest with 754 nodes and 899 links.

As can be seen in Table 2, the TISCALI_L3 and DELTACOM networks have

higher hki with 5.0588 and 3.2389, respectively. In contrast, SPRINT_L1 and KDL

have the lowest hki values, 2.3712 and 2.3846, respectively. According to kmax,

TISCALI_L3 has the node with the highest number of connections (22), whereas

ABILENE has the node with the lowest degree (3). In telecommunication networks,

kmax is used to identify the most important node according to the number of links.

Therefore, if the node with high nodal degree fails, a potentially higher number of

connections are also prone to being affected.

In terms of hli and D, ABILENE and TISCALI_L3 have the lowest values for

these properties. The former has hli ¼ 2:4182; while the latter has hli ¼ 2:4298.
Both networks have D = 5. Nonetheless, KDL and SPRINT_L1 with 22.727 and

14.705 have the higher values of hli, and KDL and US_MW have the higher D

values, 58 and 42, respectively. Finally, Table 2 shows that most of the networks

analyzed have a negative or near to zero value of r. DELTACOM (0.3158) is the

most assortative network and CESNET (-0.3739) is the most disassortative. As

explain above, when r\ 0 the network is said to be disassortative, meaning that it

has an excess of links connecting nodes of dissimilar degrees, whereas assortative

Table 2 Topological properties of the 15 real networks

Network n m hki ± StDev kmax hli D r

ABILENE 11 14 2.55 ± 0.52 3 2.42 5 0.067

GEANT 40 61 3.05 ± 1.95 10 3.53 8 -0.204

RENATER 43 56 2.60 ± 1.70 10 3.93 9 -0.1544

GpENI_L2 51 61 2.39 ± 1.73 9 4.69 10 -0.232

TISCALI_L3 51 129 5.06 ± 5.42 22 2.43 5 -0.361

CESNET 52 63 2.42 ± 3.13 19 3.05 6 -0.374

GARR 61 89 2.92 ± 3.09 14 3.62 8 -0.258

CORONET_L1 100 136 2.72 ± 0.83 5 6.67 15 0.035

DELTACOM 113 183 3.24 ± 1.85 10 7.16 23 0.316

USCARRIER 158 189 2.39 ± 0.82 6 12.09 35 -0.095

COGENTCO 197 245 2.48 ± 1.06 9 10.51 28 0.02

SPRINT_L1 264 313 2.37 ± 0.81 6 14.70 37 -0.188

ATT_L1 383 488 2.55 ± 1.15 8 14.13 39 -0.062

US_MW 411 553 2.69 ± 1.13 7 13.65 42 0.112

KDL 754 899 2.38 ± 0.85 7 22.73 58 -0.096
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networks are when r[ 0 indicating an excess of links connecting nodes of similar

degrees.

5 Results and Discussion

In this section, initially, the measurement of structural and centrality robustness

metrics in a static scenario are presented and a preliminary robustness comparison is

carried out. Then, some simulation scenarios are set up to allow the robustness

under random and targeted attacks to be evaluated and analyzed. Most metrics

presented in Fig. 2 were simulated under multiple failure scenarios. However, in

this work only the more relevant results are presented as the metrics analyzed allow
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the robustness behavior of the set of the 15 real networks to be abstracted for

grouping according to common topological properties.

Multiple failure scenarios were simulated for random and targeted attacks and in

each one a subset of the structural and centrality robustness metrics is analyzed. The

nodes to be removed in the simultaneous targeted attacks were selected by their

degree centrality, whereas for the sequential targeted attacks they were selected by

their betweenness centrality. In all scenarios, the percentage of nodes removed

(P) ranged from 1 to 70 %. Twenty and ten runs were performed for random and

targeted attacks, respectively. For each of the runs, different subsets of nodes were

selected according to the failure scenario.

