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Abstract We study anti-unification for unranked terms and hedges that may contain
term and hedge variables. The anti-unification problem of two hedges s̃1 and s̃2 is
concerned with finding their generalization, a hedge q̃ such that both s̃1 and s̃2 are
instances of q̃ under some substitutions. Hedge variables help to fill in gaps in gener-
alizations, while term variables abstract single (sub)terms with different top function
symbols. First, we design a complete andminimal algorithm to compute least general
generalizations. Then, we improve the efficiency of the algorithm by restricting pos-
sible alternatives permitted in the generalizations. The restrictions are imposed with
the help of a rigidity function, which is a parameter in the improved algorithm and se-
lects certain common subsequences from the hedges to be generalized. The obtained
rigid anti-unif ication algorithm is further made more precise by permitting combina-
tion of hedge and term variables in generalizations. Finally, we indicate a possible
application of the algorithm in software engineering.
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1 Introduction

The anti-unification problem of two terms t1 and t2 is concerned with finding their
generalization, a term t such that both t1 and t2 are instances of t under some
substitutions. The problem has a trivial solution, a fresh variable, which is the most
general generalization of the given terms. Interesting generalizations are the least
general ones. The purpose of anti-unification algorithms is to compute such least
general generalizations. Plotkin [31] and Reynolds [32] pioneered research on anti-
unification, designing generalization algorithms for ranked terms (where function
symbols have a fixed arity) in the syntactic case. Since then, a number of algorithms
and their modifications have been developed, addressing the problem in various
theories (e.g., [2, 3, 5, 10, 16, 29]) and from different application points of view (e.g.,
[4, 9, 13, 19, 27, 28, 35]). Applications come from the areas such as reasoning by anal-
ogy, machine learning, inductive logic programming, software engineering, program
synthesis, analysis, transformation, and verification, just to name a few.

Unranked terms differ from the ranked ones by not having fixed arity for function
symbols. Hedges are finite sequences of such terms. They are flexible structures, pop-
ular in representing semistructured data. To take the advantage of variadicity, un-
ranked terms and hedges use two kinds of variables: term variables, which stand for
a single term, and hedge variables, which stand for hedges. Solving techniques over
unranked terms and hedges mostly address unification and matching problems, see,
e.g., [12, 20–25]. Anti-unification for these structures practically has not been studied.
The only exception, to the best of our knowledge, is Yamamoto et al. [37], which
addresses a special case of so called simple hedges. Related, but essentially different
problems of anti-unification for feature terms have been studied by Plaza [30],
Armengol and Plaza [4], Aït-Kaci and Sasaki [1].

We address this shortcoming, presenting algorithms to compute least general gen-
eralizations (lggs, in short) for unranked terms/hedges. Hedge variables help to fill in
gaps in generalizations, while term variables abstract single (sub)terms with different
top function symbols. Unlike ranked anti-unification, where there is always one least
general generalization, in the unranked case there can be finitely many lggs. First, we
design an algorithm that computes a minimal complete set of unranked generaliza-
tions. But this set can be exponentially large compared to the size of the input. There-
fore, it is interesting to find a smaller, yet practically useful set of lggs. We go ahead
to specify such generalizations and give algorithms to compute them. These are the
problems considered in this paper, whose main contributions can be summarized as
follows:

– An algorithm that computes a complete set of lggs for the given hedges is
developed in Section 3.

– Efficiency of the algorithm is improved by restricting it to compute aminimal and
complete set of only certain generalizations. The restrictions are imposed with
the help of a rigidity function, which is a parameter in the improved algorithm.
It gives also the name to those special generalizations: they are called rigid gen-
eralizations. A rigidity function works on two strings composed of top function
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symbols of terms in the input hedges, returning their common subsequence that
satisfies an additional property specified by the function. With the help of this
resulting string, at each step, the rigidity function dictates the algorithm which
subsequence of the given hedges is to be (structurally) retained in the general-
ization. These are the terms whose top symbols appear in the string returned
by the rigidity function. In this way we get a more efficient, yet pretty general
algorithm to compute a complete set of rigid lggs. It is described in Section 4.

– Rigid generalizations use only hedge variables to abstract differences between
hedges. It can be made more precise if we permit (sequences of) term variables
to abstract differences between sequences of terms of the same length, retaining
hedge variables for abstracting differences between hedges of distinct length.
This refined algorithm is described in Section 5.

– Some known anti-unification problems can be modeled as a special case of
unranked anti-unification. Several such examples are considered in Section 6.

– Termination, soundness, and completeness theorems are proved for all the above
mentioned generalization algorithms.

– Our results open a possibility to address, by means of unranked anti-unification,
the problems of detecting duplicate pieces (clones) of software code, refactoring,
clustering XML documents, detecting similarities and differences in them, etc.
Using rigid anti-unification for these tasks has several advantages, including
appealing combination of fast textual and precise structural techniques. We
discuss a possible application in software clone detection in Section 7.

This paper is an extended and improved version of Kutsia et al. [26].

1.1 Related Work

A special case of anti-unification for unranked terms has been studied by Yamamoto
et al. [37] in the context of applying inductive reasoning to semi-structured docu-
ments. This special case deals with a restricted class of so called simple hedges. They
are characterized as being linear (no duplicated occurrences of hedge variables) and
for each subterm f (s1, . . . , sn) occurring in the hedge at any depth, there is at most
one hedge variable among s1, . . . , sn. Term variables are not permitted. The proposed
anti-unification algorithm accepts two simple hedges as input and produces one of the
least general simple generalizations in cubic time. In Section 4 we show how simple
anti-unification can be modeled as a special case of rigid anti-unification, choosing
an appropriate rigidity function.

Word anti-unification is a special case of hedge anti-unification, when all the terms
in the hedge are constants. Unrestricted search for word generalizations suffers from
the same problem as the minimal and complete hedge generalization algorithm:
Too much non-determinism and, consequently, too large search space. Therefore,
there were attempts to compute only special generalizations. Cicekli and Cicekli [11]
are interested only in generalizations that contain the longest common subsequence
of the original words provided that this longest common subsequence contains all
the letters that the given words have in common. Biere [7] considers only ε-free
generalizations. They are characterized by the following property: If the word wg

is a generalization of the word w such that σ(wg) = w for a substitution σ , then σ

does not map any variable to the empty word ε. That is, the size of the generalization
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is never strictly larger than the size of the words it generalizes. In Section 4 we show
how to model these algorithms in our framework.

The rules for associative anti-unification with the unit element (AU anti-unifica-
tion) considered in Alpuente et al. [2] can be directly simulated in the minimal
and complete unranked anti-unification algorithm. Conversely, to simulate unranked
anti-unification rules in AU anti-unification, one needs to introduce sorts to distin-
guish between term variables and hedge variables (and their instantiations). Rigid
anti-unification and AU anti-unification are not comparable.

One can not compare feature anti-unification [1, 4, 30] and unranked anti-
unification either. The only relationship between these problems is that in both of
them, the arity of symbols is not fixed. Otherwise, feature terms do not require fixed
ordering of arguments (which is the case for unranked expressions) and its functors
represent ordered sorts (in contrast to unsorted setting for unranked terms). The
usage of variables in unranked generalization does not have its counterpart in feature
anti-unification.

2 Preliminaries

Given pairwise disjoint countable sets of unranked function symbols F (symbols
without fixed arity), term variables VT, and hedge variables VH, we define unranked
terms (terms in short) and hedges (sequences of terms or hedge variables) over F and
V = VT ∪ VH by the following grammar:

t ::= x | f (s̃) (terms)

s ::= t | X (terms or hedge variables)

s̃ ::= s1, . . . , sn (hedges)

where x ∈ VT, f ∈ F, X ∈ VH, and n ≥ 0. With this definition, terms are singleton
hedges. Not all singleton hedges are terms: some may be hedge variables.

The set of terms (respectively, hedges) over F and V is denoted by T(F,VT,VH)

(respectively, H(F,VT,VH)). We use the letters f, g,h, a,b , c, and d for function
symbols, x, y, and z for term variables, X,Y, Z ,U, and V for hedge variables, χ for
a term variable or a hedge variable, t, l, and r for terms, s and q for a hedge variable
or a term, and s̃ and q̃ for hedges. The empty hedge is denoted by ε. The terms of the
form a(ε) are written as just a.

Note that ε is just a notation for the empty hedge introduced for readability. It
does not appear next to other hedges because concatenation of a hedge s̃ with the
empty hedge is s̃ itself. Hence, we assume the implicit removal of the symbol ε in
such cases. We write it explicitly only when we want to talk about the empty hedge.

If s̃ = s1, . . . , sn and s̃′ = s′1, . . . , s
′
m, then we write s̃, s̃′ for s1, . . . , sn, s′1, . . . , s

′
m. We

denote by s̃|i the ith element of the sequence s̃. We denote by s̃| ji , where i < j, the
subsequence between positions i and j, which does not include any of them, i.e., the
subsequence s̃|i+1, . . . , s̃| j−1. The length of a sequence s̃, denoted |s̃|, is the number of
elements in it.

The size of a term t is the number of occurrences of symbols (from F ∪ V) in it
and is denoted by size(t). We denote by var(t) the set of variables of a term t. These
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definitions are generalized for any syntactic object. Note that the size of the empty
hedge is 0.

A substitution is a mapping from hedge variables to hedges and from term
variables to terms, which is the identity almost everywhere. We will use the tra-
ditional finite set representation of substitutions, writing, e.g., {x �→ f (a), X �→ ε,

Y �→ x, g(a, Z )} for the substitution that maps every variable to itself except x, X ,
and Y that are mapped respectively to f (a), ε, and x, g(a, Z ). The lower case Greek
letters are used to denote substitutions, with the exception of the identity substitution
for which we write Id.

Substitutions can be applied to terms and hedges using the congruences

σ( f (s1, . . . , sn)) = f (σ(s1), . . . , σ (sn)), σ (s1, . . . , sn) = σ(s1), . . . , σ (sn).

We call σ(s) and σ(s̃) the instances of respectively s and s̃ and use postfix notation
to denote them, writing sσ and s̃σ . (Note that if σ maps some variable X to ε, then
X is simply removed from the instance.) We also say that s̃ is more general than q̃ if
q̃ is an instance of s̃ and denote this fact by s̃ � q̃. If s̃ � q̃ and q̃ � s̃, then we write
s̃ 	 q̃. If s̃ � q̃ and s̃ 
	 q̃, then we say that s̃ is strictly more general than q̃ and write
s̃ ≺ q̃. The set dom(σ) = {χ ∈ V | χσ 
= χ} is called the domain of σ .

The composition of two substitutions σ and ϑ , written as σϑ , is defined as the
composition of two mappings: We have s(σϑ) = (sσ)ϑ for all s. A substitution σ1 is
more general than σ2 with respect to a set of variables X ⊆ V, written σ1 �X σ2,
if there exists ϑ such that χσ1ϑ = χσ2, for each χ ∈ X . The relations 	 and ≺ are
extended to substitutions: σ1 	X σ2 means σ1 �X σ2 and σ2 �X σ1, and σ1 ≺X σ2

means σ1 �X σ2 and σ1 
	X σ2.
The top symbol of a term is defined as top(x) = x for any variable x, and

top( f (s̃)) = f for any term f (s̃). We extend this notion to hedges, defining it as the
sequence of symbols as follows: top(X, s̃) = Xtop(s̃) and top(t, s̃) = top(t)top(s̃) for
any hedge variable X , term t, and hedge s̃. We write these sequences as words, e.g.,
top( f (a),a, X, x) = faXx. top(ε) is just the empty word which we also refer to by ε.
The letter w will be used for the words of top symbols.

A hedge s̃ is called a generalization or an anti-instance of two hedges s̃1 and s̃2 if
s̃ � s̃1 and s̃ � s̃2. That means, there exist substitutions σ1 and σ2 such that s̃1 = s̃σ1

and s̃2 = s̃σ2. We say that a hedge s̃ is a least general generalization (lgg in short),
aka a most specif ic anti-instance, of s̃1 and s̃2 if s̃ is a generalization of s̃1 and s̃2 and
there is no generalization q̃ of s̃1 and s̃2 that satisfies s̃ ≺ q̃. That means, there are
no generalizations of s̃1 and s̃2 that are strictly less general than their least general
generalization.

An anti-unif ication problem (or equation), AUP in short, is a triple χ : s̃1 � s̃2,
where χ does not occur in s̃1 and s̃2. Intuitively, χ is a variable that stands for the most
general generalization of s̃1 and s̃2. An anti-unif ier of χ : s̃1 � s̃2 is a substitution σ

such that dom(σ) ⊆ {χ} and χσ is a generalization of both s̃1 and s̃2. An anti-unifier σ
of an AUP χ : s̃1 � s̃2 is least general (or most specif ic) if there is no anti-unifier ϑ of
the same problem that satisfies σ ≺X ϑ . Obviously, if σ is a least general anti-unifier
of an AUP χ : s̃1 � s̃2, then χσ is a least general generalization of s̃1 and s̃2.

