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ABSTRACT

Since their beginning in the late 1950s, the capabilities and applications of
autonomous underwater vehicles (AUVs) have continuously evolved. Their
most common applications include imaging and inspecting different kinds
of structures on the sea floor as well as collecting oceanographic informa-
tion: biological, chemical, and even archaeological data.

Most of these applications require a priori information of the area or
structure to be inspected, either to navigate at a safe and conservative
altitude or to pre-calculate a survey path. However there are other applica-
tions where it’s unlikely that such information is available (e.g., exploring
confined natural environments like underwater caves). In these scenarios,
AUVs must operate in unexplored and cluttered environments, and there-
fore are more exposed to collisions.

Although these AUV applications share some common requirements
with other aerial and terrestrial robots (e.g., localization, mapping, vision,
etc.), they are also different in significant ways. Navigating autonomously
while conducting these type of tasks in underwater environments demands
taking into account factors such as: the presence of external disturbances
(currents), low-range visibility and limited navigation accuracy. Dealing
with such constraints requires a path planner with online capabilities that
can overcome the lack of environment information and the global posi-
tion inaccuracy, especially when navigating in close proximity to nearby
obstacles.

In this respect, this thesis presents an approach that endows an AUV
with the capabilities to move through unexplored environments. To do
s0, it proposes a computational framework for planning feasible and safe
paths online. This approach allows the vehicle to incrementally build a
map of the surroundings, while simultaneously (re)plan a feasible path
to a specified goal. To accomplish this, the framework takes into account
motion constraints in planning feasible 2D and 3D paths, i.e., those that
meet the vehicle’s motion capabilities. It also incorporates a risk function
to avoid navigating close to nearby obstacles.

To evaluate the proposed approach in different real-world scenarios, a
series of trials were conducted with the Sparus II and the AsterX AUVs,
torpedo-shaped vehicles that performed autonomous missions. These ex-
periments include simulated and in-water trials in different environments,
such as artificial marine structures, natural marine structures, and con-
fined natural environments.
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RESUMEN

Desde sus inicios a finales de los afios 50, las capacidades y aplicaciones
de los vehiculos auténomos submarinos o AUVs (por sus siglas en inglés)
han estado bajo un continuo proceso de evolucién. Las aplicaciones mas
comunes incluyen la obtencién de imdgenes e inspecccién de diferentes
tipos de estructuras, tales como cascos de barcos, estructuras naturales
en el fondo marino, asi como la recoleccién de informacién oceanogréfica
como datos bioldgicos, quimicos e incluso arqueolégicos.

Muchas de estas aplicaciones requieren informacién a priori del drea o
estructura que va a ser inspeccionada, ya sea para navegar a una altitud se-
gura o para precalcular un camino para realizar estudios, el cual puede ser
corregido o modificado en tiempo real. Sin embargo, existen aplicaciones
similares o nuevas, como la exploracién de entornos naturales confina-
dos (e.g., cuevas submarinas), donde dicha informacién puede no estar
disponible. En estos escenarios, los AUVs debe operan en entornos de-
sconocidos, y por lo tanto los AUVs estdn més expuestos a colisiones.

Aunque estas aplicaciones de AUVs comparten algunos requiremientos
comunes con otras aplicaciones de robots aéreos y terrestres (e.g., local-
izacién, mapeo, visidn, etc.), navegar auténomamente mientras se ejecutan
este tipo de tareas en entornos submarinos difiere en ciertos factores, como
la presencia de pertubaciones externas (corrientes), bajo rango de visibili-
dad y limitaciones en la precision del sistema de navegacion. Para poder
abordar dichas restricciones se requiere un planificador de movimientos
con capacidad de computo en tiempo real, el que contribuya a superar las
limitaciones en la informacién del entorno y la falta de precisién de posi-
cionamiento, en especial cuando se navega cerca de los obstdculos de su
alrededor.

En este sentido, esta tesis presenta una método para dotar un AUV
con la habilidad para moverse a través de entornos no explorados. Para
ello, esta tesis propone un método para calcular en tiempo real caminos
factibles y seguros. El método propuesto permite al vehiculo construir in-
crementalmente un mapa del entorno, y al mismo tiempo replaninficar
el camino factible hacia la meta u objetivo establecido. Para lograr esto,
es necesario considerar las restricciones de movimiento para planificar
caminos 2D y 3D que sean factibles o realizables.

Para evaluar el método propuesto, se realizaron diferentes experimen-
tos con los AUVs Sparus Il y AsterX, ambos vehiculos tipo torpedo que
realizaron misiones de manera auténoma en diferentes escenarios. Estos
experimentos incluyen pruebas en simulacién y en el agua en diferentes
entornos, tales como estructuras marinas artificiales, estructuras marinas
naturales, asi entornos naturales confinados.
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RESUM

Des dels inicis a finals dels anys 50, les capacitats i aplicacions dels ve-
hicles autonoms submarins o AUVs (per les seves sigles en anglés) han
experimentat un procés d’evolucié continu. Les aplicacions més comunes
son 1'obtencié d’imatges i inspeccié de diferents tipus d’estructures, com
per exemple, cascos de vaixells o estructures naturals en el fons mari, i
I'adquisicié d’informacié oceanografica com dades biologiques, quimiques
i arqueologiques.

Moltes d’aquestes aplicacions requereixen informacié a priori de ’area o
estructura que es vol inspeccionar, ja sigui per navegar a una altitud segura
o per calcular en avangat un cami que permeti realitzar els estudis, el qual
pot ser corregit o modificat a temps real. No obstant, existeixen aplicacions
similars o noves, com I’exploraci¢ d’entorns naturals confinats (e.g., coves
submarines), on aquesta informaci6é pot ser inexistent. En aquests casos,
els AUVs han d’operar en entorns desconeguts, pel que estan més exposats
a col-lisions.

Tot i que aquestes aplicacions de AUVs comparteixen alguns requeri-
ments comuns amb altres aplicacions de robots aeris i terrestres (e.g., lo-
calitzaci6, mapeig, visio6, etc.), navegar autonomament al mateix temps que
s’executen aquest tipus de tasques en entorns submarins difereix en certs
factors, com la presencia de pertorbacions externes (corrents), baix rang de
visibilitat i limitacions en la precisi¢ del sistema de navegacié. Per poder
tractar les esmentades restriccions és necessari un planificador de movi-
ments amb capacitat de processament en temps real, el que ajudi a superar
les limitacions en la informacié de I'entorn i la falta de precisié de posi-
cionament, en especial quan es navega a prop dels obstacles presents en el
seu voltant.

En aquest sentit, aquesta tesis presenta una alternativa per dotar un
AUV amb I'habilitat de moure’s a través d’entorns no explorats. Per acon-
seguir aquesta fita, aquesta tesis proposa un metode per calcular en temps
real camins factibles i segurs. El metode proposat permet al vehicle con-
struir de forma incremental un mapa de I’entorn, i al mateix temps replan-
ificar un cami factible cap a 1’objectiu establert. Per assolir aix0, el metode
proposat te en compte les restriccions de moviment del vehicle per plani-
ficar camins 2D i 3D que siguin factibles o realitzables.

Per avaluar el metode proposat, s’han realitzat diferents experiments
amb els AUVs Sparus II i I’AsterX, els quals sén vehicles de tipus tor-
pede que van realitzar missions de forma autdonoma en diferents escenaris.
Aquests experiments inclouen proves en simulaci6 i a I'aigua en diferents
entorns, tal 1 com estructures marines artificials, estructures marines natu-
rals i entorns naturals confinats.
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INTRODUCTION

1.1 MOTIVATION

The need to use robotic systems in order to overcome human beings’ lim-
itations has been a topic of an ever increasing interest in the last decades.
Manipulator arms, for instance, were introduced in the industry to opti-
mize production lines by systematically executing tasks with a bounded
margin of error and high repeatability during long working hours. Re-
cently, such an interest in robots has veered towards autonomous vehicles
that conduct missions in complex and undiscovered environments, such as
deep oceans, volcanoes and even other planets. Consequently, various sec-
tors of the scientific community started to research this area, especially fo-
cused on developing robotic vehicles that are capable of conducting tasks
where data is gathered autonomously in different environmental media,
such as air, soil and water [28].

Marine scientists were probably the first ones capitalizing on the use
of robotic vehicles in exploring unknown environments. Oceanographers,
for instance, started using unmanned underwater vehicles (UUVs) to study
deep marine environments and the seafloor [127]. Nowadays, UUVs are sep-
arated into two categories according to the level of human intervention re-
quired for their operation. A first group includes the so-called remotely op-
erated vehicles (ROVs) which, despite being unmanned, have to be tethered
to a support surface vessel from which they are powered and controlled
by a human operator. Although ROVs are commonly associated with their
use in inspecting and maintaining offshore oil and gas platforms [68], they
have also contributed to different scientific applications such as environ-
mental monitoring [79] and marine archeology [36]. Figure 1 shows the
widely-known VICTOR 6000 ROV in a typical deployment maneuver from
the mother ship, where the umbilical cable used to operate the vehicle can
be clearly observed.

(@) (b)

Figure 1: (a) The VICTOR 6000 ROV. (b) The ROV-vessel system: 1) a direct-
winding winch, 2) the ROV, 3) the hard ballast, 4) the tether cable, and
5) the power/hydraulic units and control room. Image credit: Ifremer.
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The second group gathers the autonomous underwater vehicles (AUVs),
or UUVs that do not require being controlled by a human operator. This
characteristic eliminates the need of continuously being in contact with a
surface mother ship, thus permitting to overcome some major drawbacks
of the former group, such as their high operative cost and limited working
area. In most of the AUV applications, the vehicle follows a sequence of
pre-calculated waypoints and uses its onboard sensors to gather oceano-
graphic information of biological nature [43], chemical composition [126],
and even archaeological data [11]. Often, they are also equipped with
multibeam and imaging sonars that collect data that is used to build bathy-
metric maps (i.e., elevation maps of the seabed). These underwater surveys
are normally conducted in a previously explored area so that the vehicle
navigates at a constant and safe altitude from the seafloor.

Furthermore, AUVs can also be divided into two main subcategories:
buoyancy-driven and propeller-driven. The former category corresponds
to the underwater gliders, or AUVs that are capable of modifying its buoy-
ancy in order to generate sinusoidal-like vertical motion that, together
with their wings, also permit horizontal (forward and lateral) motion. The
trajectories followed by these vehicles also include periodic ascents to the
surface to obtain GPS fixes, thus improving its navigation estimation (see
Fig. 2). This propulsion technique results in a low-consumption but also
less maneuverable approach. This is commonly used in long-term studies
over open sea areas, in which a single mission can last from days to weeks.

Figure 2: Underwater glider, or AUV with the capability of modifying its buoy-
ancy to generate sinusoidal-like vertical motion. The vehicle dives for
several hours to gather data, and surfaces periodically to obtain GPS
fixes thus improving its own navigation estimation.

The propeller-driven AUVs, on the other hand, correspond to those that
use propellers or thrusters to generate 3-dimensional (5D) motions. The
work presented throughout this thesis is dedicated to this latter kind of
vehicles. Furthermore, it has been mainly validated with the Sparus II, a
torpedo-shaped AUV (see Fig. 3).

1.2 PROBLEM STATEMENT

Recent AUV applications include imaging and inspecting different kinds
of structures such as in-water ship hulls [53, 58] and natural structures on
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Figure 3: Sparus II AUV, a torpedo-shaped and propeller-driven underwater ve-
hicle, which is equipped with two back thrusters for horizontal motion,
and one independent thruster for vertical motion.

the sea floor [42]. These applications share a common characteristic: they
require a priori information of the area or structure to be inspected. There-
fore it is needed to either navigate at a safe and conservative altitude [11,
43] or to pre-calculate a survey path that may be corrected or reshaped
online [42, 53]. However, there are similar or even potentially new appli-
cations, such as exploring confined natural environments (e.g., underwa-
ter caves) [91], where such information might not be available. In these
scenarios, the AUV must operate in unexplored (unknown), cluttered and
dynamic environments, and therefore are more exposed to collisions.

Although the aforementioned AUV applications share some common re-
quirements with aerial and terrestrial robots (e.g., localization, mapping,
vision, etc.), navigating autonomously while conducting such type of tasks
in an underwater environment presents different challenges. These are
caused by factors specific to this environment, such as the presence of ex-
ternal disturbances (currents), low-range visibility and limited navigation
accuracy. Dealing with such constraints requires a path planner with on-
line computation capabilities, which contribute in overcoming the lack of
surroundings information and the global position inaccuracy, especially
when navigating in close proximity to nearby obstacles.

1.2.1  Navigating in Unexplored Environments with AUV's

Even with the most recent technological advances, conducting both tele-
operated and autonomous missions in underwater environments still rep-
resents a challenge with different scientific aspects to be solved. One im-
portant restriction faced by UUVs is that they operate in GPS-denied en-
vironments, which limits their capability to accurately calculate their po-
sition with respect to an inertial reference frame. In order to cope with
this, dead-reckoning (DR) techniques are used to estimate the relative po-
sition with respect to an initial position, which is normally defined from
GPS fixes obtained when the vehicle is at surface. This approach suffices
in many survey AUV applications. However, its limitations rely on highly
precise odometry and low-level or negligible disturbances. When these
conditions are not met, it can rapidly lead to errors in distance estimation,
which make this approach an unsafe alternative when navigating and ex-

3
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ploring surroundings in close proximity to nearby obstacles, even when
the environment is known and a map is available.

Another alternative is the of use of an ultra-short baseline (USBL), which
is a method of underwater acoustic positioning. An USBL system is com-
posed of a transceiver mounted on a surface vessel and a transponder
mounted on the AUV. This system permits calculating the range (distance)
and the angle of the subsea vehicle with respect to the surface vehicle.
Furthermore, given that the transceiver is at surface (i.e., it can get GPS
fixes), it is possible to calculate a more accurate absolute position of the
AUV. The major drawback of this alternative is the mobility constraint im-
posed by the transceiver, similar to what occurs with a ROV and its mother
ship. This also prevents its use in confined natural environments such as
an underwater caves complex, which results in a critical limitation for the
new applications intended for AUVs.

Therefore, when planning collision-free AUV paths, the difficulty to pre-
explore and build a map of the area or structure of interest is an addi-
tional challenge to be considered together with the navigation inaccuracy.
In order to tackle these problems, this thesis proposes a framework that
endows an AUV with the capability to map an undiscovered environment,
while planning collision-free paths to navigate throughout it. Furthermore,
although the framework considers specific characteristics of the motion
planning problem for AUVs, the proposed approach may also be applied
for other types of autonomous vehicles.

1.2.2  Path/Motion Planning Problem for AUVs

1.2.2.1  Querview of the Basic Robot Path/Motion Planning

In general, path/motion planning methods can be divided into two cate-
gories according to their application: coverage planning and start-to-goal
planning. The former category, commonly referred to as coverage path
planning (CPP), gathers those methods that seek to determine a collision-
free path that a robot must follow in order to pass over all points of an
area or volume of interest. A detailed review of available techniques that
address this problem can be found in [39].

The second category, i.e., start-to-goal motion planning, consists in find-
ing valid (collision-free) paths from a start configuration to a goal con-
figuration in the configuration space (C-Space), which is the space of all
the possible robot configurations [86]. There are different computational
algorithms that attempt to solve this task. Some of them find an analytic
solution, but their applicability is limited to simple problems. Another
group of algorithms, such as Dijkstra’s [23], A* [44] and D* [112], search
throughout discretization of the C-Space. However, in problems involving
high-dimensional C-Spaces, these exhaustive search methods suffer from
scalability issues.

One alternative in dealing with this is to use the so-called sampling-
based methods. These latter ones construct a partial representation by
taking samples at random from the C-Space and checking them for colli-
sions [20, 75], instead of fully describing the C-Space. In contrast with ex-
haustive search methods, these are not complete (i.e., they can not report
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whether a solution exists), but often find a solution for complex problems
where other algorithms fail.

There are additional characteristics or capabilities that should be consid-
ered when solving path/motion planning tasks for AUVs. Some of which
will be mentioned in the following sections.

1.2.2.2 Planning under Geometric and Differential (Motion) Constraints

When calculating a valid path, the planner must deal with different types
of constraints, some of which may be related only to the C-Space, while
others may also include the vehicle motion capabilities. Depending on
which constraints are considered, the planning problem was categorized
in one of two possible groups: geometric path planning and motion plan-
ning [20]. The former group assumes that the robotic system can move
instantaneously in any direction (i.e., system kinematics and dynamics are
negligible), thus reducing the problem to geometric constraints that are
solved by checking for collisions over the C-Space.

However, the motion constraints associated with the vehicle are often
significant, and therefore the robot is not capable of following a simple
geometric path. This means that, when calculating collision-free paths, it
is necessary to use a vehicle motion model that includes differential con-
straints, also called kinodynamic constraints. Such a group of planning
problems is commonly called motion planning or kinodynamic motion plan-
ning (this latter term was introduced by Donald et al. in 1993 [26]). An
example of such planning problems is the one related to a non-holonomic
torpedo-shaped AUV, as the ones used in this thesis (see Figure 3).

As recently the terms path planning and motion planning are used inter-
changeably [114], [75], throughout this thesis, we refer to the either prob-
lem as path/motion planning

1.2.2.3 3D Path/Motion Planning

In some AUV applications the vehicle either navigates at constant depth or
attempts to keep reference values of altitude. In those cases, and specially
in areas with no or little relief, it is possible to simplify the motion model
to one that assumes the vertical position variation as constant or negligible.
Nonetheless, when such conditions are not met, it is required to use more
complete motion equations, which in the simplest case implies adding
an additional state variable for the vertical motion, or in more complex
scenarios may require to use a 6-dimensional (6D) state space, i.e., one
that incorporates the position and the orientation of the vehicle in a 3D
workspace, where each state or configuration is q = [x,y,z, ¢, 0,].

1.2.2.4 Online Path/Motion Planning

Another important aspect to be considered when planning motions for
AUVs, especially when navigating in unexplored environments, is the ne-
cessity of calculating the paths (motions) online. To deal with such compu-
tation constraints, the planner must be capable of providing a solution at
any time and of correcting (reshaping) it according to the updated environ-
ment information gathered along the mission execution. This characteristic
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implies that although it is possible that the solution provided at any time
may not be the most optimal one, any available time left will be spent on
improving the existing solution path. This means that the next delivered
solution is better than the previous one or at least equally good. Finally, it
is also important to correctly balance the computation load to coexist with
other functional modules of the AUV such as navigation, control, etc.

1.3 OBJECTIVES OF THE THESIS

Once the motivation and the most relevant aspects of the problem ad-
dressed in this thesis have been established, the main objective of this
work can be stated as follows:

To endow an autonomous underwater vehicle (AUV) with the capability to incre-
mentally map an unexplored environment, while planning online collision-free
paths; such paths should be 3-dimensional (3D), safe, and feasible (doable) accord-
ing to the vehicle’s motion constraints. This will contribute a further step towards
better and more reliable AUVs for the new and potential applications.

This objective can be separated into the following specific objectives:

Review of the Path/Motion Planning Literature: To conduct a review
of the most relevant path/motion planning methods, which have been
used for different robotic systems including terrestrial, aerial, and, espe-
cially, marine vehicles. This will allow identifying the most appropriate
approaches for meeting the aforementioned constraints for the intended
applications.

Planning Feasible Motions for AUVs: To propose a motion planning
method that takes into account the AUV’s motion constraints for both 2D
and 3D movements. This will permit generating more feasible motions ac-
cording to the AUV’s capabilities. Furthermore, such motions will be more
likely to be followed by the vehicle, thus minimizing unexpected maneu-
vers.

Online Mapping and Path/Motion Planning for AUVs: To propose a
framework that allows an AUV to safely navigate through initially unex-
plored environments. This implies that the vehicle must be capable of in-
crementally mapping the surroundings while, simultaneously and online,
planning safe and feasible paths.

Simulation and In-water Validation: To extensively test and validate the
proposed approach in different simulated and real-world scenarios.

1.4 THESIS OUTLINE AND CONTRIBUTIONS

This manuscript is organized in a way that presents the incremental and
progressive development of this thesis. In order to contextualize and better
understand the real impact of such developments, Chapter 2 firstly makes
a review of the most relevant methods, techniques, and applications that
compose the state of the art, not only in what has to do with path/motion



1.4 THESIS OUTLINE AND CONTRIBUTIONS

planning, but also in relation with the approaches currently applied with
AUVs. Then, based on the new and potential applications intended for AUVs
that were mentioned above, and considering their requirements, the main
contributions of this thesis are gathered and distributed throughout this
document as follows:

1) The incorporation of motion constraints into the AUV path planner,
which acts as a mechanism to avoid generating unfeasible paths, thus re-
ducing the number of unexpected maneuvers. This includes those con-
straints required for constant depth missions that only take into account
2-dimensional (2D) horizontal motions, which are discussed in Chapter 3.
But it includes as well more challenging and variable depth missions that
require analysing and combining the vehicle turning and ascending/de-
scending limitations, which are addressed in Chapter 4.

2) An efficient approach for approximating the risk associated with a
path. There are situations in which considering the vehicle motion con-
straints does not avoid risky maneuvers, especially when navigating in
close proximity to nearby obstacles. In such cases, the AUV path/motion
planner must lead the vehicle to navigate at a safe and conservative dis-
tance from its surroundings, yet without discarding any possible solution.
Different strategies to estimate the risk associated with a vehicle configura-
tion, and therefore with a path, are presented and compared in Chapter 5.

3) The capability of an AUV to efficiently (re)plan feasible and safe paths,
i.e., under motion constraints and taking into consideration the associated
risk, in scenarios where the environment is incrementally discovered. This
clearly means that the path/motion planner has to operate under online
computation constraints, which can only be done by combining existing
approaches and newly proposed strategies, such as opportunistic state check-
ing and reuse of the last best known solution. The complete online planning
approach will be presented in Chapter 5.

4) A framework that allows an AUV to incrementally map an environ-
ment undiscovered previously, while simultaneously (re)planning a path
that must be followed by the vehicle to safely cross and explore the sur-
roundings. This framework integrates all previous stages and characteris-
tics, in order to finally endow the AUV with the required capabilities for
the intended applications, and will also be presented in Chapter 5.

5) An extensive validation of the proposed framework is presented in
Chapter 6. This includes simulated and in-water trials in different real-
world scenarios, where an AUV had to navigate through initially unex-
plored environments, while gathering different kind of information such
as acoustic and optical data. These tests were conducted with two different
AUVs: the Sparus II from the University of Girona, and the AsterX from the
French Research Institute for Exploitation of the Sea (Ifremer)*. The results
include planning safe and feasible paths to move through both artificial
and natural marine structures, as well as the autonomous survey replan-
ning for gap filling and target inspection.

Finally, concluding remarks and directions for further research are given
and discussed in Chapter 7.

1 Technical details about both vehicles can be found in Appendix A.
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Although the major research efforts in this thesis were focused on devel-
oping, extending and using path/motion planning methods for AUV ap-
plications, their validation with an AUV in real-world scenarios involved
other fields of study. These included but were not limited to: navigation,
perception, mapping and control. An extensive presentation of the state-of-
the-art background of all these areas would not only prove to be lengthy
and diffuse, but would also be out of the scope of this work. Nonethe-
less, this chapter is dedicated to contextualizing the contribution of this
thesis. In order to do so, it firstly provides a survey of the techniques avail-
able for solving specifically path/motion planning problems. Secondly, it
discusses the most common extensions used when the vehicle motion ca-
pabilities have to be taken into consideration or when dealing with online
computation constraints. Finally, it presents a review of the algorithms and
extensions that have been used with AUVs particularly.