5.1 Robustness Comparison in a Static Scenario

Table 3 shows the measures of the structural and centrality robustness metrics for

the defined set of real networks in a static scenario. The first and second columns in

Table 3 show that ABILENE and CORONET_L1 have maximum vertex connec-

tivity (j) and edge connectivity (q), (two in each case), i.e. more than one element

must be removed to break these networks. The clustering coefficient ðhCiÞ shows
that the TISCALI_L3 (0.3776) and GPENI_L2 (0.1847) networks are the most

robust. Their nodes are more interconnected with their neighbors as there are many

triangles (i.e. many alternative paths) in case of nodal or link failures. However, for

the CORONET_L1 network, hCi ¼ 0 as it does not have any triangles, as can be

seen in its topological map available in [29]. As regards to the symmetry ratio (SR),

the lowest value indicates high robustness. Thus, ABILENE and USCARRIER, with

SR values equal to 2.2 and 4.5143, respectively, are the most robust networks.

Thereby, SR suggests that the impact caused by removing a node does not depend

on which node is removed [2].

With the largest eigenvalue (k1), TISCALI_L3 and DELTACOM are the more

robust networks, with values of 9.5895 and 6.0015, respectively. On the other hand,

TISCALI_L3 and ABILENE have the highest values of the second smallest

Laplacian, each one with 0.5255 and 0.3238. Therefore, according to the algebraic

connectivity (k2), they are the most robust networks. Also, for the TISCALI_L3 and

ABILENE networks a similar robustness result can be concluded from their low

values of D and hli. Nonetheless, DELTACOM is one the most robust networks

according to k1, with a low k2 value (0.0233) and high values of hli (3.2389) and
D (10), the robustness results are opposite. In this case, a relevant conclusion about

its robustness cannot be drawn as the k1 and k2 metrics rank DELTACOM network

in a different way.

Based on natural connectivity (k), TISCALI_L3 and GARR are the most robust

networks having the highest values at 5.6718 and 2.3343, respectively. With the

effective graph resistance (EGR), the better robustness is for ABILENE and

GEANT as they obtain the smallest values of EGR: 7.54E?01 and 1.31E?03,

respectively, however, KDL and US_MW obtain the worst EGR (with values of

1.98E?06 and 3.48E?05, respectively). Weighted spectrum (WS) was calculated
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with N = 3 and the most robust networks are GARR and ABILENE with values of

0.1990 and 0.3333, respectively.

In the case of percolation limit (qc), TISCALI_L3 (0.8974) and CESNET

(0.8142) have the highest values which indicate these networks are more robust.

With respect to number of spanning trees (NST), in general, the larger the network,

the higher the NST is. Therefore, NST must be compared in networks of similar

sizes. By comparing the NST of the whole set of networks, KDL and US_MW result

in being the most robust networks. However, by comparing the NST of networks of

a similar size, TISCALI_L3 is more robust than RENATER and CESNET because,

as shown in Table 2, the first has more links than other. Therefore, the number of

spanning trees in the TISCALI_L3 networks is higher. In the static scenario, the

average two-terminal reliability (ATTR) for all networks is one.

As regards to centrality-based metrics, we consider nodal degree centrality (dc),

nodal closeness centrality (cc), nodal betweenness centrality (bc) and link

betweenness centrality (bc) to measure the network centralization. As explained

above, in Sect. 2.2, the network centralization is used to analyze the network

robustness based on these centrality metrics as the differences between the centrality

of the most central node and that of all others [21]. This indicates that those

networks close to uniform centrality distributions are more robust in the case of

targeted attacks to the most central nodes. In Table 3 it can be seen that networks

with the highest centralization values when considering dc are TISCALI_L3

(0.3388) and CESNET (0.325); with ec, the KDL (0.986) and ATT_L1 (0.9756)

networks are the most centrals; based on cc, CESNET (0.4605) and TISCALI_L3

(0.3837) networks have the highest centralization values; the most central networks

based on bc are CESNET (0.6939) and GARR (0.4591), and lastly USCARRIER

(0.27) and CESNET (0.24) have the highest network centralization based on lc.