A complete set of generalizations of two hedges s̃1 and s̃2 is a set G of hedges that
satisfies the properties:

Soundness: Each q̃ ∈ G is a generalization of both s̃1 and s̃2.
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Completeness: For each generalization s̃ of s̃1 and s̃2, there exists q̃ ∈ G such that
s̃ � q̃.

G is a minimal complete set of generalizations of s̃1 and s̃2 if it, in addition to
soundness and completeness, satisfies also the following property:

Minimality: For each q̃1, q̃2 ∈ G, if q̃1 � q̃2 then q̃1 = q̃2.

Lemma 2.1 For any three hedges s̃1, s̃2 and q̃, and any pair of substitutions σ1 and
σ2 satisfying s̃1 = q̃σ1 and s̃2 = q̃σ2, if size(q̃) > size(s̃1)+ size(s̃2) then there exists at
least one hedge variable X occurring in q̃ such that Xσ1 = Xσ2 = ε.

Proof Since substitutions cannot remove function symbols, the hedge q̃ can not
contain more function symbols than s̃1 and s̃2 do. Since they cannot substitute term
variables by empty terms, q̃ also can not contain more term variables than there are
subterms in s̃1 and s̃2. Violation of any of these conditions would forbid s̃1 or s̃2 to be
an instance of q̃. Therefore, if size(q̃) > size(s̃1)+ size(s̃2), then q̃ must contain some
hedge variable that is mapped to ε by both σ1 and σ2. 
�

Lemma 2.2 For any hedges s̃1 and s̃2 there exists their minimal complete set of
generalizations. This set is f inite and unique modulo 	.

Proof For classical first-order anti-unification this property is trivial, because in-
stantiation does not decrease the size of terms. This means that anti-unifiers of two
terms are smaller than each of those terms, hence finite modulo variable renaming.
For hedges the property is not so simple to prove because instantiating a hedge
variable by ε, the size of a term may decrease. However, by Lemma 2.1 we have
that for any anti-unifier q̃ of s̃1 and s̃2 with size(q̃) > size(s̃1)+ size(s̃2) there exists
another anti-unifier less general than q̃ (that we can obtain by replacing those
extra hedge variables in q̃ by ε). The set of anti-unifiers smaller than the sum of
the sizes of both hedges is a complete set of anti-unifiers. This set contains all
least general anti-unifiers, contains finitely many distinct elements modulo 	. If we
remove from this set all non least general anti-unifiers, we get a minimal complete
set of generalizations that is unique modulo 	. 
�

We denote the minimal complete set of generalizations of s̃1 and s̃2 by mcg(s̃1 �
s̃2). Its elements are lggs of s̃1 and s̃2.

Like unification problems, anti-unification problems may be classified as unitary
(if minimal complete sets of generalizations always exist and are singletons), finitary
(if they always exist, are finite, and the problem is not unitary), infinitary (if they
always exist and may be infinite), and nullary (if they may not exist). Hence,
Lemma 2.2 implies that hedge anti-unification is finitary.

An anti-unification problem always has an anti-unifier. The empty substitution
is a trivial example that represents the most general generalization. Our goal is to
compute less general generalizations. In the next section, we design an algorithm that
computes (the set of anti-unifiers that represents) themcg of a givenAUP. It requires
some care to properly address the issues that arise because of hedge variables in
generalizations.
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Quiz 1: Given two hedges s̃ = f (a), f (a) and q̃ = f (a), f , what is the set mcg(s̃ � q̃)?
Hint: There are three elements in this set.

Without loss of generality, below we assume that the hedges to be generalized are
variable disjoint.

3 Complete and Minimal Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on
triples A; S; σ . Here A is a set of AUPs of the form {X1 : s̃1 � q̃1, . . . , Xn : s̃n � q̃n}
where each Xi occurs in the problem only once, S is a set of already solved anti-
unification equations (the store), and σ is a substitution (computed so far).1 We call
such a triple a system. The rules transform systems into systems:

T-H: Trivial Hedge
{X : ε � ε} ∪ A; S; σ =⇒ A; S; σ {X �→ ε}.

Dec-T: Decomposition for Terms
{X : f (s̃) � f (q̃)} ∪ A; S; σ =⇒ {Y : s̃ � q̃} ∪ A; S; σ {X �→ f (Y)}

where Y is a fresh variable.

Dec1-H: Decomposition 1 for Hedges
{X : s, s̃ � q, q̃} ∪ A; S; σ =⇒ {Y : s � q, Z : s̃ � q̃} ∪ A; S; σ {X �→ Y, Z },

where U : s, s̃ � q, q̃ /∈ S for all U ∈ VH, the variables Y and Z are fresh, and s̃ 
= ε

or q̃ 
= ε.

Dec2-H: Decomposition 2 for Hedges
{X : s, s̃ � q̃} ∪ A; S; σ =⇒ {Y : s � ε, Z : s̃ � q̃} ∪ A; S; σ {X �→ Y, Z },

where χ : s, s̃ � q̃ /∈ S for all χ ∈ V, the variables Y and Z are fresh, and s̃ 
= ε or
q̃ 
= ε.

Dec3-H: Decomposition 3 for Hedges
{X : s̃ � q, q̃} ∪ A; S; σ =⇒ {Y : ε � q, Z : s̃ � q̃} ∪ A; S; σ {X �→ Y, Z },

where χ : s̃ � q, q̃ /∈ S for all χ ∈ V, the variables Y and Z are fresh, and s̃ 
= ε or
q̃ 
= ε.

Sol1-H: Solve 1 for Hedges
{X : s � ε} ∪ A; S; σ =⇒ A; {X : s � ε} ∪ S; σ, if Y : s � ε /∈ S for all Y.

Sol2-H: Solve 2 for Hedges
{X : ε � q} ∪ A; S; σ =⇒ A; {X : ε � q} ∪ S; σ,

if Y : ε � q /∈ S for all Y.

Sol3-H: Solve 3 for Hedges
{X : s � q} ∪ A; S; σ =⇒ A; {X : s � q} ∪ S; σ,

if s 
= q, s ∈ VH or q ∈ VH, and Y : s � q /∈ S for all Y.

1Such a representation was first proposed in Alpuente et al. [2] for equational anti-unification.
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Sol-T: Solve for Terms
{X : l � r} ∪ A; S; σ =⇒ A; {y : l � r} ∪ S; σ {X �→ y},

if top(l) 
= top(r), χ : l � r /∈ S for all χ , and y is fresh.

Rec: Recover
{X : s̃ � q̃} ∪ A; {χ : s̃ � q̃} ∪ S; σ =⇒ A; {χ : s̃ � q̃} ∪ S; σ {X �→ χ}.

The idea of the store is to keep track of already solvedAUPs in order to generalize
the same pair of hedges with the same variable, as it is illustrated in the Rec rule:
The already solved AUP χ : s̃ � q̃ from the store helps to reuse χ instead of X as a
generalization of s̃ and q̃. This is important, since we aim at computing lggs.

In the condition of Dec1-H we use a hedge variableU while in Dec2-H and Dec3-
H in the same role χ appears. The reason is that inDec1-H, the hedge s, s̃ or the hedge
q, q̃ is not a term and, hence, we can not have a term variable in place of U . On the
other hand, in Dec2-H and Dec3-H it can happen that the AUP in the condition is
between terms with χ being a term variable.

One can notice that we do not have a rule for AUPs like X : x � x. This is
because we assume the hedges to be generalized are variable disjoint and, hence,
such problems do not appear.

To compute generalizations for hedges s̃ and q̃, the procedure starts with {X : s̃ �
q̃}; ∅; Id where X is a fresh hedge variable and applies the rules on each selected
anti-unification equation in all possible ways. We denote this procedure by G.

To show that the process terminates, we define a complexity measure of the
triple A; S; σ as a multiset M(A) := {size(s̃ � q̃)+ 1 | X : s̃ � q̃ ∈ A}. We order
complexity measures by the multiset extension >m of the standard ordering on
natural numbers. It is easy to check that each rule in G strictly reduces the measure:
If A1; S1; σ1 =⇒ A2; S2; σ2 in G, then M(A1) >m M(A2). It immediately implies
termination:

Theorem 3.1 The procedure G terminates for any input.

Hence, starting from {X : s̃ � q̃}; ∅; Id, each sequence of transformations by G
necessarily terminates with a triple of the form ∅; S; σ .

Example 3.2 Let f (g(a,a), g(b ,b ), f (g(a), g(a))) and f (g(a,a), f (g(a), g)) be two
given terms. We illustrate how the algorithm G computes one of their generaliza-
tions, the term f (Z , g(x, x), f (g(a), g(X))):

{X0 : f (g(a,a), g(b ,b ), f (g(a), g(a))) � f (g(a,a), f (g(a), g))}; ∅; Id =⇒Dec-T

{X1 : g(a,a), g(b ,b ), f (g(a), g(a)) � g(a,a), f (g(a), g)};
∅; {X0 �→ f (X1)} =⇒Dec2-H

{Z : g(a,a) � ε, X2 : g(b ,b ), f (g(a), g(a)) � g(a,a), f (g(a), g)};
∅; {X0 �→ f (Z , X2), . . .} =⇒Sol1-H

{X2 : g(b ,b ), f (g(a), g(a)) � g(a,a), f (g(a), g)};
{Z : g(a,a) � ε}; {X0 �→ f (Z , X2), . . .} =⇒Dec1-H
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{X3 : g(b ,b ) � g(a,a),X4 : f (g(a), g(a)) � f (g(a), g)};
{Z : g(a,a) � ε}; {X0 �→ f (Z , X3, X4), . . .} =⇒Dec-T

{X5 : b ,b � a, a, X4 : f (g(a), g(a)) � f (g(a), g)};
{Z : g(a,a) � ε}; {X0 �→ f (Z , g(X5), X4), . . .} =⇒Dec1-H

{X6 : b � a, X7 : b � a, X4 : f (g(a), g(a)) � f (g(a), g)};
{Z : g(a,a) � ε}; {X0 �→ f (Z , g(X6, X7), X4), . . .} =⇒Sol-T

{X7 : b � a, X4 : f (g(a), g(a)) � f (g(a), g)};
{Z : g(a,a) � ε, x : b � a}; {X0 �→ f (Z , g(x,X7), X4), . . .} =⇒Rec

{X4 : f (g(a), g(a)) � f (g(a), g)};
{Z : g(a,a) � ε, x : b � a}; {X0 �→ f (Z , g(x, x), X4), . . .} =⇒Dec-T

{X8 : g(a), g(a) � g(a), g};
{Z : g(a,a) � ε, x : b � a}; {X0 �→ f (Z , g(x, x), f (X8)), . . .} =⇒Dec1-H

{X9 : g(a) � g(a),X10 : g(a) � g};
{Z : g(a,a) � ε, x : b � a}; {X0 �→ f (Z , g(x, x), f (X9, X10)), . . .} =⇒Dec-T

{X11 : a � a, X10 : g(a) � g}; {Z : g(a,a) � ε, x : b � a};
{X0 �→ f (Z , g(x, x), f (g(X11), X10)), . . .} =⇒Dec-T

{X12 : ε � ε, X10 : g(a) � g}; {Z : g(a,a) � ε, x : b � a};
{X0 �→ f (Z , g(x, x), f (g(a(X12)), X10)), . . .} =⇒T-H

{X10 : g(a) � g}; {Z : g(a,a) � ε, x : b � a};
{X0 �→ f (Z , g(x, x), f (g(a),X10)), . . .} =⇒Dec-T

{X : a � ε}; {Z : g(a,a) � ε, x : b � a};
{X0 �→ f (Z , g(x, x), f (g(a), g(X))), . . .} =⇒Sol1-H

∅; {Z : g(a,a) � ε, x : b � a, X : a � ε};
{X0 �→ f (Z , g(x, x), f (g(a), g(X))), . . .}

The last substitution maps X0 to f (Z , g(x, x), f (g(a), g(X))). One can see that
this term, indeed, generalizes the given terms. Hence, the substitution {X0 �→
f (Z , g(x, x), f (g(a), g(X)))} is their anti-unifier.
Notice that from the final system one can also get the substitutions that show how

the original terms can be obtained from the computed generalization. These sub-
stitutions can be extracted from the store: σ1 = {Z �→ g(a,a), x �→ b , X �→ a} with
f (Z , g(x, x), f (g(a), g(X)))σ1 = f (g(a, a), g(b ,b ), f (g(a), g(a))) and σ2 = {Z �→
ε, x �→ a, X �→ ε} with f (Z , g(x, x), f (g(a), g(X)))σ2 = f (g(a, a), f (g(a), g)). In
this way, we can say that the store gives us the difference between the input terms.
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Soundness ofG is not hard to establish:

Theorem 3.3 (Soundness of G) If {X : s̃ � q̃}; ∅; Id =⇒∗ ∅; S; σ is a derivation in G,
then Xσ � s̃ and Xσ � q̃.

Proof The theorem follows from the straightforward fact that if Xσ � s̃ and Xσ � q̃
and {X : s̃ � q̃} ∪ A; S; σ =⇒ A′, S′, σ ′ is a transformation step in G, then Xσ ′ � s̃
and Xσ ′ � q̃. 
�

If {X : s̃ � q̃}; ∅; Id =⇒∗ ∅; S; σ is a derivation in G, then we say that

– σ is a substitution computed byG for X : s̃ � q̃;
– the restriction of σ on X , denoted by σ |X , is an anti-unif ier of X : s̃ � q̃

computed byG;
– the hedge Xσ is a generalization of s̃ and q̃ computed by G.

The proof of completeness of the algorithm requires auxiliary definitions and
lemmas. We start generalizing the notion of anti-unifier for sets of equations.

Definition 3.4 A set of AUPs is a set A = {χ1 : s̃1 � q̃1 . . . , χn : s̃n � q̃n}, where
variables do not occur more than once. We define the set of generalization variables
gvar(A) = {χ1, . . . , χn}.

Definition 3.5 A substitution σ is called an anti-unifier of a set of AUPs A, if
dom(σ) ⊆ gvar(A) and for each (χ : s̃ � q̃) ∈ A, χσ is a generalization of both s̃
and q̃.

Similarly, least general anti-unifiers are also generalized for sets of AUPs.

Definition 3.6 We say that a set of AUPs A is simplified if any anti-unifier of A is
equal to Id modulo variable renaming.

Notice that if A is simplified then A cannot contain equations with pairs of
terms with the same root x : f (s̃) � f (q̃), equations between equal sequences X :
s̃ � s̃, equations between terms X : f (s̃) � g(q̃) where X ∈ VH, nor pairs of identical
equations χ : s̃ � q̃, χ ′ : s̃ � q̃. The purpose of simplified AUPs is to restrict the set
of problems that can form the store (see Lemma 3.8).

The following lemmas are not hard to prove. (The derivations are performed in
G. We do not write it explicitly.)

Lemma 3.7 If A; S; σ =⇒∗ A′; S′; σ ′, then, for any substitution ϑ , we have
A; S;ϑσ =⇒∗ A′; S′;ϑσ ′.

Lemma 3.8 If S is simplif ied and A; S; σ =⇒ A′; S′; σ ′ then S′ is also simplif ied.

Next, we prove the following lemma that will imply the completeness theorem
(Theorem 3.10).
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Lemma 3.9 Let A be a set of AUPs satisfying gvar(A) ⊆ VH. Let S be an simplif ied
set of AUPs. Let ϑ be an anti-unif ier of A. Then, there exists a sequence of transfor-
mations A; S; Id =⇒∗ ∅; S′; σ where ϑ �gvar(A) σ .

Proof Since a minimal complete set of anti-unifiers exists, we can assume without
loss of generality that ϑ is a least general anti-unifier.

We proceed by structural induction on A.
If A = ∅, the empty sequence of transformations allows us to get σ = Id that is

the unique anti-unifier of A, i.e., satisfying dom(σ) ⊆ gvar(A) = ∅.
If A is nonempty, we consider some equation A = {X : s̃ � s̃′} ∪ A′. There are

several cases:

1. Case (χ ′ : s̃ � s̃′) ∈ S, for some variable χ ′.
Since (χ ′ : s̃ � s̃′) ∈ S we can apply the rule Rec to {X : s̃ � s̃′}, getting
A′; S; {X �→ χ ′}. The set A′ is smaller than A. If ϑ is an anti-unifier of A, then
ϑ , with the domain restricted to gvar(A′), is an anti-unifier of A′. We can apply
the induction hypothesis and Lemma 3.7 and construct a sequence

{X : s̃ � s̃′} ∪ A′; S; Id =⇒Rec A′; S; {X �→ χ ′} =⇒∗ ∅; S′; {X �→ χ ′}σ
where ϑ �gvar(A′) σ . Now we have to prove ϑ �gvar(A) {X �→ χ ′}σ , where
gvar(A) = gvar(A′) ∪ {X}.
Since ϑ is an anti-unifier of a set of AUPs that contains X : s̃ � s̃′, and (χ ′ :
s̃ � s̃′) ∈ S being S simplified, we must have Xϑ = χ ′′ for some variable χ ′′. On
the other hand, X{X �→ χ ′}σ = χ ′. Notice that, since ϑ is least general and S is
simplified, χ ′′ and χ ′ are both term variables, if both s̃ and s̃′ are terms, or both
are hedge variables, if s̃ or s̃′ are not terms.
Therefore, to prove the inequality ϑ �gvar(A) {X �→ χ ′}σ , we have to prove
that any variable satisfying Zϑ = χ ′′ also satisfies Z {X �→ χ ′}σ = Zσ = χ ′.
Since Xϑ = Zϑ , we have (Z : s̃ � s̃′) ∈ A′. In the transformation A′; S; {X �→
χ ′} =⇒∗ ∅; S′; {X �→ χ ′}σ wewill deal with this equation Z : s̃ � s̃′. Since we will
only be able to apply ruleRec to this equation, and σ will contain an instantiation
Z �→ χ ′, we get Z {X �→ χ ′}σ = χ ′.

2. Otherwise, (χ ′ : s̃ � s̃′) 
∈ S for any χ ′. Let s̃ and s̃′ be sequences of the form
s1, . . . , sn and s′1, . . . , s

′
n′ , respectively. We consider three cases, depending on the

values of n and n′.

(a) Case n = n′ = 0. We have ϑ = {X �→ ε}. We can get this anti-unifier apply-
ing the rule T-H.

(b) Case n = 0 and n′ = 1, or n = 1 and n′ = 0. Since the equation is not in S,
we can apply the rule Sol1-H or Sol2-H and the analysis is simple, because
nothing is added to σ .

(c) Case n+ n′ ≥ 2. Since ϑ is an lgg, using a similar argument as in the proof
of Lemma 2.1, Xϑ = q1, . . . ,qm, where m ≤ n+ n′. We also have that
there exist two substitutions ρ and ρ ′ such that for all i ∈ {1, . . . ,m}, either
qiρ = ε, or qiρ ′ = ε, or there exist j ∈ {1, . . . ,n} and j′ ∈ {1, . . . ,n′} such
that qiρ = s j and qiρ ′ = s′j′ . Finally, least generality of ϑ also implies that
for all i ∈ {1, . . . ,m}, either qiρ 
= ε or qiρ ′ 
= ε.
Therefore, there are three cases:

i. Case q1ρ = s1 and q1ρ
′ = s′1.
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A. If n = n′ = 1 and s1 and s′1 are both terms with the same top symbol.
Hence, let A = {X : f (q̃) � f (q̃′)} ∪ A′ be the selected equation,
and Xϑρ = f (q̃) and Xϑρ ′ = f (q̃′). Since ϑ is least general, we
have Xϑ = f (s̃′′) for some sequence s̃′′.
We can apply the transformation Dec-T:

{X : f (q̃) � f (q̃′)} ∪ A′; S; Id =⇒Dec-T

{Y : q̃ � q̃′} ∪ A′; S; {X �→ f (Y)}
We can construct ϑ ′ as a substitution satisfying dom(ϑ ′) =
dom(ϑ) \ {X} ∪ {Y}, Yϑ ′ = s̃′′ and χ ′ϑ ′ = χ ′ϑ , for any other vari-
able χ ′ distinct from Y.
It is easy to see that ϑ ′ is an anti-unifier of {Y : q̃ � q̃′} ∪ A′.
Notice that the set {Y : q̃ � q̃′} ∪ A′ is structurally smaller than
A. Therefore, by the induction hypothesis there exists a se-
quence of transformations {Y : q̃ � q̃′} ∪ A′; S; Id =⇒∗ ∅; S′; σ ′,
where ϑ ′ �gvar(A′)∪{Y} σ ′. Therefore, by Lemma 3.7,

{Y : q̃ � q̃′} ∪ A′; S; {X �→ f (Y)} =⇒∗ ∅; S′; {X �→ f (Y)}σ ′

It is easy to see that ϑ �gvar(A) {X �→ f (Y)}σ ′ . In particular, for the
variable X we have Xϑ = f (s̃′′) = f (Y)ϑ ′ = X{X �→ f (Y)}ϑ ′ �
X{X �→ f (Y)}σ ′ Therefore, the sequence of transformations

{X : f (q̃) � f (q̃′)} ∪ A′; S; Id =⇒Dec-T

{Y : q̃ � q̃′} ∪ A′; S; {X �→ f (Y)} =⇒∗

∅; S′; {X �→ f (Y)}σ ′

satisfies the statement of the lemma.
B. If n = n′ = 1 and s1 and s′1 are both terms with distinct top. Hence,

let A = {X : l � r} ∪ A′ be the selected equation, where l and r are
non-variable terms and top(l) 
= top(r). Let Xϑρ = l and Xϑρ ′ = r.
Since S does not contain any equation of the form χ : l � r, we can
apply the rule Sol-T. If ϑ is an anti-unifier of A, then, removing
X from its domain, it is also an anti-unifier of A′. By induction
hypothesis, and Lemmas 3.7 and 3.8, we can construct a sequence

{X : l � r} ∪ A′; S; Id =⇒Sol-T

A′; {y : l � r} ∪ S; {X �→ y}=⇒∗

∅; S′; {X �→ y}σ
where ϑ �gvar(A′) σ . Now we have to prove the relation ϑ �gvar(A)

{X �→ y}σ . The argument is similar to the one in Case 1.
C. If n = n′ = 1 and s1 or s2 is a hedge variable.

We apply the rule Sol3-H, and the analysis is simple.
D. Either n ≥ 2 or n′ ≥ 2.

We apply the rule Dec1-H, obtaining the system {Y : s1 � s′1, Z :
s2, . . . , sn � s′2, . . . , s

′
n′ } ∪ A′; S; {X �→ Y, Z }, which is structurally
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smaller. If ϑ is an anti-unifier of A then we can construct ϑ ′ with
domain dom(ϑ ′) = dom(ϑ) \ {X} ∪ {Y, Z } where Yϑ ′ = q1 and
Zϑ ′ = q2, . . . , qm, and χϑ = χϑ ′ for χ 
= Y, Z . By the induction
hypothesis, we can construct

{X : s1, . . . , sn � s′1, . . . , s
′
n′ } ∪ A′; S; =⇒Dec1-H

{Y : s1 � s′1, Z : s2, . . . , sn � s′2, . . . , s
′
n′ } ∪ A′;
S; {X �→ Y, Z } =⇒∗

∅; S′; {X �→ Y, Z }σ
where ϑ ′ �gvar(A′) σ , hence ϑ �gvar(A) {X �→ Y, Z }σ .

ii. Case q1ρ = ε and q1ρ
′ 
= ε. Hence, q1 must be a hedge vari-

able. Let q1ρ
′ = s′1, . . . , s

′
i, with i ≥ 1. We apply i times the

rule Dec3-H, obtaining {Y1 : ε � s′1, . . . ,Yi : ε � s′i, Z : s1, . . . , sn �
s′i+1, . . . , s

′
n′ } ∪ A′; S; {X �→ Y1, . . . ,Yi, Z }. We construct ϑ ′ such that

Zϑ ′ = q2, . . . , qm and Yjϑ
′ = Yj, for j = 1, . . . , i. If ϑ is least general,

so must be ϑ ′. By the induction hypothesis we can construct

{X : s1, . . . , sn � s′1, . . . , s
′
n′ } ∪ A′; S; Id =⇒(i)

Dec3-H

{Y1 : ε � s′1, . . . ,Yi : ε � s′i,

Z : s1, . . . , sn � s′i+1, . . . , s
′
n′ } ∪ A′;

S; {X �→ Y1, . . . ,Yi, Z } =⇒∗

∅; S′; {X �→ Y1, . . . ,Yi, Z }σ
where ϑ ′ �gvar(A′) σ , hence ϑ �gvar(A) {X �→ Y1, . . . ,Yi, Z }σ . Notice
that the following relations hold:

Xϑ = q1, . . . , qm,

(Y1, . . . ,Yi, Z )ϑ ′ = Y1, . . . ,Yi,q2, . . . , qm,

Y1, . . . ,Yi, q2, . . . ,qm �gvar(A′) (Y1, . . . ,Yi, Z )σ,

where q1 is a hedge variable. But we have that (Y1, . . . ,Yi, Z )σ =
X{X �→ Y1, . . . ,Yi, Z }σ . Hence, the hedge X{X �→ Y1, . . . ,Yi, Z }σ
is less general than the hedge Y1, . . . ,Yi, q2, . . . ,qm that is also less
general than q1, . . . ,qm.

iii. Case q1ρ 
= ε and q1ρ
′ = ε. This case is analogous to the previous one

but using Dec2-H instead of Dec3-H. 
�

Theorem 3.10 (Completeness of G) Let ϑ be an anti-unif ier of X : s̃ � q̃. Then G
computes a substitution σ such that Xϑ � Xσ .

Proof Immediate consequence of Lemma 3.9 with A = {X : s̃ � q̃} and S = ∅. 
�

Hence, collecting all the hedges Xσ such that {X : s̃ � q̃}; ∅; Id =⇒∗ ∅; S; σ , we
obtain a finite complete set of generalizations of s̃ and q̃. In general, this set is
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not minimal. Even for such a simple input as {X : f (a) � f (b )}; ∅; Id, the iterative
application of G produces five generalizations: two hedges Y1,Y2 and Z1, Z2 and
three terms f (U1,U2), f (V1,V2), and f (x).

Nevertheless, this redundancy is not trivially avoidable because rules allowing
apparently useless alignments are needed for completeness:

Answer to Quiz 1: Besides the “expected” lgg f (a), f (X), the set mcg(s̃ � q̃) for
s̃ = f (a), f (a) and q̃ = f (a), f also contains two less obvious ones: the hedges
f (X,Y), f (X) and f (X,Y), f (Y).

In order not to miss such “less obvious” generalizations, we need all the rules
from G. However, these rules generate much more than necessary. (In the case
of Quiz 1, G computes 33 generalizations.) Therefore, the computed set should be
further minimized to keep only least general generalizations. Minimization involves
a matchability test between two hedges. If two hedges s̃ and q̃ are in the set we are
going to minimize, then we proceed as follows:

– If s̃ 	 q̃, then we delete one of them and keep the other (e.g., with the smaller
size).

– If one of them is strictly more general than the other one, we delete the more
general hedge and keep the more specific one.

For matchability, one could, in principle, use the hedge matching algorithm
fromKutsia [20], but there is a subtlety one should take into account: The hedges that
are to be matched, in general, are not ground. Therefore, when trying to match, e.g.,
s̃ = X, X to q̃ = X,a, we should rename X in q̃ into a new constant. Furthermore,
we should introduce a restriction that no term variable matches such new constants.
Thus, the matchability test should fail for the problems like X, X � X, a and x � X .

Hence, combining G with minimization, we can compute mcg(s̃1 � s̃2) for each s̃1

and s̃2.

Example 3.11 For the terms f (g(a,X),a, X,b ) and f (g(b ),b ), the algorithm G
computes the mcg consisting of four lggs: { f (g(x,Y), Z ,Y, b ), f (g(x,Y), x,Y, Z ),

f (g(U,Y, Z ),Y, Z ,b ), f (g(U,Y, Z ),U,Y, b )}. They are selected from 169 general-
izations computed in the first step of the algorithm.

Example 3.12 For f (g(a,a), g(b ,b ), f (g(a), g(a))) and f (g(a,a), f (g(a), g)) the
algorithm G computes the mcg consisting of 65 elements. This set can be compactly
written as

{ f (g(a,a), x, X), f (Z , g(x, x), f (g(a), g(X)))} ∪
{ f (t1, Z , t2) | t1 ∈ S1, t2 ∈ S2} ∪
{ f (Z , t1, t2) | t1 ∈ S3, t2 ∈ S4} ∪
{ f (g(a,a), Z , t) | t ∈ S5},
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where

S1 = {g(X,X,Y,Y), g(X,Y,Y, X), g(X,Y, X,Y),

g(X,a,Y), g(X,Y, a), g(a,X,Y)},
S2 = { f (g(Y, X), g(Y)), f (g(X,Y), g(Y)), f (g(a), g(Y)),

f (g(Y, X), g(X)), f (g(X,Y), g(X)), f (g(a), g(X))},
S3 = {g(X,X,U,U), g(U,U, X,X), g(X,U,U, X),

g(X,U, X,U), g(U, X, X,U), g(U, X,U, X),

g(x,X,U), g(x,U, X), g(X, x,U),

g(U, x, X), g(X,U, x), g(U, X, x)},
S4 = { f (g(X,Y), g(Y)), f (g(Y, X), g(Y))},
S5 = { f (g(a), g(X))} ∪ S4.

We have seen in Example 3.2 how one of these generalizations is computed.
These lggs are selected from 1,866 generalizations generated in the first step of the
algorithm.

The drawback of the algorithm G is that it is highly nondeterministic. It may
compute up to 3n generalizations,2 where n is the size of the input. (For instance,
for f (a1, a2, a3, a4, a5) and f (b 1,b 2,b 3,b 4,b 5) it computes 11,685 generalizations,
most of them several times, until it selects a single one, e.g., f (x1, x2, x3, x4, x5), on
theminimization step.) Theminimization step involvesNP-complete hedgematching
algorithm (see [20, 25]) performed on the pairs of elements of the generalization
set. Hence, this algorithm is only of theoretical interest and falls short of being
practically useful. From the results computed by it one can see that consecutive
hedge variables in generalizations are permitted. It makes computations quite costly,
because it requires all possible applications of the decomposition rules. Our goal is
to impose requirements on the set of generalizations such that, on the one hand, it is
still “interesting”, on the other hand, it can be computed faster in many cases. This
leads us to the notion of rigid generalization, described in the next section.

4 Computing Rigid Generalizations

The main intuition behind rigid generalizations is to capture the structure (modulo a
given rigidity property) of as many nonvariable terms in the input hedges as possible.

2Notice that the hedge decomposition rule has three non-deterministic choices.
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It is parametrized by a binary rigidity function R, which computes a finite set of
alignments for strings, defined as follows:

Definition 4.1 (Alignment, Rigidity Function) Let w1 and w2 be strings of symbols.
Then the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0, is an alignment if

– i’s and j’s are positive integers such that 0 < i1 < · · · < in < |w1| and 0 < j1 <

· · · < jn < |w2|, and
– ak = w1|ik = w2| jk , for all 1 ≤ k ≤ n.

A rigidity functionR is a function that returns, for every pair of strings of symbols
w1 and w2, a set of alignments of w1 and w2.

Example 4.2 We give some examples of rigidity functions.

– R returns the set of all longest common subsequences: R(abc,dd) = {ε},
R(abcda, bcad) = {b [2, 1]c[3, 2]a[5, 3],b [2, 1]c[3, 2]d[4, 4]}.

– R returns the set of all longest common subsequences whose length is at least
4: R(abcda,bcacda) = {a[1, 3]c[3, 4]d[4, 5]a[5, 6], b [2, 1]c[3, 4]d[4, 5]a[5, 6]},
R(abcda, bca) = ∅.

– R returns the set of all longest common substrings:R(abc,dd) = {ε},R(abcda,
bcada) = {b [2, 1]c[3, 2], d[4, 4]a[5,5]}, andR(abcda,bcad) = {b [2, 1]c[3, 2]}.

Definition 4.3 (R-Generalization) Given two (variable disjoint) hedges s̃1 and s̃2

and the rigidity function R, we say that a hedge s̃ that generalizes both s̃1 and
s̃2 is their generalization with respect to R, or, in short, an R-generalization, if
either R(top(s̃1), top(s̃2)) = ∅ and s̃ is a hedge variable, or there exists an alignment
f1[i1, j1] · · · fn[in, jn] ∈ R(top(s̃1), top(s̃2)), such that the following conditions are
fulfilled:

1. The sequence s̃ does not contain pairs of consecutive hedge variables.
2. If we remove all hedge variables that occur as elements of s̃, we get a sequence

of the form f1(q̃1), . . . , fn(q̃n).
3. For every 1 ≤ k ≤ n, there exists a pair of sequences s̃′1 and s̃′2 such that s̃1|ik =

fk(s̃′1), s̃2| jk = fk(s̃′2) and q̃k is anR-generalization of s̃′1 and s̃′2.

The motivation behind the item 3 of this definition is to define rigid generaliza-
tions recursively: If two terms have the same top function symbol which finds its way
in anR-generalization, then the arguments of these terms should be generalizedwith
respect to the same rigidity functionR.

Note that, under this definition, R-generalizations do not contain term variables.
The minimal complete set ofR-generalizations of s̃1 and s̃2 is denoted bymcgR(s̃1 �
s̃2). An R-anti-unif ier of X : s̃1 � s̃2 is a substitution σ such that Xσ is an R-
generalization of s̃1 and s̃2.

Example 4.4 Let R(w1,w2) be the set of all longest common subsequences of w1

and w2.

– Let t1 = f (g(a,X),a, X,b ) and t2 = f (g(b ),b )). Then mcgR(t1 � t2) =
{ f (g(Y), Z ,b )}. Note thatmcgR(t1 � t2) ∩mcg(t1 � t2) = ∅, see Example 3.11.
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– Let t1 = f (g(a,a), g(b ,b ), f (g(a), g(a))) and t2 = f (g(a,a), f (g(a), g)). Then we
have mcgR(t1 � t2) = { f (g(a,a), Z , f (g(a), g(X))), f (Z , g(U), f (g(a), g(X)))}.
One can note that f (Z , g(U), f (g(a), g(X))) /∈ mcg(t1 � t2), see Example 3.12.

– mcgR(a,b � b , c) = mcg(a,b � b , c) and contains a single hedge X,b ,Y.

Example 4.5 LetR(w1,w2) be the set of all longest common substrings of w1 andw2.

– mcgR( f (g(a,X),a, X,b ) � f (g(b ),b )) = { f (g(Y), Z ), f (Z , b )} (cf. Example
4.4).

– mcgR( f (g(a,a), g(b ,b ), f (g(a), g(a))) � f (g(a,a), f (g(a), g)) =
{ f (Z , g(U), f (g(a), g(X)))} (cf. Example 4.4).

– mcgR(a, a,b , f, f, f (a, a,b ) � a, a, c, f, f, f (a, a, c)) = {X, f, f, f (a, a,Y)}.
– mcgR(a, a,b ,b , f, f, f (a, a,b ,b ) � a, a, c, f, f, f (a, a, c)) =

{X, f, f, f (a, a,Y)}.

Quiz 2: Let R be a function that computes the set of all common subsequences of
minimal length 3 of its arguments. What is the mcgR(s̃ � q̃) for two identical hedges
s̃ = q̃ = f (a,b , c), g(a),h(a)?

Our goal is to compute a minimal complete set of R-generalizations. For this, we
design a new set of transformation rules. It consists of only four rules shown below:

R-Dec-H: R-Rigid Decomposition for Hedges
{X : s̃ � q̃} ∪ A; S; σ =⇒
{Zk : s̃k � q̃k | 1 ≤ k ≤ n} ∪ A;
{Y0 : s̃|i10 � q̃| j10 } ∪ {Yk : s̃|ik+1

ik � q̃| jk+1

jk | 1 ≤ k ≤ n− 1} ∪
{Yn : s̃||s̃|+1

in � q̃||q̃|+1
jn } ∪ S;

σ {X �→ Y0, f1(Z1),Y1, . . . ,Yn−1, fn(Zn),Yn},
ifR(top(s̃), top(q̃)) contains a sequence f1[i1, j1] · · · fn[in, jn] such that for all 1 ≤ k ≤
n, s̃|ik = fk(s̃k), q̃| jk = fk(q̃k), and Y0, Yk’s and Zk’s are fresh.

R-S-H: R-Rigid Solve for Hedges
{X : s̃ � q̃} ∪ A; S; σ =⇒ A; {X : s̃ � q̃} ∪ S; σ,

ifR(top(s̃), top(q̃)) = ∅. (Notice that this transformation is equivalent to ruleR-Dec-
H whereR(top(s̃), top(q̃)) = {ε}).

R-CS1: R-Rigid Clean Store 1
A; {X1 : s̃ � q̃, X2 : s̃ � q̃} ∪ S; σ =⇒ A; {X1 : s̃ � q̃} ∪ S; σ {X2 �→ X1},

if X1 
= X2.

R-CS2: R-Rigid Clean Store 2
A; {X : ε � ε} ∪ S; σ =⇒ A; S; σ {X �→ ε}

To compute R-generalizations of s̃ and q̃, we start with {X : s̃ � q̃}; ∅; Id and
apply the rules on the selected anti-unification equation(s) in all possible ways. The
obtained procedure is denoted byG(R).

The intuition behind the R-Dec-H rule is that, once R gives the set of align-
ments of the strings top(s̃) and top(q̃), we choose one alignment from it, and rigid
decomposition is not permitted to be performed on the equations formed by the
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remaining subsequences of s̃ and q̃ (i.e, the ones that are generalized by Y’s in R-
Dec-H). Otherwise, the generalizationmight violate the restrictions of Definition 4.3.
Therefore, we move these equations to the store where the decomposition and solve
rules do not apply. However, it may introduce certain redundancies in the store.
These redundancies are dealt with the store cleaning rules. Another interesting
observation is that G(R) never introduces in the set A or S equations of the form
x : l � r where x is a term variable.

It should be noted that since we generalize variable disjoint hedges, the strings
in R(top(s̃), top(q̃)) (that are common subsequences of top(s̃) and top(q̃)) do not
contain variables. After application of ruleR-Dec-H, each hedge variable in the anti-
unifier gets separated from the other variables by a nonvariable term, to obey the
restriction 1 of Definition 4.3.

We did not have the store cleaning rules in our previous algorithmG, because the
store there simply will never contain AUPs that need to be cleaned.

To show that the procedure G(R) terminates, we define the complexity measure
for A; S; σ as a pair (M(A),M(S)), where M is defined as in the termination proof
of G. The measures are compared lexicographically. Each rule strictly reduces it,
therefore there can be no infinite transformation chains. All the rules, exceptR-Dec-
H, transform the selected equation(s) uniquely.R-Dec-H can introduce only finitely
many branchings, becauseR returns a finite set. Hence, the following theorem holds:

Theorem 4.6 The procedure G(R) terminates on any input and produces a system
∅; S; σ where S is irreducible with respect to the store cleaning rules.

Example 4.7 Let f (g(a,a), g(b ,b ), f (g(a), g(a))) and f (g(a,a), f (g(a), g)) be two
given terms and R be the function computing the set of all longest common
subsequences. In Example 4.4 we saw that the mcgR of these terms consists of two
elements. Now we illustrate how the algorithmG(R) computes one of these lggs, the
term f (Z , g(U), f (g(a), g(X))). Note that the R-Dec-H rule puts in the store the
AUPs of the form Y : ε � ε, which are subsequently eliminated by the R-CS2 rule.
Below we contract these steps into one to shorten the sequence of transformations.
The contracted step is still denoted by R-Dec-H, but the scrutinizing reader will
notice that there are a couple of hiddenR-CS2 steps behind.

{X0 : f (g(a,a), g(b ,b ), f (g(a), g(a))) � f (g(a,a), f (g(a), g))}; ∅; Id =⇒R-Dec-H

{X1 : g(a,a), g(b ,b ), f (g(a), g(a)) � g(a,a), f (g(a), g)}; ∅;
{X0 �→ f (X1)}

This system is transformed by the R-Dec-H rule with the alignment g[2, 1] f [3, 2]:
{U : b ,b � a, a, X2 : g(a), g(a) � g(a), g}; {Z : g(a,a) � ε};

{X0 �→ f (Z , g(U), f (X2)), . . .} =⇒R-S-H

{X3 : g(a), g(a) � g(a), g}; {Z : g(a,a) � ε,U : b , b � a, a};
{X0 �→ f (Z , g(U), f (X2)), . . .} =⇒R-Dec-H

{X4 : a � a, X : a � ε}; {Z : g(a,a) � ε,U : b , b � a, a};
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{X0 �→ f (Z , g(U), f (g(X4), g(X))), . . .} =⇒R-Dec-H

{X5 : ε � ε, X : a � ε}; {Z : g(a,a) � ε,U : b , b � a, a};
{X0 �→ f (Z , g(U), f (g(a(X5)), g(X))), . . .} =⇒R-S-H

{X : a � ε}; {Z : g(a,a) � ε,U : b ,b � a, a, X5 : ε � ε};
{X0 �→ f (Z , g(U), f (g(a(X5)), g(X))), . . .} =⇒R-CS2

{X : a � ε}; {Z : g(a,a) � ε,U : b , b � a, a};
{X0 �→ f (Z , g(U), f (g(a), g(X))), . . .} =⇒R-S-H

∅; {Z : g(a,a) � ε,U : b ,b � a, a, X : a � ε};
{X0 �→ f (Z , g(U), f (g(a), g(X))), . . .}

To prove soundness of G(R), we need a couple of lemmas:

Lemma 4.8 Let A; S;ϑ =⇒R1 A1; S1;ϑσ1 =⇒R2 A2; S2;ϑσ1σ2 be a sequence of
transformations where R1 ∈ {R-CS1,R-CS2} and R2 ∈ {R-Dec-H,R-S-H}. Then
there exists a transformation sequence A; S;ϑ =⇒R2 A′

1; S′1;ϑσ2 =⇒R1 A′
2; S′2;ϑσ2σ1

such that A′
2 = A2, S′2 = S2, and ϑσ1σ2 = ϑσ2σ1.

Proof Since R1 does not affect the first component in the system, we have A1 = A
and A′

2 = A′
1. We perform the stepR2 in the second transformation sequence exactly

in the same way as in the first one, choosing the same rule, the same AUP in A, the
same alignment, and the same fresh variables. Then A′

1 = A2 and, hence, A′
2 = A2.

As for the stores, S2 consists of all the AUPs in S except those deleted by R1 and
R2 and, in addition, it contains the AUPs introduced by R2. In the second sequence
of transformations, S′1 consists of all the AUPs in S except the one deleted by R2

and the ones introduced by R2. In the last step, we delete from S′1 exactly the same
AUP that was deleted from S1 by R1. Therefore, we get S′2 = S2. Finally, σ1 and σ2

commute, because their domains and ranges are disjoint. Hence, ϑσ1σ2 = ϑσ2σ1. 
�

Lemma 4.9 If A; S1;ϑ =⇒∗ ∅; S2;ϑσ is a derivation inG(R) using only the rulesR-
Dec-H andR-S-H, then for all (X : s̃ � q̃) ∈ A, the hedge Xσ is anR-generalization
of s̃ and q̃.

Proof We proceed by induction on the length of the derivation. If it is 1, then
the derivation has the form {X : s̃ � q̃}; S;ϑ =⇒∗ ∅; {X : s̃ � q̃} ∪ S;ϑσ , where σ =
{X �→ Y0} for a fresh Y0 if the used rule is R-Dec-H, and σ = Id if the used rule is
R-S-H. SinceR(top(s̃), top(q̃)) ⊆ {ε}, Xσ is anR-generalization of s̃ and q̃.

Now we assume that the lemma holds for all derivations with the length less than
m > 1 and prove it form. Let the system to be transformed be {X : s̃ � q̃} ∪ A′; S;ϑ .
If it is transformed by the rule R-S-H then R(top(s̃), top(q̃)) = ∅, σ = Id, and we
obtain a new system A′; {X : s̃ � q̃} ∪ S;ϑ . By the induction hypothesis, X ′σ is an
R-generalization of s̃′ and q̃′ for all (X ′ : s̃′ � q̃′) ∈ A′. By the definition of R-
generalization, the same holds for Xσ , s̃, and q̃ becauseR(top(s̃), top(q̃)) = ∅.

If the rule R-Dec-H is used to transform {X : s̃ � q̃} ∪ A′; S;ϑ , then
the new system is {Zk : s̃k � q̃k | 1 ≤ k ≤ n} ∪ A′; S′;ϑσ ′, where σ ′ = {X �→
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Y0, f1(Z1),Y1, . . . ,Yn−1, fn(Zn),Yn} and the conditions of R-Dec-H are satisfied.
By the induction hypothesis, We have a derivation {Zk : s̃k � q̃k | 1 ≤ k ≤ n} ∪
A′; S′;ϑσ ′ =⇒∗ ∅; S′′;ϑσ ′σ ′′ using only the rules R-Dec-H and R-S-H such that
for all (X ′ : s̃′ � q̃′) ∈ {Zk : s̃k � q̃k | 1 ≤ k ≤ n} ∪ A′, the hedge X ′σ ′′ is an R-
generalization of s̃′ and q̃′. In particular, this holds for Z ’s. Therefore, Xσ ′σ ′′ is an
R-generalization of s̃ and q̃. This finishes the proof. 
�

Lemma 4.10 If {X : s̃1 � s̃2}; ∅; Id =⇒∗ ∅; S1;ϑ =⇒R ∅; S2;ϑσ is a derivation in
G(R) such that Xϑ is an R-generalization of s̃1 and s̃2 and R ∈ {R-CS1,R-CS2}.
Then Xϑσ is anR-generalization of s̃1 and s̃2.

Proof Let R be R-CS1, transforming {X1 : s̃′1 � s̃′2, X2 : s̃′1 � s̃′2} ⊆ S1 into {X1 :
s̃′1 � s̃′2} ⊆ S2 with the substitution σ = {X2 �→ X1}. The hedges s̃′1 and s̃′2 occur in s̃1

and s̃2, respectively, so that the corresponding occurrences are abstracted by the same
variable in Xϑ . This variable for some pairs of occurrences of s̃′1 and s̃′2 is X1 and for
some others X2. (There can be other variables as well that abstract s̃′1 and s̃′2.) Hence,
if we replace X2 with X1 in Xϑ , the obtained hedge Xϑσ will be a generalization of
s̃1 and s̃2.

To prove that after this replacement we still have an R-generalization of s̃1 and
s̃2, we proceed by induction on the maximal depth d of the occurrences of X2 in Xϑ .
It is enough to show that replacing only one occurrence of X2 with X1 retains the
R-generalization property.

Let first d = 0. Then Xϑ has a form q̃1, X2, q̃2. Replacing X2 with X1 gives
q̃1, X1, q̃2, that keeps the same alignment from R(top(s̃1), top(s̃2)) that was in Xϑ

and satisfies all three conditions of the definition of R-generalization. Hence,
q̃1, X1, q̃2 is anR-generalization of s̃1 and s̃2.

Now assume that d > 0. It means that there exists a term f (q̃) in Xϑ , such that
X2 occurs at depth d− 1 in q̃. Then there are terms f (s̃′′1) in s̃1 and f (s̃′′2) in s̃2 such
that q̃ is an R-generalization of s̃′′1 and s̃′′2 . By the induction hypothesis, replacing
an occurrence of X2 in q̃ with X1 gives a hedge that is again an R-generalization
of s̃′′1 and s̃′′2 . Hence, the hedge obtained from Xϑ by replacing one occurrence of
X2 with X1 is an R-generalization of s̃1 and s̃2, because we just showed that the
third condition of the definition of R-generalization is satisfied, while the other two
conditions were not affected.

Repeating the process of replacement of one occurrence of X2 by X1 iteratively
until there are no more X2’s in Xϑ , we prove that Xϑσ is anR-generalization of s̃1

and s̃2.
Proof for R = R-CS2 is straightforward. 
�

Now we can prove the soundness theorem for G(R):

Theorem 4.11 (Soundness ofG(R)) If {X : s̃1 � s̃2}; ∅; Id =⇒∗ ∅; S; σ is a derivation
in G(R), then Xσ is anR-generalization of s̃1 and s̃2.

Proof By Lemma 4.8, every derivation in G(R) can be reordered so that first
only the rules R-Dec-H and R-S-H are applied until the set of AUPs becomes
empty, and then the store is cleaned. The substitutions computed by the original
derivation and by the reordered derivation coincide. Let σ ′ be the substitution



Anti-unification for Unranked Terms and Hedges 175

obtained at the end of the subderivation with R-Dec-H and R-S-H. By Lemma 4.9,
Xσ ′ is an R-generalization of s̃1 and s̃2. By Lemma 4.10, substitutions introduced
by the store cleaning rules keep the R-generalization property. Hence, Xσ is an R-
generalization of s̃1 and s̃2. 
�

Moreover, the algorithmG(R) is complete, as the following theorem shows:

Theorem 4.12 (Completeness of G(R)) Let q̃ be an R-generalization of s̃1 and s̃2.
Then G(R) computes anR-anti-unif ier σ for X : s̃1 � s̃2 such that q̃ � Xσ .

Proof We prove the theorem by induction on the size of q̃. Let the initial system
be {X : s̃1 � s̃2}; ∅; Id. If the size of q̃ is 0, i.e., if q̃ = ε, then s̃1 = s̃2 = ε. Therefore,
G(R) constructs the desired derivation first applying R-Dec-H and then R-CS2.
The resulting anti-unifier is σ = {X �→ ε}. If the size of q̃ is 1, then there are several
alternatives:

1. q̃ = X . It means that R(top(s̃1), top(s̃2)) = ∅. The desired derivation transforms
the system with the R-S-H rule, obtaining σ = Id.

2. q̃ = Y0 and X 
= Y0. It means that ε ∈ R(top(s̃1), top(s̃2)). The desired derivation
transforms the system with the R-Dec-H rule, obtaining σ = {X �→ Y ′

0} for a
fresh Y ′

0.
3. q̃ = a. It means that a[1, 1] ∈ R(top(s̃1), top(s̃2)). We can transform the system by

the rule R-Dec-H that is followed by a sequence of applications of the R-CS2
rule, obtaining σ = {X �→ a}.

In general, since q̃ is an R-generalization of the hedges s̃1 and s̃2, there exists an
alignment f1[i1, j1] · · · fn[in, jn] ∈ R(top(s̃1), top(s̃2)) such that

– q̃ does not contain two consecutive occurrences of hedge variables,
– the maximal subsequence of nonvariable terms occurring in q̃ has a form

f1(q̃1), . . . , fn(q̃n), and
– for every 1 ≤ k ≤ n, there exists a pair of sequences s̃′1k and s̃′2k such that s̃1|ik =

fk(s̃′1k), s̃2| jk = fk(s̃′2k), and q̃k is anR-generalization of s̃′1k and s̃′2k.

Now, we assume as the induction hypothesis that for all hedges q̃h of size less than
s > 1 and for all s̃h1, s̃

h
2 , if q̃

h is anR-generalization of s̃h1, s̃
h
2 , then there exists a G(R)

computation of an R-anti-unifier σ h of Xh : s̃h1 � s̃h2 such that q̃h � Xhσh. We make
the induction step for the hedges of size s.

Assume that q̃ has the form U0, f1(q̃1),U1, . . . ,Un−1, fn(q̃n),Un. Then, since
size(q̃k) < size(q̃), by the induction hypothesis there exists a derivation {Zk : s̃′1k �
s̃′2k}; ∅; Id =⇒∗ ∅; Sk, σk for each 1 ≤ k ≤ n, such that q̃k � Zkσk. Combining the
decomposition step with them, we obtain a derivation {X : s̃1 � s̃2}; ∅; Id =⇒R-Dec-H

{Zk : s̃′1k � s̃′2k | 1 ≤ k ≤ n}; Sdec; σdec =⇒∗ ∅; Sdec ∪ S1 ∪ · · · ∪ Sn; σdecσ1 · · · σn. By
Theorem 4.11, Xσdecσ1 · · · σn is an R-generalization of s̃1 and s̃2. Since all Zk’s are
distinct, Zkσk = Zkσ1 · · · σn for all 1 ≤ k ≤ n.

To get a computation of an R-anti-unifier in G(R) from the constructed
derivation, we extend it with the store cleaning rules: {X : s̃1 �
s̃2}; ∅; Id =⇒R-Dec-H {Zk : s̃′1k � s̃′2k | 1 ≤ k ≤ n}; S; σdec =⇒∗ ∅; Sdec ∪ S1 ∪ · · · ∪ Sn;
σdecσ1 · · · σn =⇒∗

R-CS1|R-CS2 ∅; S; σ.
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If q̃ does not contain duplicated variables, then, by the construction of the
derivation, we have q̃ � Xσdecσ1 · · · σn � Xσ . To show that q̃ � Xσ also when
there are duplicated variables in q̃, we assume without loss of generality that Y
is a variable that occurs in q̃ in two different places. If Um = Uk = Y for some
m 
= k ∈ {0, . . . ,n}, then s̃1|im+1

im = s̃1|ik+1

ik and s̃2| jm+1

jm = s̃2| jk+1

jk . The first step in the

derivation, the R-Dec-H rule, introduces two AUPs in S: Ym : s̃1|im+1

im � s̃2| jm+1

jm and

Yk : s̃1|ik+1

ik � s̃2| jk+1

jk . Later, the store cleaning rules makeYm andYk identical ensuring
that q̃ � Xσ . We can reason similarly, if the occurrences of Y happen in q̃m and q̃k
for distinct m 
= k ∈ {1, . . . ,n}, or if one occurrence of Y is in some q̃k and another
is one of the U ’s. Finally, if these occurrences are within the same q̃k, then, since
by the induction hypothesis q̃kρk = Zkσk = Zkσ1 · · · σn for some ρk, we have the
same term Ykρk occurring twice in the corresponding positions in Zkσ1 · · · σn. Since
Zkσ1 · · · σn � Zkσ and Zkσ1 · · · σn = Zkσdecσ1 · · · σn, we have q̃k � Zkσdecσ1 · · · σn.
Therefore, q̃ � Xσdecσ1 · · · σn � Xσ .

Hence, we constructed a derivation inG(R) that computes anR-anti-unifier σ of
s̃1 and s̃2 with the property q̃ � Xσ . 
�

Wemay prune the search space of the algorithmG(R), giving priority to the rules
R-CS1 andR-CS2. If they are applicable to a system, no other rule should apply to
it. It can prevent re-computing equivalent R-generalizations on different branches
without violating completeness. In addition, we may forbid the ruleR-Dec-H to add
to the set A the AUPs of the form Zk : ε � ε for 1 ≤ k ≤ n, and to add to the set S
the AUPs of the formYm : ε � ε for 0 ≤ m ≤ n. Respectively, such Zk’s andYm’s are
replaced by ε in the substitution computed byR-Dec-H. These simplifications can be
justified by the fact that those AUPs, anyway, eventually will be eliminated by the
R-CS2 rule. Therefore, they do not affect completeness. In the examples below we
assume thatG(R) is optimized in such ways. The length of each derivation under the
optimized G(R) does not exceed the size of the input problem.

To compute a minimal complete set ofR-generalizations, we still need to perform
the minimization step, unless the cardinality of the set thatR computes is not greater
than 1. In the latter case the G(R) computes a single R-generalization of the input
hedges.

Hence, combining G(R) with the minimization step, we can compute the set
mcgR(s̃1 � s̃2) for any hedges s̃1, s̃2, and the rigidity function R.

Answer to the Quiz 2: Given two identical hedges s̃ = f (a,b , c), g(a),h(a) and
q̃ = f (a,b , c), g(a),h(a) and R being a function that computes the set of all
common subsequences of the minimal length 3 of its arguments, mcgR(s̃ � q̃) =
{ f (a,b , c), g(X),h(X)}. One might expect the lgg to be only the original hedge
f (a, b , c), g(a),h(a) itself, but it violates the condition 3 of Def inition 4.3.

The rigidity function in the Quiz 2 is motivated by the idea that if similarity
between structures of two hedges is “sufficiently big”, then it is retained in the
generalization. “Too small” similar pieces in any level are ignored and abstracted
by a variable. This can be useful, for instance, if one wants to see whether two trees
branch in a similar way, where only “heavy” branching is interesting.

The example in this Quiz makes it clear why among the R-generalization rules,
we do not have the one that would generalize two identical terms with the same



Anti-unification for Unranked Terms and Hedges 177

term (the so called Trivial Terms rule). It would simply make the G(R) algorithm
unsound.

5 Rigid Generalizations with Term Variables

In this section we show how to improve the precision of rigid anti-unification,
permitting term variables to occur in rigid generalizations. This can be done with
a relatively small computational overhead. First, we need to redefine the notion of
R-generalization:

Definition 5.1 (R-Generalization with Term Variables) Given two variable disjoint
hedges s̃1 and s̃2 and the rigidity function R, we say that a hedge s̃ that generalizes
both s̃1 and s̃2 is their generalization with respect to R allowing term variables, or, in
short, anRT-generalization, if eitherR(top(s̃1), top(s̃2)) = ∅ and s̃ is a hedge variable
or a sequence of term variables, or there exists an alignment f1[i1, j1] · · · fn[in, jn] ∈
R(top(s̃1), top(s̃2)), such that the following conditions are fulfilled:

1. If the sequence s̃ contains a pair of consecutive variables, then both of them are
term variables.

2. If we remove all variables that occur as elements of s̃, we get a sequence of the
form f1(q̃1), . . . , fn(q̃n).

3. For every 1 ≤ k ≤ n, there exists a pair of sequences s̃′1 and s̃′2 such that s̃1|ik =
fk(s̃′1), s̃2| jk = fk(s̃′2) and q̃k is anRT-generalization of s̃′1 and s̃′2.

The minimal complete set of RT-generalizations of s̃1 and s̃2 is denoted by
mcgRT

(s̃1 � s̃2). An RT-anti-unif ier of X : s̃ � q̃ is a substitution σ such that Xσ is
anRT-generalization of s̃ and q̃.

Example 5.2 The RT-counterparts of R-generalizations of the hedges in the Exam-
ples 4.4, 4.5, and in quiz 2 look as follows:

1. R(w1,w2) is the set of all longest common subsequences of w1 and w2.

– Let t1 = f (g(a,X),a, X,b ) and t2 = f (g(b ),b ). Then mcgRT
(t1 � t2) =

mcgR(t1 � t2) = { f (g(Y), Z , b )} andmcgRT
(t1 � t2) ∩mcg(t1 � t2) = ∅.

– Let t1 = f (g(a,a), g(b ,b ), f (g(a), g(a))) and t2 = f (g(a,a), f (g(a), g)).
Then we get mcgRT

(t1 � t2) = { f (g(a,a), Z , f (g(a), g(X))), f (Z , g(x, x),
f (g(a), g(X)))}. Hence, mcgRT

(t1 � t2) 
= mcgR(t1 � t2) and mcgRT
(t1 �

t2) ⊂ mcg(t1 � t2).
– mcgRT

(a,b � b , c) = mcgR(a,b � b , c) = mcg(a,b � b , c) and consists of
a single hedge X,b ,Y.

2. R(w1,w2) is the set of all longest common substrings of w1 and w2.

– Let t1 = f (g(a,X),a, X,b ) and t2 = f (g(b ), b ). Then mcgRT
(t1 � t2) =

mcgR(t1 � t2) = { f (g(Y), Z ), f (Z ,b )}.
– mcgRT

( f (g(a,a), g(b ,b ), f (g(a), g(a)))� f (g(a,a), f (g(a), g)) contains only
the term f (Z , g(x, x), f (g(a), g(X))). It is less general than the least general
R-generalization of these terms, f (Z , g(U), f (g(a), g(X))).
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– mcgRT
(a, a,b , f, f, f (a, a,b ) � a, a, c, f, f, f (a, a, c)) contains one hedge

x, x, y, f, f, f (a, a, y). It is less general than their least general R-generali-
zation X, f, f, f (a, a,Y).

– mcgRT
(a, a,b ,b , f, f, f (a, a,b ,b )�a,a, c, f, f, f (a, a, c)) contains only one

hedge X, f, f, f (a, a,Y). (The same as the least generalR-generalization.)

3. R(w1,w2) is the set of all common subsequences with the length greater or equal
than 3 of w1 and w2.

– mcgRT
( f (a,b , c), g(a),h(a) � f (a,b , c), g(a),h(a)) consists of one hedge

f (a,b , c), g(x),h(x), which is less general than the least general R-gene-
ralization f (a,b , c), g(X),h(X). The difference between these two general-
izations illustrates the difference in the motivation of using such a rigidity
function with or without term variables. In both cases the “sufficiently
big” similarities are retained. As for the “small similarities”, in the case
without term variables they are completely ignored (generalized by a hedge
variable). In the presence of term variables the similar structure can be
kept (generalized by term variables for each branch), only the labels are not
interesting.

An algorithm G(RT) that computes RT-generalizations can be obtained from
G(R) by adding two new store cleaning rules:

R-CS3: R-Rigid Clean Store 3
A; {x1 : l � r, x2 : l � r} ∪ S; σ =⇒ A; {x1 : l � r} ∪ S; σ {x2 �→ x1}

R-CS4: R-Rigid Clean Store 4
A; {X : l1, . . . , ln � r1, . . . , rn} ∪ S; σ =⇒
A; {x1 : l1 � r1, . . . , xn : ln � rn} ∪ S; σ {X �→ x1, . . . , xn},

where n ≥ 1 and xi’s are fresh.

In fact, derivations performed by G(R) can be extended by these rules to obtain
RT-generalizations. RT-generalizations can be seen as further refinements of R-
generalizations.

Termination ofG(RT) is not hard to establish: Define the complexity measure for
A; S; σ as a triple (M(A),M(S), |S|), where M is defined as in the termination proof
ofG and |S| is the cardinality of S. Measures are ordered lexicographically. Then the
rules taken from G(R) strictly decrease it, because they decrease the lexicographic
combination of the first two components, as it was shown in the proof of termination
ofG(R). As for the new rules,R-CS3 strictly decreases the third component without
changing the first two, andR-CS4 strictly decreases the second one without changing
the first. Since the ordering is well-founded, we get termination of G(RT).

To prove soundness, we need a couple of lemmas:

Lemma 5.3 Let A; S;ϑ =⇒R1 A1; S1;ϑσ1 =⇒R2 A2; S2;ϑσ1σ2 be a sequence of
transformations where R1 ∈ {R-CS3,R-CS4} and R2 ∈ G(R). Then there exists
a transformation sequence A; S;ϑ =⇒R2 A′

1; S′1;ϑσ2 =⇒R1 A′
2; S′2;ϑσ2σ1 such that

A′
2 = A2, S′2 = S2, and ϑσ1σ2 = ϑσ2σ1.
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Proof Since R1 does not affect the first component in the system, we have A1 = A
and A′

2 = A′
1. We perform the stepR2 in the second transformation sequence exactly

in the same way as in the first one, choosing the same rule, the same AUP in A, the
same alignment, and the same fresh variables. Then A′

1 = A2 and, hence, A′
2 = A2.

As for the stores, R2 can not process in S1 an AUP introduced by R1. Hence, it
can process in S1 only an AUP that was already in S. So, S2 is obtained from S
by replacing at most two AUPs with zero or more AUPs. In the second derivation
we just repeat the same transformation to obtain S′1 from S. On the other hand, the
AUPs processed byR1 in the first derivation are still in S′1. They remained there from
S. To finish the construction of the second sequence, we can repeat transformation
performed by R1 in the first derivation. Then we get that S′2 is obtained from S by
replacing at most two AUPs with zero or more AUPs. Since the replaced and new
AUPs in the second derivation are exactly those in the first derivation, we obtain that
S′2 = S2. Finally, σ1 and σ2 commute, because their domains and ranges are disjoint.
Hence, ϑσ1σ2 = ϑσ2σ1. 
�

Lemma 5.4 If A; S1;ϑ =⇒∗ ∅; S2;ϑσ is a derivation in G(R), then for all (X : s̃ �
q̃) ∈ A, the hedge Xσ is anRT-generalization of s̃ and q̃.

Proof By soundness of G(R), Xσ is an R-generalization of s̃ and q̃. From
Definitions 4.3 and 5.1, it is easy to see that an R-generalization of two hedges is
also theirRT-generalization. 
�

Lemma 5.5 If {X : s̃1 � s̃2}; ∅; Id =⇒∗ ∅; S1;ϑ =⇒R ∅; S2;ϑσ is a derivation in
G(RT) such that Xϑ is an RT-generalization of s̃1 and s̃2 and R ∈ {R-CS3,R-CS4}.
Then Xϑσ is anRT-generalization of s̃1 and s̃2.

Proof Let R be R-CS3, transforming {x1 : l � r, x2 : l � r} ⊆ S1 into {x1 : l � r} ⊆
S2 with the substitution σ = {x2 �→ x1}. The terms l and r occur in s̃1 and s̃2,
respectively, so that the corresponding occurrences are abstracted by the same
variable in Xϑ . This variable for some pairs of occurrences of l and r is x1 and Xϑ is
anRT-generalization of s̃1 and s̃2 for some others x2. Hence, if we replace x2 with x1

in Xϑ , the obtained hedge Xϑσ will be a generalization of s̃1 and s̃2.
To prove that after this replacement we still have an RT-generalization of s̃1 and

s̃2, we proceed by induction on the maximal depth d of the occurrences of x2 in Xϑ .
This can be done in the same way as in the proof of Lemma 4.10.

Let R be R-CS4, transforming {X1 : l1, . . . , ln � r1, . . . , rn} into {x1 : l1 �
r1, . . . xn : ln � rn} with the substitution σ = {X1 �→ x1, . . . , xn}. Since Xϑ is an RT-
generalization of s̃1 and s̃2, X1 can be adjacent only to a term variable in Xϑ . After
replacing it (at any depth in Xϑ) with the hedge of variables x1, . . . , xn, these new
variables can appear also only next to non-variable terms or term variables. Besides,
removing them from Xϑ corresponds to removal of X1 from there and, hence, it does
not affect the alignment imposed by R. This implies that for Xϑσ the conditions of
the definition ofRT-generalization are satisfied, i.e., Xϑσ is anRT-generalization of
s̃1 and s̃2. 
�
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Now we can prove the soundness theorem for G(RT):

Theorem 5.6 (Soundness ofG(RT)) If {X : s̃1 � s̃2}; ∅; Id =⇒∗ ∅; S; σ is a derivation
in G(RT), then Xσ is anRT-generalization of s̃1 and s̃2.

Proof By Lemma 5.3, every derivation in G(RT) can be reordered so that first we
have only the derivation inG(R) and then the rulesR-CS3 andR-CS4 are applied.
The substitutions computed by the original derivation and by the reordered deriva-
tion coincide. Let σ ′ be the substitution obtained at the end of the subderivation
in G(R). By Lemma 5.4, Xσ ′ is an RT-generalization of s̃1 and s̃2. By Lemma 5.5,
substitutions introduced by the rulesR-CS3 andR-CS4 keep theRT-generalization
property. Hence, Xσ is anRT-generalization of s̃1 and s̃2. 
�

The algorithm G(RT) is also complete:

Theorem 5.7 (Completeness of G(RT)) Let q̃ be an RT-generalization of s̃1 and s̃2.
Then G(RT) computes anRT-anti-unif ier σ for X : s̃1 � s̃2 such that q̃ � Xσ .

Proof We prove the theorem on the number n of distinct term variables in q̃.
(Since we always assume that the hedges to be generalized are variable disjoint, the
variables in q̃ occur neither in s̃1 nor in s̃2.) If n = 0, then q̃ is an R-generalization
of s̃1 and s̃2. Then by Theorem 4.12 we can compute an R-anti-unifier σ with the
desired property using only the rules in R. But σ is also an RT-anti-unifier. Hence,
for n = 0 the theorem holds.

Now assume the claim is true for any RT-generalization with n distinct term
variables and prove it for those that contain n+ 1 distinct term variables. Let y
be a term variable that occurs in q̃. Then there are subterms t1 and t2 in s̃1 and
s̃2, respectively, that are generalized by y. Let q̃′ be a hedge obtained from q̃
by replacing each occurrence of y with a fresh variable Y. Then q̃′ is a G(RT)

generalization of s̃1 and s̃2. It generalizes every subterm in s̃1 and s̃2 in the same
way (modulo variable renaming) as q̃ does, except for t1 and t2. q̃′ contains n distinct
term variables. Therefore, by the induction hypothesis,G(RT) computes anRT-anti-
unifier σ ′ for X : s̃1 � s̃2 such that q̃′ � Xσ ′. That is, there exists a substitution ρ such
that q̃′ρ = Xσ ′. Depending on what Yρ is, we distinguish the following cases:

1. Yρ is a term variable or a non-variable term. Then yρ � Yρ, therefore, q̃ � Xσ ′
and we can take σ ′ in the role of σ .

2. Yρ is a hedge variable Z . Then we extend the derivation with the rule R-CS4
and the substitution ρ ′ = {Z �→ z}. Then q̃ � Xσ ′ρ ′ and can take σ ′ρ ′ in the role
of σ . 
�

Example 5.8 Let f (g(a,a), g(b ,b ), f (g(a), g(a))) and f (g(a,a), f (g(a), g)) be two
given terms and R be the function computing the set of all longest common
subsequences. In Example 5.2 we saw that the mcgRT

of these terms consists of
two elements. Now we illustrate how the algorithm G(RT) computes one of these
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lggs, the term f (Z , g(x, x), f (g(a), g(X))). We can continue where the derivation in
Example 4.4 stopped and perform two more steps:

∅; {Z : g(a,a) � ε,U : b ,b � a, a, X : a � ε};
{X0 �→ f (Z , g(U), f (g(a), g(X))), . . .} =⇒R-CS4

∅; {Z : g(a,a) � ε, x : b ,� a, y : b � a, X : a � ε};
{X0 �→ f (Z , g(x, y), f (g(a), g(X))), . . .} =⇒R-CS3

∅; {Z : g(a,a) � ε, x : b ,� a, X : a � ε};
{X0 �→ f (Z , g(x, x), f (g(a), g(X))), . . .}

Example 5.9 We illustrate how the algorithm G(RT) generalizes the terms
f (a1, a2, a3, a4, a5) and f (b 1,b 2, b 3, b 4, b 5). (Earlier, we mentioned a bad perfor-
mance of G on this input). R computes the set of all common subsequences of its
arguments. There is only one branch in the computation. It is a drastic improvement
compared to more than eleven thousand branches in the nonrigid generalization
algorithm:

{X0 : f (a1, a2, a3, a4, a5) � f (b 1, b 2, b 3, b 4, b 5)}; ∅; Id =⇒R-Dec-H

{X1 : a1, a2, a3, a4, a5 � b 1,b 2,b 3,b 4,b 5}; {Y0 : ε � ε,Y1 : ε � ε};
{X0 �→ Y0, f (X1),Y1} =⇒2

R-CS2

{X1 : a1, a2, a3, a4, a5 � b 1,b 2,b 3, b 4, b 5}; ∅; {X0 �→ f (X1)} =⇒R-S-H

∅; {X1 : a1, a2, a3, a4, a5 � b 1,b 2,b 3,b 4,b 5}; {X0 �→ f (X1)} =⇒R-CS4

∅; {x1 : a1 � b 1, x2 : a2 � b 2, x3 : a3 � b 3,

x4 : a4 � b 4, x5 : a5 � b 5};
{X0 �→ f (x1, x2, x3, x4, x5), . . .}.

6 Relationship with the Other Anti-Unification Problems

Simple Hedge Anti-Unif ication Rigid anti-unification can model simple anti-
unification considered in Yamamoto et al. [37]. Simple hedges are called those that
are linear (no duplicated occurrences of hedge variables) and for each subterm
f (s1, . . . , sn) occurring in the hedge at any depth, there is at most one hedge variable
among s1, . . . , sn. Term variables are not permitted. The following two hedges
a, X, f (Y, g(b )) and X, f (Y, f (a, Z )) are simple, while the hedges a, X, f (b ),Y, a
and X, f (X) are not. A simple anti-unifier for f (a), f (a, c), a,b , g(a), g(b ) and
f (b , a,b ), f (b , a,b , c),b , g(a) is f (X), f (Y, c), Z , g(U).
We can use the G(R) algorithm without the rule R-CS1 to compute simple

generalizations. The rigidity function appropriate for this case should return a
longest common subsequence of its arguments, composed by concatenating the non-
overlapping longest common prefix and the longest common suffix. For instance, in
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case of words f fabgg and f fbg, R should return f fg, because it is a concatenation
of the longest common prefix f f and the longest common suffix g. If the longest
common prefix and the longest common suffix overlap, then the input words are
the same and R returns that word. Now we see how the algorithm with this rigidity
function computes a simple anti-unifier:3

{X0 : f (a), f (a, c), a,b , g(a), g(b ) � f (b , a,b ), f (b , a,b , c), b , g(a)};
∅; Id =⇒R-Dec-H

{X : a � b , a,b ,Y0 : a, c � b , a,b , c,U : a � b };
{Z : a,b , g(a) � b , }; {X0 �→ f (X), f (Y0), Z , g(U)} =⇒R-S-H

{Y0 : a, c � b , a,b , c,U : a � b };
{X : a � b , a,b , Z : a,b , g(a) � b }; {X0 �→ f (X), f (Y0), Z , g(U)} =⇒R-Dec-H

{Y : a � b , a,b ,Y1 : ε � ε,U : a � b };
{X : a � b , a,b , Z : a,b , g(a) � b };

{X0 �→ f (X), f (Y, c(Y1)), Z , g(U), . . .} =⇒R-S-H

{Y1 : ε � ε,U : a � b };
{X : a � b , a,b ,Y : a � b , a,b , Z : a,b , g(a) � b };

{X0 �→ f (X), f (Y, c(Y1)), Z , g(U), . . .} =⇒R-Dec-H

{U : a � b };
{Y1 : ε � ε, X : a � b , a,b ,Y : a � b , a,b , Z : a,b , g(a) � b };

{X0 �→ f (X), f (Y, c(Y1)), Z , g(U), . . .} =⇒R-CS2

{U : a � b }; {X : a � b , a,b ,Y : a � b , a,b , Z : a,b , g(a) � b };
{X0 �→ f (X), f (Y, c), Z , g(U), . . .} =⇒R-S-H

∅; {X : a � b , a,b ,Y : a � b , a,b , Z : a,b , g(a) � b ,U : a � b };
{X0 �→ f (X), f (Y, c), Z , g(U), . . .}.

Word Anti-Unif ication It is interesting to see how our approach to hedge gener-
alization compares to existing works on its special case, word anti-unification. The
algorithm for the latter defined in Cicekli and Cicekli [11] computes not all, but only
a specific word generalization. The input wordsw1 andw2 should satisfy the following
properties: (i) Their longest common subsequence w should not share a letter with
the words w1 − w and w2 − w (called the differences), obtained from w1 and w2,
respectively, by deleting the subsequence w, and (ii) w1 − w and w2 − w should not
share a letter. If w1 and w2 do not satisfy these properties, they are abstracted by
a hedge variable. Otherwise the generalization is computed by keeping w in it and
generalizing the pieces of difference words between the letters of w in w1 and w2 in

3As in Example 4.7, we contract applications ofR-Dec-H and R-CS2 rules into one R-Dec-H step.
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the usual way. These pieces are processed to see whether there are differences that
can be abstracted by the same variable.

This algorithm can be modeled with a combination of rigid and complete
algorithms in our case. We define a rigidity function R such that for words that
satisfy the conditions (i) and (ii), it returns the set containing their longest common
subsequence. (There can be only one.) If the conditions are violated, then the empty
set is returned. After the G(R) algorithm computes a terminal system ∅, S, σ , we
continue with the algorithm G starting from the system S,∅, σ . The reason of such
a combination is that in S the AUPs are between difference words. According to
Cicekli and Cicekli [11], they are generalized differently than the original words.
They should be decomposed to see whether there are two AUPs that can be
generalized with the same variable. We can model this kind of generalization by the
algorithmG.

In Biere [7], the notion of ε-free generalization is introduced. Awordw is an ε-free
generalization of w1 and w2 if for all σ1, σ2 with wσ1 = w1 and wσ2 = w2, there is no
variable X in w such that Xσ1 = ε or Xσ2 = ε holds. Rigid anti-unification models
computation of ε-free generalization, if we choose the rigidity function to return
longest common subsequences so that the alignments a[i1, j1] · · · a[in, jn] computed
by the function satisfy the property: for all 1 ≤ k < n, ik+1 = ik + 1 iff jk+1 = jk + 1.
That means that consecutive letters of the computed subsequence either occur con-
secutively in both of the original words, or are separated in both of them by at least
one letter.

Standard Anti-Unif ication The standard anti-unification over ranked terms [31, 32]
can be modeled byRT-rigid anti-unification, choosingR as the function that returns
a singleton set R(w1,w2) = {a1[i1, i1] · · · an[in, in]}, where a1 · · · an is the longest
common subsequence of w1 and w2 such that all ais occur at the same positions in
w1 and w2.

Associative Anti-Unif ication with Unit Anti-unification with an associative function
symbol (A) and a unit element (U) has been studied in Alpuente et al. [2]. AU
anti-unification with constants (where terms are built over associative function
symbol, unit element, and free constants) can be directly modeled as unranked anti-
unification, using the algorithmG to compute generalizations.

Example 6.1 Let f be a binary associative function symbol, e the unit element
for f (i.e., f (t, e) = f (e, t) = t for all t), and a,b , and c free constants. The AU
anti-unification problem x0 : f ( f (a,b ), f (c, f (b , c))) � a can be modeled as an
unranked anti-unification problem X0 : a,b , c,b , c � a. The algorithm G computes
its generalization a, X,Y, X,Y, from which we can reconstruct the corresponding
AU generalization in the flattened form f (a, x, y, x, y).

If, in addition, there are free function symbols in the terms as well (general
AU anti-unification), then we need a combination of the rules from G and G(RT).
The rigidity function in G(RT) is the same as the one for modeling the standard
anti-unification above. The combination is not straightforward, since we need to
distinguish betweenAUPs obtained by decomposing terms with the associative head,
from the AUPs obtained by decomposing terms with free heads. Differences and
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similarities between occurrences of the unit element and the empty hedge requires
also a special treatment. One can add extra rules to the algorithms for these special
cases, but we do not go into detail here, as it is merely a technical exercise and does
not give a new insight into relationship between these problems.

7 Discussion on Applications

It is not our intention to give here an exhaustive list of application areas of various
forms and kinds of anti-unification. We just mention few representative ones, such as
reasoning by analogy [19], machine learning [4], program synthesis [17, 35], program
verification [28]. What we discuss in this section is one potentially interesting applica-
tion of this technique in clone detection, indicating the ways how RT-generalization
can help in the process of detecting (software code) clones.

Having said that, we would like to emphasize that clone detection by anti-
unification is not the main topic of this paper. It can be a subject of separate research.
Here we just try to briefly indicate some possibilities of application of rigid anti-
unification in detecting clones.

Clone detection is an active research topic since clones are considered to be a
significantly problematic issue for software maintenance. Studies show that from 5 to
20 % of software systems can contain duplicated code. Due to various complications
such duplicated pieces cause, it is widely agreed that clone detection an important
part of software analysis. The survey papers [33, 34] give a detailed characterization
of code duplication reasons and drawbacks, introduce clone types, describe and
evaluate clone detection process and techniques, and list open problems in clone
detection research. The proposed classification distinguishes four types of clones:

Type I: Identical code fragments except for variations in whitespace, layout and
comments.

Type II: Syntactically identical fragments except for variations in identifiers, liter-
als, types, whitespace, layout and comments.

Type III: Copied fragments with further modifications such as changed, added or
removed statements, in addition to variations in identifiers, literals, types,
whitespace, layout and comments.

Type IV: Two or more code fragments that perform the same computation but are
implemented by different syntactic variants.

Complexity and sophistication in detecting such clones increases from Type I
through Type IV with Type IV being the highest. (Although it does not mean that
Type IV contains other types as special cases.)

Some clone detection techniques are based on tree representation of the code, like
parse trees, abstract syntax trees, or an XML form of abstract syntax trees; see, e.g.,
Baxter et al. [6], Evans et al. [14], Koschke et al. [18], Yang [38], Wahler et al. [36], for
some of the works that follow this approach. We assume that the code is represented
in a structural form that can be encoded with unranked terms (or hedges). We
keep the representation abstract, without specifying what exactly this structural form
is. This helps to make the technique independent of the underlying programming
language.
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Usually, clone detection tools first preprocess the code, then find potential clone
candidates, and, finally, analyze them to return actual clones. One can employ the
RT-generalization algorithm in the process of finding potential code clones. Further
analysis can be based on variousmeasures, like, e.g., on the size of the generalization,
or on the maximal length of a nonvariable hedge in the generalization, etc. Although
we are not concerned with this part, by choosing appropriate R we can anticipate
this last filtering process. The choice of the R depends on what is considered as
interesting clone.

RT-anti-unification can be useful as an ingredient for a clone detection tech-
nique/tool for types I-III. We illustrate it on an example composed from the
taxonomy of editing scenarios for different clone types, described in Roy et al. [34].

In Fig. 1, we show a program (on the top) and its three clones (in three columns
below). The first one is the clone of type II, the second and the third ones are clones
of type III.

We show now how rigid anti-unification can be used to find similarities between
these pieces of code and the original code. The rigid lggs will show how similar these
pieces are and at which parts they differ. A clone detection tool then can use this
information to conclude that clones have been detected.

First, we have to represent the pieces of code above as unranked terms. For
better comprehension, we write these terms in several lines, following the structure
of the code they abstract. The representation is shown in Fig. 2, where the term t
corresponds to the original code. Its modified copies are denoted, respectively, with
r1, r2, and r3. In the first two, the parts that correspond to the modified pieces of code
are written in bold face.

Let R compute the set of longest common subsequences. We choose it because
it captures the idea that the clones have a lot in common. Such an R is supposed to
draw out as much as possible of the common statements from two pieces of code.
BothR- andRT-generalizations can be used to compute clone candidates. We show
here theRT-generalizations as they provide more precise results.

For r1 and r2, the sets of their lggs with t are singleton sets, depicted in Fig. 3. These
lggs show that similarities between r1 and t and between r2 and t are quite significant.
It indicates that the corresponding code pieces are clones.

In case of r3, which is obtained from t by deleting an argument (i.e., a line in the
code), we have two lggs shown in Fig. 4. Among them, we say that the first one is

Fig. 1 A program and its clones
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Fig. 2 Representing the program and its clones as unranked terms

a better generalization, because it preserves the common structure better than the
other.

The standard anti-unification [31, 32] has already been considered for computing
software clones by Bulychev and Minea [8], Bulychev et al. [9], Li and Thompson
[27], detecting mostly clones of types I and II. However, we think that parame-
trized anti-unification over unranked terms offers more flexibility in finding clone

Fig. 3 mcgRT
(t � r1) and

mcgRT
(t � r2)



Anti-unification for Unranked Terms and Hedges 187

Fig. 4 mcgRT
(t � r3)

candidates. It helps to detect inserted or deleted pieces of code, which is necessary
for clones of type III. Another advantage of this approach is that it is modular, where
most of the computations are performed on strings. It may combine advantages of
fast textual and precise structural techniques. For many interesting string relations
(e.g., longest common subsequence, longest common substring, sequence alignment,
etc.), there exist efficient algorithms that also scale well for large data [15]. Hence,
one can take advantage using these off-the-shelf methods when computing clone
candidates byR-generalization.

Yet another advantage of using R-generalizations in clone detection is that it
works on unranked terms that are natural abstractions of XML documents. How
to detect clones well in generated XML/HTML is mentioned as one of the open
problems in clone detection research in Roy and Cordy [33]. A detection technique
that usesR-generalization would be an interesting approach to this problem.

Moreover, from the clones computed by R-generalization (anti-unification, in
general) one can extract a procedure. This process has a use in code refactoring.
The clones can be replaced by the procedure calls, properly instantiated by the
substitution that gives, from the computedR-generalization, the clone it generalizes.
As we saw in Example 4.7, these substitutions are easily extracted from the store. In
general, while anti-unifiers reflect similarities between two inputs, the data in the
store can be used to identify differences between them (i.e., between inputs). The
latter provides for unranked trees a functionality similar, for instance, to one of the
well-known comparison utilities (e.g., diff, cmp, fc) that compare the contents of files,
finding common contents and differences in them.

We proved properties ofR-generalization for a genericR, i.e., for the entire class
of rigidity functions. Specializing R with a particular function, we obtain a specific
instance of R-generalization. We saw how certain known generalization problems
fall into the class of specific instances ofR-generalization in this way.

Some applications (e.g., structural clustering of XML documents) may require
computation of lggs for more than two hedges, i.e., given the hedges s̃1, . . . , s̃n,
compute a hedge s̃ that is more general than any of the given hedges and less
general among those with the same property. For such cases, definition of rigid
generalizations should be made more generic, permitting alignments and rigidity
functions to be defined for any number (≥2) of arguments. Furthermore, we have
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to modify the rules of the algorithms G(R) and G(RT), permitting there tuples
X : s̃1 � s̃2 � · · · � s̃n instead of triples X : s̃ � q̃. We do not intend to go into the
details of such extended algorithms. (Their properties are not difficult to prove along
the lines of proofs for the case with two hedges.) But we would like to emphasize
that it is indeed necessary to have these extensions of G(R) and G(RT) for tuples
because, in general, they can not be replaced by iterative applications of G(R) or
G(RT). There exist rigidity functions for which rigid generalizations of several terms
computed at once might differ from the rigid generalizations computed iteratively.
The following example illustrates this:

Example 7.1 Let R stand for longest common subsequence. Then f (X, c,Y) is an
R-lgg for three terms f (a,b , c), f (c, a,b ) and f (c). However, if we proceed step
by step with the G(R) algorithm, we obtain f (Z ) as their generalization: The only
(modulo 	)R-lgg of f (a,b , c) and f (c, a,b ) is f (X, a,b ,Y), and then for this term
and f (c) we get f (Z ).

On the other hand, there exist also rigidity functions for which “computation of
generalizations at once” can be replaced by their iterative computation. For instance,
the rigidity function used for modeling the standard anti-unification has such a
property. Also, the algorithm G can be used iteratively to compute generalizations
of several terms.

8 Final Comments

We have presented anti-unification algorithms for unranked terms and hedges,
starting from a minimal complete one and then designing a more efficient and
flexible version for computing only rigid anti-unifiers. Furthermore, we made rigid
generalizations more precise by generalizing certain hedges with sequences of term
variables instead of abstracting them by a single hedge variable. We also indicated
possible applications in code clone detection.

The rigid generalization algorithm G(R) has been implemented (without the
minimization step) in Java and is available from http://www.risc.jku.at/projects/stout/.
One can use it online via a Web interface or download sources freely from the same
location. The provided rigidity functions are those for computing longest common
subsequences and longest common substrings (both with and without minimal length
restriction).

There are a couple of possible directions in future work. One option is to bring
in certain higher-order features that can help to further improve the precision of
generalizations and detect similarities in different levels. Other interesting directions
would be to perform unranked anti-unification in a sorted setting or on compressed
terms.
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