2.1 PLANNING COLLISION-FREE PATHS OVER THE C-SPACE

Even though first works on path/motion planning appeared in the late
60’s [99], it was only until the 80’s, when Lozano-Perez introduced the con-
cept of the configuration space [86-88], that this field of study became active.
The configuration space (or C-Space) establishes the set of all possible con-
figurations that a robot can adopt when executing tasks in the workspace.
While the workspace, W, is typically defined as R™ (where n = 2,3 for
2D and 3D motion, respectively), the C-Space, C, depends on the robot mo-
tion capabilities. For example, a robot considered to be a point that moves
in a plane (i.e., W = R?) requires two coordinates in order to specify its
configuration, ¢, which is equal to [x,y]T, thus q € € = R?.

However, if the robot is considered to be a rigid body that moves in
a plane (i.e., in the same W), it requires three coordinates; these would
describe not only its position, but also its orientation, therefore its config-
uration is now q = [x,y,P]", which is commonly expressed as q € C =
SE(2) = R? x SO(2) = R? x 8. A similar scenario occurs with a single
rigid-body robot that operates in 3D workspaces, in which q = [x,y,zl,
so that ¢ € C = R3 when only the robot’s position is considered, or
q = %Y,z $,0,0], so that ¢ € € = SE(3) = R3 x SO(3) when consid-
ering both position and orientation. Finally, when the robot is an articu-
lated rigid body system, for instance a manipulator arm, a given config-
uration is described by the values of a set of n generalized coordinates
q = q1,...,qn, corresponding to each of the robotic arm degrees of free-
doms (DOFs).

The solution to a simple path/motion planning problem, which requires
connecting a start and a goal configuration, qstqrt and ggoat, is a con-
tinuous path p : [0,1] — C, such that p(0) = qstart and p(1) = dgoal-
However, a robot generally conducts tasks in environments that contain
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obstacles, which normally are to be avoided. For this reason, the C-Space
is subdivided into free space (C¢ree) and the obstacle region (Cops), mean-
ing that € = C¢ree U Cops. Therefore, a collision-free path is defined as a
continuous path p : [0, 1] = C¢ree. This concept is illustrated in Figure 4.

Figure 4: The basic path/motion planning problem seeks to connect a start con-
figuration (qstart) and goal configuration (qg0q1) with a continuous
collision-free path p : [0, 1] = Cfree.

2.2 BUG-BASED METHODS

Bug-based methods represent one of the earliest reactive and sensor-based
path planning approaches, in which a mobile robot moves in the plane
towards a global goal, while having a limited (local) knowledge of the en-
vironment. The algorithms included in this group are based on two basic
behaviors: go straight towards the goal and follow the obstacles” boundary.
Lumelsky and Stepanov presented the first of these algorithms, known as
Bug1 and Bugz2, that mainly rely on tactile or zero range sensors to per-
ceive the obstacles [89]. Later, Kamon et al. introduced the Tangent Bug
algorithm, which is an extension that uses non-zero range sensors [60]. All
of them are classified as complete algorithms, which means that they find
a solution when one is possible or, otherwise, they report when there is no
solution. Furthermore, they assume the robot is a point that moves in a 2D
workspace, and that it is capable of knowing its position and calculating
its distance to the goal.

Bug1 [89] is the most basic algorithm that uses the aforementioned be-
haviors. With this method, the robot moves from the start position (qstqrt)
towards the desired goal position (q40q1) until it reaches the goal or until
it finds an obstacle (detected with its tactile sensors). When the latter sit-
uation occurs, the robot stores its current position and marks it as the hit
point (H;). Then it changes its motion mode (behavior) to completely cir-
cumnavigate the obstacle. While the vehicle follows the obstacle boundary,
it continuously calculates the distance to the goal in order to determine
the position that corresponds to the minimum possible distance. This is

9
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marked as the leave point (L;). Once the robot reaches the hit point again
(i.e., after it has traveled all the obstacle contour), it goes back to the leave
point and there changes its behavior, once again, in order to move towards
the goal. This procedure is repeated until reaching the specified goal. Fig-
ure 5 depicts an example of this algorithm solving a start-to-goal query.

Figure 5: Reactive and sensor-based method Bug1

Bug2 [89] attempts to be an improved version of the previously ex-
plained algorithm. It establishes a straight line, sometimes referred as the
m-line [20], which connects the start and goal positions. With this algo-
rithm, the robot starts moving towards the desired goal by following the
m-line until it reaches the goal or finds an obstacle. As occurs with Bugzi,
if the robot is dealing with an obstacle, it first marks that position as the
hit point (H;) and then changes its behavior to circumnavigate the obstacle.
However, with Bug2 the robot does not necessarily travel the entire obsta-
cle boundary, but instead stops when reaching another point in the m-line;
if such a point is closer to the goal than the previous hit point, the robot
marks this position as leave point (Li) and, from there, continues follow-
ing the m-line towards the goal. This procedure is repeated until reaching
the specified goal. Even though Bug2 does not require to completely cir-
cumnavigate the obstacles, there are environments where the robots do
require to travel the entire boundary; in these cases Bugz may generate
longer paths than those calculated by Bugi, and therefore is less efficient.
Figure 6 depicts an example of Bug2 solving start-to-goal queries in both
simple and complex scenarios.

Finally, the Tangent Bug algorithm [60] was proposed as an improved
alternative for Bug1 and Bug2. In this version, the robot is assumed to
be equipped with a non-zero range sensor, which permits detecting in
advance not only the obstacles, but also their continuous boundaries. This
way, when the robot is navigating towards the goal and faces an obstacle,
it can determine the discontinuities in the boundaries or the limits of the
perceived area, which are marked as endpoints. Then, in order to avoid the
obstacle, the robot checks which of the endpoints minimizes the distance
to the goal and starts moving towards it. The procedure is repeated until
the obstacle is no longer perceived, at which point the robot can continue
moving towards the goal following a straight line. Figure 7 depicts an
example of Tangent Bug solving a start-to-goal query.

10
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(a) Bug2 simple scenario (b) Bug2 complex scenario

Figure 6: Reactive and sensor-based method Bug2

(a) Boundaries detection (b) Execution

Figure 7: Reactive and sensor-based method Tangent Bug
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2.3 SEARCH-BASED (GRID-BASED) PATH/MOTION PLANNING

Search-based planning is a path/motion planning approach that utilizes
graph search methods to find collision-free paths over a discrete version of
C. For doing so, these methods overlay a grid on € and assume that each
collision-free configuration corresponds to a point on the grid, which is
why they are also called grid-based methods. Over that grid, the robot is
allowed to move from one point to any other adjacent point as long as the
line between them is proved to be collision-free (i.e., is contained within
Ctree). Hence, using this approach to solve, for instance, a start-to-goal
query requires coping with two problems: how to correctly discretize € to
establish the grid, and how to search a path from the start point to the
goal point (configuration) over such a grid.

For the first problem, it is important to correctly define the grid res-
olution, which mainly depends on the environment and the problem’s
requirements. Coarser grids, for example, will permit faster searches, but
may fail to find paths when dealing with narrow passages in C¢ree (see Fig-
ure 8). Finner grids, on the other hand, will allow solving queries in more
complex scenarios, but may be computationally too expensive for online
applications. Once the grid is established, there are different methods to
calculate an optimal path, some of which are described in this section.

(a) Coarse grid (b) Fine grid

Figure 8: Grid-based method solving a start-to-goal query. (a) Although coarser
grids decrease the computing time, they may fail when dealing with
narrow passages where finer grids could succeed (b).

2.3.1 Dijkstra’s Algorithm

Presented in 1959, Dijkstra’s algorithm [23] is one of the first widely known
methods used to find a path in a graph from one node to another. The algo-
rithm uses a weighted graph Q' to determine which path that connects two
nodes has of the lowest cost. While this method has been used in differ-
ent areas and applications such as network routing protocols, in robotics
it has been applied to path/motion planning problems. There, the associ-
ated edge cost may correspond to different optimization metrics such as
distance, energy, time, etc., that can be considered when calculating the
optimal path for a start-to-goal query.

A weighted graph is one in which numerical values, or weights, are assigned to its nodes
and edges.

12
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In order to find the optimal path, the algorithm iteratively executes the
following steps until reaching the goal (qgoaq1): 1) Setting an initial cost
to all nodes, specifically zero to the initial one (qstqrt) and infinity to all
others. 2) Establishing qs¢qrt as the current node and marking the rest as
unvisited. 3) Calculating the cost for the current node’s unvisited neigh-
bors (equal to the current node’s cost plus the edge to the neighbor cost),
as well as updating any previously calculated node cost if the new value
is lower. For example, if node B cost was x when current node was A, but
the new cost is y when current node is C, and y < x, then node B cost
will be now y. 4) After calculating the cost of all its unvisited neighbors,
current node is marked as visited. 5) If the qgoq1 has been marked as vis-
ited, the algorithm has finished, otherwise, the new current node will be
the unvisited node with the lowest cost, and will be processed as indicated
from step 3). Finally, the least cost path can be obtained with backtracking.
Figure 9a presents an example of executing this method.

2.3.2 A¥

In 1968, Peter Hart et al. described an extension of Dijkstra’s algorithm
called A* [44], which incorporates a heuristic that permits estimating the
cost of paths from any node of the graph to the goal. Because of this
characteristic, A* is considered an informed search algorithm; this means
that it always attempts to find the path by firstly evaluating those nodes
with the minimum estimated cost according to the heuristic. As occurs
with Dijkstra’s algorithm, A* starts from a weighted graph Q, in which
each node represents a different configuration contained in Cyyee and the
edges correspond to collision-free paths between configurations. Then, it
builds a search tree, rooted at qstart, by expanding different paths, one
step at a time, until one of them ends at the desired qg0q1. The main
difference with respect to Dijkstra’s algorithm is the order in which each
partial path is expanded. In the case of A*, it expands the node q; that
minimizes the total cost f(qi) = g(qi) + h(qi), which combines the cost
required to reach the node from the start configuration g(qi) with the
estimated heuristic cost from the node to the goal h(q;).

While both Dijkstra’s algorithm and A* can generate optimal solutions,
the latter can result in a more efficient search by reducing the number of
nodes required to be visited in order to determine the solution path (see
Figure gb). However, it is important to know that an incorrect heuristic will
also provide a valid solution, but it may be suboptimal. For this reason and
in order to produce an optimal path, the heuristic has to be optimistic, or
admissible, which means that the estimated cost to the goal has to be lower
or equal to the real cost [20]. Finally, it is also important to note that in case
no heuristic is provided, i.e., h(qi) = 0, A* behaves as Dijkstra’s algorithm.
Algorithm 1 presents the pseudocode for A* and also provides a general
idea for Dijkstra’s algorithm explained in the previous section.

13
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(a) Dijkstra algorithm (b) A*

Figure 9: Grid-based methods solving a start-to-goal query. (a) Dijkstra’s algo-

rithm requires an exhaustive search to determine the shortest path to
the goal. (b) A* requires exploring less cells since it uses a heuristic to
guide the search. Image credit: modified from Wikipedia.

Algorithm 1 : A*

N SN U A

@

10

11

12

Input :

(start: Start configuration.

qgoal: Goal configuration.

Q: Graph of configurations g, such that q € C¢ree
begin

forall q € Q do
| 9(q) =00
g(qstart) =0
UNVISITED = PriorityQueue()
UNVISITED.insert ( Jstarts g(qstart) + h(qstart/ qgoal))

while arg min (g(q) +nh(q, qgoal)) = dgoal do
qEUNVISITED

q <~ UNVISITED.popWithMinCost ()
forall q’ € Q.Neighbors(g) do
if g(q’) > g(q) +c(q,q’) then

a(q’) =g(q)+clq,q")
UNVISITED.insert(q’, g(q') + h(q’, dgoat))

14



2.4 POTENTIAL FIELDS

2.3.3 Dynamic A* (D¥)

The aforementioned search-based algorithms, at least in their original ver-
sions, are intended for planning paths in static environments. Nonetheless,
there are situations, especially in mobile robotics applications, in which el-
ements of the environment may change. For those cases, Anthony Stentz
proposed the dynamic A* (D*) [112, 113], an incremental search-based al-
gorithm that plans collision-free paths using a similar strategy as A*. The
difference is that it also allows to replan according to changes observed
in the surroundings while the robot follows the path to the goal. Its most
important characteristic is that it locally repairs the path, which is more
efficient that invoking multiple times A* to find a new valid path. Con-
trary to Dijkstra’s algorithm and A*, that both search paths from the start
to the goal configuration, D* expands nodes by searching backwards from
the goal until the node to be expanded coincides with the start configura-
tion, at which time the search is concluded. At the moment, D* and some
of its variants are probably the most used search-based methods in mobile
robotics. Some of those extensions and applications will be presented in
Section 2.7.

2.4 POTENTIAL FIELDS

Even though search-based methods have proved to be successful in 2D
and 3D workspaces for some terrestrial, aerial and even aquatic robotic ap-
plications, those exhaustive methods suffer from scalability issues in prob-
lems involving high-dimensional configuration spaces. Another important
drawback is the necessity of establishing a grid over C¢yee, which means
discretizing the C-Space, thus limiting the possible and available solutions
according to the chosen resolution. An alternative approach is the use of
potential functions.

Originally proposed by Oussama Khatib in 1985 [69, 70], potential func-
tions, also known as potential fields, constitute a reactive approach for path/-
motion planning, which attempts to guide a robot from an initial configu-
ration to a goal configuration while avoiding obstacles. A potential field ba-
sically defines a real-valued function U : R™ — IR, which is composed of
an attractive component Uy (q) that pulls the robot towards the goal, and a
repulsive component U, (q) that pushes the robot away from the obstacles.
This function can be viewed as the total energy U(q) = Uq(q) + U(q),
which means that the total force applied by the potential field to the robot

is defined as the negative of the vector gradient, i.e., f(q) = —VU(q),
T
where VU(q) = DU(q)" = [%(q),...,%(q) . In other words, the

gradient VU(q) establishes the force required at any q € €, in order to
guide the robot throughout a collision-free path towards the goal. Fig-
ure 10 presents an example of the two components of a potential field and
the total potential field.

Once the potential function and the corresponding gradient have been
established, the solution path to a start-to-goal query can be incremen-
tally obtained by using the gradient descent, which is a widely-known
algorithm in solving optimization problems. Having qstqrt as the initial
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(a) Top view (b) Perspective view

Figure 10: Example of potential field. The obstacles can be observed as a repulsive
component of the whole potential. Image credit: Liu et al. [85].

configuration, the algorithm iteratively calculates a new configuration by
moving in the direction opposite to the gradient until the gradient is zero.
The pseudocode for this method is presented in Algorithm 2.

Algorithm 2 : Gradient Descent

Input :
(start: Start configuration.
VU(q): Gradient of the potential field.
begin
q(O) = (start
i=0
while VU(q(i)) # 0 do
L qi+1) =q(i) — VU(q(i))
i=1+1

=

N

N U1 s W

However, the gradient descent algorithm using potential functions as ex-
plained above does not guarantee finding or converging to a solution for a
start-to-goal query. This happens because it may reach a local minimum of
U(q) that may not correspond to qgoq1- To deal with such situations, Bar-
raquand and Latombe proposed the randomized path planner (RPP) [4, 5],
which is an algorithm that makes use of the gradient descent together with
random walks and backtracking in order to avoid issues related to local
minima. However, it is important to note that RPP effectiveness is highly
dependent on parameter tuning. Another important aspect to highlight is
that RPP was one of the first methods to use a stochastic or random ap-
proach for path/motion planning; algorithms with this characteristic will
be discussed more in detail in Section 2.6.

2.5 ROADMAPS

So far, the methods and algorithms presented above attempt to solve a
single start-to-goal query, which means they calculate a path that connects
a start configuration and a goal configuration. For doing so, they incre-
mentally search a path towards the goal while avoiding, at the same time,
collisions with the obstacles. Nonetheless, there are some applications in
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which the path/motion planner is intended to solve more that one query.
For those cases, it makes sense to have a map that contains the information
about all feasible routes, and that can also be used more than once to solve
multiple start-to-goal queries. There are different alternatives to define a
map that can be used for path/motion planning, including topological,
geometric, and grid-based representations.

This section reviews methods that use a class of topological maps called
roadmaps [16, 80]. A roadmap (RM) is defined as a subset of the C-Space
that results from the union of curves, in which any qstart and qgoq1 con-
tained in C¢yee can be connected by a path that meets the following prop-
erties [20]: 1) Accessibility - there is a path from gsiart € Cfree to some
dstart € RM. 2) Departability - there is a path from some q,,, € RM to
dgoal € Ctree. 3) Connectivity - there is a path in RM that connects q; o,
and Qg4 q1-

2.5.1 Visibility Graphs

Visibility graphs are one of the alternatives in defining a roadmap. Assum-
ing a 2D C-Space with polygonal obstacles, the set of the visibility graph
nodes (vi) is composed of qstart, dgoat, and all the vertices of the obsta-
cles. Its edges, ey, are straight-line segments that can connect any possible
combination of two nodes v; and vj;, without colliding with the obstacles
(eij € Cfree)- Once the visibility graph is fully defined, the solution path
can be obtained by conducting any graph-based search method, such as
those explained in Section 2.3. While Figure 11 depicts an example of a
visibility graph and a start-to-goal query solution over it, Algorithm 3
presents the pseudocode to build a visibility graph.

(a) (b)

Figure 11: Example of a visibility graph. (a) A 2D C-Space that contains polyg-
onal obstacles, a start configuration, and a goal configuration. (b) A
roadmap is built by connecting any possible combination of two ver-
tices without colliding with the obstacles. The start-to-goal query is
solve using a graph search method.

2.5.2  Generalized Voronoi Diagrams

Another alternative to build a roadmap for path/motion planning is the
generalized Voronoi diagram (GVD). The GVD is defined for a set of points
called sites; given a particular site, the set of points closest to it is called
a Voronoi region. Finally, the Voronoi diagram is the set of points that are
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Algorithm 3 : Visibility Graph
Input :
(start: Start configuration.

qgoal: Goal configuration.
World: n Obstacles.

Output :
Roadmap (RM): Visibility Graph(VG) = (V, E).
1 begin
2 V={}
3 | BE={}
4 fori=1:ndo
5 L V.addNodes (Obst(i).getVertices())
6 for i =1 :V.getNumNodes() do
7 forj = 1:V.getNumNodes () and j # i do
8 vi + V(i)
9 vj < V(j)
10 eij < findSt raightLine(vi,vj)
11 if isCollisionFree(ei;) then
2 | E.addEdge(es;)

equidistant to at least two sites [3]. In path/motion planning applications,
the GVD defines the sets of points equidistant to at least two obstacles. This
means that the sites are the center of the obstacles to be avoided, and the
edges correspond to the possible channels that maximize the distance to
the obstacles [20]. Figure 12 displays an example of a planar GVD.

Figure 12: Example of a Voronoi diagram

2.6 SAMPLING-BASED ALGORITHMS

Some of the methods presented in previous sections, such as potential
fields, roadmaps, and cell decomposition, require an explicit representa-
tion of C¢ree in order to find a collision-free path from a start configuration
to a goal configuration. Nonetheless, there are some situations in which
building such a representation is not possible or is computationally in-
tractable, for instance when dealing with high-dimensional configuration
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spaces. For those cases, sampling-based methods have been demonstrated
to be effective.

Firstly developed during the 9o’s, sampling-based algorithms are an alter-
native approach that aims to create a sampled (discrete) representation of
C-Space that captures the connectivity of the regions of C¢ree. These meth-
ods exploit the fact that, while explicitly building C¢rc is expensive, check-
ing a given configuration for collisions can be done quickly. To build such
a discrete representation, they firstly generate random samples q, from
C-Space, which are checked for collision in order to ensure that qr, € Cree.
Secondly, they interconnect the random and collision-free configurations,
thus establishing different routes (paths) to solve single or multiple start-
to-goal queries. This two-stage (sampling and connecting) approach that
uses a collision checking routine to validate samples, also allows general-
izing the path/motion planning problem. This is done by separating the
algorithm from the specific geometric representation of the environment.

However, there is one important characteristic to be considered when us-
ing sampling-based algorithms. Contrary to the methods mentioned pre-
viously, sampling-based algorithms weaken the completeness guarantee,
which means that they are not capable of notifying if a solution exists.
Nonetheless, given that many of these methods are based on random sam-
pling, which is dense with probability one [75], this also implies that with
enough points (samples), if a solution exists then the probability of finding
it converges to one. In other words, if the algorithm runs for a sufficient
amount of time, it will find a solution if there is one. This property is called
probabilistic completeness [6, 65, 67].

These characteristics have led sampling-based algorithms to be consid-
ered the state-of-the-art approach for solving various path/motion plan-
ning problems. Albeit there are several methods and variants used nowa-
days, it is possible to identify those that, at the time, were pioneers and
the most relevant ones. This section presents such methods and classifies
them according to their capability to solve single or multiple start-to-goal
queries.

2.6.1  Multiple-query Methods

As it was explained in Section 2.5, roadmaps are data structures that con-
tain all feasible routes that can be used more than once to solve mul-
tiple start-to-goal queries. Likewise, there is a sampling-based method
called probabilistic roadmap (PRM) that creates a graph attempting to rep-
resent the connectivity of C¢ree. PRM was developed simultaneously at
Stanford [64, 66] and Utrecht [100], and was jointly presented in 1996 [67].

Nowadays, PRM is one of the most representative sampling-based algo-
rithms. It is mainly composed of a preprocessing phase and a query phase.
During the first phase, the algorithm builds a roadmap, or undirected
graph G = (V, E). The set of nodes (V) contains n collision-free samples
qr; (i-e., gr, € C¢ree) that are randomly obtained from an uniform distri-
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bution®. The set of edges (E) corresponds to the collision-free paths from
each node gy, to its k closest nodes q+;; the connecting paths are calculated
by a local planner that checks them for collisions. Algorithm 4 presents the
pseudocode for the preprocessing phase.

Algorithm 4 : PRM, preprocessing phase
Input :
n: Number of nodes of the roadmap.
k: Number of closest nodes to attempt connection.

C: C-Space

Output :

Probabilistic roadmap (PRM): G = (V, E).
1 begin
2 | V={}
3 | BE={}
4 while |V| < n do
5 Jrand = C.generateRandomConf ()
6 if C.isCollisionFree(qyqnd) then
7 L V.addNode (grqnad)
8 for g, € V.getNodes() do
9 for dr; € C.getClosestNodes(q,, k) do
10 €ij < findPath(qy, qr; )
11 if C.isCollisionFree(ei;) then
12 | E.addEdge(es;)

Once the roadmap (graph) has been built, the query phase attempts to
find a collision-free path between the provided gstart and qgoa1- To do
5o, PRM tries to connect qstart and qgoa1 to their k closest nodes in the
graph G. If the connections are successful, a search-based method (e.g., A%,
Dijkstra, etc.) attempts to find the shortest path over the graph. If the
connections for qstart and qgoa1 to the graph are not possible, or if the
search-based algorithm fails to find a solution path for the query, it does
not necessarily mean that a solution does not exist. As explained above,
most sampling-based methods, including PRM, are probabilistic complete,
which means that more time may be required to find a solution, if there
is one. In this case, it would imply that the number of nodes n have to be
increased, as that will generate a more dense probabilistic roadmap.

An important number of variants and extensions have been proposed to
deal with different situations in which the originally proposed PRM may
fail [20], [75]. A typical example includes a workspace that creates a C-Space
with narrow passages. In such a case, a common approach would be over-
sampling the regions of interest (e.g., narrow passages), thus increasing the
probability of finding a solution path. Other extensions that have served
as a base for the work developed throughout this thesis, will be discussed

Uniform distribution is the basic form to obtain the random samples, at least in the basic
version of the algorithm. Other distributions have been used in some extensions of the
original method.
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in Section 2.7. Finally, Figure 13 depicts PRM solving a start-to-goal query
in a 2D scenario for a point-like robot.

Figure 13: Example of a probabilistic roadmap (PRM) used to solve a start-to-
goal query. The PRM was built with 100 random samples, which were
attempted to connect to their 6 nearest neighbors.

2.6.2  Single-query Methods

There is another group of sampling-based algorithms that is devoted to
solving a single start-to-goal query. Such methods conduct an incremental
search, which in most cases is achieved by expanding a tree of randomly
sampled configurations. The search is generally biased to finding a solu-
tion path for one particular start-to-goal query, rather than attempting to
completely represent the connectivity of C¢ree. These methods are unidi-
rectional when a single tree is expanded from qstqrt until reaching qgoa1
or vice versa. Or, they are bidirectional if two trees are expanded, one from
Jstart and other from qgoq1, until both trees meet at a common point.
Choosing gstart OF dgoal as the tree’s root depends on the specific prob-
lem and scenario, since there can be situations in which expanding from
the goal is easier (less constrained) that doing it from the start configura-
tion. There are different sampling-based single-query methods, however,
this section presents a brief review of those considered the most relevant.

2.6.2.1 Randomized Path Planner (RPP)

Section 2.4 presented an approach for guiding a robot from its current
position towards the goal position, by following the negative gradient of
an artificial potential field. As mentioned there, one of the main disad-
vantages of this approach is that the vehicle can get trapped in a local
minimum that may not correspond to the specified goal. In order to deal
with such situations, Barraquand and Latombe proposed in 1990 the ran-
domized path planner (RPP) [4, 5], which uses the strategy of potential
fields, but also incorporates random walks to escape local minima. RPP is
commonly acknowledged as the first randomized algorithm. Albeit RPP
has proved to be successful in many applications, it may fail when coping
with narrow passages.
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2.6.2.2  The Ariadne’s Clew Algorithm (ACA)

Presented in 1993, Ariadne’s clew algorithm (ACA) builds a tree from
qstart by interleaving the exploration of the C-Space and the search of a
connection between the tree and qgoa1 [10, 94]. During the exploration,
the algorithm places a random collision-free configuration as far as possi-
ble from the others, therefore guaranteeing resolution completeness. New
configurations are selected by using genetic optimization methods. These
correspond to those from which a connection to qgoq1 is attempted. The
main drawback of this approach is that the exploration of the C-Space is
computationally expensive and also requires some parameter tuning.

2.6.2.3 Expansive-Spaces Tree (EST)

Proposed by David Hsu et al. in 1997, expansive-spaces tree (EST) [54—57]
is a single-query method that incrementally builds a tree over the C-Space
by interleaving its construction and expansion. In contrast to what occurs
with PRM that computes a roadmap attempting to represent the whole
Ctree, EST tries to sample the region of C that is relevant in order to solve
the specific start-to-goal query. To do so, during the construction phase
the algorithm selects the node q to be extended in a way that prioritizes
less explored regions, and then it randomly samples a configuration qrqna
around q. Then, using a local planner, EST calculates the path that connects
q and qrqnd- In case that both grqna and the calculated path are proved
collision-free, they will be added to the tree, thus expanding it.

2.6.2.4 Rapidly-exploring Random Tree (RRT)

Within the group of sampling-based single-query algorithms, there is one
method that is considered the state-of-the-art, which has been extended,
modified and applied to a wide range of applications. This method is
known as rapidly-exploring random tree (RRT) and it was firstly presented
by Steven LaValle in 1998 [74]. RRT is a tree-based algorithm that has
different properties such as rapid exploration of the C-Space, probabilis-
tic completeness, ease of implementation, just to mention some. In 1999,
LaValle and Kuffner formally presented the RRT as a path/motion plan-
ning method capable of dealing with both geometric and motion con-
straints. They also proposed a greedy approach to decrease the time re-
quired to find a solution by interleaving a random growing of the tree
with a biased growing towards the goal [76—78]. They later proposed a
bidirectional version called RRT-Connect that extends the basic concept by
constructing two RRTs towards each other [72].

Similar to ACA and EST, the basic RRT algorithm is mainly composed
of two main procedures, sample and extend. Algorithm 5 presents the first
of them, where the tree is incrementally built until a stop condition oc-
curs; such a condition can either be finding a feasible path that reaches
the goal close enough, or that a maximum number of iterations has been
completed. In each iteration, the RRT algorithm attempts to extend the tree
towards a randomly sampled configuration qrqnq4. For doing so, the sec-
ond procedure described in Algorithm 6 finds qneqr, Which is the nearest
configuration to rqng in the tree (line 2). Then, a local planner calcu-
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2.6 SAMPLING-BASED ALGORITHMS

lates a path of length & from qneqr towards grqna (line 3); if the path is
proved collision-free, the algorithm generates a new configuration qnew,
which together with the calculated path are added to the tree (lines 5-6).
A typical growth process of an RRT algorithm can be clearly observed in
Figure 14a, where no goal has been specified and the tree attempts to ex-
plore uniformly the C-Space. Figure 14b depicts the RRT algorithm solving
a start-to-goal query.

Algorithm 5 : sampleRRT

Input :

qstart : Start configuration.

dgoal : Goal configuration.

C: C-Space.

Output :

Rapidly-exploring Random Tree (RRT): T = (V, E).
begin

V={}

E={}

V.addNode (qstart)

while not stopCondition(T, goal) do
L Jrand = C.generateRandomConf ()

)

N

N o ua s W

extendRRT(T, qrana)

Algorithm 6 : extend RRT
Input :
T: an RRT.
qrand: configuration towards which RRT will be extended.
C: C-Space.
Output :
Result after attempting to extend.
begin
(near < T.findNearestNeighbor(qranad)
Jnew, collision <—calcNewConf(qnear, drand,d)
if collision = FALSE then
V.addNewNode (qnew)
E.addNewEdge (qnear, dnew)
return ADVANCED

else
9 | | return TRAPPED

-

N oY U1 s WN

@

2.6.3 Optimal Planning

At least in their original formulation, sampling-based algorithms do not
guarantee that the calculated path is optimal with respect to a specified
cost function. However, more recent contributions have attempted to cope
with this situation. In 2010, Jaillet et al. presented the transition-based
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(a) RRT expansion (b) RRT solving a query

Figure 14: Example of a rapidly-exploring random tree (RRT) in a 2D workspace.
(a) The uniform and rapid exploration of the C-Space is one of the main
characteristics. (b) The expansion of the tree stops once a solution has
been found.

RRT (T-RRT), which calculates a low-cost path that follows valleys and
saddle points in a costmap established over the C-Space [59]. To achieve
this, it verifies the quality of the path by using the minimal work crite-
rion. Its key principle is that positive variations of the cost function can
be seen as forces acting against motion, and thus producing mechanical
work. Contrasted to a standard RRT algorithm implementation, an addi-
tional transition validation is performed, which accepts or rejects new po-
tential configurations before adding them into the solution tree.

Nonetheless, the state-of-the-art sampling-based method for calculating
optimal paths is the asymptotic optimal RRT (RRT*). In 2010, Karaman and
Frazzoli firstly introduced the RRT* algorithm and its concept of asymp-
totic optimality. This property states that the total cost of the solution,
measured by a user-defined function, decreases as the number of samples
increases [61]. In this approach, new configurations are connected to the
closest and best configuration, i.e., the one that guarantees a minimum
cost. Furthermore, an additional step of sample reconnection allows im-
proving costs to surrounding configurations (see Algorithm 7). This con-
cept was later extended by the same authors to the PRM in [62], where
they formally presented the RRT* and PRM* algorithms. Similar extensions
have been done to other RRT-based algorithms as T-RRT and its respective
T-RRT* version [22]. A typical growth process of an RRT* algorithm can be
clearly observed in Fig. 15.

2.7 EXTENSIONS AND APPLICATIONS

Most of the aforementioned methods have been widely used in real-world
applications not only with manipulator arms, but also with different aerial,
terrestrial and aquatic robotic systems. For doing so, some of these meth-
ods have been extended and adapted according to the specific applications’
requirements. Considering the problem and objectives stated for this the-
sis in Chapter 1, this section presents a brief review of the most relevant
extensions and applications of path/motion planning algorithms, which
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Algorithm 7 : extendRRT*
Input :
T: tree of collision-free configurations.
qrand: state towards which the tree will be extended.
C: C-Space.
Output :
Result after attempting to extend.
1 begin
Jnear < T.findNearestNeighbor(qyqnd)
(new, collision <—calcNewConf(qnear, 9rand, )
if collision = FALSE then
addNewNode (T, qnew)
Qnear < findNearestNeighbors(T, qnew)
gmin_cost < TfindMinCost(T, Qnear, new)
addNeWEdge (T/ qmin_costs qnew)
reconnectNearNeighbors(T, Qnear, qnew)
10 return ADVANCED

N

O 0NN o U s W

11 else
12 L return TRAPPED

Figure 15: Example of an asymptotic optimal rapidly-exploring random tree
(RRT*) in a 2D workspace. The RRT* preserves the uniform and rapid
exploration of the C-Space as the standard RRT; however, it can be ob-
served how the additional reconnection step reshapes the tree branches.
The expansion of the tree does not stop once a solution has been found.
Instead, it keeps improving the solution until either a maximum num-
ber of iterations or a maximum time has been reached.
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have permitted conducting autonomous missions under both motion and
online computation constraints.

2.7.1  Planning Feasible Paths

As explained in Section 1.2.2.2, planning under motion (differential) con-
straints has to do with considering the limits of the feasible system’s ma-
neuvers. These are described by a set of differential equations, generally
expressed as q = f(q,u) (where q and ¢ are the system state and its
first derivative, respectively, and u is the control input). A large body of
research has been dedicated to the development and improvement of dif-
ferent approaches attempting to solve planning problems that include this
kind of constraints.

When Donald et al. formally introduced the problem of kinodynamic
motion planning3, they proposed the use of dynamic programming to find
the shortest path in a directed graph using depth-first search (DFS). In this
case, the graph represents a discretization of C¢rce; the edges correspond
to trajectory segments obtained after applying an acceleration a (bounded
according to the system’s capabilities) for a period of time T (determined
by the algorithm) [26].

Other variants of grid-based methods, such as A*, have been also used
with similar strategies for discretizing C¢rce. In terrestrial vehicles, for ex-
ample, the most remarkable contributions were a result of the DARPA
Grand Challenge [119]*. In one of those works, Likhachev and Ferguson
used a multi-resolution lattice state space (a C¢ree discretization), where
states represent configurations, and connections between them represent
feasible paths (i.e., those that consider kinematic constraints). Then, one
A* variant (called AD*) would find paths over the lattice [81]. Similarly,
Dolgov et al. presented an approach in which C¢rce is also discretized and
paths are found by running another A* variant (Hybrid-State A*). This is
guided by two heuristics, one that considers the vehicle’s non-holonomic
constraints and a second one that computes the Euclidean distance. This
approach also connects the states (configurations) by restricting the control
inputs according to the feasible (doable) maneuvers of a car-like system,
which are expressed by non-holonomic (kinematic) constraints [24, 25].

In what concerns sampling-based methods, EST and RRT algorithms were
initially conceived to cope with motion constraints [57, 78]. In their orig-
inal versions, the differential equation of motion is used to generate new
nodes (states) during the expansion of the tree (e.g., in Algorithm 6, line
3)°. Figure 16 depicts two sampling-based algorithms: RRT* and RRT in the
process of solving a start-to-goal query in a 2D workspace under both geo-
metric and motion constraints.

Kinodynamic motion planning alternatively refers to motion planning under motion or
differential constraints.

The DARPA Grand Challenge is a competition of autonomous vehicles, funded by the
Defense Advanced Research Projects Agency (DARPA).

While tree and graph nodes are generally referred to as configurations in geometric path
planning, in kinodynamic motion planning they are commonly called states. However, this
latter term has been indistinctly used by some authors to refer to them in either case.
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(a) Geometric Constraints (b) Differential Constraints

Figure 16: Start-to-goal query solution in a 2D workspace, where obstacles appear
in orange, free space in white, and the tree of collision-free configu-
rations in blue. The solution (in green) is calculated by (a) an RRT* al-
gorithm under geometric constraints for a point-like system (€ = R?),
and (b) an RRT algorithm under differential constraints for a car-like
system (€ =R? x §).

There are several successful applications based on this approach. In ter-
restrial vehicles, one of the most relevant application was presented by
Kuwata et al. during The DARPA Urban Challenge. They proposed an ap-
proach known as closed-loop RRT (CL-RRT), which not only considers the
vehicle’s motion model, but also includes the controller’s dynamic behav-
ior [73]. Another interesting application was done with aerial systems, in
which Miiller et al. proposed to use an A* for globally finding the collision-
free path which, at the same time, guides an RRT algorithm expanded un-
der differential constraints. This latter guarantees finding paths that meet
the system’s motion constraints [97].

2.7.2  Online Path/Motion Planning

As discussed in Chapter 1, potential and new applications for AUVs involve
navigating unknown or undiscovered environments that require endow-
ing the vehicles with the capability of (re)planning online while, at the
same time, they explore the environment. There are different extensions
that can contribute to achieving this requirement, however this section fo-
cuses on two of them. The first is the anytime computation, a characteristic
incorporated to different kind of algorithms, including both search-based
and sampling-based methods. The second refers to lazy collision checking, a
strategy specifically used with sampling-based methods. These two char-
acteristics have served as a basis for the proposed approach of this thesis.

2.7.2.1  Anytime Planning Algorithms

In some situations finding a definite path to solve a start-to-goal query
in a finite and deterministic period of time is not possible. It may occur
either because of the complexity of the task (i.e., more computation time
is required) or because vehicles deal with partially known or dynamic
environments. In either case, a common approach is to use an anytime al-
gorithm that is capable of providing the best partial solution when the
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available time is over [131],[21]. The most relevant and well-known plan-
ning algorithms have been extended based on this strategy.

Likhachev et al. have studied search-based algorithms, including their
extensions for anytime computation. They presented the anytime repairing
A* (ARA¥), a variant that rapidly calculates a suboptimal path to the goal
using a loose bound, which is later tightened to progressively improve the
path [82]. While this approach obtains a fast solution, it also permits im-
proving it if additional time is available. Nonetheless, this approach is use-
ful when full and accurate information about the environment is available,
otherwise it may require recalculating the whole path if the environment
changes. For those cases, i.e., when coping with dynamic environments,
it is better to use an incremental search-based method as D*, which al-
lows locally repairing (replanning) the path when new information of the
environment is provided (see Section 2.3.3). However, in its original ver-
sion, D* lacks the anytime property. In order to improve D*'s characteristics,
Likhachev et al. also presented the anytime dynamic A* (AD*). This is a
variant that not only replans if required, but also improves simultaneously
the available solution path [83]. A detailed discussion of these anytime
search-based algorithms is provided in [84]. Some applications for vehi-
cles that not only require online/anytime computation, but also navigate
under motion constraints are also presented in [81].

In the case of sampling-based methods there are also different exten-
sions for anytime computation. Belghith et. al, for example, proposed the
flexible anytime dynamic PRM (FADPRM), which is an approach that com-
bines both: a standard PRM for constructing the roadmap and an AD* for
finding a solution path. This latter one extends the original PRM by permit-
ting not only anytime calculation, but also a progressive improvement of
the resulting path. An important characteristic of this approach is the pos-
sibility to establish zones with different values of desirability that allow
the sampling strategy to be influenced in order to generate less awkward
(inefficient and not smooth) paths [8]. A similar approach presented by
van den Berg et al. uses PRM to represent the static portion of C-Space and
an AD* to deal with the dynamic elements [9].

On the other hand, and because of its incremental nature, randomized
tree-based methods, such as RRT algorithm, are more commonly used for
applications in partly known or dynamic environments, where online and
anytime computation is required. Ferguson et al. proposed an anytime RRT-
based algorithm that calculates an initial path and its cost using the stan-
dard RRT, thus ensuring that a first solution is found in the shortest time
possible. Then, a modified RRT algorithm iteratively generates a series of
new solutions that are guaranteed to have a lower cost. The algorithm
executes until a stop condition is reached, e.g., when the best available so-
lution path needs to be provided [34, 35]. Other RRT variants as RRT* were
also formulated as anytime algorithms [63].

2.7.2.2  Lazy Collision Checking

Even though PRM was originally intended for multi-query applications,
Bohlin and Kavraki presented a modified version known as Lazy PRM,
which minimizes the execution time by reducing the quantity of collision
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checking callbacks when solving a specific (single) query [12, 13]. This vari-
ant builds a roadmap just as a standard PRM does, but it assumes that all
the nodes (configurations) and edges (paths between configurations) are
collision-free, leaving the collision detection to the final stage, i.e., when it
must find the shortest path between an initial and a final configuration. If
a collision is found, the associated nodes and edges are discarded (elimi-
nated) and a new short path is calculated. The authors also suggested an
optional enhancing roadmap step when collisions are indeed detected. This
consists in including more samples around the discarded nodes.

This strategy of delaying the collision detection is known as lazy colli-
sion checking, and has been used in different applications, especially those
with online computation requirements. Bekris and Kavraki, for instance,
proposed and validated a tree-based planning framework for terrestrial
vehicles, where the states validity is only checked once a path between the
start and the goal configuration has been found [7]. Another example is
the one presented by Vahrenkamp et al., where this strategy was used to
speed up the motions calculation for humanoid robots (with many degrees
of freedom, i.e., high dimensional C-Space) [121].

Finally, it is important to note that lazy collision checking has served as a
base for one of the extensions proposed and used in this thesis, which will
be explained in detail in Chapter 5.

2.8 PATH/MOTION PLANNING FOR AUVS

An important aspect to consider when comparing the path/motion plan-
ning approaches for AUVs is their application. Based on this, the different
contributions can be classified into two main categories. The first group
gathers those applications that require coverage path planning (CPP) tech-
niques, which are commonly applied to guide AUVs over survey tasks. The
most common examples within this group include coverage missions used
for creating detailed bathymetric maps of the seabed [33, 38, 40, 41], detect-
ing potential targets (such as underwater mines [111, 128]), and inspecting
artificial structures (such as in-water ship hulls [29, 30, 48, 53]), as well as
natural marine formations [37, 42].

A common characteristic in all these approaches is that the planner is
provided with preliminary information of the target area or structure (see
Fig. 17). This may include its location and shape. Based on this, the CPP
algorithm defines a survey path that, in some cases, is reshaped or re-
fined online according to the data obtained during the mission execution.
This characteristic implies that most of the computation is done offline,
i.e., before conducting the mission. Most recent work presented by Vidal
et al. proposes a novel approach to conduct inspection tasks without pre-
liminary information of the target. Results are, however, still limited to 2D
motions (at a constant depth) [122].

The second group of AUV applications, on the other hand, gathers those
that are focused on safely and efficiently guiding the vehicle from one ini-
tial position to a specified goal. For doing so, different strategies, such as
those explained throughout previous sections, have been applied to under-
water vehicles. In fact, these start-to-goal methods are commonly used as
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(a) Coverage path over of a natural formation.
Image credit: Galceran et al. [40]

(b) Coverage path of a ship hull. Image credit: Hover et al. [30, 53]

Figure 17: Coverage path planning (CPP) algorithms are normally used to plan
routes to inspect different kind of structures. In most of these appli-
cations the planner has preliminary information. This may include a
2D /3D map of the area or structure to be inspected.

low-level motion planners required for the aforementioned coverage appli-
cations. The work presented throughout this thesis seeks to make contri-
butions to this group of start-to-goal applications, therefore it is important
to identify the main characteristics between the different approaches used.

2.8.1 Start-to-goal Path/Motion Planning for AUVs

One characteristic to consider in a start-to-goal planner for AUVs, and yet
not an obvious one, is the capability of conducting 2D and 3D motions.
Although AUVs operate in 3D workspaces, in a significant number of appli-
cations the vehicles navigate either at a constant altitude or at a constant
depth [95, 102, 104, 110], thus simplifying considerably the motion plan-
ning problem. There are, however, some contributions that have presented
alternatives in modelling and planning 3D (and therefore 2D) AUV motions.

From the approaches that address 3D motions, the available contribu-
tions have made use of different approaches such as potential fields [107,
124], genetic algorithms [1, 49, 116], as well as sensor-based [52, 130], grid-
based [18, 71, 107], and sampling-based methods [14, 95, 104]. However,
in some of these situations, the vehicle operates in open sea areas, where
they do not usually have to deal with obstacles, narrow passages, or high-
relief environments. This kind of constraints corresponds to the new and
potential AUV applications presented in Chapter 1.
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2.8.2  Online Motion Planning for AUVs through Unexplored Environments

New AUV applications require a path/motion planner to safely guide the
vehicle through unexplored and challenging environments. This implies
meeting online computation limitations while, at the same time, consider-
ing the vehicle’s motion capabilities. Little research on this area, especially
for underwater vehicles, has been addressed. In what concerns to gener-
ating AUV feasible paths, i.e., those that meet the motion constraints, a
first group includes those approaches that use sensor-based methods ei-
ther to navigate through unknown underwater environments [130], or to
follow the terrain shape of a given bathymetric map [52] (see Fig. 18). In
both cases, the vehicle is assumed to be equipped with a forward-looking
sonar to reactively avoid collisions. Such maneuvers are calculated by a
local planner that meets the AUV’s kinematics or dynamics. An important
characteristic of this kind of approach is the lack of global knowledge of
the environment (i.e., a map is not incrementally built), which can cause
the vehicle to get trapped in complex scenarios.

Figure 18: Sensor-based planning for AUVs under motion constraints. The vehi-
cle trajectory can be either preplanned or incrementally calculated to
maintain a desired distance from the terrain. The resulting trajectory is
fit to satisfy curvature constraints that approximate the AUV motion
constraints. Image credit: Houts et al. [51, 52].

A similar reactive approach establishes a set of inequality constraints
that describes the obstacles as convex regions contained in the C-Space [102].
The initial configuration is treated as the starting point of a nonlinear
search, where the goal configuration is assumed to be a unique global
minimum of the objective function. The start-to-goal query is then solved
as an optimization problem, in which a local planner takes into account
the vehicles’” constraints. This strategy was one of the first online obsta-
cle avoidance approaches for underwater vehicles; it used a real-world
dataset of acoustic images obtained by a ROV equipped with a multibeam
forward-looking sonar. Its validity was demonstrated by guiding a simu-
lated ROV. However, the capability of simultaneous mapping (detection)
and planning online was not established.

A formulation that represents obstacles as convex regions has likewise
been used either to represent obstacles detected online, which triggers col-
lision avoidance maneuvers [106], or to approximate the terrain shape that
must be followed by the vehicle [98]. In both cases, the low-level controller
attempts to generate feasible trajectories by using the AUV kinematic equa-
tions and spline-based interpolation techniques, respectively. However, the
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main drawback of these approaches is the difficulty in creating a convex
representation of complex obstacles.

Another common strategy used in some of the aforementioned methods,
is trying to get as close as possible to a path that can be followed by an AUV.
Pétres et al., for instance, proposed a fast marching (FM)-based approach
to find collision-free paths, which are smoothed by a cost function that
contains kinematic and curvature constraints [103] (see Fig. 19). Likewise,
another example based on genetic algorithms (GAs) finds a valid route to
the goal by using basis spline (B-spline) curves, thus seeking to generate
more feasible trajectories for AUVs [19].

(a) (b) (©

Figure 19: Start-to-goal query that is solved by a FM-based method. The solution
path is smoothed by a cost function to approximate the AUV motion
constraints. (a) The initial optimal path. (b) The effect after smoothing
the path. (c) The use of the cost function can merge the obstacles, thus
discarding possible solutions. Image credit: Pétres et al. [103].

Unlike the previous group of sensor-based approaches, the second group
of path planning methods for motion-constrained AUVs uses grid-based ap-
proaches. Sequeira and Ribeiro, for example, presented a two-layer frame-
work that is composed of a high-level planner (HLP) and a low-level plan-
ner (LLP) [107]. The HLP creates a visibility graph using the information of
the known obstacles, sea currents, and specified waypoints of the mission.
Furthermore, the energy required to move between the graph nodes corre-
sponds to the edge weights. The global and optimal geometric route to the
goal is then found by Dijkstra’s algorithm. Finally, in order to calculate the
vehicle’s maneuvers between the different solution segments, the LLP uses
an artificial potential field (AFP). This way the total artificial force includes
a 3D double integrator that takes into account the AUV motion constraints.
There are other similar two-layer approaches, where the global path plan-
ning problem is tackled with a grid-based method, and the local motion
planning deals with the AUV constraints [2] (see Fig. 20). The main disad-
vantage of line of works is that the grid-based layer generally requires a
priori information of the environment, e.g., a navigation map.

A third group of recent contributions includes those that use sampling-
based planning algorithms. The most common approach builds a tree of
collision-free configurations, which are obtained by integrating the differ-
ential equation that describes the AUV dynamic behavior [14, 45, 117]. This
strategy was briefly introduced in Section 2.7.1, but its use with a torpedo-
shaped AUV will be explained in more detail in Chapter 3.

Finally, there is another concept for generating feasible paths. It consists
in utilizing the Dubins curves [27], which establishes a set of six maneu-
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@) (b)

Figure 20: (a) Global motion planning solved by a grid-based method, (b) which
is adjusted by a local planner that takes into consideration the AUV
motion constraints. Image credit: Arinaga et al. [2].

vers (RSR, RSL, LSR, LSL, RLR, LRL, where R states for Right, L for Left,
and S for straight) to connect two configurations gy, q; € € = SE(2). These
curves correspond to time-optimal trajectories for car-like vehicles. Albeit
they have been used for trajectory generation [17, 125], they are also useful
in the context of this thesis.

Another characteristic required for the new AUV applications is the ca-
pability of mapping and planning safe paths, simultaneously and online,
as the environment is incrementally explored. Apart from the already ex-
plained work by Petillot et al., which in fact does not demonstrate online
mapping and planning capacity [102], Maki et al. proposed an online mo-
tion planning method that uses landmarks to guide an AUV. Nonetheless,
their approach does not permit replanning and, furthermore, results were
obtained in a controlled environment (i.e., in a water tank) [90].

2.9 SUMMARY

This chapter has presented an extensive review of the most common path/-
motion planning approaches, and those that have been used with under-
water vehicles. Table 1 presents a summary of such methods and their
characteristics. It is important to bear in mind that the intended applica-
tions for AUVs, discussed in Chapter 1, must meet online computation con-
straints in order to deal with unexplored environments. This implies that
time complexity and anytime computation are important requirements.
The following chapters will present the extension of some of these ap-
proaches, and their successful use in some of the intended applications
introduced in Chapter 1.
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Method  Completeness  Optimality = Time Complexity ~Anytime
Search-based

Dijkstra Yes® Yes O(n?)¢ No
A* Yes Yes O(bd)P No®
Potential fields
Potent. No¢ Locally o) Yes
Funct.
Roadmaps
g;s;l;ﬁlsty Yes Yesd O(n?)4 No
Sampling-based
gli{jx;—a Prob. Compl. Asymp. Opt. O(n?)e No
RRT Prob. Compl. No O(nlogn)® Yes
RRT* Prob. Compl. Asymp. Opt. O(nlogn)® Yes

Table 1: Path/motion planning methods. ¢ Complete for bounded C-Space, where
n is the number of nodes in the graph. ® The number of nodes expanded
is exponential in the depth of the solution, where b is the branching fac-
tor (the average number of successors per state); ARA* provides a mech-
anism for anytime computation by reusing previous solutions. ¢ requires
full knowledge of the C-Space, suffers form local minima. ¢ Optimal with
respect to the traveled distance; where n is the number of points defining
obstacles. ¢ Number of sampled configurations.



PLANNING CONSTANT-DEPTH PATHS UNDER AUV
MOTION CONSTRAINTS

Recent and potential applications for AUVs mentioned in Chapter 1 es-
tablish most of the motion planner requirements, such as online compu-
tation, motion in 3D workspaces, and navigation along unexplored envi-
ronments in close-proximity to nearby obstacles. All these constraints can
be met with sampling-based planning methods. Particularly for navigat-
ing in close-proximity, one desired characteristic is being able to calculate
feasible motions that take into account the AUV capabilities. This allows
minimizing unexpected vehicle trajectories when attempting to follow the
calculated path. In this respect, this chapter firstly explains the equations
of motion used to approximate the 2D (at a constant depth) vehicle be-
havior for motion-planning purposes. Secondly, it explains two different
approaches to integrate such equations into the motion planner. Lastly,
it presents and discusses the results obtained with both approaches in a
simulated environment.

3.1 2D FIRST-ORDER MOTION MODEL

As occurs with any mechanical system, AUV motions can be formulated
with kinematic and dynamic models. The former ones describe the geom-
etry of motion by relating the system positions and velocities. Dynamic
models, on the other hand, not only include the system kinematics, but
also take into account the forces and torques that generate the motions.
This latter kind of model is generally employed for designing robust con-
trollers, however, their high computational cost makes them an inappro-
priate approach for the scenarios proposed in this thesis, which require an
online (re)planning behavior. The associated overhead is especially true
when using sampling-based planning methods, where all configurations
are generated by evolving the system, i.e., performing numerical integra-
tion of the equation of motion. Alternatively, a kinematic model provides
a less accurate approximation for the vehicle’s motion constraints, but it
also allows additional computation time that can be dedicated to finding
better collision-free paths.

In order to establish which kinematic model must be used, it is necessary
to understand the vehicle motion capabilities and the possible test scenar-
ios. In some AUV applications, a first valid approximation is to assume that
the vehicle navigates at a constant depth (see Sec. 2.8). Furthermore, if the
vehicle is a torpedo-shaped AUV, usually, it will only be able to changing
its direction of motion by moving forward/backward. In the case of the
Sparus II AUV, the vehicle is equipped with two back thrusters that allow
it to spin over. However, it is still not capable of conducting lateral mo-
tion. Therefore, it is correct to affirm that the vehicle is subject to a motion
constraint along its y-axis (see Fig. 21).
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As explained in Chapter 1, motion or differential constraints can be ex-
pressed as a set of differential equations in the general form ¢ = f(q,u),
where g and ¢ are the system state and its first derivative, respectively, and
u is the control input. Having this in mind, and considering the aforemen-
tioned constraints when navigating at a constant depth, a non-holonomic
and torpedo-shaped AUV can be represented as a simple car-like vehicle,
with a first-order motion model defined as follows:

x v cos ()
Y| = |vsin()]. (1)
P w

where q = [x,y,tl)}T corresponds to the system state that includes its 2D

position and orientation with respect to an inertial reference frame, and

q = [X,g,lj)]T is the first time derivative that depends on the state itself
and the control inputs, i.e., linear/surge speed (v) and turning rate (w).
From Eq. (1), it can be concluded that the C-Space of a torpedo-shaped AUV
is @ =SE(2) = R? xSO(2) = R? x 8. Figure 21 depicts the inertial frame,
the body-fixed frame, and the different variables (positions and velocities)
contained in (1).

Figure 21: Top view of the Sparus II AUV, including the inertial and body-fixed
frames, and the 2D vehicle state and control variables.

Once the constraints have been established through the corresponding
differential equations, the next step is to define an appropriate strategy to
generate feasible motions that meet such constraints. The following sec-
tions present two different approaches, which use sampling-based algo-
rithms to calculate such kind of motions for a torpedo-shaped AUV that
navigates at a constant depth.

3.2 MOTION PLANNING BY USING DIFFERENTIAL EQUATIONS

Sampling-based algorithms, especially the RRT [78] and its variants, have
proved to efficiently explore the C-Space while taking all the motion con-
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straints into account. Furthermore, there are other characteristics such as
the incremental search behavior, which allows these methods to continu-
ously (re)plan the solution path as the vehicle moves through unexplored
environments (see Chapter 5). All this together makes an RRT-based algo-
rithm the appropriate approach for the intended AUV applications.

As explained in Section 2.6.2.4, the RRT algorithm builds a single tree
that is rooted at an initial state (configuration), which is incrementally ex-
panded towards uniformly randomly sampled states’. This procedure is the
same as the one initially presented in Algorithm 5, being this a particular
case where a random state corresponds to qrqana € SE(2), as explained
before. In order to extend the tree towards qrqng While meeting the vehi-
cle’s motion constraints, new collision-free motions (states) are obtained
by integrating the vehicle’s equation of motion, such as Eq. (1). In such
a case, instead of using Algorithm 6, the tree expansion can be rewritten
as shown in Algorithm 8. This procedure firstly requires finding the state
(near, that is the nearest to qrqna (line 2). This can be done by using a
weighted metric to calculate the distance between configurations. Such a
metric combines the translation component, calculated as the Euclidean
distance, and the orientation component, calculated as the smallest orien-
tation difference [20, 75].

Algorithm 8 : extendRRT (when dealing with motion constraints)

Input :

T: tree of collision-free configurations.

drand: configuration towards which the tree will be extended.

C: C-Space.

Output :

Result after attempting to extend.
1 begin
Jnear < T.findNearestNeighbor(qyqnd)
Unear_to_rand <_1::i-nd:[m:)u't (T/ qnear/ qrand)
Jnew,collision <—calcNewState(gnear, Unear_to_rand, At)
if collision = FALSE then

V.addNewNode (gnew)
L E.addNewEdge (qnear, dnew)

N

N o U s W

Once the nearest motion has been found in the tree, the next step is to
calculate the control input Unear to rana = [v, W] that has to be applied
in order to change the vehicle state from qneqr towards qrqng (line 3).
With an RRT algorithm under geometric constraints the tree is iteratively
expanded a geometric distance € (see Algorithm 6, line 3), in the case of an
RRT algorithm under motion constraints the tree is expanded by applying
an input u for a period of time At (line 4).

In some AUV applications, a common assumption is that the vehicle
navigates at a constant surge speed v, but can vary its turning rate w

There exists another RRT variant called RRT-Connect that grows two trees, one from the
start state and another one from the goal state. However, this is not possible when dealing
with motion constraints, since merging both trees at a common configuration may become
computationally intractable [72].
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3.2 MOTION PLANNING BY USING DIFFERENTIAL EQUATIONS

up to a maximum value W, qx. This means that calculating the input u
is limited to firstly establishing a constant v that will be used along the
mission, and then computing a valid value for w that meets the vehicle
motion constraints. There are different approaches that permit calculating
u. Two alternatives, also presented by LaValle and Kuffner [78], are either
to randomly sample the control space, or to test a number of possible
inputs and then select the one that generates the state gnew that is closest
to qrand. The implementation used in a first stage of this thesis is based
on a combination of both approaches.

In such an implementation, instead of testing a large number of differ-
ent turning rates w, a set of five possible values is established as follows:
Weontrol, € {—wmux,—w‘g“x,O, W“ﬁ“*,wmax}. These values, in turn, de-
fine a set of four sub-intervals over the control space: {[~Wmax, =53],
[—*meax 0], [0, yex], [¥3ex W, ox]}. Then, using Eq. (1) with gneqr as the
starting state, each u; = [V, Weontrot,]) is applied for a period of time At to
generate five different states qcontrot,- Having them, it is possible to esti-
mate which of the four sub-intervals may contain a control input that leads
the tree expansion from qneqr closer to grqna. The final value of Wy qngq is
obtained by sampling a random turning rate over the chosen sub-interval.
This procedure avoids discretizing the control space, which would imply
the loss of the random exploration of the C-Space, an important property of
the original algorithm. Figure 22 presents the main concept of the control
input selection.

Figure 22: Control input selection. Tree is expanded from qneqr towards qrqnd-
To do so, an interval of possible turning rates (qcontrol_i) are evalu-
ated. This permits defining a sub-interval from which the control input
is sampled randomly, and is applied to generate the new state qnew-

The remaining of the extend procedure (Algorithm 8) calculates the new
state qnew (line 4). This is done by integrating Equation (1) while using
the final sampled input Unear to rand = [V, Wranal. Finally, if qnew is
proved to be collision-free, it is added and connected to the tree (lines 5-7).
Figure 23 depicts an example of an RRT algorithm that solves a start-to-goal
query under these motion constraints.
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(@) (b)

(©

Figure 23: Tree expansion of an RRT algorithm that considers the differential con-
straints described by Equation (1). (a) Given the start and goal states, a
first random sample is used to generate the first expansion of the tree
(@new)- (b) The expansion i'™ of the tree. (c) A feasible path has been
found from the start to the goal state.

3.3 MOTION PLANNING BY USING DUBINS CURVES

There are several examples where a purely geometric path is first com-
puted, and then it is transformed into a path that is appropriate for the
considered vehicle. For example, Yang et al. used an RRT algorithm to
find a route of collision-free waypoints, which is interpolated with a cubic
Bézier spiral [129]. This seeks to convert the initial route into a smooth
and feasible path for an unmanned aerial vehicle (UAV). As another exam-
ple, Kuwata et al. proposed to expand an RRT by considering not only the
vehicle dynamics, but also its controller behavior [73].

There are other RRT-based approaches that have been proposed to gen-
erate feasible paths for aerial and terrestrial vehicles. In one of those ap-
proaches, for instance, a geometric RRT algorithm finds a route of collision-
free waypoints, which are interpolated with a cubic Bézier spiral. This
seeks to convert the initial route into a smooth and feasible path for an
UAV [129]. In another approach that is closer to the one presented in the
previous section, an RRT algorithm is expanded by considering not only
the vehicle dynamics, but also its controller behavior [73].

Nonetheless, all those approaches, including the one presented in the
previous section, have a major drawback; they do not guarantee optimality
for any metric. It is a common characteristic of most sampling-based meth-
ods, at least in their original form. This issue could be critical in underwa-
ter applications, which may require optimizing different criteria such as
visibility (for gathering information), vehicle autonomy, or even the safety
associated with a path when navigating in close-proximity to nearby ob-
stacles.

As explained in Section 2.6.3, one option to cope with this situation is to
use the RRT* algorithm, which is a variant that incorporates the asymptotic
optimality property [62]. Its main difference with respect to other RRT-
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based methods, is a routine that checks if reconnecting new state’s nearest
nodes improves their associated cost. This implies that the probability of
obtaining an optimal path converges to 1 over time. (see Algorithm 7). For
doing this, the RRT* algorithm requires a steering function that permits
calculating such states (nodes) reconnection. In the case of systems under
motion constraints, having such a function implies calculating the required
input to dynamically evolve the system from a given state to a desired one.
However, defining this function requires solving a two-point boundary
value problem, which is in general a very difficult problem.

For the purposes of this thesis, as an alternative to defining a steering
function, it is possible to adopt the Dubins vehicle model [27]. Dubins geo-
metrically demonstrated that, for a system that is only capable of traveling
forward and with a constraint on the curvature of the path, the shortest
path to connect any two configurations (states) qi,q; € SE(2), when no
obstacles are present, can be obtained analytically by the combination of
circular arcs and straight lines. Using three possible maneuvers as input,
left (L), straight (S) or right (R), Dubins curves define six possible combi-
nations: RSR, RSL, LSR, LSL, RLR, LRL. For a Dubins vehicle, at least one
of these characterizes the optimal (shortest) trajectory between two states
(see Fig. 24).

(a) RSL (b) LRL

Figure 24: Examples of Dubins curves

These constrained maneuvers are commonly used to describe feasible
trajectories for different ground, aerial, and underwater vehicles such as
a torpedo-shaped AUV. For this latter case, Equation (1) describes an AUV
that navigates at constant depth and with a constant surge speed v, where
the maximum turning rate W, q« establishes the minimum turning radius
Tmin for a Dubins vehicle. For both arcs and straight lines, this means that
for any given position (x,y) over the path, its tangent angle corresponds to
the AUV heading (1), thus completing the state information q = [x, y,].

This alternative formulation for the AUV motion constraints can be used
with incremental search methods such as the RRT variants. In such a case,
the control input Unear to rand, required to evolve the system from qnear
to grana (Algorithm 8, line 3), can be replaced with Dubins curves (see
Fig. 25). Furthermore, it is important to note that Dubins curves also work
as a steering function, thus permitting to generate near-optimal paths with
an RRT* algorithm. Figure 26 depicts an example of how this approach is
used for reconnecting configurations near to qnew, thus improving their
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associated cost. In this example the cost is assumed to be the path length.
Further details about Dubins curves are found in references [27],[108].

(a) (b)

(©

Figure 25: Tree expansion of an RRT algorithm that uses the Dubins curves. (a)
Given the start and goal states, a first random sample is used to gener-
ate the first expansion of the tree (qnew)- (b) The expansion ith of the
tree. (c) A feasible path has been found from the start to the goal state.

Finally, in order to fully understand the aforementioned approaches,
next section presents solutions for different start-to-goal queries that have
been obtained using both geometric and motion constraints. Moreover, it
also proves the advantages of using Dubins curves instead of using a stan-
dard RRT algorithm by integrating Equation (1).

3.4 RESULTS

The main motivation behind the research presented throughout this the-
sis was the need to plan more accurate motions that permit an AUV to
operate in environments that are more complex. As explained in the Intro-
duction, this manuscript is organized in different chapters, each present-
ing the incremental development of a motion planning framework that
endows AUVs with such capabilities. Therefore, the results presented and
discussed in this section not only tackled one of the proposed objectives,
but largely established the starting point for the rest of this research.
Having said that, the rest of this section seeks to prove the importance of
taking motion constraints into consideration when using non-holonomic
AUVs. To do so, simulation results present the Sparus II AUV conducting
different missions that were planned under both geometric and differential
constraints. In all cases, the vehicle navigated at a constant depth in a pre-
explored environment, i.e., the obstacles and their locations were known.
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(@)

(b)

(©

Figure 26: RRT* algorithm reconnection using Dubins curves as steering function.
(a) Once a new configuration gnew has been obtained, (b) the RRT*
algorithm checks if the nearest configurations to qnew can be recon-
nected. (c) If such a reconnection decreases the cost associated with
the nearest configurations, the new paths are created while discarding
the previous ones. This allows to progressively improves the solution
path.
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3.4.1  Conducting Missions under Geometric Constraints

One simple alternative for planning paths for an AUV that operates at
constant depth could be to approximate the vehicle to a point-like system,
where each configuration q = [x,y] € R%. In such a case, an RRT* algorithm
could generate (near) optimal paths if enough computing time is provided.
Figure 27 depicts the solution path for a start-to-goal query calculated for
a point-like system using the RRT and the RRT* algorithms, both under
geometric constraints. However, in both cases there are situations in which
the path is so close to the obstacles that it could lead to a collision if
any real (non-point-like) vehicle would actually try to follow the path. To
prevent this, a simple solution is to increase either the size of the obstacle
or the size of the vehicle when checking for collisions [20].

(a) Solution obtained by an RRT (b) Solution obtained by an RRT*

Figure 27: Start-to-goal query solution for a point-like system using both (a) the
RRT and (b) the RRT* algorithms. The simulated scenario is composed of
a series of polygonal obstacles presented in orange, the safe or collision-
free space in red, the tree branches in blue, and the solution path in
green.

Nonetheless, even if the shape checked for collision is enlarged, it does
not guarantee that a vehicle can accurately follow the path. Figure 28 de-
picts this situation in a simulated scenario composed of two obstacles that
create a narrow passage. In this scenario, two different start-to-goal queries
were defined in such a way that required the solution path to be amidst
the obstacles. Such paths were calculated by an RRT* algorithm under geo-
metric constraints. In both cases, a simulated Sparus II AUV attempted to
follow the path, however new risky situations appeared when conducting
turning maneuvers. This occurred because the planner, over € = R?, does
not consider the vehicle motion limits (constraints) but, instead, it assumes
the capability of instantaneously changing the vehicle direction of motion.
It is also important to highlight that despite the fact that the executions
of the missions were collision-free, the AUV surge speed and turning rate
could have been established in a way that would have made the vehicle
collide with the obstacles.
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(a) Query 1 (b) Query 2

Figure 28: Simulated environment composed of two obstacles that create a nar-
row passage. Two different start-to-goal query solutions that were cal-
culated by an RRT* algorithm under geometric constraints are shown in
green. A simulated Sparus II AUV attempted to follow the paths, how-
ever the resulting vehicle trajectory (in light blue) differs from the one
calculated, thus leading to risky situations when conducting turning
maneuvers.

3.4.2 Conducting Missions under Motion Constraints

As explained along previous sections, a more appropriate formulation to
limit unexpected vehicle trajectories when following a path is to use a
planner that incorporates motion constraints. In such a case, the planner
must not only specify the position and orientation, but also use the vehicle
equation of motion. For the particular case of a torpedo-shaped AUV, this
chapter explained two alternatives to incorporate Eq. (1) into the motion
planner. In order to compare the approaches, both were used to solve the
same start-to-goal queries presented in Fig. 28. For the first alternative, Fig-
ures 29a and 29b depict a simulated Sparus II AUV following solution paths
that were calculated by an RRT algorithm that mathematically integrates
Eq. (1). In this case, the RRT algorithm does not provide any guarantee for
optimality.

The second alternative uses the RRT* algorithm and the Dubins curves,
which work as a steering function equivalent to Eq. (1). Figures 29c and 29d
depict how, with this approach, the simulated Sparus II AUV follows (near)
optimal paths of minimal length. Although this latter approach generates
better and more feasible solution paths, there are also some risky states;
these were generated because the planner tried to provide the shortest
paths, which were close to nearby obstacles. This specific issue about the
safety of the resulting path is addressed in detail in Chapter 5.

A final remark about the content of this chapter is the fact that all cases
assume an AUV that navigates at a constant depth. Even though this as-
sumption is valid in several applications, there are others, however, that
require to vary the vertical position of the vehicle. For this reason, the next
chapter covers the extension of this latter approach (using Dubins curves)
for dealing with 3D workspaces.
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(@) RRT: Query 1 (b) RRT: Query 2

(c) RRT* with Dubins: Query 1 (d) RRT* with Dubins: Query 2

Figure 29: Simulated environment composed of obstacles that create narrow pas-
sages. Sparus II AUV follows the calculated paths. (a), (b) Two different
start-to-goal query solutions that were calculated by an RRT algorithm
under motion constraints are shown in green. In this case, the RRT algo-
rithm does not provide any guarantee for optimality. (c), (d) The same
start-to-goal queries were solved by an RRT* algorithm with Dubins
curves as steering function. Solutions are shown in green.



PLANNING 3D MOTIONS FOR TORPEDO-SHAPED AND
PROPELLER-DRIVEN AUVS

Although there is an important number of AUV applications in which the
vehicle navigates at a constant altitude or depth, and therefore a 2D path/-
motion planning approach is valid, there are other scenarios in which the
vehicle is required to conduct 3D motions (see Chapters 1 and 2). Chapter 3
presented two alternative approaches to plan collision-free paths, which
take into account the motion constraints of a torpedo-shaped AUV. While
both approaches are limited to plan 2D paths, the one that uses Dubins
curves also allows to obtain near-optimal solutions.

In order to define a correct strategy for planning 3D AUV paths, it is nec-
essary to firstly establish the specific vehicle type, and then to understand
its main motion characteristics. Underwater gliders, for instance, always
require 3D motion planners and controllers, especially if considered their
propulsion mechanism and the kind of trajectories they follow (see Chap-
ter 1, Fig. 2). However, given that they operate in open sea areas, these
vehicles do not usually have to deal with obstacles, narrow passages, or
high-relief environments. Instead, their motion planners are more focused
on coping with external perturbations such as ocean currents, which may
deviate the glider from the desired trajectory. This makes that, in most
cases, motion planning becomes a trajectory planning problem, which
must consider the ocean forecast in order to minimize the effect of such
perturbations [109, 118].

Propeller-driven AUVs, on the other hand, are equipped with thrusters
that increase their maneuverability for 2D and 3D motions. This chapter dis-
cusses the 3D first-order model, which approximately describes the kine-
matic behavior of a torpedo-shaped and propeller-driven AUV. It also anal-
yses the motion constraints involved, and how they can be included into a
extended version of the Dubins curves approach presented in the previous
chapter.

4.1 3D FIRST-ORDER MOTION MODEL

For 3D motions, six different variables specify the vehicle’s position and
orientation, which means that the C-Space is € = SE(3) = R3 x SO(3) (see
Fig. 30). Dynamic models, which normally consider all the 6 variables,
have also been used in some AUV path-planning applications [125, 130].
Nonetheless, and as it has been already mentioned, their high computa-
tional cost make them an inappropriate alternative for the scenarios pro-
posed in this thesis.

As occurs with 2D AUV motions, there exist different kinematic models
that could be used for describing 3D motions. They mainly vary according
to the AUV motion mechanism and its corresponding constraints. Two dif-
ferent cases will be explained in the following sections, one of which has
been employed for planning collision-free paths for the Sparus I AUV.
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4.1 3D FIRST-ORDER MOTION MODEL

Figure 30: Perspective view of the Sparus II AUV, including the inertial and body-
fixed frames, and the 6D vehicle state and control variables.

4.1.1  Vertical Motion Constraints

As explained in Section 3.1, a torpedo-shaped and propeller-driven AUV
that conducts 2D motions, is generally subject to differential (motion) con-
straints. These constraints prevent the vehicle from laterally moving by
only allowing it to turn while moving forward or backward, or to spin
over when it is equipped with two back thrusters, for example as occurs
with the Sparus II. When analysing 3D motions for this kind of vehicles,
such limitations must be combined with those imposed by the mechanism
that permits the vehicle ascending and descending.

Since the AUV volume remains constant during a mission, it is necessary
to increase the downward force in order to make the vehicle vary its nav-
igation depth. For doing so, there are different submerging mechanisms
that can be classified into two groups. 1) Those vehicles with only one
propulsion force in the back, which must be distributed into forward and
downward components. This can be done either with inner ballast systems
or with external foreplanes. 2) Those vehicles with two propulsion forces,
one for forward motion, and an independent one for submerging, which
is commonly generated by one or more vertical thrusters.

From the kinematics perspective, both groups generate different kind
of motion constraints. The former group’s vehicles descend and ascend
with a non-zero pitch angle. In this case, the maximum surge speed and
the pitch angles establish the maximum descending and ascending speeds.
The second group’s, on the other hand, are normally designed and trimmed
for diving with a near-zero pitch angle. In this case, the maximum de-
scending and ascending speeds are determined by the vertical thruster(s)
specifications. In both cases, the vehicles are normally equipped with ad-
ditional aft planes to generate turning maneuvers, and to minimize the
vehicle roll. These two approaches result into different mathematical equa-
tions that describe the vehicle kinematics.
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4.1 3D FIRST-ORDER MOTION MODEL

4.1.2  Mathematical Formulation

A torpedo-shaped AUV with non-zero pitch vertical motion, can be kine-
matically described with a 6-DOF model as follows [123]:

X cos (P)cos(0) O 0

Y sin(P)cos(0) 0 0 v
z| —sin (0) 0 0 0 Wy
¢ B 0 1 sin(d)tan(6) cos(dp)tan(0)| [wy
0 0 0 cos (¢) —sin (o) W,
P 0 0 sin(¢)sec(0) cos(d)sec(0)

S L @)
v cos () cos (0)

v sin () cos (0)
—v sin (0)
Wy +wy sin(¢) tan (0) +w; cos ($) tan (6)
wy cos (d) —w, sin (¢)
wy sin (¢) sec (0) +w, cos () sec (0)

where q = [x,y,z, §, G,Lp]T corresponds to the system state that includes
its 3D position and orientation with respect to an inertial reference frame,
and q = [%,U,2,¢,0,1] T is the first time derivative that depends on the
state itself and the control inputs, i.e., linear/surge speed (v) and turn-
ing rates around the different vehicle axis (wx, wy, w;). Here the vehicle
is subject to two non-holonomic constraints, which are established on the
linear velocities along the vehicle y and z directions.This full kinematic
model presented in Eq. (2), has been used in trajectory planning applica-
tions [106]. However, it can also be simplified if the vehicle is assumed to
maintain a near-zero roll angle (¢ =~ 0):

X v cos () cos (0)

U v sin () cos (0)

z| = —v sin (0) (3)
6 Wy

1P W cos (¢) sec (0)

On the other hand, torpedo-shaped and propeller-driven AUVs with
near-zero pitch motion (0 ~ 0), i.e., those with an independent propul-
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sion force for vertical motion, must be described with a different kinematic
model as follows:

[+ ] -COS(ll)) 00 0 o |[v]
y| |sinp) 00 0 0
2| = 1 0 0 0 Wy
é 01 0 0 | |wy
P 0 0 sin(¢p) cos(dp)| [w.
vl L i - s (4)

v cos ()

v sin (V)

— d ,
W
| wy sin () +w; cos (¢)

where, once again, q = [x,y,z, ¢, Lb]T corresponds to the system state
that includes its position and orientation with respect to an inertial refer-
ence frame. Furthermore, q = [X, U, 2, , 11)] T is the first time derivative that
depends on the state itself and the control inputs, which in this case are
the linear speeds (surge and heave (v,d)) and the turning rates (wy, w;).
Here the vehicle is subject to one non-holonomic constraint, which is es-
tablished on the linear velocity along the vehicle y direction. Equation (4)
can also be simplified if the vehicle is assumed to maintain a near-zero roll
angle (¢ ~ 0):

X v cos ()

9| _ [vsintw) (5)
z d '

P w

which can be written in the form ¢ = f(q,u), where q = [x,y, z, 11)]T,
q= [x,g,z,xb]T, and the control input u = [v,d, w]T that corresponds to
the surge speed (v), the heave speed (d), and the rate of turn (w).

4.2 TREE EXPANSION USING DUBINS CURVES FOR 3D MOTIONS

Different authors have used Eq. (5) to generate 3D motions for torpedo-
shaped and propeller-driven AUVs. For instance, Heo et al. presented an
approach to build a tree of collision-free and feasible configurations, over
which a final path is found with the A* algorithm [45]. The tree expansion
is done by directly integrating Eq. (5), similarly as it was explained in
Sec. 3.2. However, although A* finds the best solution over the available
paths, it requires an estimate of the cost to the goal, and this may be hard
to obtain, especially in partially known environments.

An alternative to find better 3D solution paths is to use the RRT* algo-
rithm, however it requires a steering function for improving the configu-
rations connections (see Sec. 2.6.3). Section 3.3 introduced the use of the
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Dubins curves as a steering function for 2D paths, which can also be ex-
tended to 3D motions. To do so, let us consider the AUV has an independent
propulsion force for its vertical motion, and therefore its kinematics can be
described with Eq. (5). In this case, it is possible to affirm that the motion
in the horizontal plane can be decoupled from the heave (vertical) motion.
This allows to directly deal with the former component as stated in Chap-
ter 3, while treating the latter component as an additional constraint over
an extended C-Space, € = SE(2) x R. This motion separation is not new
for underwater vehicles, since it has also been done for dynamic models
formulations [96].

On this basis, the path between two states for the 3D decoupled kinemat-
ics of our vehicle is the one that connects their components in the horizon-
tal plane using Dubins curves, and their vertical components with a linear
interpolation. The vertical motion must have a gradient no greater that
the maximum ascending/descending AUV speed, thus meeting the vehicle
motion capabilities. In order to complete the steering function required by
the RRT* algorithm, it is also necessary to establish a metric p that allows
determining the distance between two states. In this case, one alternative
is to combine the lengths of the horizontal and the vertical paths as:

0 (91, 95) = pn (di, g5) + pv (41, 45) (6)

where the first term corresponds to sum of the n Dubins sectors lengths,
which are required to connect q; and ¢; in the horizontal plane, and the
second term corresponds to the distance in the heave (vertical) motion:

Pv (qi/ qj) = ‘qiz - qu‘ (7)

All this together, i.e., the mathematical formulation, the use of the Du-
bins curves over a 4D space, and the corresponding metrics for calculat-
ing distances between different configurations, establish an alternative ap-
proach to calculate 3D motions for torpedo-shaped AUVs under motion con-
straints. Note that in the 3D case, we no longer have an analytical solution
for the shortest path between two poses. However, under the assumption
that the AUV moves with a constant surge speed, the RRT* algorithm will,
with the distance metric defined above, converge on the shortest path that
satisfies the descent speed constraint. The next section presents different
simulation tests that seeks to prove the validity of this approach.

4.3 RESULTS

This section presents and discusses simulations of the Sparus II AUV con-
ducting 3D start-to-goal missions in different scenarios. Similarly as it was
done in the previous chapter, the solution paths have been calculated un-
der both geometric and differential constraints, in order to better under-
stand the importance of considering the AUV motion capabilities when
navigating in complex environments. In all cases, the environment was
assumed to be pre-explored, i.e., a map of the surroundings was available.
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4.3.1  Conducting 3D Missions under Geometric Constraints

As it was explained before, Sparus II is a torpedo-shaped AUV equipped
with an independent vertical thruster that allows decoupling the horizon-
tal and vertical motions. This means that the vehicle is capable of descend-
ing or ascending without needing to move forward or backward. For ex-
ample, if a start-to-goal query is defined as qstart = [X0,Yo, 20, Po) and
dgoal = [X0,Yo,2zo + depth, o], and the planner only takes into account
geometric constraints, the solution path should be one that connects both
configurations with a straight descent trajectory (see Fig. 31).

Figure 31: Start-to-goal query that is defined as qstart = [X0,Yo0,20, V0] and
dgoal = [X0,Yo,2z0 + depth,Pyp]. The solution path (in green) is cal-
culated only taking into account geometric constraints, and requires
the AUV to follow a straight descent trajectory (in light blue).

Let us define now a start-to-goal query where qstart = [X0, Yo, 20, Vol
and qgoa1 = [xo + distance,yo,zo + depth, o], which means that the
vehicle must conduct forward and vertical motions simultaneously. Fur-
thermore, let us assume that the vehicle is required to navigate at a con-
stant surge speed (v), as occurs in several AUV applications. Under such
constraints, the time required to travel the horizontal distance can be calcu-
lated as tj, = 4istance yhile the descending speed (d) can be adjusted up
to a maximum value (d;nqx), Which can be calculated as d = d—et}:‘—h. This
kind of tasks could also be tackled with geometric constraints, however
there may be situations in which the resulting path cannot be followed by
the AUV. For example, if t;, allows enough time to descend the desired
vertical distance, i.e., d <= dmax, the vehicle will successfully complete
the task, otherwise it may not reach the desired depth (see Fig. 32).

Previous examples did not require the AUV to change its position along
the sway direction, and therefore a constant orientation was assumed dur-
ing the mission. Nonetheless, real missions, especially those intended for
this thesis, present more challenging scenarios. In such cases, the vehicle
probably needs not only to vary its vertical position, but also to change its
orientation in order to conduct turning maneuvers.

Figure 33 depicts a test scenario that is composed of two blocks (12m x
12m x 8m), which are separated by a passage of 4m. Over this simu-
lated environment, a start-to-goal query solution and its execution are pre-
sented, where qstart = [X0,Yo, 20l and qgoar = [x1,Y1,21], which means
that the orientation was not taken into account. The 3D solution path was
calculated using an RRT* algorithm under geometric constraints, and it was
followed by the simulated Sparus II. It can be observed that, although the
change of depth did not require a descending speed greater than the ve-
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(a) Successful query (b) Unsuccessful query

Figure 32: Start-to-goal queries that are defined as qstart = [X0,Yo0,20, $o] and
dgoal = [xo + distance,yo,zo + depth,Pol. The solution path (in
green) is calculated only taking into account geometric constraints,
and requires the AUV to conduct forward and vertical motion (in
light blue). The Sparus II is assumed to have a constant surge speed
v = 0.6m/s, and a maximum descending speed dmax = 0.2m/s. (a)
Successful query with distance = 20m and depth = ém. (b) Unsuc-
cessful query with distance = 10m and depth = ém.

hicle capabilities (i.e., d < dmax), the vehicle followed a trajectory that
was not initially planned, especially when conducting turning maneuvers.
This was mainly due to the fact that the planner did not consider the ve-
hicle’s motion constraints. Next sections will demonstrate how the use of
the extended 3D Dubins curves approach, explained before, can overcome
these situations.

4.3.2  Conducting 3D Missions under Motion Constraints

The previous section presented as a first example, a simulated task in
which the Sparus II AUV was required to conduct a vertical motion while
attempting to maintain its orientation invariant (see Fig. 31). Let us now as-
sume that the vehicle has to solve the same task, i.e., a start-to-goal query
defined as qstart = [X0,Yo,20, Vol and qgoar = [X0,Yo,z0 + depth,Pol;
but this time the vehicle has to navigate with a constant surge speed v
and a descending speed up to a maximum value dqx. Under such con-
straints, the motion planner must find a solution that combines turning
and descending maneuvers to reach the final position and orientation. This
problem can be solved with the extended Dubins curves approach that
has been explained throughout previous sections. One possible solution,
where the vehicle circumnavigates while descending to reach the desired
depth and orientation, can be observed in Fig. 34. Furthermore, this solu-
tion is near-optimal under the assumption of a constant surge speed.

Figure 35 presents the same test scenario composed of two blocks sep-
arated by a narrow passage used in the previous section. Similarly as oc-
curred in the simulation presented in Fig. 33, the start-to-goal query re-
quires the vehicle to completely change its 3D position, but this time it
also specifies the desired AUV heading. This task, for which the vehicle is
also under the surge and descending speeds constraints mentioned before,
consists of a qstart = [X0,Y0,20, Vol and a qgoar = [x1,Y1,21,P1]. This
time the resulting vehicle trajectory coincides with the planned path, even
when conducting turning maneuvers.
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(a) Query top view

(b) Query front view

(c) Query back view

Figure 33: Simulated environment composed of two blocks (12m x 12m x 8m),
where a start-to-goal query is defined as qstart = [X0,Yo,20] and
dgoal = [x1,Y1,z1]. The solution path (in green) is calculated only
taking into account geometric constraints. A simulated Sparus Il AUV
attempted to follow the path, however the resulting trajectory (in light
blue) differs from the one calculated, thus leading to risky situations
when conducting turning maneuvers.
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(a) Query top view (b) Simulation top view

(c) Query perspective view (d) Simulation perspective view

Figure 34: Start-to-goal query that is defined as qstart = [x0,Y0,20,Pol and
dgoal = [X0,Yo,zo + depth,Pp]. The AUV is assumed to navigate at a
constant surge speed v, and a descending speed up to dinax. The solu-
tion path (in green) is calculated with an RRT* that uses the extended
Dubins curves, which incorporate the vehicle 3D motion capabilities.
The simulated Sparus II successfully describes a helical trajectory (in
light blue) that follows the calculated path.
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(a) Query top view

(b) Query front view

(c) Query back view

Figure 35: Simulated environment composed of two blocks (12m x 12m x 8m),
where a start-to-goal query is defined as qstart = [X0,Yo0,20, Vo] and
dgoal = [X1,Y1,21,1]. The solution path (in green) is calculated by
an RRT* that uses the extended Dubins curves approach. A simulated
Sparus II AUV describes a trajectory (in light blue), which does not dif-
fer significantly from the one calculated, even when conducting turn-
ing maneuvers.
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Finally, in order to completely assess the extended Dubins approach for
3D motions, Figure 36 depicts a start-to-goal mission in a high-relief envi-
ronment. The requested query has been defined in such a way, that any
solution path would require the AUV to conduct turning, ascending and de-
scending maneuvers. The resulting path and its corresponding execution
by the simulated Sparus II AUV was successful, thus completely proving
the presented approach capabilities.

There are, however, some aspects that have to be addressed in order to
make this approach really useful for the proposed applications. The first
of them is that the intended usage scenarios involve generally unexplored
spaces, which means that a map is not available. A second aspect is the
safety of the vehicle, which can be compromised when navigating in close
proximity to the obstacles. These and other aspects, as well as the different
strategies proposed to cope with them, will be discussed in detail in the
next chapter.

(a) (b)

(c) (d)

Figure 36: High-relief simulated environment composed of multiple seamounts,
where a start-to-goal query is defined as qstart = [X0,Yo0,20, Vo] and
dgoal = [X1,Y1,21,P1]. A simulated Sparus I AUV describes a trajec-
tory (in light blue), which attempts following a solution path that. This
path is calculated by an RRT*, which uses the extended Dubins curves
approach.
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FRAMEWORK FOR ONLINE MOTION PLANNING IN
UNEXPLORED ENVIRONMENTS

New and potential AUV applications that were presented in Chapter 1,
establish most of the requirements and objectives for this thesis. One of
them, and probably the most relevant, is the necessity of incrementally
building a map of the surroundings, while simultaneously (re)planning
the collision-free path to the goal. This characteristic would allow the vehi-
cle to navigate through unexplored environments, as well as to overcome
part of the navigation inaccuracy.

In order to endow an AUV with these capabilities, this chapter presents
a motion planning framework, which solves start-to-goal queries online
for an AUV that operates in unexplored environments. The framework is
composed of three functional modules. 1) A mapping module that builds
an occupancy map of the environment using on-board perception sensors.
2) A planning module that generates safe (collision-free) and feasible paths
online. 3) A mission handler that works as a high-level coordinator that ex-
changes information with the other two modules and the AUV controllers.
Figure 37 depicts the proposed framework, and how its functional mod-
ules are connected to one another. The following sections will explain in
detail each of these modules.

Figure 37: Framework for online AUV motion planning.

5.1 MISSION HANDLER

The first functional module that constitutes the path/motion planning
framework is the mission handler. This module is in charge of controlling
and coordinating the other modules (mapping and planning). It also verifies
whether the AUV is prepared to start solving and conducting a task. To do
s0, this module communicates with other functional modules in the vehi-
cle to verify both that navigation data is correctly being generated, and
that the vehicle low-level controllers are not conducting any safety ma-
neuvers. After completing this initial checking stage, the mission handler
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starts requesting waypoints from the planning module, which, after being
received, are adapted and sent to the vehicle low-level controllers. This
module is also responsible for cancelling any ongoing waypoint if it is no-
tified by the planning module. This latter situation will be explained in the
following sections.

5.2 MODULE FOR INCREMENTAL AND ONLINE MAPPING

The mapping module incrementally builds a representation of the environ-
ment. To do so, it uses data that can be obtained from different kinds of
perception sensors such as multibeam sonars, mechanically scanned pro-
filing sonars, echosounders, etc. These sensors provide range information
about nearby obstacles that, combined with the vehicle’s position and ori-
entation, allows establishing the free and occupied space with respect to
an inertial coordinate frame. In order to represent this data, this module
uses an octree-based framework called Octomap [50]. This representation
has three main characteristics that efficiently model such volumetric infor-
mation.

The first characteristic is the probabilistic state representation. This al-
lows not only to modify the map when updated environment information
is available, but also protects it from noisy measurements. This latter fea-
ture is possible because the state of a particular position over the map
considers previous information, and calculates its new value according to
probabilistic functions. The second characteristic is the capacity of repre-
senting unexplored areas, which can be relevant for guiding the planner
over the exploration of unknown environments. The last characteristic al-
lows an Octomap to be enlarged or extended as demanded in a computa-
tionally efficient way.

Figure 38 shows a breakwater structure, which is located in the harbor
of Sant Feliu de Guixols (Spain), and its representation with an Octomap
that has been built using real-world multibeam sonar data obtained by a
surface vessel. This is one of the test environments used during the de-
velopment of this work for both simulated and real-world trials. Results
presented in Chapters 3 and 4, for instance, used a virtual scenario and the
corresponding Octomap that are based on this breakwater structure (see

Fig. 39).

(a) Breakwater structure (b) Representation with an Octomap

Figure 38: Harbor of Sant Feliu de Guixols (Spain). (a) Aerial view of the break-
water structure. (b) Octomap representation that has been created with
real-world data acquired with a multibeam sonar.
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In order to determine if the vehicle is or would be under collision in a
certain position, the Octomap has to be verified in an equivalent volume
that contains the vehicle. To do so, all voxels within such a volume have to
be considered as non-occupied. This validation can be simplified by repre-
senting the AUV volume with one solid such as a cylinder or a hexahedron
(see Fig. 39). This collision checking routine between an Octomap and a
solid can be efficiently performed by the flexible collision library (FCL) [32].

(@ (b)

Figure 39: Collision checking using Octomaps is done by evaluating the Octomap
voxels that contain the equivalent volume of the AUV. In order to sim-
plify this validation routine, the AUV volume can be represented by a
solid such as a (a) cylinder or a (b) hexahedron.

5.3 MODULE FOR (RE)PLANNING PATHS ONLINE

The third functional module of the proposed framework is the planning
module, which is in charge of calculating a collision-free and feasible path
for the AUV. For doing so, this module receives a query that is specified
with a start configuration (qstqrt) and a goal configuration (qgoq1), and
other parameters, such as the available computing time and the minimum
valid distance to the goal. Furthermore, given that the vehicle navigates
in an unexplored (or unknown) environment, this module must contin-
uously verify and repair (if necessary) the path from the current vehicle
configuration to goq1. In order to calculate a path under such constraints,
this module contains a modified implementation of the RRT* algorithm.

This RRT* variant not only permits to progressively improve the solu-
tion, but it has also been extended to safely navigate while efficiently re-
planning the path as the environment is incrementally explored. Our ex-
tensions include an optimization function that combines collision risk and
path length; a strategy to avoid unnecessary and expensive state checking
routines; and the reuse of the last best known solution as a starting point
for an anytime planning approach. These new characteristics are presented
and explained in detail in the following sections.

5.3.1 Planning Safe Paths using Risk Functions

Conducting underwater missions with AUVs is a challenging task, espe-
cially when the vehicle is kinematically constrained, as it was explained in
Chapters 3 and 4. However, including motion constraints to the path plan-
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ner may not suffice to minimize the risk of colliding with nearby obstacles.
This is especially true when the vehicle is exposed to external perturba-
tions, which do not permit the AUV to accurately follow the calculated
path. Figure 40, for instance, shows a feasible path, i.e., one that considers
the vehicle motion constraints. However, as the solutions are only asymp-
totically optimized with respect to their length, they lead the vehicle close
to nearby obstacles, especially in turning maneuvers.

Figure 40: A start-to-goal query solution that was calculated by an RRT* algorithm
with Dubins curves as steering function. The solution path requires
the vehicle to move close to nearby obstacles when conducting turning
maneuvers.

Bearing this in mind, the objective would be now to extend the planner
to not only plan feasible paths, but also to attempt to minimize the risk
of colliding with the surroundings. To accomplish this, one alternative
is to provide an optimization objective to the planner that combines the
length and the safety of the path. The following sections present different
approaches to achieve this.

5.3.1.1 Path Length + Clearance

A first and straightforward option is to maintain a minimum safe distance,
or clearance, to the obstacles. For doing so, it is necessary to establish a
weighted metric that combines path length and clearance in order to mini-
mize detrimental effects in the path quality. This allows us to define the as-
sociated cost of each configuration when planning with an RRT* algorithm.
However, this approach has two main drawbacks, its high computational
cost and the need to correctly specify weights to obtain a balanced metric,
which is a non-trivial problem [120].

5.3.1.2 Risk Zones

Including clearance calculation is especially expensive for sampling-based
path/motion planning methods, since it has to be performed for each sam-
pled configuration and its intermediate steps when connecting to the oth-
ers (e.g., RRT* algorithm expansion). One alternative is to heuristically es-
tablish risk zones around the vehicle, as shown in Fig. 41.

The red and blue zones represent the collision and the non-risk zones,
respectively, while the others (orange, yellow and green) have associated
decreasing risk values as collisions move away from the vehicle position.
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Figure 41: Sparus II AUV navigating between two obstacles (black). An example
of the risk zones around the vehicle, and how the risk decreases as
moves away from the vehicle can be observed (red means high risk,
while blue low risk).

Therefore, the risk associated with a given configuration q, can be repre-
sented by Eq. (8), where n is the number of zones, zone;_1 is closer than
zone; to the collision zone, risk;_7 > risk; > ... > risk, > 1.

risky, if Collision(zoneq)

risky, if Collision(zone;)
Risk(q) =

coy

risk,, if Collision(zonen)

1, if not Collision(any zone)
q - [Xzy/ Zrll)]T (8)

In order to combine this function with the path length, the total accumu-
lated cost associated with each configuration is calculated as the integral
of risk with respect to distance, as presented in Eq. (9). Such a cost func-
tion not only combines the risk and the length associated with a path, but
it also establishes the optimization criterion required in order to plan fea-
sible and safe paths. A visual comparison between paths calculated using
only the path length and the those with risk zones can be observed in
Fig. 42.

q

Cost(q) = JO Risk(q)dq 9)

5.3.1.3 Risk Vectors

The previous approach attempts to penalize those configurations close to
nearby obstacles by specifying a risk value, which depends on the affected
zone. However, another alternative is to limit such evaluation to the direc-
tions defined by the possible maneuvers of the vehicle at the considered
time. To do this, let us define three vectors in the straight and lateral mo-
tion directions. Now, instead of checking for complete zones, only points
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(@) (b)

Figure 42: (a) RRT* expansion for a start-to-goal query using Dubins curves with
path length as cost criterion. (b) RRT* expansion with risk zones cost
criterion. It is worth noting that the resulting path is far from corners in
turning maneuvers and attempts to stay in the middle of the corridor
when navigating between two obstacles.

along those vectors will be checked for collision, assigning risk values
with the same principle as done with risk zones, i.e., moving away from
the vehicle decreases the risk (see Fig. 43). This approach is here called risk
vectors. It is computationally a less expensive alternative, given that check-
ing collision for single points is more efficient than doing the check for
zones (multiple points), especially when using of Octomaps to represent
the environment.

Figure 43: Sparus II AUV navigating between two obstacles (black). An example
of the risk vectors, and how the risk decreases as moves away from the
vehicle can be observed (red means high risk, while blue low risk).

Both the risk zones and the risk vectors have also been extended for 3D
motions. In the case of the risk zones, the areas around the vehicle become
volumetric shapes of increasing size (e.g., rectangular prisms, or cylinders),
whereas with the risk vectors it is enough to add the corresponding vectors
for the vertical motion (see Fig. 44). These alternatives to quantify the risk
associated with a path have been evaluated and compared with each other.
The results of this analysis will be discussed in Sec. 5.5.
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(a) 3D risk zones. (b) 3D risk vectors.

Figure 44: Extension of risk zones and risk vectors for 3D motions.

5.3.2  Opportunistic State Checking

Previous sections presented the estimation of the risk associated with a
path, which is the first main characteristic of the proposed framework and
its planning module. This section, on the other hand, introduces the sec-
ond characteristic that seeks to optimize the computation time in missions
where the environment is incrementally explored.

When conducting an autonomous mission without initial information
of the surroundings, the AUV is required to incrementally map and contin-
uously (re)plan collision-free paths according to its partial knowledge of
the environment. Because of this, and assuming the planning module uses
a sampling-based method such as the RRT* algorithm, an important num-
ber of configurations (sampled or obtained after expanding the tree) are
located in unexplored regions of the environment. In these situations, it is
not only impossible but also unnecessary to attempt to determine if a con-
figuration is at risk of collision. In order to compensate this, one alternative
is to assume as safe (collision-free and minimum risk) any configuration
that is out of the explored area. This can be efficiently determined when
using Octomaps (as explained in Section 5.2). This strategy, proposed in
this thesis, is called opportunistic state checking, and is inspired by the lazy
collision checking (which was explained in Sec. 2.7.2.2).

Figure 45 depicts a simulation where the explored and free regions of
the map are presented in light blue, the occupied ones are presented in
purple, and the rest correspond to unexplored areas. With this visualiza-
tion, it is possible to observe the importance of avoiding checking for colli-
sion of those configurations that are located in undiscovered regions. Sec-
tion 5.5 will show different tests that demonstrate the advantages of using
this strategy.

In this incremental mapping and planning approach, the tree expansion
is periodically interleaved with updating the map, and such parts initially
assumed as safe must be verified and discarded if found under collision
as the vehicle explores the environment (a situation that can also be ob-
served in Fig. 45). The next section describes and analyses two alternative
mechanisms to check and reshape the tree.
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(a) (b)

Figure 45: Sparus II AUV conducting an autonomous mission in the simulated
breakwater structure scenario without an initial map. (a) The explored
region, presented in light blue, expands as the vehicle moves towards
the goal. It is important to notice that a significant part of the tree
(dark blue) is located in unexplored areas of the workspace. (b) Those
branches are initially assumed as safe (collision-free) until the cor-
responding region is explored, thus avoiding unnecessary collision-
checking routines computation.

5.3.3 Reuse of the Last Best Known Solution

This section presents the reuse of the last best known solution, which is the
third main characteristic of the proposed framework and its planning mod-
ule. Such a strategy allows an incremental and tree-based path planner,
such as the RRT* algorithm, to replan or reshape the solution path accord-
ing to the new environment information perceived during the mission.
However, in order to fully understand the benefits associated with this
strategy, this section firstly explains another alternative that was initially
used, but later discarded due to its high computational cost.

5.3.3.1 Pruning the Tree for Anytime Computation

One alternative for dealing with partially known environments is to grow
a single tree of collision-free configurations (as any RRT variant does),
while periodically pruning the tree. This process allows discarding those
branches that result under collision after updating the map, thus obtaining
a valid solution at anytime that is requested. This strategy has been used
with approaches based on the RRT [7] and the RRT* [63]. At a first stage of
this thesis, the planning module used a modified RRT* algorithm that was
based on this pruning approach.

Like other RRT-based algorithms, the initially used variant consisted of
two procedures, sample and extend (see Sec. 2.6.2.4). However, the former
one had two main modifications (see Algorithm 9). The first one was in-
tended to correct the tree according to the new elements discovered in
the environment. To do so, and before sampling new configurations, the
updateTree procedure traversed the tree using a DFS algorithm to check
if any node or edge was under collision (line 2). If a new collision was
detected, the corresponding subtree (i.e., those branches with nodes or
edges under collision) was discarded. However, if the tree root was one of
the nodes under collision, or if the path from the current vehicle configura-
tion to the root was not feasible, the planning module informed the mission
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handler to cancel the current path followed by the controller, and then it
started again planning a new path from the current vehicle position. This
latter situation occurred because the tree root always corresponded to the
configuration (or position) that the vehicle was moving towards.

The purpose of the second modification in the sample procedure was to
make the RRT* behave as an anytime algorithm. To do this, if the new config-
uration qnew resulted from the tree expansion met the specified minimum
distance to the goal (line 7), it was added to a list of possible solutions
(line 8). Furthermore, if the mission handler had requested a new waypoint
after concluding the tree expansion, and there was at least one available
solution stored in the list (line 10), the planner selected the solution with
the minimum associated cost, sent the mission handler the configuration
connected to the root of that solution (line 13), and pruned the tree in
such a way that the configuration sent became the new tree root (line 14).
During this pruning process, subtrees connected to the former root (except-
ing the one that corresponds to the new root) were discarded. The extend
procedure, on the other hand, remained as originally proposed in [62].

Algorithm 9 : SampleAnytimeRRT*
Input :
qstart : Start configuration.
dgoal : Goal configuration.

C: C-Space.

1 begin

2 updateTree()

3 while not stop_condition do

4 Jrand <sampleConf()

5 result, qnew <—extendRRT* (T, qrqnd)
6 if result #% TRAPPED then

7 if dist(gnew, qgoal) < €goal then
8 updateBestSolution(gnew)

9 L solution_found <« true
10 if solution_found and wp_req then
11 result_path <-getBestSolution()
12 new_root + result_path[1]
13 sendWaypoint(new_root)
14 pruneTree(new_root)

To illustrate the behavior of this tree-pruning strategy when simulta-
neously mapping and planning collision-free paths, Figure 46 depicts a
simulation of the Sparus II AUV conducting a mission in an environment
that resembles the breakwater structure presented in Fig. 38. The mission
consisted in a start-to-goal query that required navigating from one side
of the series of blocks (obstacles) to the other (see Fig. 46d). In this case,
the vehicle was assumed to have a mechanically scanning profiler with a
perception distance of 20m. The tree, that was generated by the modified
RRT* algorithm, is presented in dark blue, while the path to the goal is
drawn in red, and the path to the current waypoint appears in yellow.
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The whole environment was initially unexplored and was incrementally
mapped as the AUV navigated towards the goal. When the vehicle started
the mission, and no obstacle had been detected, the waypoint sent to the
AUV controllers (the tree root) coincided with the goal, since a straight path
to it was feasible (see Fig. 46a). This situation persisted even when obsta-
cles had been detected, as long as the path from the vehicle position to
the goal was collision-free (see Fig. 46b). However, when such a straight
path was not possible, the planner replanned (reshaped) the path from the
vehicle’s current position (see Figs. 46¢, 46d).

(a) (b)

(o) (d)

Figure 46: Sparus II AUV conducting a mission in the simulated breakwater struc-
ture (a), where it incrementally maps the environment (b), (c) and
(re)plans a collision-free path to the goal (d). The tree of configura-
tions is presented in dark blue, the path to the goal in red, the path to
the current waypoint in yellow, and the vehicle’s trajectory in green.

5.3.3.2 Reuse of the Last Best Known Solution for Anytime Computation

The previously explained approach used a tree of configurations that is
periodically traversed, checked and pruned as the vehicle moves and ex-
plores the environment. The main objective was to preserve the informa-
tion about collision-free areas and known paths, while discarding those
that become invalid. One alternative for not conserving the whole tree, is
to use the last best known solution as the remainder of the path calculated
in the previous planning cycle, which starts at the point that the vehicle
will reach at the next execution cycle (see Fig. 47).

In this iterative and anytime computation scheme, using the last solu-
tion to start a new planning cycle implies not only a new valid solution
according to an updated map, but also one that is at least as optimal as
the previous one. This also permits to eliminate time-consuming pruning
routines by avoiding checking subtrees, in which many of their config-
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urations have probably become invalid because of the opportunistic state
checking explained before.

(@) (b)

(o) (d)

Figure 47: Reuse of the last best known solution. This strategy allows reusing
the previous solution path for every new planning cycle, instead of
checking and pruning the whole tree. This guarantees having valid
solutions that are at least as good as the previous one.

5.4 PIPELINE FOR ONLINE PLANNING FEASIBLE AND SAFE PATHS

Previous sections have presented three new features: an optimization func-
tion that combines collision risk and path length; a strategy to avoid un-
necessary and expensive state checking routines; and the reuse of the last
best known solution as a starting point for an anytime planning approach.
These features endow an AUV with the capability to simultaneously map
and plan feasible and safe paths online through unexplored environments.
In order to fully understand how such characteristics work together, Al-
gorithm 10 presents the execution pipeline to incrementally solve a start-
to-goal query. This pipeline has allowed conducting autonomous missions
for the intended AUV applications. For this reason, the newly proposed fea-
tures represent the main contributions to the planning module presented
in this chapter.

In Algorithm 10, the main input parameters to solve a query are the
start and goal configurations (position and orientation). To initialize the
incremental solving routine, the RRT* algorithm is selected as the planner
that computes paths for a Dubins (or extended 3D Dubins) vehicle, set
an empty list as the last best known solution, and define qnew start as the
starting configuration that will change as the vehicle conduct the mission
(lines 2-4). To incrementally find a path to the goal (line 5), a main loop
requests an updated version of the map (Octomap, lines 6-7), informs the
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planner to start from last best known solution (line 8), uses the planner to
find or improve the path (line 9), and gets the solution (line 10). At this
point, the planner has provided a valid path that must be as optimal as the
previous one, except that it has produced a longer but safer path. Before
concluding a planning cycle, the incremental solving routine checks if a re-
planning maneuver has been requested. This would imply that the mission
handler has detected that the path from the current configuration to the last
waypoint (WP) sent to the AUV controllers is not feasible, and might lead
the vehicle to a collision, thus requiring that a new path should be found
from the current configuration (see lines 11-13). Finally, if a new WP is re-
quired, the last qnew_start Will be sent to the mission handler (lines 14-15).

It is important to note that even if the previous (last best known) solution
is not in collision with an updated version of the map, the planning module
will reuse it as a starting point (line 8), in order to attempt to improve such
existing solution during a new planning cycle (lines 9 and 10).

Algorithm 10: incSolveStartzGoal(qstart, qgoal)

Input :

(start: Start configuration.
qgoal: Goal configuration.
begin

)

2 planner < RRT*()

3 last_best_known_solution «+ {}

4 Jnew_start < (start

5 while not stop_condition do

6 map <reqUpdatedMap ()

7 planner.updateMap (map)

8 planner.startFrom(last_best_known_solution)

9 planner.solve(gnew_start, qgoal)
10 last_best_known_solution < planner.getSolution()
11 if replanning_requested then
12 Jnew_start < getCurrentConf ()
13 last_best_known_solution « {}
14 else if new_waypoint_requested then
15 L sendWP (last_best_known_solution.pop())

5.5 RESULTS

In order to validate the proposed path/motion planning framework, this
section presents simulation and real-world trials of the Sparus I AUV con-
ducting autonomous missions in the breakwater structure scenario. This
structure is located in the external and open area of a harbor, and it is
composed of a series of concrete blocks of 14.5m long and 12m width, sep-
arated by a four-meter gap with an average depth of 7m (see Fig. 48). In
this scenario, start and goal configurations were located in opposite sides,
so that the Sparus II AUV had to move amidst the concrete blocks. All
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queries were defined to conduct missions at a constant depth, thus the
motion was restricted to a 2D task.

Figure 48: Breakwater structure composed of a series of concrete blocks (14.5m
long and 12m width, separated by a four-meter gap) in Sant Feliu de
Guixols in (Spain). Image credit: Map data ©2017 Google.

For these tests, the vehicle was equipped with a mechanically-scanning
profiling sonar to perceive and detect the surroundings. The sonar was
located to cover a scan sector in the horizontal plane along the vehicle’s
direction of motion. From the software perspective, the Sparus II used the
component oriented layer-based architecture for autonomy (COLA2) [101],
a control architecture fully integrated with the robot operating system
(ROS). This software architecture also makes use of the open motion plan-
ning library (OMPL) that offers a convenient framework that can be adapted
to specific planning problems [115]. Further details about the vehicle hard-
ware and software characteristics can be found in Appendix A.

5.5.1 Comparison of Risk Functions

Before evaluating the framework’s capabilities over unexplored environ-
ments, this section firstly assesses and establishes the best alternative to
estimate the risk associated with a path. This analysis is done over a fully
known and mapped scenario. Once this has been determined, tests over
an unexplored environment prove the advantages of using the opportunis-
tic state check strategy. Then, with this strategy, additional tests compares
both the pruning tree and the reuse of the last best known solution approaches,
thus allowing to demonstrate the latter one is the most efficient alternative
for reaching an anytime computation approach.

5.5.1.1 Evaluation of the Risk Functions over Fully Mapped Environments

For these initial tests, an Octomap of the surroundings was assumed to
be available a priori. Over this map, different start-to-goal queries were
solved by using the alternatives to estimate the risk presented in Sec. 5.3.1.
Figure 49 depicts some examples of the solutions paths obtained. It can be
observed how the path maintains a safe distance from nearby obstacles (ar-
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eas in purple), in contrast to what occurs when only path length criterion
was considered (see Fig. 40).

(a) Task1 (b) Taskz2

Figure 49: Start-to-goal queries’ solutions using an RRT* algorithm with Dubins
curves and risk functions. The solution paths maintain a safe distance
from nearby obstacles (areas in purple).

Although all of the proposed approaches to estimate risk of the path can
generate similar results, their associated computation times differ consid-
erably. Figure 50 presents the average computation time required to solve
Task1 and Task2 (Fig. 49) by each approach. It can be observed that using
only the path length is clearly the least expensive method, while path length
+ clearance and risk vectors are the most and least expensive, respectively,
when including the risk of the path. For this reason, the best alternative
when dealing with explored (mapped) environments is the risk vectors ap-
proach.

Figure 50: Average computation time, over 20 runs, required to solve Taskl and
Task2 (Fig. 49) using different approaches to include risk of the path
as the optimization criterion.
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5.5.1.2 Evaluation of the Risk Functions over Unknown Environments

From Fig. 50, it can be concluded that the best computational alternative
to include the risk associated with a path is the risk vectors approach. How-
ever, when dealing with unexplored environments, i.e., exploring while
mapping incrementally, this approach may cope with situations in which
partial information of the environment does not permit to estimate cor-
rectly the risk. In turning maneuvers, for instance, if an obstacle is located
in the lateral motion direction, and it is not completely represented in the
map so that the risk vectors does not coincide with the available partial
information, this approach will indicate the configuration as safe, while
the risk zones will estimate correctly the risk. For this reason, the best alter-
native when dealing with unexplored (unknown) environments is the risk
zones approach.

5.5.2  Opportunistic State Checking and its Benefits

Although planning feasible and safe paths using risk zones is considerably
faster than calculating clearance explicitly (see Fig. 50), having calculation
times in the order of seconds may become into a limitation when coping
with online computation limitations. Section 5.3.2 introduced the oppor-
tunistic state checking strategy as one of the mechanisms that can contribute
to overcome this situation. To validate its efficiency, a start-to-goal query
was solved and simulated multiple times, but now without assuming any
previous map of the breakwater structure scenario (see Fig. 51).

The solutions for the query presented in Fig. 51 were obtained with and
without using the opportunistic state checking strategy. Albeit in both cases
the framework succeeded in conducting the task, Fig. 52a demonstrates
that without it almost 80% of the total computation time is dedicated to
risk checking routines over the whole mission. In the opposite scenario,
i.e., using opportunistic state checking, its associated computation time in-
creases as the environment is progressively explored, but even so, it does
not consume such a percentage of computation time, not even at the end of
the mission. This is especially noticeable when a mission does not require
exploring and mapping completely the environment. Therefore, the use of
the proposed mechanism affects not only the time required to find a solu-
tion, since it permits a better tree expansion (i.e., more states, see Fig. 52b),
but also improves the workspace exploration and the path quality.

5.5.3 Anytime Computation for Solving Start-to-goal Queries in Unexplored
Environments

Section 5.3.3 presented a pruning tree scheme and the reuse of the last best
known solution. Both are alternative replanning approaches to make the
framework capable of providing valid solutions at anytime. In order to
prove the latter one is the best option, the execution pipeline presented in
Sec. 5.4 has been used with both approaches to run different simulations
and real-world in-water trials.
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(@) (b)

(o) (d)

Figure 51: (a) Sparus II initial position for different start-to-goal queries in an
equivalent virtual scenario of the breakwater structure. (b) Sparus II
starts a mission by submerging to a specified depth. It then maps and
solves a start-to-goal query simultaneously. (c) Equipped with a scan-
ning profiler, it incrementally builds a representation of the environ-
ment, while continuously reshaping the solution path, (d) to finally
approach to the specified goal configuration.

(@) (b)

Figure 52: Incidence of Opportunistic State Checking approach when solving query
presented in Fig. 51. (a) if configurations located in undiscovered ar-
eas are not assumed as safe, risk checking routines require almost 80%
of computation time during the whole mission. Otherwise, it will in-
crease progressively as the environment is explored. (b) consequently,
if a high percentage of computing power is dedicated to risk checking,
the number of tree nodes (states) will remain low during the whole
mission, thus limiting the tree expansion and path quality.
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5.5.3.1 Simulation Results

Two different simulated scenarios were used to compare the anytime com-
putation approaches. The first of them is the breakwater structure men-
tioned in previous sections (see Figs. 38, 48). Over this scenario, two differ-
ent start-to-goal queries were tested (see Fig. 53). After executing 10 times
these missions, it was observed that the number of successful attempts is
greater and the mean of replanning maneuvers (over the total successful
missions) is smaller when reusing the last best known solution with oppor-
tunistic state checking, than those obtained with the pruning tree scheme
(see Tables 2 and 3). Such replanning maneuvers correspond to situations
where the calculated path was unfeasible, thus requiring a new valid path.

(a) Task1, pruning the tree (b) Taskz2, pruning the tree

(c) Task1, reuse last best solution (d) Taskz2, reuse last best solution

Figure 53: Comparison of the anytime computation approaches when solving
start-to-goal queries with the pruning-tree scheme and the reuse of the
last best known solution approaches. The number of replanning maneu-
vers are equivalent to the number of cancelled WPs (circles in red).

The second test scenario resembles a natural environment composed of
rocky formations, which create an underwater canyon (see Figs. 54a, 54b).
Over it, one start-to-goal query was defined in a way that the vehicle was
required to travel through the canyon (see Figs. 54c, 54d). Once again, it
was observed that the number of successful attempts is greater and the
mean of replanning maneuvers is smaller in the case of reusing the last best
known solution with opportunistic state checking (see Tables 2 and 3).

5.5.3.2 Real-world Results

After testing the planning framework in simulation, in-water trials were
conducted in the real-world breakwater structure scenario (see Figs. 38, 48).
The Sparus II AUV performed the autonomous missions with a constant
surge speed u = 0.5m/s and a maximum turning rate rmqx = 0.3rad/s.
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(a) Sea rocks scenario

Figure 54: Comparison of the anytime computation approaches when solving
start-to-goal queries with the pruning-tree scheme and the reuse of the
last best known solution approaches. The simulated scenario resembles
a natural-like environment. The number of replanning maneuvers are

(c) Pruning the tree

5.5 RESULTS

(b) Navigating through the canyon

(d) Reuse last best solution

equivalent to the number of cancelled Wps (circles in red).

Virtual Scenario1: Breakwater Structure (Fig. 53)

Task1 (10 attempts)

Task 2 (10 attempts)

# Successful

Mean replan.

# Successful

Mean replan.

attempts maneuvers attempts maneuvers
Pruning 7 8.85 7 6.42
Tree
Reuse
Last Sol. 10 0.3 9 0.1

Table 2: Comparison of solving the task shown in Fig. 53 using pruning-tree
scheme and the reuse of the last best known solution. The second one proves
to be the best alternative with: 1) the increase in the number of successful
attempts, 2) the decrease of the mean of replanning maneuvers over the
total successful missions. This latter implies that the vehicle had to deal
with less risky situations, since a replanning maneuver supposes that the

vehicle was being led to a possible collision.
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Virtual Scenario2: Sea Rocks (Fig. 54)

Task 3 (10 attempts)

# Successful Mean of replan.
attempts maneuvers
Pruning Tree 6 6.6
Reuse Last Sol. 7 1.14

Table 3: Comparison of solving the task shown in Fig.54 using pruning-tree
scheme and the reuse of the last best known solution. As shown also in
Table 2, reusing the last best solution proves to be the best alternative.

Figure 55 presents the AUV trajectory after conducting one of such mis-
sions, which consisted in solving a start-to-goal query that required the ve-
hicle to navigate between two concrete blocks of the breakwater structure.
Here again both approaches, i.e., the one using a tree prunning scheme and
the one reusing the last best known solution with opportunistic state checking,
were used to solve the task.

Figures 55a and 55b prove how replanning maneuvers decreased when
reusing the last best known solution, just as it was expected from simulation
results. Apart from visual results, it is also worth to mention that number
of successful attempts were considerably higher when reusing previous
solutions, 7 over 13, while experiments with a tree pruning strategy only
succeeded 2 times of 5.

(a) Pruning the tree (b) Reuse last best solution

Figure 55: Real-world trial to compare the anytime computation approaches when
solving start-to-goal queries without an initial map. The test scenario
was the breakwater structure where the Sparus II had to navigate
amongst two concrete blocks to move from one side to the other of
the breakwater structure.



RESULTS IN REAL-WORLD SCENARIOS

Previous chapters presented different strategies and extensions that, all to-
gether, seek to endow an AUV with the capabilities required to succeed in
the applications presented in Chapter 1. The final result is a framework
that incrementally builds an Octomap of the surroundings and, simultane-
ously, plans a collision-free path to move through an initially undiscovered
environment. To accomplish this, the framework not only considers the
motion constraints involved (thoroughly explained in Chapters 3, 4), but
also uses the risk zones to establish an optimization function for combining
the length and the risk associated with the solution path (see Sec. 5.3.1).
Furthermore, while the framework is expanding the tree to find a solu-
tion path, it opportunistically checks the sampled states and iteratively reuses
the last best known solution. This allows to efficiently replan (reshape) the
path in order to deal with the partial knowledge of the environment (see
Secs. 5.3.2, 5.3.3).

This chapter presents an extensive evaluation of the proposed frame-
work. This includes simulation and in-water trials that were carried out in
different real-world scenarios. Such experiments were mainly conducted
with the Sparus II AUV, but some of them also involved the AsterX AUV™.
The experiments are separated into four different scenarios: 1) planning
constant-depth paths to move through artificial marine structures; 2) plan-
ning constant-depth paths to move through natural marine formations;
3) planning variable-depth paths to move through confined marine envi-
ronments; and 4) the autonomous survey replanning for gap filling and
target inspection. The following sections will discuss in detail the results
obtained for each of these scenarios.

6.1 PLANNING AUV PATHS IN ARTIFICIAL MARINE STRUCTURES

Nowadays, there are a wide range of man-made marine constructions, go-
ing from large commercial harbors to offshore platforms. These artificial
structures often have a regular and known shape, which could be used to
preplan trajectories to travel through them. However, as it was explained
in Chapter 1, there are different factors such as low visibility and limited
navigation accuracy, which make it difficult to correctly follow such pre-
calculated paths. The online path/motion planning framework proposed
in this thesis seeks to contribute overcoming these limitations.

An example of this kind of structures is the breakwater mentioned in
previous sections (see Fig. 56¢). In this scenario, a test mission could be
one that makes an AUV to move amidst the concrete blocks. In order to
do so, the origin for the north-east-depth (NED) inertial system is defined
by a latitude-longitude coordinate, which can be obtained from Google
Maps ©. Likewise, a start-to-goal query can be specified, in such a way

1 Hardware and software details for both vehicles can be found in Appendix A.
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that the AUV is required to traverse the blocks from the outer to the inner
area, and vice versa. Once the origin, the start configuration and the goal
configuration have been selected, it is necessary to define a workspace
representation or map, where the collision checking routines can be done.
This latter is needed in the case of solving the query with a sampling-
based approach, otherwise a discrete or full description of the C-Space may
be required instead.

(a) Satellite view. Image credit: Map data ©2017 Google.

(b) (©

Figure 56: Test scenario of an artificial marine structure. (a) Harbor of Sant Fe-
liu de Guixols in Catalonia (Spain), where a breakwater structure com-
posed of concrete blocks is demarcated. (b) Close proximity view of the
concrete blocks. (c) Virtual environment for simulations over UWSim.

As mentioned in previous chapters, an Octomap of the area can be used
for collision-checking purposes. Assuming the environment as explored,
the Octomap could be either one built from real data (see Fig. 38b) or one
synthetically created (see Fig. 33). Then, a collision-free, feasible and safe
path could be calculated over such a known map. Simulations of this kind,
i.e., using an existing map, were presented in Chapters 3 and 4. However,
before conducting any real-world autonomous mission, the Sparus II AUV
was teleoperated at surface while traversing the concrete blocks. This al-
lowed to verify the map consistency with respect to the GPS data (see
Fig. 57).

Figure 57 highlights one of the main limitations of assuming the environ-
ment as previously known and mapped. Even if the AUV is teleoperated
at surface, which allows to continuously obtain GPS fixes, there is an error
associated with the GPS that can range from one to two meters. This mag-
nitude of error is especially critical when navigating in narrow passages,
such as the four-meter gaps between the concrete blocks. Furthermore, if
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Figure 57: Sparus II AUV was teleoperated at surface in the breakwater struc-
ture scenario. Although the Sparus II did not collide during the tele-
operated mission, GPS data (in red) shows a vehicle trajectory under
collision with and even over the concrete blocks. Satellite view. Image
credit: Map data ©2017 Google.

the vehicle submerges, the position estimation error will also accumulate
the navigation drift associated with the dead-reckoning (DR) system.

An alternative to conduct the intended mission could be the use of an
USBL system, which would contribute to minimize the navigation error.
Nonetheless, this option requires a surface vessel that follows the AUV
along the mission, something that is not feasible in this scenario. Consid-
ering all this, an alternative approach is to use the framework proposed in
this thesis.

As explained before, the framework requires that the vehicle is equipped
with exteroceptive sensors. These sensors allow detecting the surround-
ings to create a map online. For this scenario, a set of four echosounders
and one mechanical-scanning imaging sonar were located within the vehi-
cle payload (front) area, all of them pointing in the horizontal plane (see
Fig. 58). Three of the echosounders were separated by 45°, with the cen-
tral one looking forward and parallel to the vehicle’s direction of motion,
while the fourth one was perpendicular to the central one (see Fig. 58a). As
for the imagining sonar, it was setup to cover a scan sector in the vehicle’s
direction of motion (see Fig. 58b). Since both sensors cover the horizontal
plane, missions with this configuration were executed at a constant depth.
For more details about the complete Sparus II's hardware configuration,
the interested reader is referred to Appendix A.

During the first simulation and in-water trials conducted over this test
scenario, the Sparus II AUV only used the echosounders to perceive the en-
vironment. Nevertheless, the four echosounders beams were insufficient
to rapidly establish the validity of the path along the direction of motion,
which triggered multiple replanning maneuvers. Although the vehicle was
capable of finding a solution path, it did required multiple attempts to
complete one full successful mission. Furthermore, this limitation gener-
ated unexpected and non-desired trajectories. An example of this was al-
ready presented in Chapter 5, Fig. 55a.

In order to avoid the aforementioned situations, the Sparus II used both
the echosounders and the mechanical-scanning imaging sonar to incre-
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(@)

(b)

Figure 58: Exteroceptive sensors configuration for the Sparus II AUV to conduct
autonomous missions in the breakwater structure. (a) The vehicle was
equipped with four echosounders and one mechanical-scanning imag-
ing sonar, all of them pointing in the horizontal plane. (b) Top view,
echosounders beams direction and imagining sonar scan sector.

mentally build the map. For each beam position within the scan sector, the
imaging sonar provided an array of intensities. From these intensity val-
ues, those that were over a specified threshold represented the obstacles
detected. Once those values had been identified, they were transformed
into ranges or distances to the obstacles. However, since the imaging sonar
has a vertical beamwidth of 35°, the maximum range was limited to 10m
to avoid false-positive detections from the sea bottom. The echosounders,
on the other hand, were setup with a maximum range of 20m, since they
have a smaller beamwidth of 10° (see Appendix A).

This payload configuration was used in different sea trials, and allowed
the vehicle to traverse the breakwater structure with great repeatability.
To prove this latter, the Sparus II conducted missions that included mul-
tiple and successive start-to-goal queries. Figure 59 depicts one of these
missions. For safety reasons, the vehicle was connected to surface with
a wireless access point buoy that allowed us to monitor the mission and
abort it in case of detecting an unexpected behavior (see Fig. 59a). For this
mission, the Sparus II navigated with a constant surge speed u = 0.5m/s,
a maximum turning rate rmqx = 0.3rad/s, and at a constant depth of 2m.

The mission was composed of three different and consecutive start-to-
goal queries, and assumed the environment as unexplored. Both the NED
reference frame origin and the different goals coordinates when obtained
from Google Maps © 2017. For the first query, the vehicle was initially in
the inner area of the breakwater structure, and the goal was a coordinate
in the outer area. Hence, the only possible solution path required the AUV
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to navigate through one of the four-meter gaps (see Fig. 590b). The second
query was set back in the inner area but in a different coordinate, thus
requiring to move through to one of the gaps once again (see Fig. 59c).
Likewise, the third and last query was defined to conclude the mission in
the outer area (see Figs. 59d, 59e).

Along the mission, the Sparus II did not surface to obtain GPS fixes. Fig-
ure 59f depicts the vehicle trajectory and the Octomap built overlapped
with a satellite imagine of the breakwater structure. Although the Oc-
tomap is coherent with respect to the real-world structure, there are some
differences due to the accumulation of navigation error. Yet this did not
prevent the AUV from completing successfully the mission.

To further discuss potential applications, Figure 60 depicts a photo-
realistic 3D model of the area traveled by the Sparus II during the mis-
sion presented above. In this particular mission, the AUV used a stereo
optical camera, which gathered additional data from the surroundings.
Such information was used to create a more detailed survey of the area
after concluding the mission. Other missions may include sensors to mea-
sure different variables of interest, such as biological, chemical, as well as
bathymetric information. For more details about these 3D reconstructions,
the interested reader is referred to [46, 47].

6.2 PLANNING AUV PATHS IN NATURAL MARINE FORMATIONS

Although the mission in the breakwater structure represents a valid ap-
plication example, it is also true that the obstacles in it, i.e., the concrete
blocks, have regular shapes. Their vertical walls, for instance, were cor-
rectly detected by a mechanical-scanning imaging sonar, despite its great
beamwidth. Natural environments, on the other hand, present less regular
and more challenging scenarios. Therefore and in order to prove the pro-
posed framework under different conditions, the Sparus II also conducted
autonomous missions over a real-world natural environment. The testing
area is also located in Sant Feliu de Guixols (Spain), and contains rocky
formations that create an underwater canyon (see Fig. 61).

For this scenario, the Sparus II AUV used a mechanic-scanning profiling
sonar, which has a smaller beamwidth of 1 —2° (see Appendix A). This
sensor, which covered the horizontal plane, permitted not only to perceive
the obstacles shape with more accuracy, but also to set a higher maximum
range without being affected by false-positive detections from the bottom.
The AUV was also equipped with a set of three GoPro™ Hero 4 Black edi-
tion cameras. They were used to gather the optical images required to cre-
ate a 3D reconstruction of the surroundings. The cameras were positioned
systematically to ensure the highest possible coverage, where two of them
were placed in a downward configuration at an angle of 20°, while the
third camera was positioned forward looking at 40° (see Fig. 62).

In order to inspect the underwater canyon and the surroundings, two
different start-to-goal queries were established by extracting GPS coordi-
nates from Google Maps ©. The first query required the Sparus II AUV to
traverse the canyon towards the shore. The second query goal was chosen
on the outside of the rocky formation in such a way that the vehicle had to
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(@)

(b) (0

(d) (e)

(f)

Figure 59: The Sparus II AUV used the path/motion planning framework to nav-
igate through a breakwater structure without a preliminary map of
the surroundings. (a) The vehicle is submerged and is moving au-
tonomously amidst two concrete blocks. (b), (c), (d), (e) The mission
required traversing the breakwater structure multiple times by solv-
ing successive start-to-goal queries. (f) The vehicle trajectory is drawn
in light blue, while the map built with the imaging sonar data is pre-
sented in purple. This information is overlapped with a satellite image
(Google Maps © 2017).
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(@)

(b) (©

Figure 60: (a) Top-down view of the textured 3D model built with the images
gathered along the mission shown in Fig. 59. (b),(c) 3D views of the
corridors or gaps between the concrete blocks.
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(a) Satellite view. Image credit: Map data ©2017
Google.

(b) (0

Figure 61: The test scenario consists of rocky formations. (a) They create an un-
derwater canyon that can be observed in the satellite image. (b) From
the inner area (i.e., from the coastline towards the open sea) the canyon
can be clearly observed. (c) From the outer area the canyon can be ob-
served in the left.

(@) (b)

Figure 62: Exteroceptive sensors configuration for the Sparus II AUV to conduct
autonomous missions in the underwater canyon. (a) The vehicle was
equipped with three GoPro™ Hero 4 Black edition cameras and one
mechanical-scanning profiling sonar. (b) Real-world vehicle’s payload.
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circumnavigate the outer rock. Furthermore, after completing the second
query, the first query was executed again until the vehicle overlapped its
initial trajectory in the canyon. This allowed us to verify the navigation
consistency and to close the imaging acquisition loop, thus improving the
reconstruction results. As the profiling sonar covered the horizontal plane,
the mission had to be conducted at a constant depth.

Figure 63 depicts one of the inspection missions conducted at 3m of
depth in the underwater canyon. The Sparus II not only created a map of
a complex and unexplored environment, but also planned a collision-free
path simultaneously and incrementally. The map and the vehicle trajectory
are shown overlapped with a satellite image. In the initial part of the mis-
sion, i.e., when the vehicle traverses the canyon for the first time, the map
coincides with the satellite image (see Fig. 63b); however, disparities can
be clearly observed after some time (see Figs. 63c, d). Such differences are
due to the accumulation of error in the navigation system that depends
on the doppler velocity log (DVL), which may provide incorrect data when
navigating over rocks, as occurred in this test scenario. Despite this situ-
ation, the vehicle succeeded in conducting the mission because both the
map and the path are created online, which permits correcting or adjust-
ing them even when moving in previously visited areas (see Fig. 63d when
accessing the canyon for a second time).

(a) (b)

(©) )

Figure 63: The Sparus II AUV used the path/motion planning framework to nav-
igate through an underwater canyon without a preliminary map of
the surroundings. (a), (b) The first start-to-goal query required the
Sparus II traversing an underwater canyon. (c) For the second query,
the vehicle circumnavigated the outer rock. (d) The AUV partially re-
peated the first start-to-goal query in order to close the loop and to
obtain overlapped images. Vehicle trajectory and Octomap overlap a
satellite image (Map data ©2017 Google).
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In this kind of explorations, the data that is gathered along the mission
can be used to create a more detailed survey of the area. In this partic-
ular mission, for instance, the images were extracted and were used to
build a photo-realistic 30 model, which is depicted in Figure 64a. This 3D
reconstruction allows us to better understand complex environments by
generating arbitrary user-defined views (see Figs 64b—d). For more details
about these 3D reconstructions, the interested reader is referred to [46, 47].

(@)

(b) (©

(d)

Figure 64: (a) Top-down view of the textured 3D model with marked areas ad-
ditionally depicted in magenta, orange and blue, which correspond to
generated views of: (b) the underwater canyon; (c) the external side of
the underwater rocky formation; (d) underwater rocks.

Finally, in order to understand the complexity associated with this mis-
sion, Figure 65 presents a visual comparison between the vehicle’s trajec-
tory, estimated by its DR system, and the cameras’ trajectory, estimated
during the reconstruction (green and red, respectively). While both trajec-
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tories have a similar shape, it can be clearly observed how the one derived
from the cameras is more realistic according to the rock observed in the
surface (the rocky formation does not create a vertical wall, which means
that the vehicle may have moved further from the visible part of the rock
when navigating at 3m deep), while the one estimated by the AUV’s dead-
reckoning system seems to be colliding with the rock. This latter situation
is mainly due to the accumulation of errors in the navigation system, as it
was already mentioned before.

Figure 65: Vehicle trajectory (green) calculated by its dead-reckoning system and
the cameras trajectory (red) estimated by the image-based reconstruc-
tion. Both trajectories are shown overlapped with a satellite image of
the test scenario (Map data ©2017 Google).

63 PLANNING AUV PATHS IN CONFINED NATURAL ENVIRONMENTS

The experiments that have been presented until now involved the Sparus II
navigating at a constant depth. However, there are other scenarios in which
the AUV must modify its vertical position in order to complete the intended
mission. In such cases, one of the main limitations from the mapping and
path-planning perspective is the capability to build online a 3D map of
the surroundings. As explained in Sec. 5.2, Octomaps offer an efficient al-
ternative to represent volumetric environment information. Such data can
be gathered from a wide range of sensors such as echosounders, profil-
ing/imaging sonars, and multibeam sonars.

One example of a mission that require a 3D path/motion planner is
to move through confined natural environments (e.g., underwater caves
and tunnels). This kind of scenarios present all sort of limitations, includ-
ing the impossibility of having either a support surface ship to correct
the AUV navigation through an USBL system, or even a wireless access
point buoy for monitoring the correct mission execution. Other technical
aspects that make more difficult to conduct autonomous missions in these
environments, include the navigation error associated with incorrect data
provided by the DVL when traveling over rocky surfaces.

In dealing with this latter aspect, Mallios et al. presented the exploration
of an underwater caves complex (see Fig. 66), in which a diver guided
the Sparus AUV to gather environment acoustic information [91]. To do
so, the vehicle was equipped with two mechanically scanning imaging
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sonars to cover the horizontal and vertical planes. Such data was used
to prove a scan-matching algorithm over a simultaneous localization and
mapping (SLAM) framework, which allows reducing and bounding the
AUV navigation error. This survey provides an extensive dataset that in-
cludes not only the sonars” raw data, but also a detailed meshed map (see
Fig. 67) [91, 92]. This latter one was obtained by using the splats distance
normalized cut (SDNC) algorithm [15]. For more details about this survey,
the interested reader is referred to the cited references.

Figure 66: Satellite image of the dataset area. The underwater caves complex
“Coves de Cala Viuda” is located in the L'Escala, Spain (Lat: 42.10388,
Lon: 3.18255). It consists of three single-branch caves and several tun-
nels. Their approximate positions are marked with dotted white lines.
Image credit: Mallios et al. 2015 [91, 92]

All this together is nowadays considered a significant step towards the
exploration of these kinds of environments. Nonetheless, there are still
other aspects that must be tackled in order to conduct this kind of missions
fully autonomous. This thesis contributes to coping with some of those as-
pects. The proposed framework, for instance, seeks to endow AUVs with
additional capabilities that will allow to replace the diver’s guidance in a
near future. To prove these capabilities, this section presents a simulated
mission over the meshed map of the cave complex. The mission consisted
in solving six consecutive start-to-goal queries, where the Sparus II was
not provided with any preliminary environment information, thus requir-
ing to incrementally map and (re)plan the path to the goals. Figure 67
depicts the meshed map and the approximate locations of six different
query goals.

In order to conduct this test mission, the meshed map was added into
UWSim as a 3D simulation environment (see Fig. 68). To perceive the sur-
roundings, the AUV’s payload was assumed to be equipped with an addi-
tional link capable of rotating 120° around the vehicle’s z axis. Over this
link, a forward-looking multibeam sonar was mounted. The sonar had 240
beams distributed over a total aperture of 120° around the vehicle’s x axis.
With this payload configuration, the simulated Sparus II was capable of
gathering 3D range data of the environment along its direction of motion.

At the beginning of the mission, the simulated Sparus II was located
at the origin of the NED reference system and oriented towards the north,
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Figure 67: The underwater caves complex “Coves de Cala Viuda”. Meshed map
using the SNDC algorithm [15]. Image credit: Mallios et al. 2015 [91].
Over the map, the approximate locations of six different goals have
been marked in black.

Figure 68: The underwater caves complex “Coves de Cala Viuda” added into
UWSim as a 3D simulation environment.
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ie., qstart = [0.0,0.0,0.0,0.0]. The first start-to-goal query was defined to
guide the AUV closer to the caves complex location. This required setting
dgoal, = [20.0,0.0,12.0,0.0]. From this latter position, the second query
sought to explore the first and biggest single-branch cave. This meant
navigating through and until the end of the cave, which required setting
dgoal, = [18.0,55.0,8.0,1.57]. For these queries, the planner limited the
vehicle to navigate at a constant surge speed v = 0.5m/s, a maximum
ascending speed dgscena = 0.2m/s, and a maximum descending speed
ddescena = 0.18m/s. Figure 69 depicts part of the execution of these two
queries, including the AUV trajectory, the calculated path, and the goals.

(a) Vehicle trajectory, calculated path, goals, and Octomap

(b) Sparus II approaching the entrance of the first cave

Figure 69: Simulated mission in the caves complex. The first start-to-goal query
guided the AUV closer to the complex location. The second query re-
quired the vehicle to navigate through the first single-branch cave. In
(a) The vehicle trajectory appears in light blue, and the remaining of
the calculated path in yellow.

From the second query’s goal configuration, a third query was defined
to take the Sparus II closer to the second single-branch cave’s entrance,
i.e., qgoal; = [80.0,25.0,16.0,0.23]. To accomplish this part of the mission,
the AUV not only had to find a way out of the first cave, but also had to tra-
verse a tunnel that connects the entrances of both single-branch caves. For
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this query, the planner limited the vehicle to navigate at a constant surge
speed v = 0.3m/s, while keeping the previous maximum ascending/de-
scending speeds (dgscend = 0.2m/s and dgescena = 0.18m/s). This de-
crease of v permitted the vehicle to conduct maneuvers with a smaller
turning radius, especially required to leave the first cave. Figure 70 depicts
part of the execution of this query.

(a) Vehicle trajectory, calculated path, goals, and Octomap

(b) Sparus II traversing the underwater tunnel

Figure 70: Simulated mission in the caves complex. The third start-to-goal query
guided the AUV to the second single-branch cave’s entrance. In (a) the
vehicle trajectory appears in light blue, and the remaining of the calcu-
lated path in yellow. This query required the vehicle not only to find a
way out of the first cave, but also to traverse a tunnel that connects the
entrances of both single-branch caves.

Once the Sparus II AUV had crossed the tunnel, the fourth query was
defined to navigate through and until the end of the second single-branch
cave, i.e., dgoal, = [60.0,87.0,9.0,1.82]. To do so, the speed constrains were
kept as established for the previous query. Once this was accomplished,
the fifth query was set to guide the AUV close to a third cave’s entrance; this
meant qgoa1; = [82.0,47.0,17.0,0.0]. This latter query required the planner
to find a way out of the second cave, which is considerably narrower than
the first one. To cope with this latter situation, the planner used a lower
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surge speed, v = 0.1m/s, which allowed the vehicle to turn back with a
smaller turning radius. Figure 71 depicts part of the execution of these two
queries.

(a) Sparus II traversing the second cave

(b) Sparus II on its way back to the third cave’s entrance

Figure 71: Simulated mission in the caves complex. (a) The fourth start-to-goal
query required the vehicle to navigate through the second single-
branch cave. (b) The fifth query was defined to guide the vehicle close
to a third cave’s entrance. This required the planner to find a way out
of the cave. In both images, the vehicle trajectory appears in light blue,
and the remaining of the calculated path in yellow.

Finally, Figure 72 presents different views of the whole mission execu-
tion, where both the vehicle trajectory and the Octomap built along the
mission can be observed.

Figure 72 presented a mission in an environment that has been created
from a real-world dataset. This test not only evaluates all the aspects that
have been covered throughout this thesis, but also represents a clear ad-
vance towards fully autonomous inspections. However and as it was men-
tioned before, there are still some technical aspects that have to be further
developed in order to successfully conduct in-water trials. Some of these
aspects will be analysed and discussed in the next chapter.
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(a) Top view (b) Top view
(c) Perspective front view (d) Perspective front view
(e) Perspective back view (f) Perspective back view

Figure 72: Simulated mission in the caves complex. The whole mission was com-
posed of six start-to-goal queries that were executed consecutively.
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The experiments presented in the previous sections have attempted to
prove the capabilities of the proposed path/motion planning framework.
But as it was also mentioned before, in order to make some of these kind
of missions a reality, there are still additional technical aspects that have to
be tackled. For this reason, some of the framework’s validation tests have
been limited to conduct simulations over real-world datasets. One example
of this is the capability to plan feasible 5D paths, which was evaluated with
the exploration of confined natural environments. In order to complement
the validation of this feature, this section presents another experiment that
has been carried out with the AsterX AUV.

In most of the current operational and commercial AUVs, a mission plan
is generally defined in advanced by an operator. Such a mission seeks
to cover a predefined area from a constant and safe altitude. To do so,
the mission commonly consists of the path to be followed and a series of
payload commands. These commands establish when and where sensors
must acquire different data along the specific route. Therefore, the nature
of the data mainly depends on the mission objectives, as well as the sensors
installed in the vehicle, e.g., sonars, optical cameras and even physico-
chemical sensors.

In this approach of covering a predefined area, the preplanned route is
generally not modified during the survey. Instead, the objective is to sweep
the area in order to detect and localize potential targets, which can include
geological formations [38], shipwrecks [93], and other artificial or natural
underwater structures [31]. A common approach in this kind of missions
is to conduct a first exhaustive survey, and then extract and analyse the
gathered data to program a second and more specific survey. This latter
one attempts to obtain more details about the potential targets, as well as
to cover possible gaps resulted during the first exploration. However, this
two-survey strategy can be inefficient, since it requires establishing a com-
munication link between the AUV and its operator (located in the mother
ship) for retrieving the data and reprogramming a new mission. This is
particularly unnecessary in modern AUVs with long-term autonomy.

Aiming to overcome some of the aforementioned limitations, one alter-
native is to endow an AUV with a mission planner, or high-level controller,
that extends its decision-making capabilities. This additional control layer
must allow the vehicle not only to conduct predefined surveys, but also
to autonomously detect and inspect potential subareas of interest without
the need of resurfacing. To do so, the AUV is assumed to be equipped with
a looking-downward multibeam sonar, which gathers data from the sea
bottom along the initial mission. This data can be then automatically pro-
cessed onboard in order to detect anomalies and gaps, which are marked
as regions that require further inspection, thus enlarging the original sur-
vey. In the case of anomalies (i.e., objects that protrude above the surround-
ing seafloor), the vehicle must conduct closer explorations; while in the
case of gaps, it must complete covering the area that was initially defined.

To implement this approach over a particular AUV, it is necessary to first
understand its control architecture. In what concerns the AsterX, it is com-
posed of three main functional blocks (see Appendix A, Fig. 81): 1) the
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low-level controller, or frontseat, which runs over QNX; 2) the high-level
controller, or backseat, which runs over robot operating system (ROS); and
3) the payload controller®. Having this in mind, the proposed mission plan-
ner can be developed within the backseat, which allows including different
specialized processes, or nodes as referred to in ROS. Figure 73 depicts the
backseat controller together with the required nodes. It is also important
to notice that these nodes not only are capable of exchanging information
between each other, but also can externally communicate with the frontseat
and payload controllers.

The first of these nodes is called the target/gap detector, and it uses the
multibeam data gathered along the initial survey to detect targets (anoma-
lies) and gaps. The second and central node is called mission handler, and
it receives a list of the targets and gaps’ positions. Around these positions,
this node establishes subareas of interest. The third node is the path planner,
and it is based on the planning module presented in Chapter 5. This node
calculates 3D feasible paths to approach and conduct further exploration or
coverage of the subareas of interest. Finally, once the planner has provided
the paths, the mission handler send them to the path-tracking controller. This
latter node generates the corresponding frontseat controller setpoints.

Figure 73: Main modules of the backseat controller

An important aspect of the path planner used for this experiment is
the necessity to take into account the vehicle motion constraints involved.
Apart from those constraints associated with a torpedo-shaped AUV, the
AsterX can also be limited to navigate at a constant surge speed. This
leaves the turning rate as the variable that determines the AUV turning ra-
dius. This formulation coincides with the approach presented in the Chap-
ter 3, thus allowing the use of the planning module presented in Chapter 5.
In order to validate this new one-survey approach, the AsterX AUV con-
ducted a real-world inspection by using its backseat controller with the

2 For more details, the interest readers are encouraged to look into Appendix A
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functional nodes mentioned before. Figure 74 depicts the deployment of
the AUV before starting the mission.

(a) (b)

(©

Figure 74: AsterX AUV deployment from its mother ship L'Europe

The mission consisted in detecting and navigating in close proximity to
a plane wreck that is located in the bay of La Ciotat, France. Although the
approximate location was known, it was not considered accurate enough
to send the vehicle closer. Before starting the mission, the AsterX was pro-
grammed to follow a predefined coverage survey of the area of interest.
To do so, the AUV navigated at 10m deep and with a constant surge speed
of 1.5m/s. This initial survey was defined within the frontseat controller,
which, once completed this first part, handed over the control of the AUV
to the backseat. Once the backseat was informed, it guided the vehicle over
a straight line trajectory while keeping the same speed and safe altitude.
This maneuver was conducted while the target/gap detector processed the
multibeam data to detect the potential targets and gaps, if any of them
exist. Figure 75 depicts the area of interest, the initial survey, and the po-
tential target and gaps detected from the multibeam data.

After the detector provided the locations of the potential targets and gaps,
the path planner calculated a complementary 3D trajectory to both explore
the potential targets and cover the gaps. For the former case, the planner
calculated a path 15m over than highest point detected in the target. For
the latter case, the planner defined paths to cover the gaps at the deep
of the initial survey, i.e., 10m for this particular mission. As the extended
mission required navigating at different altitudes, the planner calculated 3D
paths that met the ascending and descending motion constraints, as it was
explained in Chapter 4. Once this calculation was complete, the whole
path was sent to path-tracking controller. Figure 76 depicts the extended
mission to navigate over the potential target and to cover the gaps.
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Figure 75: Potential target and gaps detected after completing the initial survey
with the AsterX AUV. It can be observed the area of interest in black,
the AUV trajectory in green, the area covered with multibeam sonar
with light grey, and two gaps and one potential target in white.

Figure 76: Path planned to further cover the potential target and gaps with the
AsterX AUV. It can be observed the new extended mission in yellow.
Although the view is from the top, the path is 3D since it requires
different altitudes to inspect targets and to cover gaps.
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As mentioned in the beginning of this section, this experiment allows
further proving the capability of planning 3D AUV paths by using the ap-
proach proposed in this thesis. Figure 77 depicts how the AsterX AUV fur-
ther inspected the target by following a calculated path. To do so, the ve-
hicle descended to a specify altitude with respect to the detected anomaly
(target), while conducting turning maneuvers. Both horizontal and verti-
cal motions met the vehicle motion capabilities. Finally, Figure 78 shows
the final AUV trajectory after completing the whole mission. It can be ob-
served how the vehicle not only traveled over the target, but also covered
the gaps.

Figure 77: The AsterX AUV approaches to further inspect a potential target. The
vehicle trajectory is presented in green, while the calculated path ap-
pears in yellow.

Figure 78: The AsterX AUV completed the mission by inspecting the potential tar-
get and covering the gaps from the initial survey. It can be observed the
area of interest in black, the AUV trajectory in green, the area covered
with multibeam sonar with light grey.
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CONCLUSIONS

7.1 SUMMARY OF COMPLETED WORK

This thesis has addressed the problem of planning paths online for an au-
tonomous underwater vehicle (AUV), which navigates under motion con-
straints through unexplored environments. This kind of missions require
the vehicle to incrementally map the surroundings, while simultaneously
replanning a feasible and safe path. After providing an overview of the
general problem and the proposed objectives to tackle it, Chapter 2 pre-
sented the state of the art of path/motion planning for robotic systems.
This review started with discussing the general planing problem, then it
classified the available techniques, and finally it discussed their most com-
mon extensions. For this latter part, the review put special emphasis on
those methods that have been used with underwater vehicles.

Chapter 3 presented the use of sampling-based methods to plan feasi-
ble and constant-depth paths for a torpedo-shaped AUV. Here the term
feasible refers to paths that take into consideration the vehicle’s limita-
tions, either kinematic or dynamic ones. In the case analysed in this the-
sis, torpedo-shaped AUVs are kinematically constrained, since they cannot
conduct pure lateral motion. Instead, they are required to move forward or
backward while conducting turning maneuvers. Two different approaches
to consider such limitations were presented and discussed. The first one di-
rectly uses the AUV kinematic equation of motion. The second one employs
Dubins curves to characterize the AUV motion with straight line segments
and circular arcs. Both approaches were evaluated and compared in differ-
ent simulations. This allowed identifying their advantages and drawbacks,
which led to establish the one using Dubins curves as the best approach.

Chapter 4 proposed an alternative formulation to plan feasible and
variable-depth paths for a torpedo-shaped AUV. This formulation extended
the Dubins curves by including the AUV vertical motion, and it was also
used with a sampling-based planning method. This sought to define a gen-
eral strategy to plan 3D paths, which took into account both the vehicle’s
lateral and vertical motion constraints. This approach was evaluated in dif-
ferent simulated scenarios, where it was compared with another approach
that does not include the vehicle’s motion constraints involved. Results
proved that the proposed approach allows an AUV to follow more accu-
rately 3D paths.

While simulation tests in Chapters 3 and 4 assumed fully mapped en-
vironments, the main objective of this thesis was to endow an AUV with
the capability to move through unexplored environments. In order to do
so, Chapter 5 introduced an online mapping and path/motion planning
framework for AUVs. The framework uses an Octomap to incrementally
build a representation of the surroundings. To calculate the AUV path, it in-
cludes a sampling-based planner that employs the extended Dubins curves
formulation for dealing with 2D and 3D missions. Furthermore, the plan-

98



7.1 SUMMARY OF COMPLETED WORK

ner not only computes a feasible path, but also attempts to obtain a safe
one by minimizing its associated risk. Finally, the framework incorporates
new strategies that seek to reduce the running time, which is a critical
requirement for the intended applications and their online computation
limitations. The framework was evaluated with simulations in different
scenarios.

In order to completely validate the proposed framework and its prop-
erties, Chapter 6 presented different experiments that were conducted by
torpedo-shaped AUVs. This included four different real-world scenarios:

1) Planning constant-depth paths to move through artificial marine structures.
In this case, the Sparus II AUV traversed multiple times a breakwater struc-
ture, which is composed of a series of concrete blocks separated by four-
meter gaps. At the beginning of the mission, the vehicle was not provided
with a map of the surroundings. This required the vehicle to incrementally
build a map, while planning a feasible and safe path to the different spec-
ified goals. Furthermore, the vehicle was equipped with optical cameras
to gather images, which were used to create a 3D reconstruction of the
traveled area.

2) Planning constant-depth paths to move through natural marine structures.
In this case, the Sparus II navigated through a natural underwater canyon
made by rocky formations. This experiment sought to prove the frame-
work’s capabilities in a more challenging scenario with non-regular shape
obstacles. As occurred in the previous experiment, the vehicle was not
provided with an initial map of the area, and it was also equipped with
optical cameras. The result of the mission also included a photo-realistic
3D reconstruction of the natural scenario.

3) Planning variable-depth paths to move through confined marine environ-
ments. In the previously mentioned experiments, the vehicle navigated at
a constant depth due to a sensor limitation. However, in order to validate
the capability to plan 3D paths, a simulated Sparus II conducted missions
over a real-world dataset of a cave complex. This scenario required solving
consecutive start-to-goal queries of different depths. As occurred with the
previous experiments, the vehicle was not provided with an initial map of
the surroundings.

4) The autonomous survey replanning for gap filling and target inspection. In
this case, the AsterX AUV conducted an inspection of an area of interest.
The mission was composed of two phases. The first one required the AUV
to follow a preplanned coverage path. The second one guided the vehicle
to further inspect either potential targets or gaps (i.e., areas not correctly
covered). For this latter phase, the extended Dubins curves formulation
was used to plan 3D paths to guide the AUV closer from the potential
targets. This experiment sought to complement the validation of planning
3D paths with a real-world vehicle.

These tests allowed proving the viability of the proposed approach un-
der real-world conditions. This included the assessment of the computa-
tional efficiency, in which a single embedded computer was capable of
conducting simultaneously mapping, planning, and control tasks. Further-
more, along the development of the proposed framework, the success rate
increased from 10 —20% during the initial tests, to 80 — 90% when using
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the final version of the framework. However, it is also important to men-
tion that those failing cases were mainly due to sensor limitations.

7.2 REVIEW OF CONTRIBUTIONS

Aiming to endow AUVs with the capabilities required to operate in un-
explored environments, this thesis has proposed an online mapping and
path/motion planning framework. This led to extend and develop differ-
ent strategies that contribute to the current state-of-the-art for underwater
vehicles. Such contributions have been presented and peer-reviewed along
different Publications, and they can be gathered in four main aspects:

PATH/MOTION PLANNING ONLINE This thesis established that in order
to move through unexplored environments, an AUV has to be capable
of incrementally mapping the surroundings, while simultaneously
planning collision-free paths. However, an initial approach in this
thesis was to have two vehicles to conduct missions in unexplored
environments. The first vehicle had to navigate at a safe altitude,
and it was assumed to be equipped with a downward-looking multi-
beam sonar that allowed to build online a map. Such a map was
used to simultaneously plan collision-free paths for a second vehi-
cle that navigated in close-proximity to the sea bottom [NGCUV’15].
Although the previous approach was limited to simulation tests, it
did contribute to define a first mechanism for simultaneous map-
ping and planning [OCEANS’15]. This mechanism later became the
framework thoroughly explained in Chapter 5. In its first version, the
framework used an anytime tree-pruning strategy that opportunisti-
cally check states for collision [ICRA’15], but it was later improved by
reusing the last best known solution [IROS’16].

PLANNING FEASIBLE MOTION FOR AUVS Although a simultaneous map-
ping and planning mechanism allowed an AUV to move through an
unexplored environment [ICRA’15], results also showed multiple re-
planning maneuvers. The main reason was that the AUV was not
capable of accurately following the provided paths. This thesis iden-
tified the necessity to plan not only collision-free paths, but also feasi-
ble ones. This means that the calculated paths must take into consid-
eration the vehicle’s motion constraints, thus minimizing unexpected
vehicle’s trajectories when attempting to follow the calculated path.
This thesis proposed and validated the use of Dubins curves to char-
acterize the constant-depth AUV motions [IROS16], which was later
extended to consider full 3D trajectories [JFR17].

PLANNING SAFE PATHS AUVs operate in complex environments, where
they can be affected by external perturbations such as waves and
currents. Furthermore, AUVs’ navigation system has a position er-
ror that cannot be corrected while submerged, especially in environ-
ments where a mother ship cannot be used with an USBL system.
These operation conditions can lead the vehicle to risky situations,
especially when moving in close-proximity to nearby obstacles. This
thesis evaluated different alternatives to plan not only collision-free
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and feasible paths, but also ones that attempt to minimize the risk
of collision. A first alternative was to maintain a safe distance from
the surroundings [NGCUV’15]. However, it was later replaced with
an optimization function that combines the length and the risk asso-
ciated with a calculated path [IROS’16].

EXPERIMENTAL EVALUATION This thesis has extensively proved the pro-

7:3

posed framework and its newly introduced capabilities. This valida-
tion mainly involved the Sparus II AUV. The experiments included
simulated and in-water trials in different scenarios, such as artifi-
cial marine structures (breakwater) [ICRA’15, IROS’16], natural ma-
rine structures (underwater canyon) [SENSORS’16], confined natu-
ral environments (caves complex) [JFR'17]. Furthermore, the capa-
bility of planning feasible 3D paths was validated with the AsterX
AUV [OCEANS’17].

FUTURE WORK

This thesis cannot be considered a final and definitive solution for the
problem of planning feasible and safe paths for AUVs. However, it does
contribute a further step towards better and more reliable underwater ve-
hicles. In doing so, this thesis has established the basis for challenging
future work that will continue extending the AUVs” capabilities.

IN-WATER TRIALS FOR 3D MAPPING AND PLANNING Even though the

framework proposed in this thesis supports both 2D and 3D missions,
its capability of mapping 3D environments was only evaluated with
simulations over virtual and real-world datasets. This was mainly
due to technical limitations, such as the absence of a mechanism that
allowed the AUV to rotate a forward-looking multibeam sonar. There-
fore, the next and immediate step to continue this work could be to
conduct in-water trials in 3D scenarios, such as the caves complex
mentioned in Section 6.3.

PLANNING VARYING SPEED MOTIONS The framework proposed in this

thesis uses a sampling-based method with Dubins curves as a steer-
ing function. This formulation assumes that the AUV moves with a
constant surge speed and a maximum turning rate. In this way, the
AUV paths can be parameterized with straight line segments and cir-
cular arcs of constant radius. However, there are situations in which
the vehicle should be capable of conducting tight turns. Some of
these situations where presented in Section 6.3, where the AUV surge
speed was reduced to allow the planner finding a way out of nar-
row tunnels. Therefore, another possible extension for future work is
to analyse alternatives to plan feasible and safe paths with varying
speeds, thus permitting maneuvers with different turning radius.

VIEW/INSPECTION PLANNING As it was mentioned when discussing

the experiments presented in Chapter 6, this thesis did not have as
an objective to provide a strategy to inspect an area or structure of
interest. Another possible future work from this thesis can be the
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development of methods to efficiently conduct such inspections. In
this case, the proposed framework can be used as a low-level layer
for a high-level control pipeline. This latter will have to establish the
trajectory that AUV should follow in order to fully inspect an area
or structure. As an example of this possibility, some of the character-
istics of the proposed framework have been already used in a view
planning framework for AUVs [RA-LETTERS 17].

PATH/MOTION PLANNING UNDER UNCERTAINTY One of the require-
ments identified for moving through unexplored environments was
to attempt minimizing the risk of collision. Having this mind, this
thesis presented an optimization function that allows combining the
length and the risk associated with the path. This approach, how-
ever, is heuristically established. Another possible future work is to
propose an alternative methodology to calculate safe paths. Such a
new approach should consider the different sources of uncertainty
to establish the validity of the vehicle’s states. In this case, the un-
certainty might include the one associated with the model, the con-
troller, the navigation system, and/or the exteroceptive sensors that
detect nearby objects. Most of the current work on this matter is
still computationally expensive, although there are some promising
formulations that could be extended for AUVs. Some these alterna-
tives were analysed during the development of this work, and they
are currently under studied as an ongoing work at University of
Girona [ICRA’18].
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EXPERIMENTAL PLATFORMS

The experimental validation of the framework proposed in this thesis has
involved two AUVs. While most of those tests were conducted with the
Sparus II AUV, the experiments that proved one of the framework capabil-
ities were done with the AsterX AUV. The following sections explain the
main software and hardware aspects of both vehicles.

A.1 SPARUS II AUV

The Sparus II is a torpedo-shaped AUV with hovering capabilities, which
has been designed and developed at the Underwater Vision and Robotics
Research Center (CIRS)'. The vehicle is rated for depths up to 200m, and
is equipped with three thrusters; two of them are located in the back, and
are used for motion on the horizontal plane; the third one is located in the
middle, and is dedicated to vertical motion. This implies that the AUV can
be actuated in surge, heave and yaw DOF. Furthermore, the Sparus II is
equipped with a navigation sensor suite that includes a pressure sensor, a
doppler velocity log (DVL), an inertial measurement unit (IMU) and a GPS
to receive position fixes while at surface.

The Sparus II AUV also has communication devices such as an acoustic
modem for underwater communication with other vehicles or surface sta-
tions (e.g., by using an USBL system), and a Wi-Fi antenna that can be used
when the AUV is at surface. Moreover, the vehicle includes a configurable
payload area in the front, which contains a set of exteroceptive sensors to
perceive and detect the surroundings. This latter group of sensors can be
modified according to the mission’s requirements, and may include opti-
cal cameras, single-beam echosounders, mechanical-scanning (profiler and
imaging) sonars, multibeam sonars, etc. Figure 79 depicts different views
of the Sparus II AUV, including one where a possible payload configuration
can be observed.

In what software concerns, the Sparus II AUV is controlled through the
component oriented layer-based architecture for autonomy (COLA2) [101],
which is a control architecture that is completely integrated with the robot
operating system (ROS). Besides operating aboard real robots, COLA2 can
interact with the underwater simulator (UWSim) [105], which can import
3D environment models and simulate the vehicle’s sensors and dynamics
with high fidelity. Furthermore, the use of ROS allows to easily integrate
third party tools, such as the open motion planning library (OMPL) that
offers a convenient framework that can be adapted to specific path/motion
planning problems [115].

1 CIRS is part of the Computer Vision and Robotics Institute (ViCOROB) in Girona (Spain)
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A.1 SPARUS II AUV

(a) Sparus II in a water tank at CIRS

(b) Top view

(c) Bottom view

(d) Lateral view

(e) 3D view

Figure 79: Sparus II AUV: top, bottom, lateral and 3D views. Different hardware
parts can be observed, including the thrusters (1,2), the acoustic mo-
dem (3), the Wi-Fi and GPS (4), as well as interoceptive and extero-
ceptive sensors such as the DVL (5), side-scan sonar (6), mechanically-
scanning imaging sonar (7), single-beam echosounders (8), multibeam
sonar (9), and an optical camera (10).
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A.2 ASTERX AUV

The AsterX is a torpedo-shaped AUV from the French Research Institute for
Exploitation of the Sea (Ifremer). This vehicle is based on the Explorer 3000
AUV, which is built by International Submarine Engineering (ISE), from
Canada. The vehicle is rated for depths up to 3000m, and is equipped
with one back propulsion motor, three aft steering planes, and two fore
planes. Similarly as the Sparus II, AsterX is equipped with a navigation
sensor suite that includes a pressure sensor, a DVL, an IMU and a GPS
to receive position fixes while at surface. It also has an acoustic modem,
and a Wi-Fi antenna. This AUV also includes a modular payload area in the
front, which may carry different sensors, e.g., a multibeam sonar. Figure 8o
depicts the AsterX AUV at sea surface, and a schematic with its main inner
hardware devices distribution.

(a) AsterX AUV at sea surface during in-water trials

(b) Lateral view

Figure 8o: AsterX AUV at sea surface and its lateral view with a description of
the different hardware elements.

On the other hand, the AsterX’s software architecture is composed of
three main functional blocks (see Fig. 81). Firstly, the AUV low-level con-
troller, also referred as frontseat, guides the vehicle using the automated
control engine (ACE) middleware. This controller is executed over QNX
operating system, thus guaranteeing real-time computation constraints.
Furthermore, this functional block also handles the vehicle’s navigation
and safety routines. Secondly, the backseat controller extends the vehicle’s
capabilities and applications by easing the implementation of high-level
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routines, such as algorithms for path/motion planning, path-tracking, and
docking. These routines can directly send low-level control setpoints. This
functional block has its own dedicated computer that works under the
ROS (over Linux). Finally, the payload controller acts as a bidirectional in-
terface between the interoceptive and exteroceptive sensors, and, on the
other hand, both the frontseat and backseat controllers.

Figure 81: AsterX AUV software architecture
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