This preliminary robustness analysis (summarized in Table 3) shows that some

metrics differ when identifying the most robust networks. Hence, taking just one

metric is not sufficient to measure the network robustness. Therefore, a set of

significant metrics to calculate the robustness and compare their results should be

considered. In order to identify the relationships between network properties and

their robustness it is necessary to consider the behavior of this set of real

telecommunication networks when multiple failures occur under targeted attacks

and random failures.

5.2 Robustness Analysis Under Simultaneous Targeted Attacks

In this section, robustness analysis of the real telecommunication networks when

nodes are removed under the simultaneous targeted attack is presented. According

to [4], the nodal degree centrality (dc), which is a purely local centrality measure, is

the most effective technique for removing nodes in the case of simultaneous

targeted attacks. In Fig. 2a the robustness results using the average two-terminal

reliability (ATTR) metric are shown. When the network is fully connected, exactly

one component exists and ATTR is one. Successive removal of nodes or links will

bring it closer to zero [18]. If failures affect two topologies in the same percentage

of nodes or links, the one that takes longer to reach a given critical ATTR can be

J Netw Syst Manage (2017) 25:269–289 281

123



considered the more robust [18]. ATTR provides an approximation to measure the

network connections and to group networks with similar robustness. Then, for each

subset of networks the common topological properties among them can be

identified.

As can be observed in Fig. 2a, it is possible to identify different affectation levels

i.e. the number of lost connections when a percentage of nodes are eliminated from

the networks. The weak level is between 1 and 5 % of failures, where network

connections can decrease dramatically to 60 %. When the percentage of nodes

removed (P) is in the range of 5–20 %, networks have an intermediate affectation

with a reduction of 70 % of connections. At 20 % or more of P, networks reduce

their connection to\10 %, so networks are near to being completely disconnected

with a severe affectation. Therefore, making robustness comparisons for P[ 20 %

is not relevant as these networks are close to being completely disconnected and

robustness metrics do not reflect real behavior.

For each P, the number of nodes removed from the ABILENE network does not

vary substantially due to its small number of nodes and links. Consequently,

ABILENE was not considered in the present analysis. The robustness analysis using

the ATTR metric (see Fig. 2a) shows that CORONET_L1 is the most robust

network as its network connections are maintained at over 80 % when P is not more

than 10 %. CORONET_L1 has high value of average nodal degree (k) (2.72), and

low values of maximum nodal degree (kmax) (5) and average shortest path length

ðhliÞ (6.6741) which would explain this result. This network is also an assortative

network with r = 0.0357. Nonetheless, the KDL network has the least robustness.

For instance, in the range of 3 to 5 % of P, the connections of KDL are reduced to

\15 %. This is because KDL has the lowest value of hki (2.3846) and the highest

value of hli (22.727), and is also a disassortative network (r = -0.096).

In Fig. 2a it can be seen that the GEANT, RENATER and TISCALI_L3

networks have similar ATTR behavior and these networks remain in the top five of

most robust networks. At 5 % of P their networks connections are reduced to 80 %.

This first set of networks have high values of hki, and low values of hli and diameter
(D). In contrast, the COGENTCO, SPRINT_L1 and USCARRIER networks lose

more than 50 % of their connections after 5 % of P. This second set of networks is

characterized by low values of hki and high values of hli and D.

In Fig. 2b, the robustness results for natural connectivity (k) are presented. As

can be seen, with\20 % of P it is possible to identify which networks are more

robust than others and they can be grouped. Thus, the most robust networks are

TISCALI_L3, DELTACOM and GARR, and the least robust are USCARRIER,

SPRINT_L1 and KDL. Analogous robustness results for k were obtained with the

largest eigenvalue (k1) metric. Hence, structural metrics selected in this analysis

agree in grouping the more and less robust networks. These sets of networks have

similar topological properties, as can be seen in Table 2.

With respect to centrality-based metrics and comparing the structural robustness

results, the networks with high centralization values are the most robust i.e.

networks have more nodes with similar centrality values that can help to maintain

network connections when the percentage of nodes removed increases according to

282 J Netw Syst Manage (2017) 25:269–289

123



targeted attacks. However, in simultaneous targeted attacks, the network central-

ization based on degree centrality (dc) is the most appropriate metric to measure the

network robustness owing to nodes being removed by their degree centrality values.

Similar to structural metrics, centrality-based metrics allow network robustness to

be compared to no more than 20 % of failures.

Figure 3 shows the robustness results of network centralization based on degree

centrality (dc). As can be seen, it is possible to identify three subsets of networks:

the first has two networks with the highest robustness (TISCALI_L3 and CESNET),

the second has four networks with an intermediate robustness (GEANT,

RENATER, GARR and GPENI_L2) and the third has the least robust networks

e.g. SPRINT_L1, ATT_L1, US_MW and KDL. The topological properties of these

subsets of networks are similar i.e. the most robust networks have high values of

hki, and low values of hli and D, whereas the least robust networks have low values

of hki and high values of hli and D (see Table 2).

5.3 Robustness Analysis Under Sequential Targeted Attacks

This section presents the robustness analysis of the real telecommunication

networks when nodes are removed under the sequential targeted attack. In this

scenario the most effective technique for removing nodes is nodal betweenness

centrality (bc) [4]. As can be observed in Fig. 4a, the average two-terminal

reliability (ATTR) results show that all networks are more robust under sequential

targeted attacks than when compared to simultaneous targeted attacks. A similar

robustness behavior for both attacks can be found in [4]. Figure 4a also shows that

when the percentage of removed nodes (P) is between 1 and 5, 50 % of the network

connections are lost. At 15 % of P, most of the networks reduce their connections to

\20 % and, at 20 % or more networks are near to being completely disconnected.

By comparing this robustness result to robustness results in simultaneous targeted

attacks, in sequential targeted attacks the TISCALI_L1 network moves up from
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Fig. 3 Network centralization results for simultaneous targeted attack
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fourth to first place in the rankings of most robust networks, whereas

CORONET_L1 descends to eighth place. TISCALI_L1 has a high average nodal

degree ðhkiÞ value (5.0588) and a low average shortest path length ðhliÞ value

(2.4298) which can explain this result. In contrast to the CORONET_L1 network,

TISCALI_L3 is one the most disassortative network (r = -0.3614). This means

that disassortative networks are less vulnerable to sequential targeted attacks by

nodal betweenness centrality and assortative networks show more robustness under

simultaneous targeted attacks by nodal degree centrality. This result for assortativity

coefficient (r) analysis is the same as was found in [4]. In both targeted attacks, KDL

is the least robust network.
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In Fig. 4b the robustness results for natural connectivity (k) metric are presented.

The k metric allows networks to be identified that are the most robust to\25 % of

P. In this sense, TISCALI_L3 presents the best robustness and USCARRIER the

poorest. The largest eigenvalue (k1) metric exhibit similar robustness behavior to k.
In both cases, the robustness degradation is lower than the results found in the

simultaneous targeted attacks.

For centrality-based metrics, the most robust networks are also those which have

high centralization values. In contrast with simultaneous targeted attack results, for

sequential targeted attacks these metrics allow network robustness to be compared

to no more than 35 % of failures. In this failure scenario, network centralization

based on nodal closeness centrality (cc) and nodal betweenness centrality (bc) are

the most effective metrics to measure the network robustness in sequential targeted

attacks due to the nodes being removed by their betweenness centrality values. As

shown in Fig. 5, in the range of 1–10 % of P, the shortest paths are quickly lost,

then, the length of the shortest path between nodes quickly increases. Therefore,

networks have fewer nodes with high values of betweenness or closeness centrality

which generate the increases of network centralization values.

