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„Notice that the stiffest tree is most easily
cracked, while the bamboo or willow survives
by bending with the wind.

— Bruce Lee
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Abstract

The outstanding stiffness and strength properties, with respect to their weight, of fibre-
reinforced polymers have led to an increase of their usage in structures that needed
a weight reduction. This has been specially the case of the aerospace industry,
where the use of light materials has a significant effect on the fuel consumption
of aircraft structures, resulting in two direct benefits: first reducing the economic
costs of flights, and second, reducing the gas emission that causes the greenhouse
effect.

When a fibre-reinforced composite laminate is subjected to traction or compression,
it develops a relatively large Fracture Process Zone where material toughening
mechanisms such as matrix cracking, fibre-bridging and fibre pull-outs take place.
The damage onset and damage propagation are well defined from a cohesive
model point of view, although no standard procedure has been yet developed to
characterize the translaminar Cohesive Law. The present Ph.D. thesis proposes an
objective inverse method for obtaining the Cohesive Law from a single Compact
Tension test.

First, the usage of the Compact Tension specimen for determining the fracture
properties of orthotropic laminates has been studied. As a result, a Stress Intensity
Factor function has been developed, for the mentioned geometry, applicable to a
wide range of materials orthotropies. Additionally, some test recommendations are
given taking into account the material properties.

Second, a semi-analytic model has been developed for a Compact Tension specimen
subjected to a controlled displacement and corresponding load within a cohesive
model framework. The model is able to capture the material response while the
Fracture Process Zone is being developed, obtaining the evolution of multiple vari-
ables such as the crack opening and the cohesive stresses, for any given arbitrary
Cohesive Law shape.
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Third, with the aid of the aforementioned model, an algorithm has been developed
capable of obtaining the translaminar Cohesive Law from a single Compact Tension
test. The methodology to solve the inverse problem consists on defining a piecewise
unknown Cohesive Law. The segments widths and slopes are found in order to best
fit the experimental curve.

Last, the proposed inverse method has been used to perform an in-depth discussion
of the Cohesive model. First, the Cohesive Law has been measured for several
interply hybrid laminates, in order to study the influence of the stacking sequence on
the resulting curve. Secondly, the method has been applied to show the invariability
of the obtained Cohesive Law for different geometries and specimen sizes.
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Resum

L’excel.lent rigidesa i resistència, respecte al seu pes, dels polímers reforçats amb
fibres han portat a un augment del seu ús en estructures que necessiten una
reducció de pes. Aquest ha estat especialment el cas de la indústria aeroespacial,
on l’ús de materials lleugers afecta significativament el consum de combustible
dels avions, resultant en dos avantatges directes: primer la reducció dels costos
económics dels vols, i segon, la reducció de l’emissió dels gasos causants de
l’efecte hivernacle.

Quan un laminat compost de polímer reforçat amb fibres és sotmès a tracció o
compressió, aquest desenvolupa una Zona de Procés de Fractura relativament
gran, on mecanismes d’enduriment com ara l’esquerdament de la matriu, bridging i
pull-out de fibres tenen lloc. La iniciació i propagació del dany estan ben definits
des del punt de vista del model cohesiu, tot i que actualment encara no hi ha cap
procediment estàndard per caracteritzar la Llei Cohesiva translaminar. La present
tesi doctoral proposa un mètode invers per a l’obtenció de la Llei Cohesiva utilitzant
unicament un assaig de la proveta Compact Tension.

En primer lloc, s’ha estudiat l’ús de la proveta Compact Tension per determinar les
propietats de fractura de laminats ortotrópics. D’aquest estudia ha sorgit una funció
del Factor d’Intensitat de Tensions, aplicable a una àmplia gamma de materials
ortotrópics. A més, s’han donat algunes recomanacions per a la correcta realització
de l’assaig, tenint en compte les propietats del material.

En segon lloc s’ha desenvolupat un model semi-analític capaç de reproduir el
comportament d’una proveta Compact Tension sotmesa a un desplaçament controlat
i a una càrrega corresponent, dins el marc del model cohesiu. El model és capaç de
capturar el comportament del material mentre es desenvolupa la Zona de Procés
de Fractura, així com obtenir l’evolució de múltiples variables com ara l’obertura
d’esquerda i les tensions cohesives, per a qualsevol forma de la Llei cohesiva
donada.
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En tercer lloc, amb l’ajuda del model anteriorment esmentat, s’ha desenvolupat un
algoritme capaç d’obtenir la Llei cohesiva d’un laminat, a partir d’un únic assaig
de la proveta Compact Tension. La metodologia per resoldre el problema invers
consisteix a definir la Llei cohesiva a mesurar com una funció definida a trossos,
composta per trams lineals. L’ample i el pendent de cada tram es varia fins que la
corba força-desplaçament s’ajusta millor a la mesurada en l’assaig.

Finalment, el mètode proposat del problema invers s’ha utilitzat per dur a terme
una discussió del model cohesiu. En primer lloc, la Llei Cohesiva de diferents
laminats híbrids ha estat mesurada, per tal d’estudiar la influència de la seqüència
d’apilament en la forma de la Llei Cohesiva obtinguda. En segon lloc, el mètode ha
estat aplicat per mostrar la invariabilitat de la Llei cohesiva obtinguda de diferents
geometries i mides de provetes.
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Resumen

La excelente rigidez y resistencia, con respecto a su peso, de los polímeros reforza-
dos con fibras han llevado a un aumento de su uso en estructuras que necesitan
una reducción de peso. Esto ha sido especialmente el caso de la industria aeroes-
pacial, donde el uso de materiales ligeros afecta significativamente el consumo de
combustible de los aviones, lo que resulta en dos ventajas directas: primero reducir
los costes económicos de los vuelos, y segundo, la reducción de la emisión de
gases causantes del efecto invernadero.

Cuando un laminado compuesto de polímero reforzado con fibras es sometido a
tracción o compresión, éste desarrolla una Zona de Proceso de Fractura relativa-
mente grande, donde mecanismos de endurecimiento tales como agrietamiento de
la matriz, fibre-bridging y fibre pull-out tienen lugar. La iniciación y propagación del
daño están bien definidos desde el punto de vista del modelo de cohesivo, aunque
en la actualidad todavía no existe ningún procedimiento estándar para caracterizar
la Ley Cohesiva translaminar. La presente tesis doctoral propone un método inverso
para la obtención de la Ley Cohesiva utilizando únicamente un ensayo de la probeta
Compact Tension.

En primer lugar, se ha estudiado el uso de la probeta Compact Tension para
determinar las propiedades de fractura de laminados ortotrópicos. Como resultado,
se ha desarrollado una función del Factor de Intensidad de Tensiones, aplicable
a una amplia gama de materiales ortotrópicos. Además, se han dado algunas
recomendaciones para la correcta realización del ensayo, teniendo en cuenta las
propiedades del material.

En segundo lugar, se ha desarrollado un modelo semi-analítico capaz de reproducir
el comportamiento de una probeta Compact Tension sometida a un desplazamiento
controlado y a su carga correspondiente dentro del marco del modelo cohesivo. El
modelo es capaz de capturar el comportamiento del material mientras se desarrolla
la Zona de Proceso de Fractura, así como la evolución de múltiples variables tales
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como la apertura de grieta y tensiones cohesivas, para cualquier forma de la Ley
Cohesiva.

En tercer lugar, con la ayuda del modelo anteriormente mencionado, se ha desar-
rollado un algoritmo capaz de obtener la Ley Cohesiva de un laminado, a partir de
un único ensayo de la probeta Compact Tension. La metodología para resolver el
problema inverso consiste en definir la Ley Cohesiva a medir como una función
definida a trozos, compuesta por tramos lineales. El ancho y la pendiente de cada
tramo se modifica hasta que la curva fuerza-desplazamiento se ajusta mejor a la
medida en el ensayo.

Por último, el método propuesto para el problema inverso se ha utilizado para llevar
a cabo una discusión del modelo cohesivo. En primer lugar, la Ley Cohesiva de
distintos laminados híbridos se ha medido, con el fin de estudiar la influencia de la
secuencia de apilamiento en la forma de la Ley Cohesiva obtenida. En segundo
lugar, el método ha sido aplicado para mostrar la invariabilidad de la Ley Cohesiva
obtenida de diferentes geometrías y tamaños de probetas.
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1Introduction

1.1 Background

The outstanding stiffness and strength properties, with respect to their weight, of fibre-
reinforced polymers have led to an increase of their usage in structures that needed
a weight reduction. This has been specially the case of the aerospace industry,
where the use of light materials has a significant effect on the fuel consumption
of aircraft structures, resulting in two direct benefits: first reducing the economic
costs of flights, and second, reducing the gas emissions that cause the greenhouse
effect.

The effort lead by researchers, development and design communities over the
last four decades has led to a better understanding of the failure mechanisms of
fibre-reinforced composite materials and how these mechanisms can impact the
performance of structural components. Although this has carried more efficient
structural designs, there is still room to push the boundaries of damage tolerant com-
ponents. In order to achieve this, methods for predicting the onset and subsequent
propagation of damage in composite components are, therefore, highly desirable.

1.1.1 Fibre-reinforced composite materials

A composite material is any material that consists of two or more components
with different properties and distinct boundaries between them. Concretely, Fibre-
Reincorced polymers (FRP) refer to the family of composite materials made of a
polymer matrix reinforced with fibres. The fibers are usually made of glass or carbon,
and are the basic components of these composite materials, as they provide the
high strength and stiffness required in structural applications. The volume fraction
of the polymer matrix is usually lower than 50%.
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Fig. 1.1.: Stress-strain diagrams for typical fibers used in composites (Vasiliev and Morozov,
2007).

Glass fibers are characterized by having a high strength and relatively low stiffness,
high chemical and biological resistance, and low cost. On the other hand, carbon
fibres are much stiffer than the glass fibres, with modern carbon fibres capable
of reaching elastic modulus of about four times the modulus of steel. Fig. 1.1
shows typical stress-strain diagrams for high-modulus (H-M) and high-strength (H-S)
carbon fibres. Carbon fibers are also characterized by providing high chemical
and biological resistance, electric conductivity and very low coefficient of thermal
expansion.
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In order to create a monolithic composite material capable of withstanding the
required strength and stiffness, the fibres are bounded in a matrix material. These
provide the final shape of the composite structure and govern the parameters of
the manufacturing process. The resulting combination is a ply or lamina of FRP
composite, with high structural properties in one direction (along the fibre direction),
but of poor quality on the other directions. By joining several of these plies, oriented
in different directions, it is possible to create a laminate, in order to provide the
required engineering properties, such as the in-plane stiffness, bending stiffness
and strength.

1.1.2 Translaminar failure

Most structural components are subjected to several combinations of tensile, com-
pressive and bending loads that may cause the failure of a FRP laminate in different
manners: matrix cracking induced delamination, tensile failure of a ply, free-edge
delaminations, translaminar crack, etc.

The present thesis focuses on translaminar failure. This phenomenon is described
when a crack appears across the whole thickness of the laminate, breaking all the
plies. It is a very catastrophic failure mode, as it requires a relatively high amount of
energy to start propagating, that is suddenly released upon reaching a critical load.
This type of failure can appear in structural elements with stress concentrations at
discontinuities such as holes and pins.

1.2 Motivation

Multiple theories exist in the literature to model a translaminar crack of a FRP
composite, ranging from Linear Elastic Fracture Mechanics (LEFM), through more
complex models such as the Critical Distances Theory and the Cohesive Zone model.
Although some simple theories reproduce effectively these kind of crack for a very
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limited range of geometries (LEFM needs the presence of a crack to be applied),
they fail when trying to extrapolate the laboratory results to larger structures.

The Cohesive Zone model is capable of reproducing this kind of fracture for a wide
range of specimen sizes and geometries, even for unnotched structures. The key
ingredient of this approach is the Cohesive Law of the material, which is assumed
to be a property for a given laminate. The main disadvantage of the Cohesive
Zone model is the lack of robust and objective tools, and procedures to meaure the
Cohesive Law.

1.3 Objectives

The present thesis aims to deepen into the analysis of the translaminar crack
formation and growth of fibre-reinforced composite materials, from a Cohesive Model
point of view, particularly on developing a robust tool to measure the translaminar
Cohesive Law. In order to achieve this main goal, several specific objectives are
proposed, such as developing an analytical solution to the Cohesive Zone, an
proposing and algorithm that measures the translaminar Cohesive Law.

1.4 Thesis structure

The present thesis has been developed as a compendium of publications, with a
reproduction of the generated manuscripts at the end of this document. Instead of
copying the whole text of each publication within the body of the thesis, we have
decided to write the document as a whole, including some parts of the publications
when necessary, while adding information and results not published elsewhere.
This decision gives the opportunity to the reader to completely follow the conducted
research during the writing of this thesis, but at the same time, when interested, to
consult the details available in the full-text versions of the published manuscripts.
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With this in mind, the document has been divided in three blocks. The first part
consists of a wide literature review, composed of Chapters 2 and 3. The former
is focused on a brief introduction and basis of fracture mechanics, from the very
fundamental concepts of Linear Fracture Mechanics to the introduction of the more
complex Cohesive Zone model. On the other hand, the latter is an in-depth literature
review of the current available methods to measure the Cohesive Law.

The second block is focused on the analysis of the fracture toughness of a fibre-
reinforced composite laminate, composed of Chapters 4 and 5. In Chapter 4 the
Compact Tension specimen is studied and some LEFM tools have been introduced
to use this specimen for any laminate orthotropy, as well as giving some design
recommendations. The results of this research have generated the PAPER A.
Chapter 5 studies the translaminar fracture from the Cohesive Model point of view,
introducing a methodology to measure the laminate Cohesive Law. The results of
this research have generated the documents PAPER B and PAPER C.

The third block consists of Chapters 6 and 7, and is focused on the applicability of
the developed methodology. Chapter 6 attempts to relate how the used ply stacking
sequence affects the resulting Cohesive Law, generating the document PAPER D.
Chapter 7 discusses the fundamental hypothesis of the Cohesive Zone model: is
the translaminar Cohesive Law a material property?

The concluding remarks are found in the fourth block, with Chapter 8 based on
the general results and discussion of the thesis, Chapter 9 consists of the general
conclusions, and finally, Chapter 10 introduces some lines of future research.
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Literature Review





2
Introduction to the cohesive
law. History and concepts

Traditionally, structural designs were based on the limits imposed by the material’s
ultimate tensile and compressive strengths. By using these design criteria, the
structures would never suffer from loads that would cause the collapse throughout
their life. However, many structures failed even though they never exceeded the
calculated critical loads: these collapses were produced by the inherent defects of
the material present in the structure, or because of the growth of the defects up to a
critical dimension.

This chapter aims to summarize the different theories that helped to develop the
concept of the cohesive Fracture Process Zone (FPZ) and the Cohesive Law (CL),
from the appearance of the fracture mechanics proposed by Griffith to the emergence
of the general cohesive model proposed by Hillerborg.

2.1 Linear Elastic Fracture Mechanics

Firstly introduced by Griffith, the principles of fracture mechanics were based on
an energy balance. Subsequently several authors delved into the stress state near
the crack tip. This section contains the main concepts of Linear Elastic Fracture
Mechanics (LEFM) that may be found in many fracture mechanics books (Bažant
and Planas, 1998; Sharpe and William N., 2008; Zihai Shi, 2009).
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2.1.1 Griffith. Fracture mechanics based on energy
balance

Griffith (Griffith, 1921; Griffith, 1924) theorized that the maximum load that a structure
can withstand depends not only on the strength of the material, but also on the size
of the defects that may exist in the structural element. Given a linear elastic material
and of unitary thickness, that contains a crack of length a, the total energy E of the
system can be divided into two components: the potential energy Π stored in the
system and the energy associated with crack surface Us:

E = Π + Us (2.1)

The potential energy Π is the summation of the work done by the external forces
applied to the sample, stored in the form of elastic energy. Assuming the material
has a unitary thickness, all the acting forces can be considered to be applied per unit
thickness too. The energy associated with crack surface, Us, can be understood as
the free surface energy plus the plastic energy dissipated while creating new crack
surface, again per unit crack area. If the problem is considered to be almost static
(otherwise the inertial forces should be taken into account), the energy of the system
is in equilibrium when is minimal. Therefore the equilibrium condition dE/dA = 0 is
applied, where A represents the crack surface, which per unit thickness is equal to
the crack length a. G is defined as the potential energy release rate (ERR) per unit
crack surface area, and Gc is defined as the fracture resistance per unit surface
area as:

G(a) ≡ −dΠ

da
; Gc ≡

dUs
da

(2.2)

In this manner, if the available potential energy is lower than the fracture resistance,
the the crack will not grow. Otherwise, the crack growth condition is verified:

G (a) = Gc (2.3)

The fracture resistance Gc is considered to be a material property that must be
obtained experimentally and Griffith defined it as constant value. This is generally
true for brittle materials, although in practice most materials show a dependence
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Fig. 2.1.: Infinite plane subjected to a tensile stress with a central crack.

of Gc as the crack grows. The function G (a) can be obtained either analytically or
numerically.

2.1.2 Stress field near the crack tip

The study of the stress field around the crack tip was formulated in parallel with the
developments of Griffith, by Inglis (Inglis, 1913), Irwin (Irwin, 1957) and other authors
(Muskhelishvili, 1954; Williams, 1957). Consider a sheet made of an isotropic linear
elastic material of infinite extent with a central crack of length 2a subjected to tension σ
perpendicular to the crack direction, defined in Fig. 2.1. Given the polar coordinates
r and θ centred at the crack tip, the stress field is defined:

σij =
K√
2πr

fij (r, θ) (2.4)

where σij is the stress defined in the coordinates x and y shown in Fig. 2.1, and
fij (r, θ) is a non-dimensional function. Observing the stress field defined in Eq. 2.4,
two characteristics stand out. First, the stress suffered by the material increases
infinitely as the point being considered is closer to the crack tip, independently of
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Fig. 2.2.: σyy stress profile for θ = 0 near the crack tip

the remote stress σ applied, as long as it is not null. This phenomenon is known as
a singularity of stresses at the crack tip, represented in Fig. 2.2.

lim
r→0

σij →∞ (2.5)

Second, for a given configuration, the whole stress field is completely defined by a
single scalar K, known as the Stress Intensity Factor (SIF). Although being a scalar,
the K value varies in function of the applied load, the geometry of the structure and
the crack length as:

K = σ
√
πa · g (2.6)

where g is a non-dimensional geometric function. For the illustrated case of a
plate of infinite extension (Fig. 2.1), the value of g is equal to 1. The function g
has been tabulated for multiple geometries and loading configurations and can be
found in numerous Handbooks (Tada et al., 2000). Observing Eq. 2.6, K is directly
proportional to the applied remote stress σ and proportional to the square root of
the crack length a.

Likewise the crack growth condition defined by Eq. 2.3, it is possible to define a
crack growth condition from the stress field around the crack tip as:

K (a) = Kc (2.7)
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where Kc is the material fracture toughness, a material property that must be
determined experimentally.

2.1.3 Relation between G and K

So far two parameters related to fracture have been introduced: the Stress Intensity
FactorK and the rate of energy releaseG. As already mentioned, the first parameter
defines the stress and displacement around the crack while the second accounts
for the released elastic energy as the crack grows. Irwin (Irwin, 1957) deduced the
relationship between these two parameters.

Suppose the same sheet of material defined in Fig. 2.1. Because the load is applied
in mode I loading configuration, the SIF and the fracture energy are denoted as
KI and GI , respectively. Within the LEFM framework and assuming that the work
necessary to close the crack at the tip is equal to zero, the energy release rate can
be calculated as the work required to close the crack an infinitesimal length δa. The
vertical displacement uy is computed as:

uy =
2σ

E

√
a2 − x2 =

2KI

E

√
a2 − x2

πa
(2.8)

where x and r are defined in Fig. 2.1. The crack closing stress is defined in Eq. 2.4,
that for θ = 0 and f = 1 (infinite extension sheet) becomes:

σyy =
KI√
2πr

(2.9)

Once the crack surface displacement and the stress profile have been defined,
computing the work to close the crack an infinitesimal crack extension δa leads to
the expression

GI =
K2
I

E′
(2.10)
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where E′ is the effective elastic modulus (E for plane stress and E/
(
1− ν2

)
for

plane strain). It can be demonstrated that for mode II and III, the relationships
between G and K are:

GII =
K2
II

E′
(2.11)

GIII =
1

1− ν
K2
III

E′
(2.12)

Eqs. 2.10-2.12 define the relationship between G and K for an isotropic material
given the crack grows in the x direction defined in Fig. 2.1. For an an orthotropic
material, the relationship is extended:

GI =
K2
I

E′

(
2λ3/2

1 + ρ

)−1/2

(2.13)

where λ and ρ are two non-dimensional scalars that define the orthotropy of the
material:

λ =
Eyy
Exx

, ρ =

√
λ

2Gxy
(Exx − 2νxyGxy) (2.14)

where Exx and Eyy are the elastic moduli, Gxy is the shear modulus and νxy is the
Poisson’s ratio, defined by the material principal axes. In the plane strain case, λ
and ρ are obtained by replacing Exy, Exy and νxy in Eq. 2.14:

E′xx =
Exx

1− νxzνzx
, E′yy =

Eyy
1− νyzνzy

, ν′xy =
νxy + νxzνzy
1− νxzνzx

(2.15)

The relationship between the fracture toughness and the fracture energy is likewise
defined:

Gc =
K2
c

E′

(
2λ3/2

1 + ρ

)−1/2

(2.16)

2.1.4 Irwin’s plastic correction

Although LEFM is suitable for predicting the crack growth and the stress distribution
around the crack tip in a simple manner (Section 2.1.2), it also introduces an
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(a) (b) (c)

Fig. 2.3.: Irwin’s plastic correction zone: (a) first order plastic correction, (b) second order
plastic correction, (c) elasto-plastic stresses distribution near the crack tip.

inaccuracy for any material: the presence of a stress singularity at the crack tip.
Because no material is capable of withstanding an infinite stress, it is necessary to
consider that it contains a non-linear region. Metals develop a plastic region where
the stress exceeds their yield strength and quasi-brittle materials form a Fracture
Process Zone (FPZ). The extension of this region was first estimated by Irwin (Irwin,
1957; Irwin, 1961), known as Irwin’s plastic correction.

The first order plastic correction length r∗p is found as the zone where the material
exceeds its yield strength σys (metals) or its tensile strength σu (quasi-brittle). Fig.
2.3(a) shows the stress distribution near the crack tip σyy(r, θ = 0) as σyy (r) =

KI/
√

2πr. For perfect plastic materials, the first order plastic correction length can
be simply obtained by imposing that the stress σyy(r) in this region is equal to the
material yield stress σys. Imposing this condition, the length in terms of the applied
remote stress σ is obtained:

r∗p =
K2
I

2πσ2
ys

=
σ2a

2σ2
ys

(2.17)
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The new distribution of stresses neglects the tensions greater than σys, denoted
with an A in Fig. 2.3(a). Because of that, the force balance is not satisfied with the
first order correction defined in Eq. 2.17. Irwin (Irwin, 1957; Irwin, 1961) suggested
a methodology to estimate a new plastic correction zone rp by introducing an
equivalent crack length aeff . The increase in crack length is defined as da and
the new inelastic zone length is rp = da+ β. In this manner, the inelastic region is
increased, redistributing the stresses as shown in Fig. 2.3(b). The fictitious increase
of crack length is then obtained by imposing A = B:

da = r∗p or rp = da+ β = 2r∗p =
K2
I

πσ2
ys

(2.18)

Resulting in a second order correction length rp twice as the length r∗p. For a perfectly
plastic material the resulting stress distribution is shown in Fig. 2.3c. The effective
SIF is obtained:

KI,eff = σ
√
πaeff = σ

√
π(a+ rp) = σ

√
πa

(
1 +

σ2

2σ2
ys

)
(2.19)

Under plane strain, the plastic region is formed under a triaxial stress state, and the
Irwin’s plastic correction then becomes:

r∗p =
K2
I

6πσ2
ys

(2.20)

which is lower than the plane stress state first order correction by a factor of 3.

The plastic zone development causes the fracture energy Gc or the fracture tough-
ness Kc to be a function of the crack growth. Therefore, Eq. 2.3 and Eq. 2.7 can
be rewritten:

G (aeff ) = R (∆a) , K (aeff ) = KR (∆a) (2.21)

where R (∆a) = K2
R (∆a) /E′ is the resistance curve of the material. It is defined

as a function that grows as the plastic zone is being developed, achieving a plateau
value equal to Gc as soon as the crack growth becomes self-similar.
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2.2 Crack-bridging models

Linear Elastic Fracture Mechanics are suitable when the material non-linearities
are confined to a very small region at the crack tip, compared to other problem
dimensions. When a large Fracture Process Zone is present, more elaborated
fracture models are needed in order to capture properly the energy dissipation
mechanisms.

2.2.1 Dugdale’s and Barenblatt’s cohesive zone
models

Dugdale (Dugdale, 1960) and Barenblatt (Barenblatt, 1959; Barenblatt, 1962),
proposed, independently, a cohesive zone model where closure stresses are present
at the crack tip, in order to capture the non-linear behaviour of the material in the
formation of new crack surface. Likewise Irwin, Dugdale’s and Barenblatt’s models
also introduced the concept of the effective crack, with a length of 2a+ 2`Dug, as
shown in Fig. 2.4. The cohesive or closure forces acting in the non-linear zone
represent the material resistance to fracture when it is subjected to external forces,
and therefore eliminating the stress singularity at the crack tip.

These models take into account the non-linear behaviour at the crack tip by intro-
ducing cohesive forces at the surface of the crack. The main difference between
the two is that in the case of Dugdale’s model, the closure stresses of the mate-
rial are constant and equal to the yield strength of the material σys. On the other
hand, Barenblatt’s model stresses represent the forces of molecular cohesion of the
material, and these vary throughout the plastic zone defined by a function q (x).

In order to determine the length of the non-linear zone, Dugdale’s condition may be
applied: the stress singularity at the crack tip must disappear under the combined
action of the remote stress σ and the cohesive forces at the crack tip. Based on
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Fig. 2.4.: Dugdale’s (a) and Barenblatt’s (b) cohesive zone models.

the superposition principle, the global SIF must be null, obtained by adding the K
caused by each acting load:

KI = Kremote
I +Kcohes

I = 0 (2.22)

where Kremote
I is the SIF caused by the remote stress σ for an infinite sheet of

material of crack length a+ `Dug, and Kcohes
I is the SIF caused by the closure stress

applied over a length `Dug. Assuming a constant closure distribution equal to σys
(Dugdale’s cohesive zone model), the plastic zone length is found by solving Eq.
2.22:

`Dug =
π2σ2a

8σ2
ys

=
πK2

I

8σ2
ys

(2.23)

Barenblatt’s cohesive zone model can be solved analogously, but replacing the SIF
Kcohes
I by the one caused by the stress distribution q (x). Comparing Dugdale’s

plastic zone length with Irwin’s one:

rp
`Dug

=
8

π2
= 0, 81 (2.24)
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As it can be seen, the relative difference between both solutions differs less than
20%.

Although the cohesive zone models introduced by Dugdale and Barenblatt have
been able to eliminate the stress singularity at the crack tip and have provided a
way to estimate the length of the material non-linear region, they have also caused
the failure criterion based on the KIc to be no longer applicable.

2.2.2 Generalized cohesive model

Heterogeneous materials such as concrete or composite materials fracture under
complicatedmechanisms due the fact that they are composed of various components
bonded together (cement and aggregates in the case of concrete, and reinforcement
and matrix in the case of composite materials). Under these circumstances, when
such materials are subjected to tension, a Fracture Process Zone forms near the
crack tip, where inelastic fracture mechanisms take place, such as micro-cracking
and bridging (Mai, 2006), as seen in Fig. 2.5(a).

A generalized cohesive zone model for non-linear fracture problems was introduced
by Hillerborg (Hillerborg et al., 1976), which is an extension of the model of Dugdale
and Barenblatt. Similar to other cohesive models, he introduced the concept of
a fictitious crack that takes place inside the FPZ, capable of transferring closure
tension between its surfaces. The relationship between the cohesive stress profile
as the Crack Opening Displacement (COD) opens is governed by the Cohesive
Law (CL) or tension-softening law of the material. It describes a tension-softening
phenomenon, illustrated in Fig. 2.5(b). It is generally considered to be a material
property (Elices et al., 2002).

Fig. 2.6 shows a three-point bending notched beam subjected to a controlled
displacement (u) and corresponding load (P ), while reproducing the FPZ formation
and growth based on the generalized cohesive zone model. In order to capture
a stable crack formation the load is applied under controlled displacement until
the specimen splits completely. The initial slope of the load-displacement curve
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Fig. 2.5.: Concept of FPZ and tension-softening in concrete: (a) FPZ in front of an open
crack and (b) tension-softening inside FPZ.

is defined by the elastic compliance of the specimen for the given geometry and
initial notch. The Fracture Process Zone is initialized as soon as the stress at the
crack tip reaches the material tensile strength σu, represented as the point A in
Fig. 2.6. This usually occurs for low values of P , because of the presence of the
stress singularity at the notch. The FPZ initializes its development with a null length
and a cohesive crack opening equal to zero. As the displacement is increased, the
FPZ grows as well as the cohesive crack, with the stresses being defined by the
CL. The maximum load the structure can withstand is reached at point B, while
the FPZ is still being developed. At point C the FPZ has been fully developed, and
the COD at the initial crack position has reached the critical opening ωc. From this
moment the FPZ starts to translate along the crack plane and while the crack growth
becomes self-similar. When the last portion of the specimen has reached the critical
opening ωc, the specimen splits in half, at point D. As just seen, the pre-peak and
early post-peak non-linearity is controlled by the Cohesive Law of the material, and
cannot be described completely with a single parameter such as Gc or Kc.
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Fig. 2.6.: Typical load-deformation relation of a notched beam under bending and develop-
ment of the FPZ in front of the notch.

Some commonly used CL shapes can be seen in Fig. 2.7. Although a unique curve
can be defined for every material, some characteristics are common among all the
softening laws. For instance, the area under the curve must be equal to the material
fracture energy Gc, to ensure the correct energy dissipation when the FPZ is fully
developed. The onset point of the Cohesive Law matches the tensile strength σu,
and the FPZ is totally developed once the COD at the initial crack tip has reached the
critical value ωc. Lastly, to ensure a localized crack, it is necessary that ∂σ/∂ω ≤ 0,
i.e. the softening function must be a non-increasing function, or, at least, that its
local maxima are lower than σu. Otherwise, after the first crack had appeared, other
crack would appear at neighbouring points (Elices et al., 2002).

2.2 Crack-bridging models 21



(a) (b) (c)

Fig. 2.7.: Common Cohesive Law: (a) Constant, (b) linear and (c) exponential shapes.

Fig. 2.8.: Bilinear Cohesive Law shape, with G1 as the fracture energy related to the initial
slope H1.

Metallic or polymer structures have their nominal strength and structural response
well enough predicted with the use of a constant (Fig. 2.7a) or linear (Fig. 2.7b)
Cohesive Laws. For such shapes, only two parameters are needed to be fully
described, usually being σu andGc. Concrete or fibre-reinforced composite materials
do not have their energy dissipation mechanisms well enough represented with
these curves. Exponential CL shapes (Fig. 2.7c) with an initial linear part are
capable of capturing properly the damage mechanisms of concrete (Planas et al.,
2003), whereas Bilinear cohesive laws (Fig. 2.8) provide optimal solutions for both
concrete and fibre-reinforced composite materials (Elices et al., 2009).
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Bilinear laws need four parameters to fully describe the shape, being σu and Gc two
of them. Two additional values are needed to describe the CL: the slopes of the
branches H1 and H2, the fracture energy G1 associated with the first part of the CL,
the abscissa centroid of the area under the curve, etc. Unfortunately, such softening
laws have their measurement not well established by the researchers. Chapter 3
delves on the methodologies to obtain the CL shape available in the literature.

2.2.3 Rice’s J-integral

The LEFM definition of the Energy Release Rate assumes the existence of a sharp
crack a. Within the framework of a cohesive zone model, the crack length looses its
definition, due to the existence of the FPZ. An alternative to measure the energy
dissipated inside the FPZ without any LEFM assumptions was proposed by Rice
(1968). Ideally, one would like to measure the strain and stress field of the specimen
during the whole crack formation and propagation. Then, it would be possible to
directly apply the J definition

J =

∫

Γ

(
Φdx1 − ti

∂ui
∂x2

ds

)
(2.25)

where J is the energy being dissipated at a given instant inside the FPZ, Φ is the
elastic strain density, ti is the surface traction vector and ui is the displacement
vector. The surface traction vector is obtained as ti = σijnj , where nj is a unitary
vector normal to the path Γ and σij is the stress tensor.

The J defined in Eq. 2.25 is a path-independent integral, meaning that the measured
energy that is being dissipated is invariant regardless of the path Γ, provided it
encloses the FPZ, as seen in Fig. 2.9. Moreover, when the FPZ is small enough
compared to other problem dimensions and small-scale yielding (SSY) or bridging
(SSB) can be assumed, the J-integral equals to the Energy Release Rate G defined
in Eq. 2.3.
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Fig. 2.9.: Integration path Γ and normal traction vector t for the J-integral.

When shrinking the integral path Γ to just include de boundaries of the FPZ, Eq. 2.9
becomes:

J =

∫ wCTOD

0

σ (w) dw (2.26)

where σ (ω) is the CL function and ωCTOD is the Crack Tip Opening Displacement,
i.e., the crack opening measured at the initial notch position. Eq. 2.26 establishes a
direct relation between J and the CL. While the FPZ is being developed, J is always
lower than Gc and as soon as J = Gc the FPZ becomes completely developed.
At this point the crack growth becomes self-similar. The definition of Eq. 2.9
does not require the measurement of the crack length while also not making any
approximation.

2.2.4 Size effect on structural strength according to the
Crack-bridging models

The phenomenon known in the literature as Size Effect accounts for the dependence
of the structural strength on the specimen size. The structural or nominal strength
σN is defined as the maximum load the specimen withstands divided by some
measure of specimen size (W ). The specimen sizeW may be arbitrarily defined by

24 Chapter 2 Introduction to the cohesive law. History and concepts



Plastic limit

LEFM limit

(a)

Plastic limit

Elastic limit

(b)

Fig. 2.10.: Size effect law for (a) notched and (b) unnotched structures.

any dimension, given all tested specimens remain geometry invariant. The typical
response for notched and unnotched structures is shown in Fig. 2.10.

The generalized cohesive zone model is able to capture the Size Effect as:
(
σu
σN

)2

= φ

(
W

`M

)
(2.27)

where
`M =

EGc
σ2
u

(2.28)

is a characteristic length of the material. The function φ is generally unknown, but can
be computed using numerical simulations (Bažant and Planas, 1998; Cusatis and
Schauffert, 2009; Maimí et al., 2012) for a given specimen geometry and Cohesive
Law shape.

For small specimen sizes, notched or unnotched, the nominal strength tends to the
plastic limit, i.e., the nominal stress σN calculated through purely plastic analysis,
where the whole stress profile located at the failure plane is equal to σu. In this case,
the nominal strength is achieved before the FPZ has been completely developed,
hence not experiencing any large softening. In that manner, the nominal strength is
fully controlled by the first slope of the softening curve (Mai and Hakeem, 1984). The
plastic limit tends to a horizontal line for the logarithmic variables log (σN )− log (W )

for limW→0, as seen in Fig. 2.10. On the other hand, for large notched specimens,
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the σN follows the LEFM limit, where the response tends to a line with a slope of
−1/2 (see Fig. 2.10(b)). In this case, the `FPZ is very small compared to the other
problem dimensions, with the Fracture Process Zone completely developed when
the nominal strength is reached. Therefore σN is controlled uniquely by Gc while
assuming LEFM. Lastly, for large specimens without stress singularities or blunt
notches, such as the Open Hole, σN tends to the material elastic limit, controlled by
the stress concentration factor Kt (see Fig. 2.10(a)).
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3Existing literature on
determining the cohesive law

The determination of the Cohesive Law has been a problem of increasing interest
for the scientific community over the last three decades. An overwhelming number
of literature resources delve with this topic: several specimen geometries, materials,
loading configurations and methodologies have been studied. Historically introduced
for concrete materials, the prime problem of the cohesive zone modelling is the
determination of the softening law itself. With the increasing presence of fibre-
reinforced composites materials in aeronautical and automotive applications, several
new approaches have been suggested by researchers to accomplish this measure.
This chapter deals with the most common methodologies to measure the Cohesive
Law, classified by the nature of the procedures.

3.1 Experimental measure from a tensile test

The most direct methodology to obtain the Cohesive Law is from a stable traction test
(Cornelissen et al., 1986; Hordijk et al., 1987). In this manner it is possible to obtain
the entire softening curve σ−ω as a direct measure of a single experiment. However,
approaching the problem with this methodology may lead to some difficulties or even
the impossibility to finalize the test or validate the data (Elices et al., 2002).

• Crack instability: The most common problem when approaching the CL
measure in this manner derives from the instability of the crack growth. Usually,
tensile specimens store a high amount of elastic energy prior to the crack
onset, causing a sudden crack growth that results in the inability to properly
measure the σ − ω curve. The use of smaller specimens may reduce the
stored elastic energy, although most quasi-brittle materials would require an

27



extremely small specimen in order to achieve a stable crack growth, even
for laboratory standards. Generally, the stable crack growth condition, i.e,
the absence of a snap-back of the load-displacement curve, is checked with
L < E/H, where L is the specimen length and H is the maximum slope of the
Cohesive Law, as seen in Fig. 2.8. Because of this, in practice, this method
has only been used for concrete.

• Multiple cracks: To direct measure the softening law, a single crack perpen-
dicular to the loading direction must form across the section of the specimen.
However, many ceramic and cementitious materials develop more than one
cohesive crack during the experiment. Additionally, the location of the crack is
unknown before the test (Fig. 3.1a).

• Crack rotation and crack overlapping: The inclusion of small notches to
force the crack location may provoke the fracture to become asymmetric: both
cracks do not grow at the same rate, resulting in the rotation of the specimen
(shown in Fig. 3.1b). When stiffer testing machines are used to avoid this
phenomenon, the specimen itself rotates internally, making the cracks at each
side of the specimen to overlap and preventing the formation of a single crack
(shown in Fig. 3.1c).

Because of the mentioned difficulties in the direct determination of the softening
law from a tensile test, some indirect methods have been developed by multiple
researchers. This chapter includes a classification of the available procedures,
ranging from experimental test to obtain characteristic values of the CL to parametric
fitting using analytic or Finite Element models, through more sophisticated methods
such as the J-integral method.
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(a) (b) (c)

Fig. 3.1.: Problems during the CL determination from a tensile test: (a) Multiple cracks in
tensile specimens. (b) Rotation of crack faces in pre-cracked specimens. (c) Crack
overlapping.

3.2 Obtaining characteristic values of the
Cohesive Law from experimental test

An alternative to measuring the entire Cohesive Law from a single fracture test
was proposed by (Planas and Elices, 1999). Their approach was developed for
concrete, assuming a bilinear CL shape. This methodology consists on performing
several independent experiments in order to determine the parameters that define
the softening law, separately. The four chosen parameters to be determined from
this method are: the ultimate tensile strength σu, the total fracture energy Gc, the
fracture energy related with the first part slope G1 and the abscissa of the centroid
of the curve ωG. The chosen parameters are depicted in Fig. 3.2. It should be
mentioned that, although the methodology is intended to be used for concrete, it
could be adapted for fibre-reinforced composite materials.
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Fig. 3.2.: Bilinear Cohesive Law proposed for concrete, with the defining characteristics σu,
Gc, G1 and ωG.

Ultimate tensile strength σu

The ultimate tensile strength of the material can be obtained from a uniaxial tensile
test, where the maximum load (Pu) that the specimen withstands is recorded (Mier
and Vliet, 2002), as seen in Fig. 3.3. The stress distribution at the failure plane
tends to the material tensile strength σu at the critical load. In order to successfully
record σu, the specimen must not have any notch or holes to prevent any stress
concentration to appear. Otherwise, the average stress distribution at the failure
plane would be altered. Taking this into account, σu can be determined with Eq. 3.1:

σu =
Pu
A

(3.1)

where A is the area of the failure plane, perpendicular to the loading direction.

A tensile test is normally sufficient to measure the σu of many quasi-brittle materials.
In the case of FRP, the tensile test is accurate enough, as long as undesired failure
modes, such as the failure at the end tabs, are avoided. However, some materials,
like concrete, show a low repeatability of σu recorded by a tensile test (Planas
et al., 2003). This behavior is caused by the inherent defects of the material, such
as cavities and micro-cracks between the cement and the aggregates, with sizes
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Fig. 3.3.: Uniaxial tensile test (left) and split-cylinder test (right)

that are not negligible with respect to other problem dimensions. Because of the
randomness of the defects at this scale, stress concentrations take place at the
defect surfaces, altering the average stress at the failure plane between specimens
of the same size. In order to increase the repeatability of the measured tensile
strength, an alternative approach is to use the split-cylinder test (Elices et al., 2002;
Planas and Elices, 1999). In this experiment, a concrete cylinder is subjected to
a compression load, shown in Fig. 3.3. The cylinder is loaded until it splits in two
halves under the action of a compressive load PuC . At the failure plane, which
is oriented along the loading direction, the stress distribution is almost constant
an equal to σu. Small areas next to the load application points are submitted to
compression, although they influence on the average stress at the failure plane can
be neglected.

The repeatability of the recorded σu is increased by using the split-cylinder tests
at the cost of a significant inconvenient: the measure is size-dependent. The size
effect law for the tensile strength obtained from a split-cylinder test can be written in
the form:

σuφC (`M,1) =
2PuC
πDCLC

(3.2)

where φC is the size effect function related to the cylinder test and DC and LC are
the cylinder diameter and length respectively. The `M,1 is a characteristic length of
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the material related to G1, the fracture energy related to the first part of the Cohesive
Law and shown in Fig. 3.4

`M,1 =
G1E

σ2
u

(3.3)

The size effect function φC can be obtained by carrying out several experiments on
different size specimens with similar geometries or it can be computed numerically
(Camanho et al., 2007; Maimí et al., 2012). When split-cylinder testing laboratory
sized specimens of concrete, the size effect law can be approximated to 1 (Elices
et al., 2002). Hence, σu is computed as:

σu ≈
2PuC
πDCLC

(3.4)

When φC can not be assumed as 1, at least two experiments must be carried out in
order to compute it numerically, while obtaining the σu and at the same time `M,1

(see Section Initial shape of the cohesive law).

Fracture Energy Gc

The total fracture energy Gc is measured from a stable fracture test, such as the
Compact Tension test for fibre-reinforced composite materials or the notched three
point bending test for concrete. In general, any stable fracture test is sufficient as
long as the Fracture Process Zone is fully developed prior to the end of the test.

During a quasi-static fracture test, if the kinetic energy is neglected, the work done
on the specimen is equal to the product of the load force (P ) and load application
point displacement (u). Assuming that the external workWF has been spent solely
on creating new crack area until the specimen has been split in two, the specific
fracture energy is obtained from dividing the external work WF by the ligament
area.

Alternatively, to measure Gc it is possible to just assume LEFM for the given speci-
men, and take the total fracture energy as the plateau value of the obtainedR-curve,
i.e., when the FPZ has been completely developed.
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In these experiments, the specimens are loaded to create a macro-crack that grows
in a quasi-static state, until the specimens are split completely. For specimens with
positive geometries (the vast majority of specimen geometries), the test must be
displacement-controlled in order to achieve a stable crack growth and to capture
the entire P -u curve. For negative geometries the test can be either loading or
displacement controlled.

Initial shape of the cohesive law

As mentioned in Section 2.2.2, the maximum load a structure can withstand is
achieved while the FPZ is still being developed. Therefore, the initial shape of
the CL plays a key role in the prediction of the structural nominal strength. For a
bilinear CL, the initial part of the curve is defined by σu and G1. The latter parameter
expresses the fracture energy dissipated by the first slope of the softening function
as G1 = σuω1/2. The ω1 is the crack opening obtained at the intersection of the
abscissa axis and the projection of the first slope, as shown in Fig. 3.4. G1 can
also be expressed by means of the characteristic length `M,1 as G1 = σ2

u`M,1/E,
introduced in Eq. 3.3.

To experimentally obtain G1, it is necessary to perform a series of tests of different
size specimens with similar geometries, in order to capture the Size Effect:

Pu = σuφ

(
W

`M,1

)
(3.5)

where Pu is the structural ultimate load andW is the specimen’s size. Elices et al.
(2002) solved the Size Effect function φ for a notched three point bending test while
assuming a linear initial part of the softening law. If the tensile strength σu is known
(measured from the split-cylinder test for concrete), ω1 can be determined with:

ω1

σu
=
(
1− α1.45

0

) DB

E′

[
26, 22

(x− 1)
2 +

5, 36

x

]
(3.6)
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Fig. 3.4.: Linear approximation of the initial part of the Cohesive Law.

where DB is the beam depth and α0 is the initial crack to depth ratio α0 = a0/DB.
The variable x is defined as:

x =

[
3 (1− α0)

2 2BBD
2
Bσu

3PuSB

]
(3.7)

where BB is the beam thickness and SB is the loading span.

The same procedure can be applied for other specimen geometries and materials,
as long as σu is determined independently, and the nominal strength of the chosen
specimen is influenced by the Size Effect. The φ can be obtained for other geometries
by fitting numerical simulations.

Last part of the cohesive law shape

As already mentioned in Section 2.2.2, the crack growth becomes self-similar as
soon as the FPZ has been fully developed. During this phase, the FPZ moves along
the symmetry plane. During the last moments before the specimen splits in two, the
only cohesive forces that are sticking the two parts of the specimen together are
defined by the second slope of the softening law. Fig. 3.5 schematically represents
this behaviour.

Elices et al. (Elices et al., 2002) suggested to describe the final shape of the cohesive
law by using the abscissa centroid coordinate of the softening curve area ωG, as
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Fig. 3.5.: FPZ translation along the symmetry plane, until the ligament is only held by the
cohesive stresses defined by the last part of the Cohesive Law.

shown in Fig. 2.8. Again for a notched three point bending test, the final part of the
P -u curve tends to the asymptotic solution

P ≈ SBBBωGGc
4u2

(3.8)

where u is displacement of the applied load. In order to determine ωG, it needs
to be best fitted with the experimental points of the curve. It may be solved by an
iterative method while minimizing the error between the computed and experimental
values. It should be mentioned that this method was proposed to measure the CL
of concrete, which has a high compressive strength. Applying this approach to FRP
may lead to undesired failure modes such as buckling or compressive failure.

3.3 The J-integral method

This methodology takes advantage of the existing relationship between the J-integral
and the material CL. As previously stated in Section 2.2.3, both parameters are
directly related, as one is the integral of the other. When applying Rice’s J-integral
definition around a FPZ, the energy being dissipated inside the non-linear region
is computed correctly, even when Large-Scale Bridging is present, as no LEFM
assumptions are made.
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In order to obtain the material softening function, the J must be recorded as a
function of the Crack Tip Opening Displacement ωCTOD during the whole crack
formation and propagation. Then, the CL is obtained by differentiating the curve
J-ωCTOD (Li. et al., 1987; Sørensen and Jacobsen, 2003; Lindhagen and Berglund,
2000):

σ = dJ/dωCTOD (3.9)

As the expression of J does not depend on the integration path Γ, it does not need
to be traced to just include the FPZ boundary, but can be obtained from any arbitrary
path, as long as the whole FPZ is enclosed. This property is highly useful, as it
allows to obtain the softening law virtually from any specimen geometry.

Although the procedure to measure the CL from the J-ωCTOD is simple enough,
provided the curve has been obtained, in reality the difficulty arises when trying to
evaluate the J-integral. Many strategies exist in the literature on how to accomplish
this measure. This Section includes the most spread approaches adopted by
different researchers.

In order to compute J , ideally one would like to measure the strain and stress
field of the specimen during the whole crack formation and propagation. Then, it
would be possible to directly apply the J definition given in Eq. 2.25. In reality, the
only procedure to measure the whole strain and stress field of a specimen during
a test is by using the Digital Image Correlation (DIC) technique. This technique
follows the relative displacement of several spots printed on the specimen face.
As a result, the strain field is recorded where the material is continuous, provided
that the measurement is done sufficiently away from the FPZ (Catalanotti et al.,
2010; Bergan et al., 2014). The stress field is then obtained from the strain field by
knowing the material elastic properties. For some particular Specimen Geometries
(SG) and loading configurations, an explicit form of Eq. 2.25 can be found, i.e. the
closed form solution. Hence, the J-integral can analytically expressed, resulting in
only needing to measure some output variables such as the acting load or certain
displacements, instead of measuring the stress and strain field. For instance, when
evaluating J in a Double Cantilever Beam (DCB) subjected to a bending moment
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(a)

(b)

Fig. 3.6.: DCB specimen subjected to: (a) a bending momentM in pure mode I loading and
(b) a pair of bending momentsM1 andM2 in mixed mode I/II loading.

M in pure mode I loading, as seen in Fig. 3.6(a), the expression turns (Suo et al.,
1992):

J =
12M2

E′H
(3.10)

with only needing to record the bending moment that is being applied as the FPZ
progresses. Similarly, J can be expressed analytically for a DCB subjected to a pair
of bending momentsM1 andM2 in mixed mode I/II loading, shown in Fig. 3.6(b), J
is expressed (Sørensen et al., 2006):

J =
21
(
M2

1 +M2
2

)
− 6M1M2

4B2H3E
for |M1| < M2 (3.11)

again with only needing to record the applied bending moments. In a similar way,
when applying a point load P in pure mode I loading, the expression is simplified
as J (P, θ), where θ is the rotated angle at the loading end (Paris and Paris, 1988;
Olsson and Stigh, 1989), meaning that in addition to measure P , θ needs also to be
recorded experimentally (Andersson and Stigh, 2004).
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When studying the fracture toughness and the though-the-thickness crack propaga-
tion in fibre-reinforced composite materials, the most commonly tested specimens
are the Compact Tension (CT) and the Overheight Compact Tension (OCT) spec-
imens. Unfortunately, closed-form J-integral expressions do not exist for these
geometries. The only way to measure J would be by means of the more difficult and
expensive DIC technique. Because the computation of J with DIC can be very time
consuming, an alternative was proposed by Bergan et al. (2016). In this case, they
measured the J-integral curve for a CT specimen assuming that J=G, and thus,
equalling theR-ωCTOD to J-ωCTOD. The Crack Tip Opening Displacement was still
tracked with DIC. Lastly, the parameters that defined the bilinear CL were best fitted
from the measured R-ωCTOD function. In their study, they also compared, from a
FE test, the J and R curves for three Compact Tension specimens of different sizes
with a bilinear cohesive law. While the R-ωCTOD were influenced by the specimen
size, they assumed the discrepancies could be ignored, even for laboratory sized
specimens.

Lastly, instead of measuring the J-ωCTOD curve for the whole experiment, it is
possible to obtain the CL shape from a single frame of the test, by means of the
experimental measure of the function σ − ω. Ideally, it could be obtained as the
evolution of the stress measured at the initial crack tip a0 position as the crack opens,
similarly to the method applied to composite materials proposed by Zobeiry et al.
(2014). In this method, the displacement field of the specimen is measured through
the use of the Digital Image Correlation (DIC) technique, and the FPZ boundary
is estimated where the material does not behave linear-elastically. The cohesive
stresses are obtained by assuming the stress in the loading direction across the
damaged material to be uniform and equal to the stress of the undamaged ma-
terial adjacent to the FPZ. Finally, an optimization algorithm is used in order to
find a softening function that best fits the experimental curves. Despite the fact
that this method is time-consuming, it is capable of measuring any arbitrary CL
during the FPZ formation as well as during the self-similar crack growth. In practice,
some problems arise when trying to perform this experimental measurement. For
instance, it is not feasible to measure the strain inside an heterogeneous region
such as the FPZ, where a material discontinuity is taking place, e.g. matrix cracking,
fibre bridging and fibre pull-out. On the other hand, the crack opening could be
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measured with a displacement transducer placed at the initial crack tip or with the
use of the DIC, although the obtained data would probably suffer from high scattering.

3.4 Optimization techniques

As seen through this Chapter, the direct measure of the CL variables is very difficult,
if not impossible, for most materials. For instance, it is not feasible to measure
the stresses inside an heterogeneous region such as the FPZ, where a material
discontinuity takes place. On the other hand, the crack opening profile inside the
FPZ could be measured with a displacement transducer placed at the initial crack tip
or with the use of the more sophisticated DIC. Additionally, the closed-form solutions
for the J-integral are only available for a handful of geometries, but in many other
cases, such solutions may not exist. Under these circumstances, an additional family
of methodologies to determine the CL have emerged. These are called optimization
techniques (Que and Tin-Loi, 2002; Silva et al., 2014; Ortega et al., 2015; Roelfstra
and Wittmann, 1986; Steiger et al., 1995; Bolzon et al., 2002; Ortega et al., 2016;
Cox and Marshall, 1991; Lindhagen et al., 2000).

In the optimization techniques group, the softening law is found through the use of an
optimization algorithm capable of solving the inverse problem. The inverse problem
consists of predicting the CL by changing its shape in a numeric simulation until it
fits the experimental results, as depicted in Fig. 3.7. All the methodologies based
on solving the inverse problem are usually composed of three key ingredients:

• First, an experimental test is carried out where the P -u curve is recorded.
Other variables such as the Crack Tip Opening Displacement can also be
recorded, depending which variables are going to be fitted. When addressing
the problem in this fashion it is important to perform a stable fracture test
and to choose the correct specimen size W . The specimen needs to be
sufficiently large to guarantee that at the end of the experiment the FPZ has
been completely developed, while at the same time, it must be sufficiently
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small so that its response differs enough from the LEFM one, allowing to
properly capture the CL shape.

• Second, it is necessary to develop a computer simulation test that virtually
reproduces the experimental one, where the parameters that define the CL
can be freely altered. This computation can be performed by FE analysis, or
other numerical or analytic methods, as will be further discussed.

• Last, the optimization algorithm is performed in order to find the CL param-
eters. To do so, a suitable norm which quantifies the discrepancy between
experimental data and the corresponding values provided by the computer
simulation is minimized, with respect to the mentioned parameters.

During a fracture test, usually the recorded variables are the load and some sort of
displacement measure, such as the load-pin displacement or the Crack Opening
Displacement. These are the output variables that are normally best fitted in order
to measure the Cohesive Law. These variables are easily recorded during the
experiment, but can only be applied to measure the CL if they are recorded during
the whole FPZ formation, and not just during the auto-similar crack growth. An
alternative approach was proposed by Cox and Marshall (1991) and Lindhagen et al.
(2000), where the complete crack opening profile is experimentally determined and
the Cohesive Law is numerically found until the numerical crack profile fits to the
experimental results. The accuracy of this method depends on the measured crack
openings that in multiaxial composites appears to be difficult. On the other hand,
it is possible to measure the cohesive law in self-similar crack regime. Similarly,
Stutz et al. (2011b), Stutz et al. (2011a), and Sørensen et al. (2008b), tested a DCB
specimen with a Bragg fibre placed in the interface. This fibre is capable of obtaining
the strain distribution along its length, thus measuring the stress inside the totally
formed FPZ. The CL was fitted in order that it would adjust the strain distribution.

Several methodologies can be found in the literature to solve the inverse problem
by this approach. This section delves in the methodologies to execute the computer
simulations of the virtual test, and will not focus on the optimization techniques in
order to find the optimum solution.
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Fig. 3.7.: Optimization approach to measure the CL.

3.4.1 Null crack tip intensity factor

This methodology derives fromDugdale’s cohesive zonemodel highlighted in Section
2.2.1. Let’s consider a rectangular plate with an initial notch of length R, subjected
to a controlled displacement and corresponding tension σ normal to the initial crack,
as seen in Fig. 3.8.
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Fig. 3.8.: Rectangular plate with lateral crack subjected to a remotely applied stress σ and
Cohesive stresses σc inside the FPZ.

To obtain the load-displacement curve of the given specimen, while taking into
account the non-linearities of the Cohesive Zone, Dugdale’s condition is applied, i.e,
the global Stress Intensity Factor at the crack tip must be zero:

K = Kσ +Kσc = 0 (3.12)

where Kσ is the SIF caused by the applied stress σ and Kσc is the SIF caused
by the whole cohesive stress profile σc. If the Cohesive Stress profile inside the
FPZ is known, there is only one value for σ that satisfies Eq. 3.12. Although σc is
unknown and may change during the FPZ development, it can be discretized as a
series of small constant stresses of value equal to σi applied at the crack surface.
The non-linear problem expressed as a superposition of linear problems is shown
in Fig. 3.9. In order to solve the cohesive stress profile inside the FPZ, the crack
opening profile must also be found. It is possible to express the set of openings ωi
as a superposition of the openings caused by each acting load

ωi = ωσi + ωσc
i (3.13)
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Fig. 3.9.: Rectangular finite plate with a fracture process zone expressed as a lineal super-
position problem.

where ωi, ωσi and ωσc
i are the total crack opening, the crack opening caused by

the point load P and the crack openings caused by the cohesive stress profile σc,
respectively. The solution to the Eq. 3.13 is obtained from an iterative process and
for a given CL. As a result, the stress profile and the crack openings at the FPZ are
obtained. Lastly, the load P is obtained by means of Eq. 3.12. The displacement is
determined, again, by the superposition of the displacement due to external load (σ)
and the cohesive stresses.

This methodology can be applied on other geometries (Newman, 1983; Williams
et al., 2011; Maimí et al., 2012), and will be further described in Section 5.2, where
it is applied for a Compact Tension specimen.

3.4.2 Tractions at the failure plane

In this case, the cohesive problem is approached from the study of the traction
distribution of the material at the crack plane. Again, the considered geometry
is a rectangular plate with an initial notch of length R, subjected to a controlled
displacement and corresponding tension σ normal to the initial crack, as seen in
Fig. 3.8. The goal is to reproduce analytically the whole non-linear solution of the
P -u curve. An analogous procedure can be applied to solve other geometries.
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The solution is found by obtaining the tractions at the crack plane, again by using the
superposition principle. The whole stress distribution is acquired as the superposition
of the stresses caused by each acting load: the tension σ corresponding to the
applied displacement and the inelastic response of the cohesive stresses inside the
FPZ (Que and Tin-Loi, 2002; Que, 2003).

Dividing the crack plane in n intervals, as shown in Fig. 3.10, the traction at each
point is evaluated:

ti =

n∑

i=1

Zijωj + tei (3.14)

where ti is the traction vector of the discretized crack plane points when a displace-
ment u is applied, tei is the traction due the linear elastic response of the material,
ωj is the fictitious crack opening profile vector along the crack plane and Zij is the
influence coefficient matrix, that describes the traction at position i imposed by a
unitary opening at position j.

Observing Eq. 3.14, if no point is bearing a tension greater than σu, the cohesive
crack opening is null, and therefore the traction distribution becomes the linear
elastic response of the material tei . On the other hand, if any point experiences an
elastic stress greater than σu, the cohesive crack starts to open and the bearing
stress must lie on the Cohesive Law. Taking this into account, it can be seen that
the traction vector ti must satisfy:

ti = σ (ωi) (3.15)

where σ (ωi) are the cohesive stresses at each discretized crack opening obtained
from the Cohesive Law. It should be mentioned that the elastic stress solution tei also
lies in the Cohesive Law (at the vertical branch of zero cohesive crack opening).

In order to solve the problem, it is necessary to obtain the crack opening profile ωj
that satisfies Eq. 3.14 and Eq. 3.15 at the same time. This is normally achieved
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Fig. 3.10.: Discretized traction nodes along the crack plane

from an iterative process. Once ωj and ti are known, the load of the structure for
the given displacement P is computed

P = Xjωj + P e (3.16)

where P e is the load necessary to create a displacement u in the structure if only an
elastic response is considered, and Xj is a vector that relates the load necessary to
open the crack at the node j by unity.

3.4.3 FE method

Lastly, another used method to obtain the softening law of the material is the Finite
Element (FE) method (Mihashi and Nomura, 1996; Tschegg et al., 1993). As in both
previous cases, the objective is to reproduce a crack initiation and development of
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an specimen with an unknown Cohesive Law, but instead of trying to obtain the P -u
from analytic approaches, it is obtained with the use of a FE model.

Basically two approaches to solve the problem are generally used. The first one
consist of modelling the geometry with elastic elements in conjunction with cohesive
elements (Turon et al., 2006). In this case the crack propagation plane must be
known a priori, placing cohesive elements along the crack path. The behaviour of
the FPZ is governed by the cohesive law of the element. The second approach is to
use continuum damage model elements with tension softening (Maimí et al., 2007a;
Maimí et al., 2007b). In this case the crack propagation plane does not need to be
known beforehand, because the damage model used in the elements is capable
of reproduce the cohesive crack that may appear in any place of the geometry. A
drawback with this type of element is experienced when a crack is not propagating
perpendicular to one of the side of the element. In order to solve the problem, the
geometry would need to be re-meshed to orientate the elements perpendicularly to
the crack.
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Part II

Translaminar fracture toughness





4Linear Elastic Fracture
Mechanics

The translaminar fracture toughness accounts for the energy dissipated when devel-
oping and propagating a crack that spans all the plies of a laminate, i.e, a though-
the-thickness crack. This kind of fracture involves complicated fracture mechanisms
such as fibre-matrix debonding, fibre breaking and fibre pull-out, resulting in large
amounts of energy being dissipated. During the crack onset and crack propagation,
the fracture energy Gc associated to this kind of fracture takes into account all these
damage mechanisms indistinctly.

The present chapter focuses on the determination of the fracture toughness associ-
ated with a translaminar crack growth under mode I tension. A literature review has
been performed to establish the available standard procedures and specimen ge-
ometries in order to measure the critical strain energy release rate for fibre-reinforced
composite laminates. Next, the Stress Intensity Factor (SIF) and Compliance (C)
analytic functions for a Compact Tension are formulated, in order to take into ac-
count the material orthotropy. Additionally, some experimental recommendations
are given to measure the fracture toughness from a Compact Tension specimen,
while avoiding undesirable failure modes. Lastly, a new geometry is proposed in
order to prevent or delay undesired failure mechanisms during the experimental
testing.

4.1 Literature Review: specimens and
standard procedures

The translaminar fracture toughness is a key parameter in the prediction of the
nominal strength of load-bearing structures. For that reason, the determination of
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this property is of high interest for the scientific community (Laffan et al., 2012b).
The translaminar toughness is usually used in numerous models in order to define
the strength of composite structures when loaded in tension (Whitney and Nuismer,
1974; Tan, 1988; Soutis et al., 1991; Taylor, 2007; Taylor, 2008; Maimí et al., 2012;
Maimí et al., 2013). Therefore, reliable methods to obtain the laminate Gc or the
resistance curve are needed in order to feed numerical (Maimí et al., 2007a; Maimí
et al., 2007b; Camanho et al., 2007) or analytic models (Whitney and Nuismer, 1974;
Tan, 1988; Soutis et al., 1991; Taylor, 2007; Taylor, 2008; Maimí et al., 2012; Maimí
et al., 2013).

Over the last four decades, numerous fracture mechanics test specimens have
been proposed in order to obtain the translaminar fracture toughness of composite
laminates. The most common ones are shown in Fig. 4.1. In general, the most
accepted and used geometry is the Compact Tension specimen, adapted from
metallic materials (ASTM, 1997), as it has been used in multiple studies (Slepetz
and Carlson, 1975; Parhizgar et al., 1982; Cowley and Beaumont, 1997; Minnetyan
and Chamis, 1996; Underwood and Kortschot, 1993; Garg, 1985; Masters, 1997;
Poe and Reeder, 2001; Jose et al., 2001; Pinho et al., 2006; Laffan et al., 2010a;
Laffan et al., 2010b; Laffan et al., 2011; Catalanotti et al., 2010; Gutkin et al., 2011;
Ortega et al., 2014; Blanco et al., 2014a; Blanco et al., 2014b; Zobeiry et al., 2014;
Underwood et al., 1995). The Extended Compact Tension (ECT), also proposed
for metallic materials, has been also used for composite laminates in numerous
occasions (Underwood et al., 1995; Poe and Reeder, 2001; Haj-Ali and El-Hajjar,
2003; Haj-Ali et al., 2006; El-Hajjar and Haj-Ali, 2005; Piascik and Newman, 1995;
Piascik et al., 1997). Another variant of the CT specimen is the Over-height Compact
Tension (OCT) (Kongshavn, 1996; Kongshavn and Poursartip, 1999; Floyd, 2004;
Li et al., 2009; Zobeiry et al., 2014; Xu et al., 2015) , designed for composite
laminates with large failure process zones. Other specimens used are the Three
Point Bending (TPB) (Garg, 1985; Underwood et al., 1995; Sket et al., 2012) and
Four Point Bending (FPB) (Connell et al., 1994; Laffan et al., 2012a). Lastly, a set
of unstable specimens have also been used in some works, such as the Center
Cracked Specimen (CCS) (Daniel, 1978; Garg, 1985; Masters, 1997; Poe and
Reeder, 2001), the Double Edge Notched (DEN) (Bažant et al., 1996; Catalanotti
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Fig. 4.1.: Fracture mechanics specimens.

et al., 2014a; Catalanotti et al., 2014b) and Single End Notched (SEN) (Bažant et al.,
1996; Masters, 1997) specimens.

Despite the existing interest in determining the Gc associated with the laminate
mode I opening, only one standard procedure exists that is applicable to composite
materials. This standard is the ASTM E1922-04 (ASTM, 2015), designed for the ECT
specimen. Other ASTM standards originally developed for metallic materials, such
as the ASTM E399-09 (ASTM, 1997) for a Compact Tension specimen, have been
applied for laminated composites, in conjunction with special recommendations
such as the load displacement and the notch radius.
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4.2 Stress field of a planar orthotropic solid

Given a general anisotropic material with a linear constitutive relation, in a bi-
dimensional problem, the stress-strain relation can be expressed as:

εi =
∑

j=1,2,6

bijσj , i = 1, 2, 6 (4.1)

where:

bij =





sij , for plane stress
sij − si3sj3/s33, for plane strain

i, j = 1, 2, 6. (4.2)

It is known that for any anisotropic material, the solution of the differential equation
that defines the stress state depends on the roots of the characteristic polynomial
(Lekhnitskii, 1963):

b11p
4 − 2b16p

3 + (2b12 + b66)p2 − 2b26p+ b22 = 0 (4.3)

with four complex roots in p. It is possible to define a subset of anisotropic materials,
defined as orthotropic materials, if their mechanical properties are unique and
independent according to three mutually perpendicular directions. For a planar
orthotropic material with the principal directions x1-x2 defined by its two principal
axes, only four independent elastic constants are needed: b11, b12 = b21, b22 and
b66, since b16 = b26 = 0. Hence, Eq. (4.3) is reduced to:

λp4 + 2ρ
√
λp2 + 1 = 0 (4.4)

where p1 and p2 are the roots with positive imaginary parts and:

λ =
b11

b22
, ρ =

2b12 + b66

2
√
b11b22

(4.5)

In the plane stress case, λ and ρ are expressed as:

λ =
E22

E11
, ρ =

√
λ

2G12
(E11 − 2ν12G12) (4.6)
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Material λ ρ

T300/920 unidirectional lamina (Laffan et al., 2010a) 0.0657 3.7326
T300/920 [0, ±60]s isotropic 1.0 1.0

T300/920 [0, 90]s cubic 1.0 7.9302
Western White Pine wood (Green et al., 1999) 0.0380 1.9635
Northern White Cedar wood (Green et al., 1999) 0.0810 0.6642

Cu (FCC) (Suo, 1990) 1.0 0.03
Fe (BCC) (Suo, 1990) 1.0 0.20

Tab. 4.1.: Values of λ and ρ for seven different materials.

where E11 and E22 are the elastic moduli, G12 is the shear modulus, and ν12 is the
Poisson’s ratio. In the plane strain case, λ and ρ are obtained by replacing E11, E22

and ν12 in Eq. (4.6) by:

E′11 =
E11

1− ν13ν31
, E′22 =

E22

1− ν23ν32
, ν′12 =

ν12 + ν13ν32

1− ν13ν31
(4.7)

To ensure the positive definiteness of the strain energy, it must be ensured that:

λ > 0 and ρ > −1 (4.8)

The anisotropy of the material is easily described by the parameters λ and ρ. For
an isotropic material, the parameters take the values λ = ρ = 1. However, for a
cubic material, it only needs to be ensured that λ = 1 and that ρ 6= 1. Table 4.1
contains the values of λ and ρ for a number of materials. From the point of view of
composite laminates, the laminate anisotropy is determined by the lay-up sequence;
an in-plane isotropic lay-up may have its principals axis oriented in any direction
by definition. Some examples of laminate sequences that satisfy this condition are
[0, ±60]s, [0,±45,90]s or [0,±36,±72]s. On the other hand, cubic materials have
a principal axis every 45 degrees. An example of cubic laminate sequence is a
cross-ply laminate.
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Assuming the material behavior to be linear elastic, that the specimen undergoes
small displacements and assuming Linear Elastic Fracture Mechanics, the Stress
Intensity Factor (SIF) caused by the bearing load P and Compliance functions can
be expressed in the form:

KI = P
h

√
ā
W K̄I (ā, SG, λ, ρ) ; C = 1

hE C̄ (ā, SG, λ, ρ) (4.9)

where P is the applied load, h is the specimen thickness,W is a measure related to
the in-plane specimen size, ā is the normalized crack length defined as ā = a/W

and E is the material elastic modulus of any principal direction, for example E11.
The non-dimensional functions K̄I and C̄ define the specimen SIF and compliance,
respectively. These are functions that depend on ā, the Specimen Geometry (SG)
and two dimensionless parameters λ and ρ that define the anisotropy of the material,
introduced in Section 2.1.3 and detailed in the next subsection.

4.3 The Compact Tension specimen for
orthotropic materials

The non-dimensional SIF and compliance functions defined in Equation 4.9 have
been obtained for a Compact Tension specimen, taking into account the material
orthotropy, defined by the variables λ and ρ. In order to do so, a parametric FE model
was created using Python scripting together with ABAQUS/Standard 6.11-1 FEM
software. To obtain the compliance for a given λ and ρ, a load of 1 N was applied
at the loading pin, while the crack nodes were released gradually along the crack
plane. The displacement u was captured at the loading line. Also, the Virtual Crack
Closure Technique (VCCT) was applied along the crack nodes to compute the SIF.
The non-dimensional functions were then found by fitting the results obtained form
the FE simulations. The details of the FE model, as well as its validation and the
procedure used to fit results can be found in the PAPER A included in this document.
Both functions are applicable for 0.03162 ≤ λ ≤ 10.0 and 0.1 ≤ ρ ≤ 10.
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Fig. 4.2.: Compact Tension (CT) Specimen Geometry, subjected to a controlled displacement
u and measured load P and with the principal directions represented by x1 and x2.

4.3.1 Specimen Compliance and Stress Intensity
Factor

The dependence of the dimensionless compliance C̄ with respect to ā, λ and ρ can
be approximated by a function of the form:

C̄ (ā, λ, ρ) = q(ā, λ, ρ) · λB · (1 + 0.22698 · ρ)
0.53527 ·

(
1 + ā

1− ā

)2

(4.10)

where q(ā, λ, ρ) is a fourth order polynomial of ā, in which its coefficients depend on
λ and ρ, and B is a polynomial that depends on the normalized crack length ā and
ρ. The coefficients can be found in Appendix A. Note that Eq. 4.10 is dimensionless
and can be used for any specimen sizeW as long as the CT geometry of Fig. 4.2 is
respected.
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The K̄I interpolating function is defined:

K̄I (ā, λ, ρ) = p(ā, λ, ρ) · λD · (1 + 0.006689 · ρ)
0.47151 · 2 (2 + ā)

(1− ā)
3/2
· 1√

ā
·
(

2λ3/2

1 + ρ

)1/4

(4.11)
where p(ā, λ, ρ) is a fourth order polynomial of ā, with coefficients that depend on λ
and ρ, and D is a polynomial dependent on the normalized crack length ā and ρ.
The coefficients are also found in Appendix A. Again, Eq. 4.11 is applicable to any
specimen sizeW .

4.3.2 Undesired failure modes: back-end compression
failure and excessive bearing at the holes

Some undesired failure mechanisms may appear when testing a CT specimen,
preventing the experiment from being performed properly. Such failure modes
include failure under compression at the back end of the specimen or at the pin
holes due the bearing load. In this section, we present a proposal of failure criteria
which take into account the orthotropy of the material, the specimen sizeW and the
initial crack length a0.

The first contemplated failure mode considers the compressive stresses at the back
end of the Compact Tension specimen. These compressive stresses usually appear
while the fracture test is carried out, and tend to increase as the crack grows. This
may cause the specimen to collapse under compression at the back end before it
has been completely split (Laffan et al., 2010b). For some composite materials this
failure can occur in the form of ply delamination. Such phenomena have also been
observed in some tougher materials with large initiation or propagation loads and
also in low compression strength materials. The failure criterion considering the
back end compression (fBE) can be expressed as:

σuC
√
W

KIc
> fBE (4.12)
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where σuC is the ultimate compressive stress of the laminate, obtained as fBE =

r (ā, λ, ρ) /
√
ā, and where r(ā, λ, ρ) is the dimensionless back end compression

stress function. This stress-based failure criterion predicts the initiation of the
material failure at the back face of the specimen. For some materials, the failure
may be controlled by a stable process due the formation of a Fracture Process Zone.
When dealing with composite materials, the back end failure normally appears in
the form of a kink-band. Hence, the failure criterion expressed in Eq. 4.12 is a
conservative prediction of the failure. It should be mentioned that, in order to use
this type of failure criteria, the material toughness KIc must be known beforehand.
To overcome this problem, it is possible to simply use an approximate expected
fracture toughness of the specimen being tested. The dimensionless back end
stress r(ā, λ, ρ) was obtained by fitting the results of the FEM models for a wide
range of material orthotropies with the least-squares method. The function is defined
as a fourth order polynomial of ā, with coefficients that depend on λ and ρ.

The second undesired failure mode is failure under compression at the load-bearing
holes of the specimen. When the crack length is very small, the bearing load required
to propagate the crack may be so high that it causes the collapse under compression
in the area surrounding the loading holes. The stress at the hole due to the bearing
pin can be defined as:

σbearing =
P

hd
< ασuC (4.13)

where d is the hole diameter and α is a parameter that depends on the stress
distribution between the pin and the hole. The value of α is normally considered
to be equal to 1 or 4/π. The standard procedure recommends a hole diameter of
d = 0.25W . Hence, the diameter can be defined as d = w/n (with n = 4 in the
standard recommendations). The failure criterion taking into account the bearing
load (fbearing) is then defined as:

σuC
√
w

KIc
> fbearing (4.14)

where:
fbearing =

n

αK̄Ic

√
ā

(4.15)
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5Non Linear Fracture
Mechanics: Fracture Process
Zone and Cohesive Law

5.1 Literature Review: Fracture Process Zone,
R-curve and the Cohesive Law

During crack nucleation and crack growth in a continuum solid, most materials
develop a relatively large Fracture Process Zone (FPZ) where energy is dissipated.
Fig. 5.1 schematically describes the FPZ present between the traction free crack
(between points a and b) and the elastic solid (beyond point d). This area is divided
in two regions based on the nature of the dissipation mechanisms. The first region
(bounded by points c and d) is located ahead of the crack tip, where non-linear
material hardening takes place. Also known as intrinsic dissipation, it is typical
of metals and other ductile materials. The second region (bounded by b and c)
is located behind the crack tip, where material softening or extrinsic dissipation
occurs. The latter region is typical of quasi-brittle materials, such as concrete,
composite materials and advanced ceramics (Ritchie, 2011). Depending on the
relative sizes of these two zones and of the structure, one may distinguish between
ductile behaviour (intrinsic dissipation is dominant), quasi-brittle behavior (extrinsic
dissipation is dominant) or brittle fracture (the FPZ is very small compared to the
structure size). The present work focuses on quasi-brittle materials.

Linear Elastic Fracture Mechanics (LEFM) considers that the entire FPZ (bounded
by the points b and d in Fig. 5.1) lies at a single point at the crack tip while the
rest of the solid behaves elastically, i.e., considers a brittle fracture. In reality this
zone must have some finite size. Irwin estimated the FPZ length (`FPZ) using the
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Fig. 5.1.: Representation of the Failure Process Zone.

elastic stress distribution around the crack tip, by assuming that the `FPZ is equal
to the zone over which the tensile strength has been exceeded (Irwin, 1960). Irwin
also introduced the term equivalent crack length: a fictitious increase of the crack
in order to maintain the force balance when assuming the new stress distribution
inside the FPZ.

A common practice is to take into account the non-linearities that take place at the
crack tip while the FPZ is being developed by using LEFM in conjunction with an
R-curve that defines the apparent increase of fracture toughness as the crack grows.
Instead of using a LEFM fracture criterion G = GIc, the crack growth condition is
computed with a variable toughness provided by the R-curve. This methodology
is widely used to predict the crack growth of quasi-brittle materials, although its
application range is unclear, and will be latter addressed in the thesis.

An alternative approach to describe the Fracture Process Zone formation is through
the use of the cohesive model. In this framework, the FPZ is initialized as soon as
a point of the specimen reaches a stress equal to the material ultimate strength
σu, where a fictitious crack starts to develop, still capable of transferring stresses
between its surfaces. This tension-softening phenomenon is represented in Fig.
5.2a. The relationship between these closure or cohesive stresses and the crack
openings is known as the Cohesive Law (CL) of the material. A typical CL shape
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(a) (b)

Fig. 5.2.: (a) Tension-softening inside the Fracture Process Zone. (b) Typical Cohesive Law
on the material.

is illustrated in Fig. 5.2b. The FPZ is still formed as the crack is opened, until the
crack opening measured at the beginning of the FPZ a0 reaches a critical value ωc.
At this precise instant the crack growth enters a steady state, i.e., it dissipates a
constant fracture energy Gc, while the FPZ moves along the crack path. During
the steady state growth the cohesive crack opening profile and cohesive stress
profile remain almost constant. This methodology goes back to the Dugdale’s strip
yield model (Dugdale, 1960), who introduced a constant stress inside the FPZ, and
Barenblatt (Barenblatt, 1962), who introduced a stress function with respect to the
crack opening, and those implemented later with finite elements by Hillerborg by
using cohesive elements (Hillerborg et al., 1976) and Bažant in a smeared way
(Bažant and Oh, 1983). It should be mentioned that Dugdale’s strip yield model
was developed for perfect plasticity, although, in fact, the model is more suitable for
quasi-brittle fracture: the energy dissipation is confined in a plane (bridging stresses)
instead of taking up a volume (material hardening). The use of the CL accounts
for the extrinsic energy dissipation mechanisms typical of quasi-brittle materials, by
introducing a relationship between bridging stresses and the crack opening.

This chapter is structured as follows: Section 5.2 proposes a new methodology to
solve the FPZ formation while taking into account the cohesive stresses and the CL
shape; Section 5.3 describes an algorithm capable of solving the Inverse problem
in order to experimentally measure the CL from a fracture test; lastly, Section 5.4
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presents a discussion on the Cohesive Model itself and the incompatibility with
R-curve based fracture mechanics.

5.2 Direct method: Dugdale’s condition

As seen in the Literature Review, most methodologies to obtain the CL of a material
involve sophisticated experimental setups to measure the required variables (Digital
Image Correlation to measure the displacement field, inclinometers to measure
rotation angles, ...). On the contrary, inverse problem approaches only need to
monitor easy-to-record variables, such as the applied load and the displacement.
However, they also need a quick enough tool to virtually reproduce the test for any
assumed CL shape, i.e., a tool capable of solving the direct method. The approach
to solve the direct method used in this thesis is described below.

A standard CT specimen of sizeW , shown in Fig. 4.2, is subjected to the action of
a controlled displacement (u) and corresponding load (P ) applied at the pin holes.
The analytic solution is capable of predicting the FPZ development as a crack grows
in pure mode-I along the symmetry plane. The starting point of the problem solution
comes from the Dugdale’s condition, i.e., the global Stress Intensity Factor (SIF) of
the problem, K, must be null (Dugdale, 1960; Barenblatt, 1959; Barenblatt, 1962):

K = KP +Kσc = 0 (5.1)

where KP is the SIF caused by the point load P and Kσc is the SIF caused by
the whole cohesive stress profile σc. Although the σc is unknown and may change
during the FPZ development, it can be discretized as a series of small constant
stresses of value equal to σi applied at the crack surface. The non-linear problem
expressed as a superposition of linear problems is shown in Fig. 5.3.
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Fig. 5.3.: Compact Tension (CT) specimen with a FPZ expressed as a superposition of linear
problems.

In order to solve the cohesive stress profile inside the FPZ, the crack opening profile
must also be found. It is possible to express the set of openings ωi as a superposition
of the openings caused by each acting load

ωi = ωPi + ωσc
i (5.2)

where ωi, ωPi and ωσc
i are the total crack opening, the crack opening caused by

the point load P and the crack openings caused by the cohesive stress profile σc,
respectively.

Eq. 5.2 is solved from an iterative process for a given CL. As a result, the stress
profile and the crack openings at the FPZ are obtained. Lastly, the load P is obtained
by means of Eq. 5.1, and the displacement u is determined as the crack opening
measured at ai = 0, using again Eq. 5.2.

The detailed solutions to Eq. 5.1 and Eq. 5.2 can be found in PAPER B. However,
some features of the model are worth mentioning. The solution to the direct method
allows to determine the load, the displacement, the FPZ length, the crack opening
profile and the cohesive stress profile during the whole crack growth and propagation.
The resulting system of equations obtained from applying Eq. 5.1 and Eq. 5.2
can be expressed as a system of non-linear algebraic equations. These have
been implemented in a Matlab® script, solving the problem in about 1 second of
computational time, using a Desktop computer with an Intel i5 processor running at
3.2 Ghz.
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Fig. 5.4.: (a) Finite Element model of a Compact Tension specimen, using cohesive elements
to model the Fracture Process Zone. (b) Comparison of the displacement (u) and
load (P ) curves obtained with the author’s methodology and using a Finite Element
model.

Any obtained output associated with the problem can be expressed as

χ̄(ū, ¯̀
M , CL, SG,MP ) (5.3)

where ū = u
E′

KIcW 1/2
is the normalized displacement, CL is the Cohesive Law

shape, SG is the Specimen Geometry, and MP are the non-dimensional variables
associated with the material anisotropy λ and ρ, with the principal directions aligned
with the crack, introduced in Section 4.2. Following the same approach, the load can
be normalized as P̄ =

P

hKIcW 1/2
.The variable ¯̀

M is the normalized characteristic
length defined as:

¯̀
M =

`M
W

where `M =
GIcE

′

σ2
u

(5.4)

This normalized characteristic length indicates how relevant are the material non-
linearities with respect to the specimen size.
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Fig. 5.5.: Comparison of the normalized (a) cohesive crack openings and (b) cohesive
stresses inside the FPZ obtained with the author’s proposed methodology and
with a Finite Element model, for a Compact Tension specimen with a normalized
characteristic length of ¯̀

M = 1.

In order to validate the proposed methodology, a Finite Element model has been cre-
ated using Python scripting together with ABAQUS/Standard 6.11-1 FEM software.
The 4-node plane stress elements with reduced integration (CPS4R) were used
to mesh the model. The FPZ has been modelled by placing Cohesive Elements
along the symmetry plane of the specimen (Turon et al., 2006), as seen in Fig. 5.4a,
assuming a linear CL shape. A comparison of the displacement and load outputs
obtained by both the FE model and the proposed author’s methodology is found in
Fig. 5.4b, for several normalized material characteristic lengths ¯̀

M . As it can be
seen in the Figure, the response for small ¯̀

M (large specimen sizeW ) tends to the
LEFM particular solution, marked with dashed lines.

Additionally, Fig. 5.5 contains a comparison of the normalized cohesive crack
openings and cohesive stresses inside the FPZ for both the FE outputs and the
proposed direct method. As it can be appreciated, both solutions are in good
agreement, hence validating the authors proposed methodology satisfactorily.
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5.3 Inverse problem

Once the algorithm to solve the direct method has been validated, it is time to continue
with the solution to the inverse problem. The inverse problem, i.e., the determination
of the Cohesive Law shape from a fracture test, is solved in three steps: first, a u-P
curve is obtained from an experimental test; second, a computer simulation of the
test must be carried out in order to find the parameters that define the Cohesive
Law; lastly, it is necessary to perform a minimization of a suitable norm which
quantifies the discrepancy between experimental data and the corresponding values
provided by the computer simulation, with respect to the mentioned parameters.
In the present work, the computer simulation is performed by using the author’s
proposed methodology to solve the direct method (Ortega et al., 2016).

The understanding of the FPZ formation within a cohesive crack model is needed in
the development of the inverse method presented in this paper. The FPZ is initialized
as soon as a point of the specimen reaches a stress equal to the material strength.
Once the σu is reached, the FPZ grows as the displacement is increased, opening
the cohesive crack and changing the cohesive stress profile in relation with the
laminate CL. When the crack opening at a = a0 reaches the critical opening ωc, the
FPZ ends its development. At this precise point the crack growth enters a steady
state, meaning that it dissipates a constant energy Gc, while the FPZ moves along
the crack path. During this steady state growth the cohesive crack opening profile
and cohesive stress profile remain almost constant.

Since the peak load is reached while the FPZ is still being formed, the analysis of
the cohesive stresses inside the FPZ along the crack growth is of great interest in
predicting the nominal strength of structures. Fig. 5.6 gives some more accurate
insight, as it depicts the progress of the FPZ growth, and its relation with the CL.
Given the Point 1 of the P -u curve, the cohesive stresses range from σu at the
FPZ tip (next to the undamaged material), where the crack opening is ω = 0, to
σ = σ1 at a crack opening ω1 measured at the end of the FPZ (next to the traction
free crack), i.e., at a distance a0 measured from the load line. In other words, to
describe the crack growth and the FPZ development until the Point 1, only a part of
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Fig. 5.6.: Depiction of three states (1-3) during the FPZ growth: (a) the P -u position, (b) the
FPZ stress and crack openings and (c) the dissipated energy inside the CL. The
cracks openings ω1, ω2 and ω3 are measured at the initial crack position a0.

the CL needs to be known, i.e, the CL shape beyond the point ω1-σ1 is not needed.
Observing Point 2, now the cohesive crack opening increases to ω2 and the cohesive
stress decreases to σ2. In this case, to define the crack growth and the FPZ, the
CL must be known up to ω2-σ2. The same can be applied to Point 3, and to every
displacement increase. If all the cohesive model variables are known during the
crack growth, each point of the P -u curve has a unique corresponding FPZ state,
with the cohesive stresses defined between 0 ≤ ω ≤ ωi, where ωi is the Crack Tip
Opening Displacement (CTOD). In other words, every infinitesimal FPZ development
increase needs an additional infinitesimal portion of the CL. This property allows to
define a piecewise CL by fitting consecutive points in the P -u curve.
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The inverse method takes advantage of the progressive FPZ development process,
being able to determine the CL from a single CT fracture test, that is, there is no
need to test other SG or sizes. An algorithm is proposed in order to solve the inverse
problem, with the following strategy: first, some points from the experimental u-P
curve are selected around the peak load, while the FPZ is still being developed, that
will be used to fit the curve. The algorithm is initialized by defining a Cohesive Law
with a single linear branch. The first branch of the CL is found by modifying its slope
until the predicted load at the first selected point matches the experimental value.
When the slope is found, the width of the first branch is found by determining the
cohesive crack opening at the initial crack tip a0 at the given displacement. The
algorithm continues by adding as many branches as number of experimental points
are going to be fitted, consecutively finding an additional linear branch of the CL.

As an example of the usability of this method, the CL has been measured using the
proposed approach to solve the inverse problem. A Compact Tension specimen of
size W = 51 mm and with an initial crack length of a0 = 26 mm has been tested.
The used material is an hybrid laminate made of woven Carbon fabric (C) and woven
Glass fabric (G) with a stacking sequence [

(
0C/45C

)
2
/0G/60G/− 60G] (laminate

L02 of Chapter 6). Fig. 5.7a shows the u-P curves of two specimens and the
corresponding smoothed average. For the sake of ensuring the objectivity of this
method, the CL has been measured three times for the same laminate, each time
fitting a different set of points. Concretely, the CL has been obtained by fitting six (�),
eight (O) and nine (×) points from the smooth average curve. Each set is observed
in Fig. 5.7a. The measured CL for each set is shown in Fig. 5.7b. As it can be seen,
for the tested laminates, the general shape of the CL remains unchanged regardless
the used set of points. Additionally, the total fracture energy GIc measured from
each CL is 105.0 N/mm, 103.8 N/mm and 105.0 N/mm respectively, providing more
evidence of the objectivity of the proposed approach to solve the inverse problem,
at least, for the shown specimen.

68 Chapter 5 Non Linear Fracture Mechanics: Fracture Process Zone and Cohesive Law



0 0.5 1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

u[mm]

P
[N

]

 

 

Specimen 1
Specimen 2
Smoothed avg.

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

ωi[mm]

σ
i[
M

P
a
]

(b)

Fig. 5.7.: P -u curve for the two hybrid specimens and the corresponding smoothed average
curve. (b) Three different CL obtained from three different sets of points.

5.4 Discussion

An extensive discussion of the applicability of the Cohesive Zone Modelling and
the incompatibility with LEFM based theories can be found in PAPER C, although
a brief summary of discussion is hereby exposed. When dealing with quasi-brittle
materials in the presence of large-scale bridging (LSB), the stress field differs greatly
form the LEFM one, as the FPZ takes a considerably large portion of the specimen.
Under this scenario, the Energy Release Rate (ERR) is not well defined assuming
LEFM. Additional problems also appear when trying to measure the crack length
a. Typically, in LEFM, the crack tip is defined as a sharp through-the-thickness
edge perpendicular to the crack growth direction. In reality, even for brittle materials,
the crack tip profile is not straight, and its shape usually depends on the specimen
thickness. Additionally, taking the cohesive model as background, the crack tip
location is not well-defined, since there is no clear transition between the bulk
material and the free-edge crack, because of the presence of the FPZ.
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Therefore, the use of R-curve to predict the crack growth should only be applied
under small-scale bridging (SSB) conditions for quasi-brittle materials or under small-
scale yielding (SSY) for ductile materials, i.e., when the `FPZ is small compared to
other problem dimensions, particularly when compared to the crack length. This
limitation is obvious for laboratory sized specimens (Bažant, 1992), and becomes
especially true for some natural materials such as human bone (Yan et al., 2007;
Koester et al., 2008a) or human dentin (Koester et al., 2008b), whose natural size
limits the specimen dimensions. This restriction is also present in some newly
developed materials such as metallic-glasses and bio-inspired ceramics (Bloyer
et al., 1998; Bouville et al., 2014; Demetriou et al., 2011) where the specimen size is
limited by the manufacturing processes. Furthermore, the methodologies to predict
the structural strength based on the R-curve are only applicable for notched speci-
mens, as they are not able to predict crack nucleation on smoothed surfaces.From
a cohesive model point of view, the apparent increase of the fracture toughness of
the material descried by the R-curve can be understood as the formation and prop-
agation of the FPZ (Suo et al., 1992; Jacobsen and Sørensen, 2001). The increase
of GIc takes place while the FPZ is growing. During this process, the cohesive zone
is being developed with the cohesive stresses and crack openings being related
by the CL. As a consequence, the Cohesive Law shape plays an important role on
the R-curve output. Additionally, the FPZ formation and its development are also
influenced by the loading conditions and the Specimen Geometry, hence resulting
in very diverse R-curves depending on those variables. For theses reasons, the
R-curve should not be considered a material property (Bao and Suo, 1992; Suo
et al., 1992; Sørensen et al., 2008a; Sørensen and Jacobsen, 1998).

Some R-curves have been obtained in order to illustrate the specimen size (¯̀M )
and CL dependence. To obtain the curves, the output variables u and P have been
obtained for a CT specimen with a linear CL for ¯̀

M = 0.05, 0.5 and 1, using the
analytic cohesive model defined in Section 5.2. First, the compliance obtained
from the direct method is equalled to the elastic compliance of a Compact Tension
specimen (Bažant and Planas, 1998), in order to infer the equivalent crack length
aeq. Then, the fracture toughness is obtained from the LEFM definition of the stress
intensity factor KP

I , found in (Bažant and Planas, 1998).

70 Chapter 5 Non Linear Fracture Mechanics: Fracture Process Zone and Cohesive Law



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

∆a/ℓM

R
/
G

I
c

ℓ̄M = 0.05

ℓ̄M = 0.5

ℓ̄M = 1

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

∆a/ℓM

R
/
G

I
c

ℓ̄−1
M = 25

Constant

Linear

Exponential

(b)

Fig. 5.8.: (a) Three R-∆aeq/`M curves with a linear CL for ¯̀
M = 0.05, 0.5 and 1. (b) Three

R-curves with a linear, constant and exponential CL and with ¯̀
M = 0.04.

The curves of Fig. 5.8a have been obtained for a linear CL. As it can be appreciated,
the measuredR is heavily dependent on the ¯̀

M , obtaining more distorted outputs as
the material non-linearities become more relevant. To be able to discern when large-
scale bridging and small-scale bridging assumptions can be made, an additional
plot has been obtained, observed in Fig. 5.9. In this case the propagation values
of R, i.e. the maximum value Rmax, has been obtained for several ¯̀

M values. As
it can be observed in Fig. 5.9, the ¯̀

M values for which the assumption of SSB is
correct (and therefore LEFM is applicable) are influenced by the CL shape. When
comparing the self-similar crack growth for a constant CL against a linear CL, the
former exhibits a shorter FPZ length. Therefore, the assumption of SSB will be
possible for small values of ¯̀

M (larger specimens). In general, the longer the tail
of the CL shape is, the longer the fully developed FPZ length will be. On the other
hand, as ¯̀

M increases, the R value becomes distorted when LEFM assumptions
are made, as seen in the left region of Fig. 5.9.
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Specifically, the standard procedure for the determination of the fracture toughness
of metallic materials ASTM E399 (ASTM, 1997) and of plastic materials ASTM
D5045 (ASTM, 1999) states that the procedure to determine the R can only be
applied for ¯̀

M < 0.4 (1− ā0), then for the CT specimen presented ¯̀−1
M > 5 . As

it can be seen in Fig. 5.9, for large enough specimens, it is correct to assume
SSB, resulting in an R-curve that is not size dependant. Fig. 5.8b shows three
R-curves for a linear, constant and exponential CL, for ¯̀−1

M = 25, in which case SSB
can be assumed. In conclusion, it has been shown that the R-curve is a property
incompatible with the Cohesive Law. This disagreement is mainly caused by the
use of LEFM assumptions in the R-curve definition.
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The Cohesive Law as a material
property





6Translaminar Cohesive Law of
interply hybrid laminates

The use of hybrid materials is of high interest for the materials science research
field as well for industrial applications. These kind of composites may benefit
from advantages of each separate material, e.g, improving the damage tolerance,
delaying some failure mechanism or even decreasing the total economic cost by
using inexpensive materials. This Section studies the translaminar Cohesive Law of
several interply hybrid laminates, and how the stacking sequence and ply material
can influence the total laminate traction-separation law. The studied interply hybrid
laminates have been obtained by combining two materials of a total set of three
type of plies: Unidirectional Carbon (UC) tape, woven Carbon fabric (C) and woven
Glass fabric (G). For each combination of two materials several stacking sequences
have been studied. Concretely, how the location of certain plies can modify the
overall translaminar Cohesive Law.

6.1 Materials and laminates

The three composite materials that have been tested in the experimental campaign
are the same ones defined in the work of González et al. (González et al., 2014),
where one is unidirectional carbon tape and the other two are woven fabrics. The
three materials have been supplied by Hexcelr. The fabric materials use HexFlowr

RTM 6 mono-component epoxy system. All composites have been supplied with
epoxy binders on both sides (with the binder representing about 5% of the total
fabric weight). The woven fabrics plies are Carbon (C) fabric type G0926 (5HS, 6K,
370 gsm), and Glass (G) fabric type S2 (style 6781, Z-6040, 303 gsm), while the
UC is type G1157 (UD, 6 K, 270 gsm). The elastic properties of each lamina are
found in Table 6.1. The ply thickness of each material C, G and UC are 0.353 mm,
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Tab. 6.1.: Ply properties of each composite material, where C is woven carbon fabric, G is
woven glass fabric and UC is unidirectional carbon tape.

Material E1 (GPa) E2 (GPa) G12 (GPa) ν12 σu (MPa)

C 59.54 54.95 5.21 0.03 804.1
G 19.65 19.24 3.93 0.09 557.8
UC 116.73 8.31 4.67 0.26 1477.1

0.229 mm and 0.247 mm, respectively. The thickness has been obtained from an
average of 6 measurements of cured non-hybrid laminates.

The interply hybrid laminates have been divided in three sets by combining two
different materials per laminate: C-G, C-UC and G-UC. The translaminar CL has
been obtained from a CT specimen subjected to a controlled displacement and
corresponding load again using the methodology proposed in Section 5.3. The
stacking sequences are summarized in Table 6.2, with the fibre direction of 0o

aligned with the loading direction, shown in Fig. 4.2. In order being able to compare
the laminates of each set, the ply stacking sequences have been chosen to be
symmetric, balanced and in-plane quasi-isotropic. The number of plies of each
material has also been kept constant. As a result, the resultant in-plane stiffness are
constant among each set, although the bending stiffness may vary from laminate
to laminate. The C-G laminates are made of n = 14 plies, with a cured laminate
thickness h of 4.31 mm. In the case of the C-UC laminates n = 14 and h = 4.22

mm, whereas for the G-UC, n = 18 and h = 4.22 mm.

6.2 Results and discussion

The measured CL for the laminate L04 is shown in Fig. 6.1. Observing the shape of
traction-separation law, it can be appreciated that, for small crack openings (about
ω ≈ 0.15), the FPZ still has a relatively high capacity of transferring stresses. The
measured CL also features a long tail that transfers low stress levels at larger
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Tab. 6.2.: Hybrid laminates stacking sequences, where C is woven carbon fabric, G is woven
glass fabric and UC is unidirectional carbon tape. The 0o direction is aligned with
the loading direction.

Materials Laminates

C-G L01: [0G/60G/− 60G/(0C/45C)2]S
L02: [(0C/45C)2/0

G/60G/− 60G]S
L03: [0G/(45C/0C)2/60G/− 60G]S

C-UC L04: [90UC/− 30UC/30UC/(0C/45C)2]S
L05: [(0C/45C)2/90UC/− 30UC/30UC]S

G-UC L06: [90UC/− 45UC/0UC/45UC/(0G/45G)2/0
G]S

L07: [(0G/45G)2/0
G/− 45UC/90UC/45UC/0UC]S

L08: [90UC/− 45UC/0G/45G/0UC/45UC/0G/45G/0G]S
L09: [0G/45G/0G/0UC/45UC/0G/45G/90UC/− 45UC]S

crack openings. Although not included in this document, the rest of the measured
laminates all present a similar softening-law shapes. In order to objectively compare
the CL features of each laminate, a simplified cohesive law has been proposed,
capable of reproducing the behaviour described above: the transfer of high stresses
at low crack openings and low stress levels for large crack openings. The simplified
CL consists of a linear branch defined by σu and G1, a sudden drop of stresses
located at ω1, and a second linear branch defined by σ1 and Gc−G1. This simplified
shape is also shown in Fig. 6.1. The total energy fracture Gc and the critical crack
opening ωc are maintained from the experimentally measured CL. Hence, only 4
out of the 6 parameters need to be found in order to completely define the simplified
CL (σu, σ1, ω1, and G1). These have been obtained by means of a least square
fitting. Table 6.3 showcases the best fitted parameters for each laminate. Having
the translaminar CL expressed in this manner, it is possible to objectively compare
each laminate, and also analyse how the material used at the ply level modifies the
overall laminate behaviour.

Observing the laminates made of Carbon fabric and Glass fabric (C-G), the po-
sition of each material has no effect on the onset fracture energy G1, although
the propagation fracture energy Gc values are slightly increased when the Carbon
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Fig. 6.1.: Measured Cohesive Law and proposed simplified shape for the Laminate L04.

fabric plies are located in the outer faces of the laminate. Moving to the Carbon
fabric and Unidirectional Carbon tape laminates (C-UC), placing the UC plies in
the outer faces increases the Gc about a 15 %, while placing them in the middle
increases G1 a 15 %. The third group of laminates are the ones made with the most
contrasting materials: Glass fabric and unidirectional Carbon tape (G-UC). In this
case, the effects of the material position on the fracture energy are more evident
than in the previous studied laminates. One laminate stands out with respect to the
other three, the L07. Observing closely the stacking sequences of both L06 and
L07, it can be appreciated that both have the same layup, but with the plies of G
and UC with switched positions. The stacking sequence of L07 has a ply clustering
in the 0o in the center of the laminate, resulting in outstanding performance, mainly
caused be two phenomena. First, it is known that the fiber pull-out contributes to
the laminate energy dissipation, being a desired failure mode when a translaminar
crack is present. It is also known that thicker plies cause the fiber pull-out length
to be increased, hence dissipating more energy (Laffan et al., 2010b), as is in the
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Fig. 6.2.: X-ray of the laminates L06 and L07 for the CT specimens. Several matrix cracks
can be observed in the laminate L07.

case of L07. The second damage mechanism phenomenon is the appearance of
larger amounts of matrix cracks and delaminations in the presence of thicker plies
(Li et al., 2009). Fig. 6.2 shows the X-ray image of both laminates L06 and L07. In
the case of L07, the damage zone is characterized by having larger matrix cracks
and larger delaminations which are not present in the case of L06. These matrix
cracks have two impacts during the damage process: first the matrix crack growth
itself, which adds to the laminate fracture energy, although its contribution may be
negligible compared to other fracture mechanisms such as fiber pull-out (Cooper
and Kelly, 1970). Secondly, the presence of numerous matrix cracks in the laminate
may cause a crack blunting effect, which leads to a reduction of the energy release
rate of the specimen. It should be pointed out that the Cohesive Laws have been
obtained assuming that all the dissipation mechanisms are confined in the fracture
plane. This hypothesis does not hold true for the laminate L07, where these matrix
cracks and delaminations take place far from the fracture plane. Hence, the results
for this case should be considered only qualitatively.

Moving to laminates L08 and L09, the same phenomena can be observed. Both
laminates have the same stacking sequence but with the plies of G and UC with
switched positions. In this case the discrepancy of energy is not as remarkable as
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Tab. 6.3.: Simplified Cohesive Law parameters for each laminate.

Material Laminate Gc [N/mm] G1 [N/mm] ω1 [mm] ωc [mm]

C-G L01 98 70 0.17 0.57
L02 106 70 0.17 0.37
L03 98 72 0.15 0.53

C-UC L04 123 87 0.15 0.49
L05 111 99 0.17 0.45

G-UC L06 102 87 0.17 0.43
L07 166 99 0.16 0.52
L08 94 70 0.10 0.54
L09 113 83 0.16 0.50

in the case of laminates L06 and L07, since L09 only dissipates about 24% more
energy than L08. This may be explained by the laminate L09 having a ply clustering
of UC in the −45o, instead of the 0o. However, thicker plies, even at −45o, may still
result in higher pull-out lengths and fibre breakage.

The increase of the dissipated energy observed in the specimens where more
transverse matrix is visible can be mainly explained by three phenomena. The first
one being the transverse crack propagation itself. Although thematrix fracture energy
may be negligible compared to the fibre fracture energy, the contribution of all the
matrix cracking events can significantly add to the total translaminar fracture energy
of the laminate. The second phenomenon may be related to the matrix cracking
induced delamination. This is apparent in the laminate L07, shown in Fig. 6.2 where
some small delaminations near the initial crack tip can be observed. Finally, the
third phenomenon can be explained by the reduction of the Stress Intensity Factor
of the whole laminate at the crack tip, caused by the presence of transverse matrix
cracking. Hence requiring more energy to propagate the translaminar crack.

An in-depth description of the data reduction of each laminate is included in PAPER
D. It also includes the characterization of the laminates under compressive loads,
obtained from the Compact Compression specimen.
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7Cohesive Law independence
of the specimen size and
geometry

The Cohesive Zone model has been applied throughout this document to model the
translaminar fracture, meaning that it can only be applied in laminates where the
damage mechanisms are almost localized in a plane. Laminates that experiment
large delaminations could not be benefited from this approach. The Cohesive Zone
model presents many advantages over the LEFM-based models. To begin with, it
is applicable to predict the nominal strength of structures in the absence of cracks.
Also, it is capable of capturing the size effect of structures with the same geometry
(more details can be found in PAPER C).

One of the main hypothesis of the Cohesive Zone model is that it assumes the
Cohesive Law to be a material property, i.e, it does not depend on the specimen
size or the specimen geometry. The main objective of this Section is to check the
foundation of this hypothesis. This will be confirmed in two steps: first, it will be
studied how the change in specimen size influences the measured CL. Second, it
will be studied how well the same CL can predict the nominal strength of multiple
geometries.

7.1 How the specimen size influences the
measured Cohesive Law

As previously mentioned, the first step is to study how the specimen size influences
the obtained CL using the methodology of Section 5.3. To do so, the CL has been
measured for three Over-height Compact Tension (OCT) specimens of different
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Fig. 7.1.: Over-height Compact Tension (OCT) specimen geometry, with all dimensions
defined with respect to the size W , where the dashed line represents the crack
path.

sizes for the same laminate. The Over-height Compact Tension (Kongshavn, 1996;
Kongshavn and Poursartip, 1999; Floyd, 2004; Li et al., 2009; Zobeiry et al., 2014; Xu
et al., 2015) was designed to measure translaminar fracture toughness of composite
laminates with a large Failure Process Zone. Fig. 7.1 shows the geometry of the
specimen with respect to the sizeW . As the proposed methodology to determine
the CL only needs to experimentally register the load and displacement outputs, the
curves are taken from the results published by Xu et al. (2015). In this publication,
the experimental load, displacement and damage evolution of three different OCT
specimens of size W = 40.3, 80.6 and 161.2mm are presented. The laminate
material is IM7/8552, a carbon-epoxy pre-preg provided by Hexcel HexPlyr, with
a nominal ply thickness of 0.125 mm. The stacking sequence is quasi-isotropic
[45/90/− 45/0]4s. The elastic properties of the laminate are found in Table 7.1.

82 Chapter 7 Cohesive Law independence of the specimen size and geometry



Stacking sequence W [mm] a0 [mm] h [mm] E [MPa] σu [MPa]

[45, 90,−45, 0]4s 40.3/80.6/161.2 0.4W 4 61645 990

Tab. 7.1.: Laminate properties.

The experimental P -u curves of each specimen size are shown in Figure 7.2. The
solid lines represent the experimental curves, while the dashed ones have been
obtained from applying a Gaussian smooth, in order to reduce the experimental
scatter. This technique averages the values around a given point weighted according
to a Gaussian function, such that the end points at the data window have less
influence on the averaged value than the ones near the centre. For each specimen
curve, some points were used in order to apply the inverse method. For the scaled-
down specimen (W = 40.3 mm), 12 points were used, marked with ∗. For the
base-line (W = 80.6 mm) and scaled-up (W = 161.2 mm) specimens, 20 points
were fitted, marked with a + and a ×, respectively.

The obtained CL shapes for the three specimen sizes are shown in Fig. 7.3. The
initial point of the curve, σu = 990 MPa, is taken from the laminate strength, and has
not been obtained from the inverse problem solution. Observing the results, it is
possible to identify a similar trend for the three CL: first, a steep drop in stresses,
followed second smooth drop up until a crack opening around ω ≈ 0.7 mm. This
type of curve is usually expected in order to reproduce the translaminar fracture
of carbon-reinforced composites. The first drop of stresses may be related to the
high amounts of energy suddenly released when fibre-breakage takes place. The
second slope can be related with fibre-bridging and fibre pull-out, taking place at
wider crack openings. Is is worth mentioning that none of the three specimens
have fully developed their FPZ when the experiment was finished. This is easily
observed in two aspects: firstly, none of the P -u curves never follow the typical
LEFM response at any point in the experiment, and secondly, none of the obtained
CL are closed curves.
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Fig. 7.2.: Experimental (solid lines) and fitted (dashed lines) load displacement curves. The
marks represent the points selected in order to fit the Cohesive Law for each
specimen.

Observing the measured shapes, one may assume that they describe the same
general trend, and therefore, the CL property is not influenced by the specimen
size, at least, for the range of tested sizes and for the given geometry. The dis-
crepancies can be attributed to the experimental scatter and to the material het-
erogeneity. In order to see how well the measured CL can predict the strength
other geometries, a simplified CL is proposed, marked with a solid line in Fig. 7.3.
The proposed piecewise curve is defined as a trilinear CL, defined by the points
σ (ω) = [990(0); 250(0.0893); 175(0.7); 0(0.7)]. The cut-off observed in ω = 0.7 mm

has been introduced as no information was obtained for greater crack openings.
The area under the curve corresponds to a fracture energy of GIc = 185 N/mm or a
critical SIF of KIc = 3377 MPa

√
mm.
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Fig. 7.3.: Measured Cohesive Law obtained from each OCT specimen, along the simplified
trilinear Cohesive Law (solid line).

7.2 Predicting the nominal strength of other
geometries

In order to verify if the CL is modified by the specimen geometry, the proposed
simplified CL has been used to predict the nominal strength of two specimens:
the Center Cracked (CCS) and Open Hole (OH) specimens. Fig. 7.4 shows the
geometry of both specimens, with all the dimensions specified with respect to the
half the notch length R. The nominal strength, σN , is defined as the average stress
of the net section at the maximum load, and has been predicted by solving the direct
method, as described in Section 5.2, for both geometries. A wide range of sizes
have been studied, with values of R = 1.5875, 3.175, 6.35, 12.7 and 25.4 mm. For
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(a) (b)

Fig. 7.4.: (a) Center Cracked Specimen (CCS) and (b) Open Hole specimen (OH) geometry,
with all dimensions defined with respect to the half of the notch size R.

all the specimens, the considered laminate is the same used in the OCT, with the
properties summarized in Table 7.1.

The results of the predictions are found in Fig. 7.5, along some experimental ones.
These have been obtained from the published results in Xu et al. (2014). Some
characteristics of the plot of Fig. 7.5 are worth mentioning. The line labelled as
plastic limit references to the particular case in which the net section is subjected to
a constant stress distribution equal to the laminate strength σu. This limit is reached
for extremely small specimens in both the CCS and OH, where the FPZ length takes
the whole section. As the specimen size increases, the σN tends to two particular
solutions for R→∞, depending on the geometry considered. For the OH specimen,
the solution follows the elastic solution determined by the stress concentration factor.
On the other hand, for the CCS, the solution follows the LEFM determined by the
stress intensity factor or the energy release rate. As it can be seen, in general, the
predictions using the proposed CL are in good agreement with the experimental
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Fig. 7.5.: Predicted nominal strength σN of the Open Hole and Center Cracked specimens
with respect to half of the notch length R, considering the CL of Fig. 7.3, along with
some experimental results.

results, even some of them being in excellent agreement. The obtained predictions
follow the expected aforementioned particular solutions, by solving the direct method
and only changing the specimen size. More concretely, the nominal strength of
the Center Cracked Specimen is slightly underpredicted, being the most critical
case about a 20% lower for R = 6.35 mm. On the other hand, the σN is slightly
overpredicted for the Open Hole specimen, being the most critical case about a 12%

greater for R = 1.5875 mm. These results suggest that, for the CCS, the nucleation
and crack growth requires more energy than the determined by the OCT. However,
the OH specimen seems to require less energy than OCT specimen.
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8Results and discussion

This chapter summarizes the results of the developed work as a whole and discusses
them in accordance with four different building blocks: the extension of the Compact
Tension specimen for orthotropic materials (Chapter 4), the determination of the
translaminar Cohesive Law (Chapter 5), the verification of the Cohesive Law as a
material property (Chapter 7), and how the stacking sequence can influence the
measured CL (Chapter 6).

8.1 Compact Tension specimen for orthotropic
materials

When facing the problem of measuring the total fracture energyGIc or the associated
critical Stress Intensity Factor KIc of an orthotropic laminate, it is necessary to have
a function of the form

KIc (ā, λ, ρ) (8.1)

that takes into account the orthotropy of the material defined by the non-dimensional
variables λ and ρ. The available existing methodologies consisted on obtaining
Eq. 8.1 from a FE for a particular laminate. The writing of this Ph.D. thesis has
contributed to the problem by introducing an analytic expression of Eq. 8.1 for a
wide range of material orthotropies. The function has been obtained from fitting the
results obtained from FE simulations, and has been contrasted with the tabulated
isotropic solution available in the literature, as well as with particular orthotropic
solutions also found in the literature. The function computes the SIF with a maximum
error of 2.37% with respect to the FE simulations.

Likewise, when measuring the crack length a, basically two approaches exist: one
being measuring a optically, and the other one by equalling the experimental com-
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Fig. 8.1.: Comparison between FE and fitted (a) C̄ and (b) K̄ curves for three examples of
orthotropic materials.

pliance with the elastic one and thus obtaining the equivalent elastic crack length.
The former is not an objective methodology when large Fracture Process Zone are
present, as the crack tip location is not well defined, specially for fibre-reinforced
composite materials. The latter method relies on having an expression of the form

C (ā, λ, ρ) (8.2)

Researchers would typically obtain Eq. 8.2 from a FE model for every particular
laminate needed to be tested. The present thesis has also introduced a general
analytic expression for Eq. 8.2 for the CT specimen. Again, the function has
been obtained from fitting the results obtained from FE simulations, and has been
contrasted with the tabulated isotropic solution, as well as with particular orthotropic
solutions, both found in the literature. The function computes the elastic Compliance
of the CT specimen with a maximum error of 2.29% with respect to the FE simulations.

Both general expressions for the Compliance and the SIF introduced in this thesis
facilitate the measurement of the translaminar fracture energy for a wide range
of orthotropies, without the need of doing a FE analysis for each particular tested
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laminate. These are valid for 0.03162 ≤ λ ≤ 10.0 and 0.1 ≤ ρ ≤ 10.0, covering
virtually all the orthotropies that can be found in existing materials. The details
on how these functions have been obtained and their benchmarks can be found
in PAPER A. As an illustrative example, Fig. 8.1 shows the excellent agreement
between the proposed functions and the simulations obtained from the FE method.

8.2 Determination of the translaminar
Cohesive Law

Although the previous Section introduced general tools for measuring GIc and the
associated SIF for a wide range of orthotropies, in reality, the measurement of the
total fracture energy and Stress Intensity Factor are not sufficient for predicting the
nominal strength of structures when large Fracture Process Zone are present, with
respect to other problem dimensions. In these cases, during the FPZ initiation and
growth, the apparent fracture energy grows with the applied displacement. Once the
FPZ has been fully developed the apparent fracture energy achieves a plateau value
equal to GIc. This apparent increase of fracture energy is known as the R-curve
of the material. Using the Linear Elastic Fracture Mechanics reduction methods,
it could be possible to record the whole R-curve as a function of the crack length,
although this would only suffice to reproduce the exact same experiment from which
it was recorded, as the R-curve cannot be extrapolated to other geometries or sizes.
This is a consequence of the R not being a material property, as it depends on
the specimen size and geometry. LEFM assumes that the energy dissipation is
localized within a very small volume at the crack tip and, as a consequence, the
stress field can be defined by a single parameter KI . Hence, LEFM based theories
can deliver wrong predictions of structural strengths when large FPZ are present,
as is in the case of fibre-reinforced composite materials. Numerous studies are
available in the literature that support this statement, as introduced in Section 5.4,
an discussed in-depth in PAPER C.
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On the other hand, more complex fracture models such as the Cohesive Zone Model
(Section 5.1), can properly predict the change in size and geometry by assuming
the CL as the true material property. This defines the relation between the closing
stresses and the crack openings inside the FPZ. Two main drawbacks appear with
this approach. First, the Cohesive Zone Modelling crack growth is predicted by
a set of non-linear equations that are usually complex to solve. Secondly, the
measurement of the translaminar CL itself is still an unresolved problem despite the
many attempts by the scientific community (a wide review can be found in Chapter
3).

The present thesis has improved the aforementioned problems related with the
Cohesive Zone Model (CZM) in two aspects. First, a semi-analytic solution has
been proposed to predict the P -u curve of a Compact Tension specimen along all the
FPZ related outputs, for any random CL shape. The method is able to obtain many
outputs during the crack growth, such as the cohesive crack openings ωi, cohesive
stresses σi and the FPZ length `FPZ. The non-linear problem has been solved
by applying the superposition principle in order to describe the SIF of the whole
problem for a given instant during the crack growth, and by solving the Dugdale’s
condition. This is fulfilled by ensuring that the total SIF is null due to the presence of
the cohesive stresses inside the FPZ. This approach has proven to be a reliable and
fast tool to solve all the variables related to the FPZ, as presented in Section 5.2.
The results obtained in this manner are in perfect agreement with those that can be
obtained by the Finite Elements approach, in just a fraction of the computational
cost. Fig. 8.2 shows the excellent agreement between the proposed analytic model
and the FE simulations, for a linear Cohesive Law shape. The procedure presented
in this thesis is easily applicable to other geometries.

This thesis has also proposed a methodology to measure the translaminar Cohesive
Law from a single fracture test of a Compact Tension specimen. The CL is defined
as a piecewise linear function, initially with segments of unknown slopes and widths.
Each segment is adjusted so that the predicted P -u curve best fits some selected
points from the experimental curve. This methodology has proven to be objective
enough, as the obtained CL does not depend on the selected points of the curve,
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as shown in Fig. 8.3. The details of the methodology are found in Section 5.3 and
can also be found in detail in PAPER B.

8.3 The translaminar Cohesive Law as a
material property

Is the translaminar CL a material property? The Cohesive Zone model assumes
this as a fact, but there is no experimental evidence to support this due to the lack
resources for measuring it. The present thesis tries to answer this question with the
aid of the introduced method to obtain the CL. The property has been checked in
two phases. In the first phase, the translaminar CL has been measured for three
Over-height Compact Tension specimens of different sizes while maintaining the
same laminate. The three specimens are geometrically identical, but with rescaled
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Fig. 8.3.: P -u curve for the two hybrid specimens and the corresponding smoothed average
curve. (b) Three different CL obtained from three different sets of points.

dimensions. The results show that the general shape of the measured CL remains
unaffected by the specimen size. The obtained CL for each specimen size is shown
in Fig. 8.4.

The second phase in order to check whether the CL is a material property consists
in using the obtained curve from the OCT specimens to predict the nominal strength
of other geometries and sizes. To do so, first, a simplified CL shape is proposed,
used to predict the nominal strength of the geometries. This general shape is shown
as a solid line in Fig. 8.4. The other geometries that are predicted are the Open Hole
and the Center Cracked specimens. The predicted nominal strengths are in good
agreement with the experimental ones, as can be appreciated in Fig. 8.5. For some
of the cases, the predicted values are in excellent agreement with the experimental
ones. The details on the followed procedure, used materials, stacking sequence
and obtained results can be found detail in Chapter 7.

When defining the translaminar fracture of fibre reinforced composites, the Cohesive
Law takes into account several dissipation mechanisms indistinctly, such as fibre
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Fig. 8.4.: Measured Cohesive Law obtained from each OCT specimen, along the simplified
trilinear Cohesive Law (solid line).

breaking, matrix cracking, fibre bridging and fibre pull-out. Assuming the CL as
a material property implies that these series of events that take place inside the
FPZ during the crack initiation and growth are the same and dissipate the same
energy regardless the considered geometry or the size of the structure. This might
be a harsh assumption, as it is difficult to believe that a notched and an unnotched
structures undergo the same fracture damage mechanisms. Even so, in view of the
results, it seems plausible to assume the CL as a material property that remains
constant, at least, macroscopically speaking, for the ranged size of specimens.
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8.4 Effects of the stacking sequence on the
measured Cohesive Law

As previously mentioned, the CL accounts for several energy dissipation mecha-
nisms during the FPZ formation and growth. In the case of fibre-reinforced composite
materials, most of these damage mechanisms depend of the fibre and matrix prop-
erties as well as the laminate properties. In the presence of a translaminar crack,
the CL accounts for the whole laminate. In such cases, the used stacking sequence
may influence the fracture events during the crack formation, even for laminates
with the same in-plane properties, causing a significant influence in the resultant
translaminar fracture energy.
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In order to study the influence of the stacking sequence on themeasured translaminar
CL, some interply hybrid laminates were tested, combining two materials of a total
set of three type of plies: Unidirectional Carbon (UC) tape, woven Carbon fabric
(C) and woven Glass fabric (G). For each combination of two materials several
stacking sequences have been studied. The laminates have been chosen in order
to accomplish that, for each set, the in-plane properties and the laminate thickness
remained as constant as possible.

The measured CL for each laminate show that the stacking sequence does have an
impact on the total fracture energy as well as the CL shape. The results show that,
at least for the tested materials, ply-clusters made of laminae perpendicular to the
crack growth dissipate more energy than those laminates without ply-clustering.
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9Conclusions

The present thesis deals with the data reduction analysis of pure mode I translaminar
cracks of fibre-reinforced composite laminates, i.e, a crack that grows along the
laminate submitted to tension, breaking all the plies. The work focuses first on the
Linear Elastic Fracture Mechanics data reduction methods, extended to consider
any material orthotropy. It is followed by more complex approaches based on the
Cohesive Zone Model. The main conclusions of this work are grouped according to
five main blocks, found below.

The first contribution of the present work is the introduction of several data reduction
methods and design tools. These tools, based on the Linear Elastic Fracture
Mechanics theory, have been developed for the Compact Tension specimen, but
have been extended in order to account for the orthotropic behavior of the laminate.

• An analytic function of the form C
(

¯a, λ, ρ
)
for the elastic compliance of a Com-

pact Tension specimen has been proposed, taking into account the material
orthotropy.

• An analytic function of the form KI

(
¯a, λ, ρ
)
for the Stress Intensity Factor of

a Compact Tension specimen subjected to a mode I loading at the pin holes
has been proposed, taking into account the material orthotropy.

• Both functions have been obtained from a wide range of FE simulations,
providing an excellent agreement with the tabulated isotropic solution as well
as for some particular orthotropic solutions available in the literature.

• A failure criteria has been proposed for the Compact Tension specimen, taking
into account the laminate orthotropy. The strength-based criteria accounts for
compression failure at the specimen back-end and by the bearing load at the
holes.
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• The failure criteria have been checked with two laminates, again resulting in
good agreement with the experimental results.

Linear Elastic Fracture Mechanics are not sufficient to properly predict this kind of
fracture in the presence of a large Fracture Process Zone, as is normally the case
of fibre-reinforced composite materials. Thus, the present thesis approaches this
kind of fracture by considering the Cohesive Zone Model point of view.

• An analytic cohesive model has been proposed in order to solve the fracture
problem of a Compact Tension specimen subjected to a controlled displace-
ment and corresponding load. The model obtains the whole load-displacement
curve for a given translaminar Cohesive Law, while obtaining the cohesive
crack openings, cohesive stresses and the Fracture Process Zone length.

• The model has been validated with several FE simulations, assuming a linear
CL, while changing the specimen size. The results are in excellent agreement
with the simulations, while only taking fraction of the computing time with
respect to the FE simulations.

• With the use of the model, Linear Elastic Fracture Mechanics reduction meth-
ods have been put to test. The results of this study prove that the R-curve is
incompatible with the Cohesive Zone Modelling, resulting in a property that
depends on the specimen size and geometry.

An indispensable ingredient of the Cohesive Zone Model is the Cohesive Law of
the laminate. Several sophisticated attempts to measure this property are found in
the literature. The present work proposes a simple and objective methodology to
measure this property from a single fracture test.

• A methodology has been proposed to measure the translaminar Cohesive
Law from a single Compact Tension fracture test by solving the inverse prob-
lem. The method obtains softening law by best fitting some points of the
experimental load-displacement curve using the analytic cohesive model.
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• The algorithm is initialized with an unknown CL shape, defined as a piecewise
linear function, with unknown slopes and widths. Each segment is adjusted
in order that the predicted load-displacement curve best fits the selected
experimental points.

• The proposed methodology has proven to be efficient, as the obtained Cohe-
sive Laws shape do not depend on the selected points in the fitting process,
at least for the tested materials, laminates and geometries.

The next step has been to study how the stacking sequence can influence the
Cohesive Law shape.

• Several interply hybrid Compact Tension specimens were tested to study the
effect of the ply stacking sequence on the measured translaminar Cohesive
Law. The laminates were obtained by combining two materials of a total of
three type of plies: Unidirectional Carbon, woven Carbon fabric and woven
Glass fabric.

• For each set of two materials, the laminates and stacking sequences were
chosen in order to maintain the in-plane elastic modulus and the laminate
thickness as constant as possible.

• The obtained Cohesive Laws showed that the laminates with ply clustering
dissipate more energy than the ones with more dispersed plies.

• The increase of the translaminar fracture toughness on the laminates with ply
clustering aligned perpendicular to the principal crack growth may be mainly
attributed to larger amounts of fibre pull-out and longer fibre pull-out lengths.
Some other fracture mechanisms that may add to the total fracture energy are:
the growth of transverse cracks, transverse cracking induced delamination
and blunting of the crack tip caused by the presence of the transverse matrix
cracks.

103



The main hypothesis assumed in the Cohesive Zone Model approach is that the
Cohesive Law is a material property. This thesis has provided some evidence for
the tested laminates.

• In order test how the specimen size affects the measured CL, it has been
measured from three geometrically identical Over-height Compact Tension,
tested by the University of Bristol. All the specimens were obtained from the
same laminate, maintaining the same geometry while varying the size.

• The measured CL for each specimen are almost identical, following a unique
general shape for the given laminate, regardless the tested size.

• The obtained Cohesive Law was then used to predict the nominal strength
of two additional geometries: the Center Cracked and Open Hole Specimen,
again made of the same laminate.

• The predicted strengths are in good agreement with the existing experimental
results. It is plausible to assume the translaminar Cohesive Law a material
property, at least, for the tested range of specimen sizes.

• The hypothesis may hold true only when the damagemechanisms are localized
in the fracture plane at the crack tip. If other typologies of damage, such a
large delaminations, take place away from the crack tip, the Cohesive model
is not be suitable to model them.
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10Perspective and future work

This chapter presents some possible lines of future research and extension of the
work developed in this thesis.

10.1 Extension of the Cohesive Zone Model
for orthotropic laminates

The semi-analytic solution for the Compact Tension specimen introduced in Section
5.2, capable of solving the Cohesive Zone problem of a specimen subjected to a
controlled displacement and corresponding load, can only be applied for in-plane
quasi-isotropic laminates. This limitation is a consequence of the lack of availability
of the Stress Intensity Factor functions that consider other material orthotropies.

In order to analytically solve the problem to consider non quasi-isotropic laminates,
the algorithm needs to be fed with three different SIF functions that take into account
the material orthotropy:

• SIF caused by the bearing load applied at the pin holes.

• SIF caused by a constant cohesive stress applied over a small surface inside
the Fracture Process Zone.

• SIF caused by a point load applied over a small surface inside the Fracture
Process Zone.

Of the three SIF, the first one has already been obtained for a wide range of or-
thotropies, as presented in Section 4.3. The other two remaining SIF could be
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obtained by means of parametric FE model using Python scripting together with
ABAQUS.

10.2 Translaminar Cohesive Law and damage
mechanisms relationship

The translaminar Cohesive Law of a fibre-reinforced laminate accounts for several
energy dissipation mechanisms during the Fracture Process Zone formation and
growth. These damage mechanisms can account for fibre breakage, matrix cracking,
fibre bridging, fibre pull-out and even small delaminations between plies around the
crack tip.

With the aid of the introduced means to measure the translaminar Cohesive Law,
the next logic step is to explore the relationship between the observed damage
mechanisms and the obtained softening law shape. For example, in the case of
laminates with large fibre-bridging regions, the tail of the measured CL is longer,
as this involves larger Fracture Process Zones. Having a better understanding
this relationship can lead to a better laminate design, benefiting certain damage
mechanisms over the others, depending on the required applications. Although this
research has begun during the writing of the present thesis, as exposed in Chapter
6, an in-depth research needs yet to be accomplished.

In order to research this relationship, a test campaign should be carried out with
several laminates, modifying the layup sequences to influence the development
of the different failure mechanisms. For each tested laminate the Cohesive Law
should be measured, and the specimens inspected in order to determine the damage
mechanisms it has experienced. The inspection can be performed on post-mortem
specimens, but also in the middle of the test if non-destructive techniques are used to
inspect the specimen. For instance, it is a known fact that thicker plies causes more
fibre pull-out at the perpendicular-to-the-crack-growth plies (Pinho et al., 2006), with
larger pull-out length as the distance to the interface is increased. Other example is
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the effect of the ply clustering on the matrix cracking, as briefly observed in Chapter
6.

10.3 Study on the interlaminar Cohesive Law

The proposedmethod to obtain the translaminar Cohesive Law could be implemented
for studying the interlaminar behaviour of fibre-reinforced composite laminates. An
ideal specimen candidate to carry this study is the Double Cantilever Beam (DCB),
as the required Stress Intensity Factor functions to analytically solve the cohesive
problem are already available in the literature (Massabò et al., 2003).

The procedure of obtaining the interlaminar Cohesive Law could be carried out
analogously to the procedure described in Chapter 5.3, by just needed to record the
load-displacement curve on the experimental test. Further, multiple DCB tests have
been accomplished by the scientific community during the last 50 years, resulting in
multiple available experimental curves waiting to be fitted.

10.4 Application to other materials

In the present work, the proposed methodology to measure the Cohesive Law has
only been applied to fibre-reinforced polymers. In reality, such methodology could be
applied to any quasi-brittle material provided the damage mechanisms are located
within the Fracture Process Zone plane.

The Cohesive Law could be measured from various quasi-brittle materials such as:
concrete, numerous types of woods, a wide range of polymer materials, metallic-
glasses, bone and dentin and also other bio-materials.

10.3 Study on the interlaminar Cohesive Law 107





Part V

Bibliography





Bibliography

Andersson T. and Stigh U. (2004). The stress-elongation relation for an adhesive layer
loaded in peel using equilibrium of energetic forces. In: International Journal of Solids and
Structures 41, pp. 413–434 (cit. on p. 37).

ASTM (1997). E399-90. Standard test method for plane-strain fracture toughness of metallic
materials. In: 1991 Annual Book of ASTM Standards 3.Reapproved, pp. 451–485 (cit. on
pp. 50, 51, 72).

ASTM (1999). D5045-99. Standard test methods for plane-strain fracture toughness and
strain energy release rate of plastic materials. In: West Conshohocken, PA (cit. on p. 72).

ASTM (2015). E1922-04. Standard Test Method for Translaminar Fracture Toughness of
Laminated and Pultruded Polymer Matrix Composite Materials. In: West Conshohocken,
PA (cit. on p. 51).

Bao G. and Suo Z. (1992). Remarks on crack-bridging concepts. In: Applied Mechanics
Reviews 45.8, pp. 355–366 (cit. on p. 70).

Barenblatt G. I. (1959). The formation of equilibrium cracks during brittle fracture: general
ideas an hypotheses, axially-symmetric cracks. In: Journal of Applied Mathematics and
Mechanics 23, pp. 622–636 (cit. on pp. 17, 62).

Barenblatt G. I. (1962). The Mathematical Theory of Equilibrium Cracks in Brittle Fracture.
In: Advances In Applied Mechanics. Advances in Applied Mechanics 7. Ed. by Dryden,
H. L. and Von Kármán, T. and Kuertim G. and Van Den Dungen, F. H. and Howarth, L.,
pp. 55–129 (cit. on pp. 17, 61, 62).

Bažant Z. P. (1992). Fracture Mechanics of Concrete. In: First International Conference on
Fracture Mechanics of Concrete Structures (cit. on p. 70).

111



Bažant Z. P. and Oh B. H. (1983). Deformation of Cracked Net-Reinforced Concrete Walls.
In: Journal of Structural Engineering 109.2, pp. 93–108 (cit. on p. 61).

Bažant Z. P. and Planas J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle
Materials. Boca Raton and London: CRC Press (cit. on pp. 9, 25, 70).

Bažant Z. P., Daniel I. M. and Li Z. (1996). Size effect and fracture characteristics of composite
laminates. In: Journal of Engineering Materials and Technology 118, pp. 317–324 (cit. on
pp. 50, 51).

Bergan A. C., Dávila C. G., Leone F. A., Awerbuch J. and Tan T. (2014). Mode I Cohesive
Law Characterization of Through-Crack Propagation in a Multidirectional Laminate. In: Pro-
ceedings of the American Society for Composites 2014-Twenty-ninth Technical Conference
on Composite Materials (cit. on p. 36).

Bergan A. C., Dávila C. G., Leone F. A., Awerbuch J. and Tan T. (2016). A Mode I cohesive
law characterization procedure for through-the-thickness crack propagation in composite
laminates. In: Composites Part B: Engineering 94, pp. 338–349 (cit. on p. 38).

Blanco N., Trias D., Pinho S. T. and Robinson P. (2014a). Intralaminar fracture toughness
characterisation of woven composite laminates. Part I: Design and analysis of a compact
tension (CT) specimen. In: Engineering Fracture Mechanics 131, pp. 349–360 (cit. on
p. 50).

Blanco N., Trias D., Pinho S. T. and Robinson P. (2014b). Intralaminar fracture toughness
characterisation of woven composite laminates. Part II: Experimental characterisation. In:
Engineering Fracture Mechanics 131, pp. 361–370 (cit. on p. 50).

Bloyer D. R., Venkateswara Rao K. T. and Ritchie R. O. (1998). Fracture toughness and
R-curve behavior of laminated brittle-matrix composites. In: Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science 29.10, pp. 2483–2496 (cit. on
p. 70).

Bolzon G., Fedele R. and Maier G. (2002). Parameter identification of a cohesive crack model
by Kalman filter. In: Computer Methods in Applied Mechanics and Engineering 191.25-26,
pp. 2847–2871 (cit. on p. 39).

Bouville F., Maire E., Meille S., et al. (2014). Strong, tough and stiff bioinspired ceramics from
brittle constituents. In: Nature Materials 13.5, pp. 508–514 (cit. on p. 70).

Camanho P. P., Maimí P. and Dávila C. G. (2007). Prediction of size effects in notched
laminates using continuum damage mechanics. In: Composites Science and Technology
67.13, pp. 2715–2727 (cit. on pp. 32, 50).

112 Bibliography



Catalanotti G., Camanho P. P., Xavier J., Dávila C. G. and Marques A. (2010). Measurement
of resistance curves in the longitudinal failure of composites using digital image correlation.
In: Composites Science and Technology 70.13, pp. 1986–1993 (cit. on pp. 36, 50).

Catalanotti G., Arteiro A., Hayati M. and Camanho P. P. (2014a). Determination of the mode I
crack resistance curve of polymer composites using the size-effect law. In: Engineering
Fracture Mechanics 118, pp. 49–65 (cit. on p. 50).

Catalanotti G., Xavier J. and Camanho P. P. (2014b). Measurement of the compressive crack
resistance curve of composites using the size effect law. In: Composites Part A: Applied
Science and Manufacturing 56, pp. 300–307 (cit. on p. 51).

Connell S., Zok F., Du Z. and Suo Z. (1994). On the tensile properties of a fiber reinforced
titanium matrix composite - II. Influence of notches and holes. In: Acta Metallurgica et
Materialia 42.10, pp. 3451–3461 (cit. on p. 50).

Cooper G. and Kelly A. (1970). The contribution to the work of fracture of a composite material
of pull-out of fibers. In: Mechanics of Composite Materials. Ed. by F. Wendt, H. Liebowitz
and N. Perrone. Pergamon, pp. 653 –661 (cit. on p. 79).

Cornelissen H. A. W., Hordijk D. A. and Reinhardt H. W. (1986). Experimental determination
of crack softening characteristics of normalweight and lightweight concrete (cit. on p. 27).

Cowley K. and Beaumont P. (1997). The interlaminar and intralaminar fracture toughness of
carbon-fibre/polymer composites: The effect of temperature. In: Composites Science and
Technology 57.11, pp. 1433–1444 (cit. on p. 50).

Cox B. N. and Marshall D. B. (1991). Stable and unstable solutions for bridged cracks in
various specimens. In: Acta Metallurgica et Materialia 39.4, pp. 579–589 (cit. on pp. 39,
40).

Cusatis G. and Schauffert E. A. (2009). Cohesive crack analysis of size effect. In: Engineering
Fracture Mechanics 76.14, pp. 2163–2173 (cit. on p. 25).

Daniel I. M. (1978). Strain and Failure Analysis of Graphite/Epoxy Plates with Cracks. In:
Experimental Mechanics 18.July, pp. 246–252 (cit. on p. 50).

Demetriou M. D., Launey M. E., Garrett G., et al. (2011). A damage-tolerant glass. In: Nature
Materials 10.2, pp. 123–128 (cit. on p. 70).

Dugdale D. (1960). Yielding of steel sheets containing slits. In: Journal of Mechanics Physics
of Solids 8, pp. 100–104 (cit. on pp. 17, 61, 62).

Bibliography 113



El-Hajjar R. and Haj-Ali R. (2005). Mode-I fracture toughness testing of thick section FRP
composites using the ESE(T) specimen. In: Engineering Fracture Mechanics 72.4, pp. 631–
643 (cit. on p. 50).

Elices M., Guinea G. V., Gómez J. and Planas J. (2002). The cohesive zone model: advan-
tages, limitations and challenges. In: Engineering Fracture Mechanics 69.2, pp. 137–163
(cit. on pp. 19, 21, 27, 31–34).

Elices M., Rocco C. and Roselló C. (2009). Cohesive crack modelling of a simple concrete:
Experimental and numerical results. In: Engineering Fracture Mechanics 76.10, pp. 1398–
1410 (cit. on p. 22).

Floyd A. M. (2004). An engineering approach to the simulation of gross damage development
in composite laminates, Ph.D. Thesis. University of British Columbia (cit. on pp. 50, 82).

Garg A. (1985). Fracture Behavior of Cross-Ply Graphite-Epoxy Laminates. In: Engineering
Fracture Mechanics 22.6, pp. 1035–1985 (cit. on p. 50).

González E. V., Maimí P., Sainz de Aja J. R., Cruz P. and Camanho P. P. (2014). Effects of
interply hybridization on the damage resistance and tolerance of composite laminates. In:
Composite Structures 108.0, pp. 319–331 (cit. on p. 75).

Green D. W., Winandy J. E. and Kretschmann D. E. (1999). Mechanical properties of wood.
Wood handbook: wood as an engineering material. Madison; WI: USDA Forest Service,
pp. 4.1–4.45 (cit. on p. 53).

Griffith A. A. (1924). The Theory of Rupture. In: 1st International Congress on Applied
Mechanics. Ed. by C. B. Bienzano and J. M. Burgers. Tech. Boekhandel en Drukkerij,
pp. 54–63 (cit. on p. 10).

Griffith A. (1921). The Phenomena of Rupture and Flow in Solids. In: Philosophical Transac-
tions of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 221, pp. 163–198 (cit. on p. 10).

Gutkin R., Laffan M. L., Pinho S. T., Robinson P. and Curtis P. T. (2011). Modelling the R-curve
effect and its specimen-dependence. In: International Journal of Solids and Structures
48.11-12, pp. 1767–1777 (cit. on p. 50).

Haj-Ali R. and El-Hajjar R. (2003). Crack propagation analysis of mode-I fracture in pultruded
composites using micromechanical constitutive models. In: Mechanics of Materials 35.9,
pp. 885–902 (cit. on p. 50).

Haj-Ali R., El-Hajjar R. and Muliana A. (2006). Cohesive fracture modeling of crack growth
in thick-section composites. In: Engineering Fracture Mechanics 73.15, pp. 2192–2209
(cit. on p. 50).

114 Bibliography



Hillerborg A., Modéer M. and Petersson P. E. (1976). Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite elements. In: Cement and
Concrete Research 6.6, pp. 773–781 (cit. on pp. 19, 61).

Hordijk D. A., Reinhardt H. W. and Cornelissen H. A. W. (1987). Fracture mechanics parame-
ters of concrete from uniaxial tensile tests as influenced by specimen length. In: Fracture of
Concrete and Rock. Ed. by S. P. Shah and S. E. Swartz. Bethel: SEM-RILEM, pp. 138–149
(cit. on p. 27).

Inglis C. E. (1913). Stress in a plate due to the presence of cracks and sharp corners. In:
Proc. Inst. Naval Architect. 55, pp. 219–241 (cit. on p. 11).

Irwin G. R. (1960). Fracture mechanics. In: Structural mechanics. London: Pergamon Press
(cit. on p. 60).

Irwin G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
In: Journal of Applied Mechanics 24.9, pp. 361–364 (cit. on pp. 11, 13, 15, 16).

Irwin G. R. (1961). Plastic Zone Near a Crack and Fracture Toughness. In: Sagamore
Research Conference Proceeding 4, pp. 63–78 (cit. on pp. 15, 16).

Jacobsen T. K. and Sørensen B. F. (2001). Mode I intra-laminar crack growth in composites
- modelling of R-curves from measured bridging laws. In: Composites Part A: Applied
Science and Manufacturing 32, pp. 1–11 (cit. on p. 70).

Jose S., Ramesh Kumar R., Jana M. K. and Venkateswara Rao G. (2001). Intralaminar fracture
toughness of a cross-ply laminate and its constituent sub-laminates. In:Composites Science
and Technology 61.8, pp. 1115–1122 (cit. on p. 50).

Koester K. J., Ager J. W. and Ritchie R. O. (2008a). The true toughness of human cortical
bone measured with realistically short cracks. In: Nature Materials 7.8, pp. 672–677 (cit. on
p. 70).

Koester K. J., Ager J. W. and Ritchie R. O. (2008b). The effect of aging on crack-growth
resistance and toughening mechanisms in human dentin. In: Biomaterials 29, pp. 1318–
1328 (cit. on p. 70).

Kongshavn I. and Poursartip A. (1999). Experimental investigation of a strain-softening ap-
proach to predicting failure in notched fibre-reinforced composite laminates. In: Composites
Science and Technology 59.1, pp. 29–40 (cit. on pp. 50, 82).

Kongshavn I. A. (1996). Experimental Investigation of a Strain Softening Approach to Pre-
dicting Failure of Notched Composite Laminates, Ph.D. Thesis. P. 149 (cit. on pp. 50,
82).

Bibliography 115



Laffan M. J., Pinho S. T., Robinson P. and Iannucci L. (2010a). Measurement of the in situ ply
fracture toughness associated with mode I fibre tensile failure in FRP. Part I: Data reduction.
In: Composites Science and Technology 70.4, pp. 614–621 (cit. on pp. 50, 53).

Laffan M. J., Pinho S. T., Robinson P. and Iannucci L. (2010b). Measurement of the in situ
ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: Size and
lay-up effects. In: Composites Science and Technology 70.4, pp. 614–621 (cit. on pp. 50,
56, 78).

LaffanM. J., Pinho S. T., Robinson P. andMcMillan A. (2011). Translaminar fracture toughness:
The critical notch tip radius of 0o plies in CFRP. In: Composites Science and Technology
72.1, pp. 97–102 (cit. on p. 50).

Laffan M. J., Pinho S. T., Robinson P., