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Abstract The area east of Varanasi is one of the numerous places along the watershed of the 

Ganges River with groundwater concentrations of arsenic surpassing the maximum value of 10 

parts per billion (ppb) recommended by the World Health Organization (WHO). Here we apply 

geostatistics and compositional data analysis for the mapping of arsenic and iron to help 

understanding the conditions leading to the occurrence of groundwater high in arsenic. The 

methodology allows for displaying concentrations of arsenic and iron as maps consistent with the 

limited information from 95 water wells across an area of approximately 210 km2; visualization 

of the uncertainty associated with the limited sampling; and summarizing the findings in the 

form of probability maps. Varanasi has been for thousands of years on the erosional side in a 

meander of the river that is free of arsenic values above 10 ppb. Maps reveal two anomalies of 

high arsenic concentrations on the depositional side of the valley, which has started to see urban 

development. The methodology for using geostatistics combined with compositional data 

analysis is completely general, so this study could be used as a prototype for hydrochemistry 

mapping in other areas. 
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Introduction 

Mapping of measurements taken at scattered locations across an area of interest is fundamental 

for analysis, modeling and characterization in hydrochemistry. The prevailing practice is by far 

the use of methods valid for the study of other attributes taking unrestricted real values. There 

are two major problems with those approaches: (a) geochemical data are often reported as 

concentrations, which are not real numbers in the standard sense, i.e. able to take any value 

between minus infinity and plus infinity, but constrained positive numbers denoting fractional 

contributions to a whole (Aitchison 2003), and (b) mapping requires the estimation of values 

complementing the information offered by the data and those calculations are often conducted 

applying methods, such as inverse distance weighting or spline interpolation, that do not take full 

advantage of the information inherent to the data (e.g., Isaaks and Srivastava 1989; Sha and 

Ahmad 2015; Meyzonnat et al. 2016). 

Groundwater along the Ganges and Brahmaputra river basins commonly have levels of arsenic 

that are above the critical concentration of 10 parts per billion (ppb) established by the World 

Health Organization (WHO 2011). All in all, the problem exacerbates downstream, thus being 

more critical in Bangladesh, particularly at the delta (British Geological Survey 2001). Attention 

to the problem has come at a slower pace in India than in neighboring Bangladesh. 

The objectives of this study are: (a) explain the fundamentals of mathematical modeling that 

today are necessary for a state-of-the art hydrochemistry mapping; (b) apply the methodology to 

some well measurements from Varanasi, thus illustrating the approach and offering clues for 

understanding the occurrence of high arsenic values in the groundwater of the area. 

Methodology 

Geostatistics 

Geochemical mapping, such as one for arsenic concentrations, involves two basic steps: (a) 

interpolation and extrapolation of values at locations not considered in the surveying, and (b) 

display of the results. These two steps are common to multiple estimation problems in the earth 

sciences and engineering. Pooling of efforts has resulted in several related approaches. Here we 

borrow from geostatistics (e.g., Chilès and Delfiner 2012), stochastic simulation in particular 

(e.g., Caers 2011). Different from other methods, geostatistics has the advantage of considering 

the spatial continuity of the data and the capability of displaying the uncertainty associated with 

the modeling, which in classical geostatistics is accomplished through the use of the 

semivariogram (e.g., Webster and Oliver 2015). 

Geostatistics, like statistics, heavily relies on the use of random variables for the modeling of 

attributes with a geographical variation, also called regionalized variables. Given an uncertain 

outcome, such as the casting of a die or the concentration of iron at a well not yet drilled, a 
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random variable describes all possible outcomes and their relative likelihood of occurrence 

through a probability distribution (e.g., Olea 2009). In the simple case of the die, the outcomes 

are the integers between 1 and 6, and, for a fair die, all probabilities are the same: 1/6. The 

random variable for the Fe concentration at a well not yet drilled is more complicated to come by 

and will require the rest of this section to explain it. 

There are two families of mapping methods in geostatistics. Kriging is a generalization of 

least squares that provides single estimated values by minimizing the prediction error (e.g., Olea 

2009). Stochastic simulation provides instead multiple maps that honor the data and the style of 

spatial fluctuation. In that regard, results from stochastic simulation are similar to the different 

responses that can be obtained by requesting to different experts to independently prepare a 

contour map based on values posted in a piece a paper. 

From the always growing number of stochastic simulation methods, we use here sequential 

Gaussian simulation for its efficiency, versatility, easy application and wide acceptance (e.g., 

Pyrcz and Deutsch, 2014). The cornerstone of the method is the following simple multiplicative 

rule from probability theory: 

      ABABA |ProbProbProb  , (1) 

where  BAProb  is the probability that both events A and B take place simultaneously, 

 AProb  is the probability that A  occurs and  AB |Prob  is the conditional probability of 

occurrence of B when A has been observed (e.g., Hogg et al. 2012). 

A fundamental difference between classical statistics and geostatistics is the requirement of 

keeping track of data location, is , which, in two-dimensions, is an abbreviated form to denote 

easting and northing. Differently from the notation in classical statistics, a random variable is 

denoted by  iz s . Using the probability density function,  f , and geostatistical notation to 

keep track of location, Eq. 1 can be rewritten as: 

          )|()(),( 12121 sssss zzfzfzzf  , (2) 

expression that can be generalized to any number of locations, in our situation, nodes of a regular 

grid to prepare a pixel map. Sequential Gaussian simulation is a numerical implementation of Eq. 

2 in which the interpolated values are obtained by drawing from normal distributions according 

to the following procedure (e.g., Emery 2004): 

1. If the sample is not univariate normal, transform the data to normal scores (e.g., Pyrcz and 

Deutsch, 2014) and continue the modeling in terms of normal scores. 

2. Find the semivariogram using standard modeling techniques (e.g., Olea 2006). 

3. Schedule a random visitation of each of the nodes in the grid. 
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4. Apply kriging considering all original data and, if this is not the first visited node, also all 

previously simulated values to obtain an estimated value  iz s
*  and kriging standard error 

 is
* . 

5. Draw a value,  iGz s , from a normal distribution with parameters  iz s
*  and  is

* ; this is 

the simulated value at location is . 

6. Add  iGz s  to the expanded data set of the original measurements. 

7. If this was not the last node to visit, go back to Step 4. 

8. If a normal score transformation was necessary in Step 1, backtransform the results. 

Each pixel map is an outcome called a realization. It is possible to explore the uncertainty 

space by changing the visitation schedule, thus generating different realizations. By replacing 

kriging by cokriging, the procedure can be generalized into a multivariate approach for the 

cosimulation of two or more attributes spatially correlated (Verly 1993). If a node coincides with 

a sampling location, by the kriging and cokriging exact interpolation property,  is
*  is zero. 

Consequently, sequential Gaussian simulation is also an exact interpolator reproducing all data 

without error or uncertainty. Each realization also reproduces the spatial correlation revealed by 

the observations. The public domain software SGeMS (Remy et al. 2009) was used for 

generating realizations. 

As for the answer to the question at the beginning of this section, if for example 200 

realizations for iron concentration are generated, the random variable Fe at location is  is 

numerically approximated by the values at is  in each one of the realizations, that is, a total of 

200 values, in general all different and following a positively skewed distribution, such as a 

lognormal. 

Compositional data analysis 

Concentrations provide relative information among values of different components. This type of 

data is never negative and ordinarily, for every specimen, the complete set of parts adds to a 

constant, say 1,000,000 parts per million, or it can be represented this way. When zero 

concentration values are reported, the assumption that these values represent a non-null value 

below detection limit is commonly accepted (Palarea-Albaladejo and Martín-Fernández 2015). 

On the other hand, most statistical methods, such as sequential Gaussian simulation, have been 

formulated to work with real attributes theoretically ranging from   to +  and honoring 

Euclidean geometry in real space (Pawlowsky-Glahn and Egozcue 2016). In addition, when 

modeled with standard methods, compositional data are known for presenting problems not 

shared by attributes varying in real space, such as spurious correlations and subcompositional 

incoherence (Aitchison 2003; Egozcue 2009; Greenacre 2011; Pawlowsky-Glahn et al. 2015c). 
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The most efficient simultaneous solution to all these shortcomings has been changes in the data 

representation using various forms of logarithmic ratios (Aitchison 2003, Aitchison and Egozcue 

2005), which are all related (Egozcue et al. 2003). An important feature is that these logratios 

can be used as coordinates representing the concentrations (Pawlowsky-Glahn and Egozcue 

2001; Egozcue and Pawlowsky-Glahn 2006; Pawlowsky-Glahn et al. 2015c). Here we work with 

the isometric logratio transformation because it provides the most direct approach for 

geostatistics adequately modeling uncertainty. Geometrically, this transformation can be 

regarded as a projection of the compositional vectors onto an orthogonal basis. In the present 

study, we use a sequential binary partition for calculating the coordinates, in which case the 

coordinates receive the name of balances (Egozcue and Pawlowsky-Glahn 2005; Egozcue and 

Pawlowsky-Glahn 2011). 

The isometric logratio transformation 

Let us consider a sample of size N at location ,,,2,1, Nii s  across a spatial sampling 

domain and let us assume that there are D chemical element parts associated with concentrations 

that can be treated as regionalized variables. Then at each location is  there is a vector with D 

measured concentrations,         TiDiii zzz ssssz ,,, 21  , Ni ,,2,1  , where T denotes 

the transpose of a matrix, namely, the matrix that results from exchanging columns and rows. 

The 1D  balances  ijb s  are given by 
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where jp , jn , and k  come from a partition matrix, Θ , separating the parts in a similar way as it 

is done with the data in cluster analysis. At each branching, 1, kj  denotes the parts in one 

side of the partition and 1, kj  in the other, with 0, kj  indicating that the concentration is 

not in any of the two branches. The number of +1 per row of the partition matrix Θ  is jp  and jn  

is the number of 1 . For example, in a sample comprising four parts, the partition matrix plus 

the counts could be: 
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in which case the three balances are: 
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Backtransforming estimated balances 

Balances may have interesting properties that sometimes are easy to interpret. Here, however, 

balances are used as auxiliary variables with the exclusive purpose of applying geostatistics; 

there is no intent or need to interpret them. Geostatistics uses the balances to generate estimated 

balances,  ij
b s

*
, which need to be backtransformed when the interest lies in displaying the 

results in the original part space. Similarly to the generation of balances, the backtransformation 

relies on a matrix to define terms. This is the contrast matrix, Ψ , whose elements kj ,  depend 

on the value of the elements kj ,  of the partition matrix Θ . 
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with DkDj ,,2,1;1,,2,1   . The backtransformed values,  isz
* , are given by 

       iii c sbΨssz
*T** exp  Ni ,,2,1,  , (6) 

where  isb
*  is the vector of estimated balances:         TiDiii bbb ssssb
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the estimated scaling factor  ic s
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where the bracket   j  denotes the jth component of the vector. Eq. 7 presumes that the sum of all 

parts adds to a constant   for any is  (Pawlowsky-Glahn et al. 2015a). If not all parts in the 

system have been measured, then    
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ijiD zz ss   becomes the collective contribution of 

all parts without measurements, with 1D  being the number of parts with measurements. If all 

of the parts are not supposed to add to a constant, or there is interest in reducing the 

dimensionality of the modeling by not calculating all balances while still using all information 

available, or both, one possibility is to use 
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where the summation is over all variables of interest, with m denoting their total number and the 

asterisk indicating an estimate (Pawlowsky-Glahn et al. 2015b). By Eq. 4 and 5, the contrast 

matrix for the illustrative example is: 
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Therefore, by Eq. 6, the backtransformed parts are 
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The final solution is obtained applying Eq. 7 or 8, whichever applies. 

The transformation and backtransformation processes have the following properties among 

others: (a) the results of the modeling do not depend on the selection of the partition matrix 

(Pawlowsky-Glahn et al. 2015c), and (b) it is possible to define and calculate only a few of all 

possible balances, flexibility that will be applied and illustrated in the case study; choosing only 

few balances is equivalent to perform an orthogonal projection on a subspace generated for the 

chosen balances, thus providing a dimension reduction (Egozcue and Pawlowsky-Glahn 2005; 

Pawlowsky-Glahn et al. 2015b). All compositional data modeling was done using software 

coded by the senior author. 

Case study 

The Ganges River is the major stream in Varanasi, draining the west side of the city and flowing 

from south to north (Fig. 1), eventually reaching the Bengal Bay roughly to the southeast. The 

city of Varanasi is in the middle part of the Indo-Gangetic plain at an average height of 76.2 m 

above the mean sea level with even topography which lies between the peninsular India and the 

Siwalik range which represents alluvial deposits filling the Himalayan foreland. 
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Fig. 1 Location map, with numbers denoting the location identifiers in Table A1. The textured 

areas inside the river denote sand banks. 

Geology 

The majority of the sediments deposited in the foreland basin have their source in the Himalayas, 

where sediment production is attributed to the episodic tectonic activity and climate variability 

(Srivastava et al. 2003; Singh et al. 2007). According to Tandon et al. (2006), the Ganges plain 

lies within one of the world’s most active tectonic and southwest monsoon dominated regions in 

the world. Climatic and tectonic changes with time have caused the development of various 

geomorphic surfaces and features, which are regionally persistent in the plain (Singh 2004). 

The availability of groundwater in the Ganges alluvial zones is controlled by the thickness of 

sand and clay zones. The alternating sand and clay layers have created a multi-tier aquifer system 

in the Varanasi area (Shukla and Raju 2008). The top 25 m of the alluvial deposits are dominated 

by clay, silt, and sandy clay with thin lenses of sands. In the study area in particular, the 

groundwater is under phreatic condition at least up to 100 m of depth. All water samples were 



 
 

10 
 

taken from depths shallower than 100 m. Depth of water level varies between 5 and 29 m below 

ground level. The water level shows lowering trends in some parts of the study area because of 

fast urbanization and intensive pumping for domestic and irrigation use. Groundwater is 

extracted through dug wells, hand tube wells and deep bore wells. Dug wells and shallow tube 

wells (hand pumps) mainly tap the unconfined aquifers. General depth of hand tube wells and 

deep bore wells ranges 60−70 m and 80−250 m below ground level, respectively, and at the 

deeper levels aquifer occurs in semi-confined to confined conditions. 

Arsenic contaminated aquifers are pervasive throughout the entire Ganges River basin 

(Chakraborti et al. 2003; Srivastava et al. 2003; Acharyya 2005; Tandon et al. 2006; Singh et al. 

2007; Chauhan et al. 2009; Kumar et al. 2010; Shah 2010; Raju 2012; Srivastava and Sharma 

2013; Saha and Shukla 2013; Chandana et al. 2015; Singh et al. 2016; Kumar et al. 2016). 

Geomorphological controls, such as the meandering pattern of the Ganges and Brahmaputra 

River, is responsible for the localized depositions of arsenic rich sediments along the course of 

the river. Consequently, groundwater arsenic contamination is not uniformly found in the Ganges 

plain, but is present in pockets along different states of India (Charkraborti et al. 2003). 

According to McArthur et al. (2001), high concentrations of arsenic are restricted to Holocene 

sediments rich in organic matter resulting in a reducing environment. High concentrations of iron 

also seem to play a role in releasing arsenic from minerals in the sediments. Arsenic is adsorbed 

by iron oxides, which form a part of fine grained sediments. These sediments are rapidly reduced 

because the rich organic matter consumes oxygen. Release of arsenic into the groundwater takes 

place after a series of geochemical reactions. 

Laboratory analysis 

A total of 95 groundwater samples from dug wells, hand pumps, and deep bore wells (Fig. 1) in 

the study area were collected during May 2007 (samples 1-68) and in May 2012 (samples 69-95) 

and analyzed to understand chemical variations in groundwater quality. The results are listed in 

the Appendix. Concentrations are reported in mg/L, that is, in units of mass per volume, which is 

only approximately equal but not exactly the same as the dimensionless part per million (ppm) 

given that the mass of one liter is not exactly equal to one kilogram because the groundwater 

density varies with fluctuations in ion concentrations. The arsenic and iron concentrations are 

reported in g/L to have larger values. 

Samples collected were filtered using 0.45 µm pore size membrane and stored in 

polyethylene bottles which are initially washed with 10% HNO3 and rinsed thoroughly three 

times with distilled water. A duplicate set of samples was collected and acidified to 2pH   by 

adding ultra-pure concentrated HNO3 for heavy metal measurements. Physico-chemical 

characteristics of groundwater samples were determined using standard analytical methods (Rice 

et al. 2012). Physical parameters like pH and electrical conductivity were measured with portable 

ion meters (Elico Model). Total hardness and calcium were estimated by EDTA titrimetric 



 
 

11 
 

method, and magnesium estimated by the difference of the hardness and calcium. Total 

alkalinity, carbonate and bicarbonate as well as chloride were estimated by titrimetric method. 

Sodium and potassium were estimated by flame photometer (Elico Model CL-378). Sulfate 

estimations were done by the gravimetric method. Nitrate and iron were analyzed by the UV-

spectrophotometer (Lab India Model UV 3000). Fluoride was measured using an ion analyzer 

(Orion Model 4 star) with an ion selective electrode. Total arsenic in groundwater was 

determined by flow-injection-hydride generation atomic absorption spectrometry (FI-HG-AAS) 

(Perkin Elmer). The accuracy of the analytical method using FI-HG-AAS was verified for 

arsenic by analyzing Standard Reference Materials from Environmental Monitoring and Support 

Laboratory of the U. S. Environmental Protection Agency, Cincinnati, OH, USA. The analytical 

precision for the measurement was determined by calculating the ionic balance error, which is 

generally found to be within ±5%. Ion speciation in groundwater was calculated using computer 

code WATEQ4F program (Ball and Nordstrom 1992). In this publication, the interest was 

restricted to the mapping of the concentration of iron and arsenic, considering the effect of the 

rest of the ions but disregarding the rest of the non-compositional measurements, such as pH and 

electrical conductivity. 

The partition matrix 

As explained above, the data need to be pre-processed before applying geostatistics and the 

results in terms of the pre-processed balances need to be backtransformed. Here, to facilitate the 

understanding, we illustrate those steps numerically just for one location before going into the 

massive generation of maps covering the entire area of interest. The very first step in the pre-

processing is the preparation of the partition matrix, which remain the same during the entire 

study. 

There are 11 measured parts in this case (Table A1): Fe (  iz s1 ), As (  iz s2 ), Ca (  iz s3 ), Mg 

(  iz s4 ), Na (  iz s5 ), K (  iz s6 ), HCO3 (  iz s7 ), SO4 (  iz s8 ), Cl (  iz s9 ), NO3 (  iz s10 ) and F 

(  iz s11 ). As the interest is restricted to the mapping of the first two parts, Fe and As, it is not 

necessary to define the entire partition matrix, which we decided to be: 
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where the dots denote unspecified values. Consequently, according to Eq. 3, the first two 

balances are: 
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Note that, because of the form of the first balance, although we are not interested in mapping 

ions other than Fe and As, the transformations still use information from the additional nine ions, 

thus the logratios depend on all 11 ions. For the first well (Table A1), the concentrations are 

285.0Fe  mg/L, 0.0023As   mg/L and for the other ions 62, 31.3, 13.9, 3.6, 334, 10, 35, 7.3, 

0.89 mg/L. Hence 
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sb  . (13) 

The contrast matrix 

For the case of the partition matrix in Eq. 9, the 11 by 10 contrast matrix is 
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For estimated balances  isb
* , the backtransformed, estimated parts are 

   

   

   

 

 

 

 




































































































































i

i

ii

b

b

c

s

s

ssz

*

2

*

1

**

0
929

2

0
929

2

00
111

1

922

9

00
111

1

922

9

exp   . (15) 

Considering that we are interested only in  iz s
*

1  and  iz s
*

2 , we set to 0 all estimated balances 

from  ib s
*

3  to  ib s
*

11 , which is equivalent to projecting the composition into a two dimensional 

subspace, thus ignoring 9 coordinate-balances: 
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Given that, in addition, the sum of all parts in this case does not add up to a constant value, it is 

necessary to use Eq. 8 to recover the original units in mg/L. Because the interest is in mapping 

Fe and As, Eq. 8 turns into 
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where, again, the asterisks denote estimated values. Let us assume that   24511.81

*

1 sb , 

  40796.31

*

2 sb  and      2873.0
*

1211  ss zz . By Eq. 16 and 17: 
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1  icz ss  (19) 
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*

2  icz ss . (20) 

Scaling by Eq. 18 

   285.0057022.0
00046.0057022.0
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1
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sz  (21) 
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1

*

2 


sz  (22) 

we obtain the estimated values in mg/L of Fe and As, respectively. Note that these two 

concentrations are exactly the same values used to calculate the balances. This result is obtained 

because there is always a bijection between the original space of the parts and that of the 

logratios. 

Preparation of the maps 

Fig. 2 displays the data for the elements of main interest: iron and arsenic. It can be seen that the 

distributions are right skewed. Note that the summary statistics in Fig. 2 include a 

“compositional mean”. One of the many peculiarities of compositional data is that the straight 

calculation of most moments from the data is invalid, but is valid for all quantiles. For most 

moments, the coherent values are those calculated based on the logratio transformations and then 

backtransformed. Unfortunately, the operation is not always possible, the variance being one 

case. For example, from Fig. 3, the mean values for the logratio transformations are (7.957, 

3.517, −2.229). The backtransformed values using Equations (18), (19) and (20), 675.6 and 4.7 

g/L, here called compositional mean, are the values for the mean concentration of Fe and As, 

not those calculated directly as arithmetic means of the observations, which are (1000.5, 9.3). 

The geometric mean is one of the few moments that can be calculated directly from the data, thus 

its popularity among compositional analysts, but not necessarily among earth scientist. 

Consequently, we list both. 
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 (a)  
 

 

(b) 

 
(c) 

 

  

(d) 

 

Fig. 2 Display of well data for iron (a and b) and arsenic (c and d). Posting of values is in 

logarithmic scale, with the curves denoting the margins of the Ganges River. 

Because we will use Eq. 18 for the backtransformation of the balances, we need to prepare an 

estimate of the sum of iron plus arsenic, which also requires a logratio transformation, for which 

we have selected the following pseudologit: 

  
   
    

.lnplogit
1211

1211

ss

ss
s

zzp

zz
i




  (23) 

In a logit, parameter p  is the maximum possible value for the variable in the denominator. Here 

instead, we have taken 0.7p , which is a value close but larger than the maximum value of 

6.915 mg/L in the sample (well 81, Table A1). Fig. 3 shows the two balances and the 

pseudologit. 
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(a)  
 

 

(b) 

 
(c)  
 

 

(d) 

 
(e)  
 

 

(f) 

 

Fig. 3 The logratio transformed data for balance 1 (Eq. 10) (a and b); balance 2 (Eq.11) (c and d) 

and pseudologit for the sum of iron and arsenic (Eq. 23) (e and f). The curves in the maps denote 

the margins of the Ganges River. D is the maximum discrepancy between the displayed 

distribution and a normal distribution with the same mean and variance. 
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Calculation of the logratio transformations marks the end of the data preparation necessary 

for the adequate application of geostatistics.  

The interest in our case is in sequential Gaussian simulation, which, as we have seen, 

requires not only that the data can vary from   to + , but also that the univariate 

distributions be normal, which is hardly the case here, perhaps with the sole exception of balance 

2 in Fig. 3. Hence, normal score transformations are in order. Note that, because normal scores 

will be used in the modeling instead of the pseudologit, given that both types of transformations 

are monotonous, the normal score transformation is the same regardless of the value selected for 

parameter p. 

The next step according to the sequential Gaussian simulation procedure in the Geostatistics 

Section is the structural analysis, which did not find any significant anisotropies. Fig. 4 and 

Table 1 show that all cross-semivariograms follow pure nugget effect models, except for the 

cross-semivariogram between the normal scores of balance 1 and of the pseudologit for the sum 

of the concentrations of arsenic and iron. Hence, balance 2 should be modeled applying 

sequential Gaussian simulation because their normal scores are not spatially correlated to the 

normal scores of the other two logratios. The mapping of the other two variables will benefit 

with the use of sequential Gaussian cosimulation, although marginally because the data are all 

collocated. 
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Fig.4 Structural analysis of normal scores of the logratio data in Fig. 3, with red crosses denoting 

empirical values and curves the best fitting models in Table 1: (a) semivariogram for balance 1; 

(b) cross-semivariogram between balance 1 and balance 2; (c) semivariogram for balance 2; (d) 

cross-semivariogram between balance 1 and pseudologit of the sum; (e) cross-semivariogram 

between balance 2 and pseudologit of the sum; and (f) semivariogram for the pseudologit of the 

sum. 
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Table 1 Parameters for the models best fitting to the empirical values in Fig. 4. S−N denotes sill 

minus nugget, R the range, the root bal denotes balance, exponent. is the abbreviation for 

exponential, and plogit for pseudologit. 

Variable(s)  Nugget Type S−N R, km Type S−N R, km 

bal1 0.06 spherical 0.7 4.4 spherical 0.45 8.0 

bal1-bal2 0.2       

bal1-plogit −0.02 spherical −0.63 4.4    

bal2 0.25 exponent. 0.92 9.2    

bal2-plogit 0.4       

plogit 0.2 spherical 0.68 4.4 spherical 0.15 8.0 

In this study, it is sufficient to limit the number of realizations to 100 per variable to properly 

cover the uncertainty space, that is, a total of 300 realizations. Space restrictions do not allow 

display of all 300 realizations. Under the circumstances, we have arbitrarily limited the rendition 

to the first realization for each one of the logratios, which appear in Fig. 5. The mapping is 

completed by backtransforming each one of the 100 triplets of realizations. 
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                                 (a) 

 
                                  (b) 

 
                                  (c) 

 

Fig. 5 Logratio maps, with the white curves marking the Ganges River margins: (a) balance 1; 

(b) balance 2; and (c) pseudologit for the sum of arsenic and iron concentrations. 

Figs. 6 and 7 show the results for three realizations, this time properly selected to allow an 

appreciation of the degree of uncertainty in the results. These are conditional realizations, so they 

honor the values at all 95 wells (Figs. 1a and 1c) and have the same style of spatial fluctuation to 

the degree that such fluctuation can be captured by the semivariograms and cross-

semivariograms in Fig. 4. The realizations are obtained by repeating node by node the same type 
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of calculations in Eqs. 16−22, starting with the nodal values displayed in Fig. 5 and continuing 

with the remainder 99 realizations per variable. The fourth map in Figs. 6 and 7 is a filtered map 

of spatial fluctuation, maps that still honor the data but not the semivariograms and cross-

semivariograms anymore. For each attribute, the realizations and the filtered map cover both 

realms of underlying and general style of fluctuation. Most likely, none of the realizations is the 

exact depiction of the underlying map, but collectively should help the reader to figure out the 

values that the attributes can take at those locations not considered in a sample of only 95 

observations per attribute in an area of roughly 210 km2. The filtered map is an average map of 

all realizations, thus summarizing in one map all possibilities. The filtered version, while unique, 

is biased, because it provides a false rendition of the degree of complexity in the geographical 

variations of the attribute. Conceptually, a filtered map is the same map that would be obtained 

by (co)kriging the data instead of generating the (co)simulations. In that sense, stochastic 

simulation is a superior tool to kriging because it allows portraying both the actual fluctuations 

plus the map resulting from removing the high frequency components. Figs. 6d and 7d are 

simply a map of the compositional mean node by node, which are minimum mean square error 

estimates for the concentrations at those nodes (Remy et al. 2009). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 6 Arsenic maps, with the white lines displaying the margins of the Ganges River: (a) 

realization with the 5th lowest average concentration (3.84 g/L); (b) realization with median 

concentration (4.72 g/L); (c) realization with the 5th largest average concentration (5.47 g/L); 

(d) filtered map of concentration showing the general spatial trend. 

  



 
 

23 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 7 Iron maps, with the white curves showing the Ganges River margins. Maps (a−c) are for 

the corresponding realization in Figs. 6a−6c, which have different ranks in terms of the 

percentiles for the average concentrations. (d) is the filtered map for iron concentration. 

Map comparisons do not necessarily have to be done among a few realizations and done 

visually. The same probability distributions for every node that were used to calculate nodal 

means displayed as filtered maps can be used for other purposes, such as counting the proportion 

of values per node below or above certain thresholds. So, for example, if at node is  the 

concentration of Fe   iz s1  is higher than 800 g/L for 32% of the values at the node, then we 

can estimate    32.0800Prob 1 iz s , estimation that can be easily done and without resorting 

to any mathematical assumptions. Nothing prevents from expanding the comparison to more 

than one concentration by applying the same Eq. 1 behind sequential Gaussian simulation. For 

example, it is possible to calculate the joint probability that 800: FeA  and 10: AsB . Fig. 8 

displays the results for the univariate and multivariate probabilities after carrying out the 

calculations for all nodes. Why 800 g/L and 10 g/L? Because in this case the interest was to 

show the areas in which both elements were high. The value of 10 g/L for As was taken directly 

from the critical value established by WHO. As for the 800 g/L for Fe, it was a value in the 

moderately high range of observed values (Fig. 2b). Taking another moderately high value, the 

results would have been different, but not by much. 
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(a)

 

(b) 

  

Fig. 8 Probability maps, with the white curves marking the margins of the Ganges River: (a) 

probability that the iron concentration is higher than 800 g/L; (b) probability that the iron 

concentration is higher than 800 g/L and at the same time that of arsenic is higher than 10 g/L. 

Discussion 

According to Fig. 7, iron concentration in the groundwater of the study area is above 300 g/L in 

most of the study area except primarily towards the southwest. Varanasi is on the concave side 

(erosional part) of a long meander (Fig. 1). The high arsenic concentrations should be expected 

on the convex side (depositional part) of the Ganges River (Fig. 6), higher in organic material 

(McArthur et al. 2001). Fig 8b indicates that simultaneous occurrence of high values for both 

iron and arsenic is restricted to two anomalies on the right margin of the river, where Fe-

oxyhydroxide coated sediment grains have been reported preferentially entrapped in more recent 

Holocene alluvial argillaceous sediments in entrenched channels and flood plains (Raju 2012). 

High concentrations of iron in north Varanasi are not associated with high concentrations of 

arsenic, most likely because of scarcer availability of organic matter. The sources of arsenic, iron 

and organic material are all natural, not of anthropogenic origin. 

Varanasi is one of the oldest continuously occupied cities in the world that started and grew 

for millennia in the left banks of the Ganges River (Khan et al. 1988; Kayastha and Mohan 

2000). Despite lack of technology only recently available, it looks like the ancient residents of 

Varanasi always knew that there was something unhealthy in the groundwater at the other side of 

the river that did not invite them to expand the city toward the east. Today, with the urban 

development at places like Ramnagar, Bhojpur, Kodpur, Kateswar, Domri, Madhiya, 

Bahadurpur, Sultanipur and Domanpati the populations at those communities are the ones that 

have the highest risks of developing health problems should they consume groundwater from 

local wells because of levels of As concentration above the 10 ppb—roughly equal to 10 g/L—

established as the highest safe limit by WHO. 
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Conclusions 

Combined use of compositional data analysis and geostatistics allows to adequately preparing 

maps of continuous variations of hydrochemical attributes only partially known at the few 

locations where specimens have been taken for analysis. Their combined application provides 

for: (a) preparing realization maps honoring the data and the style of fluctuation—spatial 

correlation—implicit in the same data; (b) displaying one filtered map per attribute of interest 

showing only the low frequency fluctuations; and (c) reporting joint fluctuation of two of more 

attributes with their associated uncertainty. 

Application of the methodology to reported values for 11 ions at 95 water wells in an area of 

about 210 km2 indicates that groundwater concentrations of arsenic at the city of Varanasi are 

significantly below the 10 ppb recommended by the WHO. In contrast, a crescent of about 50 

km2 underneath the Ganges and along the depositional side of the river meander east of Varanasi 

has levels of arsenic of natural origin in the groundwater that are above the maximum level 

recommended by WHO. Hence, public health authorities should prevent the consumption of 

groundwater from wells in all areas with high arsenic levels.  

The mathematics in the methodology is completely general, not depending on the 

geochemical nature of the attributes. Hence, the study here can be used as a guide for the 

hydrochemical mapping of elements and ions in other places. 

Acknowledgments 

This paper completed a mandatory internal review by the U.S. Geological Survey (USGS) before 

final submission to the journal (http://pubs.usgs.gov/circ/1367/). We wish to thank Tanya 

Gallegos (USGS) and Josep Martín-Fernández (University of Girona) for suggestions that helped 

improving the manuscript. 

SR/S4/ES-160/2005has been supported by the Department of Science and Technology 

(DST), New Delhi, under research project “SERC” (SR/S4/ES-160/2005) during 2006-2008. 

J.J. Egozcue and V. Pawlowsky-Glahn have been supported by the Spanish Ministry of 

Education and Science under projects ‘CODA-RETOS’ (Ref. MTM2015-65016-C2-1-R 

MINECO/FEDER.UE) and ‘COSDA’ (Ref. 2014SGR551); and by the Agència de Gestió 

d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya. 

  

http://pubs.usgs.gov/circ/1367/


 
 

26 
 

References 

Acharyya SK (2005) Arsenic levels in groundwater from Quaternary alluvium in Ganga plain 

and the Bengal Basin, Indian Subcontinent: Insights into influence of stratigraphy. Gondwana 

Research 8(1):55−66 

Aitchison J (2003) The statistical analysis of compositional data. The Blackburn Press, Caldwell, 

NJ, reprint of 1986 edition plus 19 pages of new text, 435 pp 

Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and where should we 

be heading? Mathematical Geology 37(7):829−850 

Ball JW, Nordstrom DK (1992) User’s manual for WATEQ4F with revised thermodynamic 

database and test cases for calculating speciation of minor, trace and redox elements in 

natural waters. U.S. Geological Survey Open File Report 91-183, 189 pp 

British Geological Survey (BGS) (2001) Arsenic contamination of groundwater in Bangladesh. 

Technical report, BGS, Department of Public Health Engineering (Bangladesh), Report 

WC/00/019, 630 pp, http://www.bgs.ac.uk/arsenic/Bangladesh/ 

Caers J (2011) Modeling Uncertainty in the Earth Sciences. Wiley-Blackwell, Chichester, UK, 

229 pp 

Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, 

Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle 

Ganga Plain, Bihar, India: A future danger? Environmental Health Perspectives 111(9): 

1194−1201 

Chandana M, Enmark G, Nordborg D, Sracek O, Nath B, Nickson RT, Herbert R, Jacks G, 

Mukherjee A, Ramanathan AL, Choudhury R, Bhattacharya P (2015) Hydrogeochemical 

controls on mobilization of arsenic in groundwater of a part of Brahmaputra River flood 

plain, India. Journal of Hydrology: Regional Studies, 4:154−171 

Chauhan VS, Nickson RT, Chauhan D, Iyengar L, Sankararamakrishnan N (2009) Ground water 

geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. 

Chemosphere 75(1):83−91 

Chilès JP, Delfiner P (2012) Geostatistics: Modeling spatial uncertainty. John Wiley & Sons, 

Inc., Hoboken, NJ, second edition, 734 pp 

Egozcue JJ (2009) Reply to "On the Harker variation diagrams;..." by J. A. Cortés. Mathematical 

Geosciences 41(7):829−834 

Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional 

data analysis. Mathematical Geology 37(7):795−828 

Egozcue JJ, Pawlowsky-Glahn V (2006) Simplicial geometry for compositional data. In: 

Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V, editors, Compositional data analysis in 

the geosciences: From theory to practice. Geological Society Special Publication No. 264, 

London, 145−159 

http://www.bgs.ac.uk/arsenic/Bangladesh/


 
 

27 
 

Egozcue JJ, Pawlowsky-Glahn V (2011) Basic concepts and procedures. In: Pawlowsky-Glahn 

V, Buccianti A, editors, Compositional data analysis: Theory and applications. John Wiley & 

Sons, Chichester, UK, 12−28 

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio 

transformations for compositional data analysis. Mathematical Geology 35(3):279−300 

Emery X (2004) Testing the correctness of the sequential algorithm for simulating Gaussian 

random fields. Stochastic Environmental Research and Risk Assessment 18(6):401−413 

Greenacre M (2011) Measuring subcompositional incoherence. Mathematical Geosciences 

43(6):681−693 

Hogg RV, McKean J, Craig AT (2012) Introduction to mathematical statistics. Pearson 

Education Ltd., Harlow, UK, 7th edition, 649 pp 

Isaacs EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University 

Press, New York, 561 pp 

Kayastha SL, Mohan A (2000) Varanasi: An ancient city of continuity and culture. Proceedings 

of the National Symposium Milestones in Petrology at the end of the Millennium and Future 

Perspectives, Department of Geology, Banaras Hindu University, Varanasi, pp. 20−29 

Khan AA, Nawami PC, Srivastava MC (1988) Geomorphological evolution of the area around 

Varanasi, UP with the aid of aerial photographs and LANDSAT imageries. Geological 

Survey of India Rec. 113: 31−39 

Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, 

Sracek O (2010) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur 

District in Uttar Pradesh, India. Journal of Geochemical Exploration 105(3):83−94 

Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016) Arsenic and other elements in 

drinking water and dietary components from the middle Gangetic plain of Bihar, India: 

Health risk index. Science of Total Environment 539:125−134 

McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing 

pollution mechanism for sedimentary aquifers in Bangladesh. Water Resources Research 

37(1):109−117 

Meyzonnat G, Larocque M, Barbecot F, Pinti DL, Gagné S (2016) The potential of major ion 

chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec 

(Canada). Environmental Earth Sciences 75(1): article 68, 12 pp 

Olea RA (2006) A six-step practical approach to semivariogram modeling. Stochastic 

Environmental Research and Risk Assessment 39(5):453−467 

Olea, RA (2009) A Practical Primer on Geostatistics: U.S. Geological Survey, Open-File Report 

2009-1103, 346 pp, http://pubs.usgs.gov/of/2009/1103 

http://pubs.usgs.gov/of/2009/1103


 
 

28 
 

Palarea-Albaladejo J, Martín-Fernández JA (2015) zCompositions—R package for multivariate 

imputation of left-censored data under a compositional approach. Chemometrics and 

Intelligent Laboratory Systems, 143:85−96 

Pawlowsky-Glahn V,  Egozcue JJ (2001) Geometric approach to statistical analysis on the 

simplex. Stochastic Environmental Research and Risk Assessment 15(5):384−398 

Pawlowsky-Glahn V, Egozcue JJ (2016) Spatial analysis of compositional data: A historical 

review. Journal of Geochemical Exploration 164:28−32 

Pawlowsky-Glahn V, Egozcue JJ, Lovell D (2015a) Tools for compositional data with a total. 

Statistical Modelling 15(2):175−190 

Pawlowsky-Glahn V, Egozcue JJ, Olea RA, Pardo-Igúzquiza E (2015b) Cokriging of 

compositional balances including a dimension reduction and retrieval of original units. 

Journal of the Southern African Institute of Mining and Metallurgy 115(1):59−72 

Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015c) Modeling and analysis of 

compositional data. John Wiley & Sons Ltd, Chichester, UK, 247 pp 

Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling. New York, Oxford University 

Press, second edition, 433 pp 

Raju, NJ (2012) Arsenic exposure through groundwater in the middle Ganga plain in the 

Varanasi environs, India: A future threat. Journal of the Geological Society of India 

79:302−314 

Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS—a user’s guide.  

Cambridge University Press, Cambridge, UK, 264 pp 

Rice EW, Baird RB, Eaton AD, Clesceri LS, editors (2012) Standard methods for the 

examination of water and wastewater. American Public Health Association, American Water 

Works Association, Water Environment Federation, Washington, DC, 

https://www.standardmethods.org/ 

Saha D, Shukla RR (2013) Genesis of arsenic rich groundwater and the search for alternative 

safe aquifers in the Gangetic plain, India. Water Environmental Research 85(12):2254−2264 

Sha ZUH, Ahmad Z (2015) Hydrochemical mapping of the Upper Thal Doab (Pakistan) using 

the geographical information system. Environmental Earth Sciences 74(3):2757−2773 

Shah BA (2010) Arsenic contaminated groundwater in Holocene sediments form part of middle 

Ganga plain, Uttar Pradesh, India. Current Science 98(10):1359−1365 

Shukla UK, Raju NJ (2008) Migration of the Ganga River and its implications on hydro-

geological potential of Varanasi area, U.P., India. Journal of Earth System Science 

117(4):489−498 

Singh IB (2004) Late Quaternary history of the Gangetic plain. Journal of the Geological Society 

of India 64:431−454 

https://www.standardmethods.org/


 
 

29 
 

Singh M, Singh IB, Muller G (2007) Sediment characteristics and transportation dynamics of the 

Ganga River. Geomorphology 86(1−2):144−175 

Singh S, Raju NJ, Gossel W, Wycisk P (2016) Assessment of pollution potential of leachate 

from the municipal solid waste disposal site and its impact on groundwater quality, Varanasi 

environs, India. Arabian Journal of Geosciences 9(2): article 131, 12 pp 

Srivastava P, Singh IB, Sharma M, Singhvi AK (2003) Luminescence chronometry and Late 

Quaternary geomorphic history of the Ganga Plain, India. Paleaogeography, 

Paleaoclimatology, Paleaoecology 197(1−2):15−41 

Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of 

eastern districts of Uttar Pradesh, India. Environmental Monitoring and Assessment 

185(6):4995−5002 

Tandon SK, Gibling MR, Sinha R, Singh V, Ghazanfari P, Dasgupta A, Jain M, Jain V (2006) 

Alluvial valleys of the Ganga Plains, India: Timing and causes of incision. In: Dalrymple 

RW, Lickie DA, Tillman RW, editors, Incised valleys in time and space. Society for 

Sedimentary Geology (SEPM) Special Publications 85, Tulsa, OK, 15−35 

Verly G (1993) Sequential Gaussian cosimulation: A simulation method integrating several types 

of information. In: Soares, A, editor, Geostatistics Troia’92. Kluwer Academic Publishers, 

Dordrecht, The Netherlands, vol. 1:543–552 

Webster R, Oliver MA (2015) Basic steps in geostatistics: The variogram and kriging. Springer, 

Heidelberg, 100 pp 

World Health Organization (WHO) (2011) Arsenic in drinking water, 16 pp, 

http://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf 

  

http://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf


 
 

30 
 

Appendix 

Table A1. Results of laboratory analyses for 11 ions. WT stands for water table, DW for dug 

well, HTW for hand tube well, DBW deep borewell 

No. Location Source WT 
m 

Fe 

g/L 

As 

g/L 

Ca 
mg/L 

Mg 
mg/L 

Na 
mg/L 

K 
mg/L 

HCO3 
mg/L 

SO4 
mg/L 

Cl 
mg/L 

NO3 
mg/L 

F 
mg/L 

1 Malabia HTW --   285    2.3       62  31.3  13.9    3.6   334    10     35    7.3   0.89 

2 Hyd. Gate-BHU HTW -- 209 1.3 76 18.9 131 1.8 320 20 48 9.1 0.67 

3 Agri.farm-BHU HTW -- 230 2.8 16 58 19.5 2.6 286 30 26 6 0.75 

4 Chittupur HTW -- 415 1.9 100 60.8 47 2.8 318 121 120 1.1 0.48 

5 Madarwa DW 14.5 336 2.2 46 40.2 17 4.4 322 5 46 5.7 0.59 

6 Jagainpur DW 20 174 2.1 82 14 37.7 3.2 318 15 63 6.6 0.55 

7 Samneghat HTW -- 409 9 42 41.9 15.1 2.9 268 12 39 7.5 0.39 

8 Karaundi DW 11.6 321 1.8 70 127 111 2.7 510 180 198 0.82 0.82 

9 IMS (BHU) HTW -- 319 2.5 20 65 29.9 2.7 286 70 40 6.8 0.86 

10 Bhagavanpur DW 8.9 282 3 24 59 52.7 3.8 364 30 55 4.5 0.65 

11 Nagwa Chungi HTW 10 414 2.7 20 56.1 33.8 3.4 318 15 53 6.8 0.95 

12 Lanka DW 7.2 346 2 3 22 105 86 2.4 382 150 128 1.2 0.88 

13 Sunderpur HTW -- 175 1.9 36 65.2 64.8 2.3 404 10 93 1.3 0.77 

14 Saketnagar HTW -- 281 2.4 46 62.7 33 3 342 60 74 1.8 0.85 

15 Nagwa DW -- 424 2.5 52 48.6 41.4 6.2 302 5 50 3.1 0.56 

16 Bhulanpur DW -- 383 1.1 52 50.9 20 3 350 10 35 35 0.8 

17 Bikharipur DW 7.6 207 3.2 58 45.6 58 2.3 360 30 98 6.8 0.63 

18 Sarainand. DW 11.8 255 2.9 18 48.5 68 3 304 30 80 3.4 0.51 

19 Ravindrap. HTW -- 282 2.1 80 22.4 25.4 2.6 264 30 60 2.5 0.49 

20 Assighat DW 2.4 255 1.5 48 56.6 74.9 4.3 370 60 95 2 0.67 

21 Karkarmitha DW -- 1262 1.8 62 49.8 76.5 4.2 145 100 149 90.4 0.46 

22 Kheiriya HTW -- 214 2.3 10 119 144 2.7 524 120 163 1.5 0.85 

23 Shivala HTW -- 401 2.3 40 41.3 52.5 40 304 75 65 2.7 0.73 

24 Belupur HTW -- 286 1.9 36 69.3 108 28 382 120 138 1.2 0.66 

25 Sonarpura HTW -- 306 2.9 16 58.4 73.6 53.3 410 50 93 3.7 0.76 

26 Sivadaspur DW 11.2 870 2.2 57 43 64.7 7.9 173 30 97 63.6 0.53 

27 Koluwaa HTW -- 356 3.3 10 49.8 130 5.1 366 50 99 2.2 0.64 

28 Kamachha DW 5.3 441 3.5 40 51.5 94 28.4 386 90 87 3.2 0.73 

29 Chandpura HTW -- 730 2.4 52 33 49.5 3 310 20 40 62.4 0.69 

30 Manduadi DW 9.8 980 2.2 59 39.2 80.4 4 356 20 79 76 0.31 

31 Gurubagh HTW 12 660 1.8 49 70.5 107 6.6 260 100 169 92 0.6 

32 Jangambadi DW 1.4 940 1.9 37 50.3 64.5 33 315 100 72 11 1.12 

33 Koharpur DW -- 830 2.1 53 65 40 3 332 40 109 55.1 0.54 

34 Cant.Railway St HTW 7.4 980 2 55 32 100 2.8 412 40 49 66.7 1.34 

35 Sonia Pokhara DW 4.3 890 1 50 32.7 77.6 5.7 235 90 56 36.6 0.94 

36 Central Prison DW -- 800 2.7 56 49.1 75.2 4.5 310 70 109 35 0.36 

37 Nadeshwar DW -- 800 2.9 76 20 129 8.1 430 60 12 20.4 0.34 

38 Rajanhia DW -- 1480 3 39 46.2 59.5 2.6 375 30 39 48.7 0.98 

39 Sanskrat Univ. DW 8 1060 2.5 80 8.2 39.6 3.6 310 10 35 9.6 0.55 

40 City Railway St. HTW 9.8 730 2 100 92.5 200 6.5 320 120 397 106 0.63 

41 Rasulgarh DW 17.2 860 1.9 50 10.8 41.2 2.8 288 20 40 47.7 0.51 

42 Kapiladara DW -- 670 1.7 46 41.8 90.2 3 395 20 107 23.1 0.82 

43 Kotwara DW 17.3 500 3.5 69 26.1 70.3 3.5 385 10 51 67.1 0.46 

44 Rajghat DW 24.1 430 3.2 79 36.6 92 75 340 100 175 92 0.45 

45 Bahadurpur HTW 3.1 5319 80 183 15.3 32 2.1 364 100 109 2.7 1.2 

46 Domari HTW -- 438 3 105 12.1 25.8 2.4 386 2.5 37 2.1 0.8 

47 Ratanpur HTW -- 4065 23 103 22.5 42.1 4.1 447 2.5 45 2.5 0.9 

48 Madhiya HTW -- 362 76 107 45.8 31.6 2.1 405 10 115 3.1 1.1 

49 Semra HTW 3.7 1382 24 145 29.6 26.8 1.1 343 100 97 2.4 1 

50 Bhojpur HTW -- 6866 45 113 30.5 24.5 1.7 447 10 59 2.4 0.5 

51 Jalilpur HTW -- 421 11 73 20.8 23.2 2.3 295 2.5 47 5.6 0.7 

52 Kateswar HTW -- 1436 31 101 31.9 20.4 0.8 426 2.5 43 5 0.9 

53 Bhakhara HTW -- 353 13 71 3.1 45.2 1.7 288 2.5 53 5.4 1.1 

54 Nibupur HTW -- 323 3.8 37 86.8 150 7.3 720 2.5 103 11.9 0.8 
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55 Kodupur HTW -- 365 14 107 34.2 97.3 2.2 589 5 79 3.8 1.2 

56 Wajidpur HTW -- 2464 3 85 0.4 73.1 2.1 312 2.5 61 4.1 0.9 

57 Nathupur HTW -- 526 1.9 79 21.3 34.9 0.7 345 2.5 57 5.8 0.7 

58 Nathupur HTW -- 727 1.2 75 8.4 32 0.7 232 2.5 41 3.6 1.3 

59 Kutulupur HTW -- 3527 2.4 123 93.5 69.2 18.2 572 30 225 44.7 0.8 

60 Sultanpur DW 3.5 492 2.8 75 35.6 123 1.2 378 10 157 16.1 1.2 

61 Mannapur DW -- 450 2.9 68 64 252 23.1 694 10 277 21.9 0.9 

62 Kabirpur HTW -- 835 1.6 25 44.6 235 1.6 682 20 111 11.2 0.7 

63 Dariyapur DW -- 355 1.1 59 47.3 102 2.5 537 10 85 10.4 0.45 

64 Parawara DW -- 329 1.8 81 46.5 114 9.8 502 5 163 6.2 0.5 

65 Bhiti HTW -- 320 3 73 25.6 83.2 0.7 325 100 79 6.24 0.6 

66 Dahiya DW -- 100 1.9 53 50.2 87.3 1.1 416 2.5 83 5.4 0.9 

67 Tangara DW -- 360 2.9 11 50.2 180 1.3 547 2.5 109 11.9 0.8 

68 Rathupur HTW -- 346 2.7 59 20.5 35.7 0.6 294 10 29 8.7 0.9 

69 Pongalpur HTW -- 400 9 97 13.5 281 1.5 568 45.4 262 22.4 0.7 

70 Karaya HTW -- 100 1.3 74 44.5 109 109.4 450 30.2 210 70 2 

71 Ralhupur HTW 3.5 250 19 84 21.9 156 17 385 34 200 9.2 0.9 

72 Tengara DW -- 3390 10 82 68.8 192 1.9 628 60 220 13.2 1 

73 Kataria DW -- 170 1.4 60 39.4 123.5 4.2 386 64 120 3.5 1 

74 Ekuni DW 4.2 520 2.9 30 41.3 288 6.8 650 53.1 240 1.5 2 

75 Chakia HTW -- 1000 6 98 17.1 139 2 293 208 98 9.7 0.4 

76 Taranpur DBW -- 500 6 82 22.6 76.3 2.5 326 16 118 3.2 0.5 

77 Prasrampur DBW 3.9 300 1.3 70 34 48.2 2.8 311 25.6 82 5.5 1 

78 Kamlapur HTW 2.7 350 1.8 62 20.7 124.4 2.7 418 64.5 80 67 2 

79 Airi DBW -- 100 1.5 82 32.8 96.9 4.4 433 30.3 98 6 2 

80 Bengali DBW 3.4 200 22 58 52.3 80.4 1.7 335 70.6 118 8.9 1 

81 Bagheli Tola DW 4.1 6900 15 92 1.3 278 7.9 317 110 280 90 0.5 

82 Parorwa HTW -- 380 1.6 106 13.4 95 3.2 410 29.9 124 7 0.8 

83 Khajurgaon DBW -- 170 1.4 86 17.8 87 2.3 366 40 88 1.9 1 

84 Kodpur HTW -- 980 36 94 4.2 104.4 2.7 365 60 118 4.3 0.4 

85 Katesar DBW 2.2 1200 21 110 1.8 27.2 2.2 220 23.9 95 4.7 0.2 

86 Shahupuri Col. DW -- 1600 1.5 236 31.72 125 2.9 319 19.2 494 1.9 0.7 

87 Chandhasi HTW -- 6000 6.6 138 19.3 200 4.9 518 90.2 207 62.6 2 

88 Mughal Sarai HTW -- 700 8 60 26.3 111.6 39 360 57.8 119 13.4 2 

89 Semra HTW 6.2 6400 23 162 3.7 48.2 2.2 360 13 148 3 0.2 

90 Domri HTW -- 700 30 130 13 88.7 2.8 392 100.5 95 5.9 0.2 

91 Bahadurpur HTW 4.9 4000 72 196 5 91.8 13 612 14 135 19 0.2 

92 Dhulaipur HTW 5.6 700 1.5 190 35.3 175.1 5.7 657 89.9 247 1.3 0.7 

93 Vyasnagar DW 3.6 1300 1.4 260 4.5 93.1 1.4 292 26.4 417 3.3 0.5 

94 Domanpati HTW 2.9 900 70 139 20.9 135.8 9.8 571 24.2 123 21.3 0.2 

95 Sultanipur HTW 4.1 200 48 82 26.8 68.4 4.6 340 29 102 11.9 0.7 

 