Figure 5 shows the robustness results according to the network centralization

based on bc. As can be observed, in the range of 1–10 % of failures, it is not easy to

identify which networks are most robust due to the high variability produced by the

increase of hli. Nonetheless, when P is between 10 and 30 %, it can be seen that

TISCALI_L3 is most robust network, followed by the group encompassing the

CESNET, RENATER, GEANT and GARR networks and lastly by a set of least

robust networks e.g. SPRINT_L1, USCARRIER and KDL. Similarly to robustness

results presented in sequential targeted attacks, the most robust networks have high

values of hki, and low values of hli and D, whereas the least robust networks have

low values of hki and high values of hli and D.
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Fig. 5 Network centralization results for sequential targeted attack
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5.4 Robustness Analysis Under Random Failures Results

In this section, the real telecommunication networks’ robustness, when nodes are

removed under random failures, is presented. In Fig. 6, the robustness results

according to average two-terminal reliability (ATTR) for random node failures are

presented. As can be seen, all networks are more robust under random failures as

compared to both types of targeted attacks. This is because in random attacks it is

less likely that most central nodes are removed in first percentages of failures.

Figure 6 shows that network connections are over 50 % from 1 to 10 % of

failures, whereas all of them reduce their connections to\50 % in the range of 10–

25 % of P. At 68 % or more failures, all networks have\5 % of connections. In this

case, TISCALI_L3 is the most robust network and KDL is the least robust. The set

of networks with high robustness to random node failures has low values of average

shortest path length ðhliÞ and diameter (D), and they are the most disassortative

networks (r\ 0). Furthermore, it can be observed that networks with high average

nodal degree ðhkiÞ show robustness to random attacks, which is in accordance with

the results found in [30].

6 Conclusions and Future Work

In this paper a robustness analysis of 15 real telecommunication networks under

multiple failure scenarios (random and targeted attacks) was carried out. Through

this analysis the common topological proprieties that can be used to group networks

with similar robustness behavior are identified. Furthermore, a taxonomy of

robustness metrics in telecommunication networks has been extended from previous

work and a classification of multiple failure scenarios has been made.

In accordance with the results presented here, some conclusions can be drawn.

First, robustness analysis based on structural metrics shows that the subset of real
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Fig. 6 Structural results for random failures
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telecommunication networks most robust under targeted attacks have high values of

average nodal degree ðhkiÞ, low values of average shortest path length ðhliÞ and

diameter (D), whereas the subset of networks least robust have the opposite results

for hki, hli and D. Similar to previous studies, for disassortative networks (r\ 0)

simultaneous targeted attacks by nodal degree centrality is the most effective

method of degrading a network. However, in sequential targeted attacks by nodal

betweenness centrality, assortative networks (r[ 0) are more vulnerable. These

results are a consequence of disassortative networks having an excess of links

connecting nodes of dissimilar degrees, which in simultaneous targeted attacks are

removed rapidly according to their degree centrality value.

The second round of conclusions is focused on the robustness comparison using

the centrality-based metrics. The subset of real telecommunication networks with

high values for the network centralization metrics based on nodal degree centrality

(dc), nodal closeness centrality (cc) and nodal betweenness centrality (bc) shows

robustness under targeted attacks as more central nodes must be removed to affect

network performance. Networks with low results in centralization metrics are less

robust. Moreover, robustness analysis according to centrality-based metrics can be

carried out by selecting the appropriate metric to identify the impact of nodal

failures. Hence, in simultaneous targeted attacks by nodal degree centrality, the

centralization metric based on dc should be used to measure the robustness.

However, in case of sequential targeted attacks by nodal betweenness centrality,

network robustness should be measured by the centralization metric based on bc.

As to the results of nodal random failures, the subset of more robust real

telecommunication networks have low values of average shortest path length ðhliÞ
and diameter (D), and these are the most disassortative networks (r\ 0). Also,

similar to previous studies, topologies with high average nodal degree ðhkiÞ show
robustness to random failures as there are more nodes available to maintain

connections. Additionally, in random failures the probability of affecting central

nodes at first values of percentage of removed nodes (P) is low compared to targeted

attacks. Therefore, a lot of nodes would have to be removed to degrade the network

structure to the same affectation levels reached by targeted attacks.

As future work, a more in-depth study focused on the relationship between

robustness metrics under multiple failure scenarios could be made. This would

allow those properties of the networks which must be strengthened to maintain

desirable network robustness to be identified.
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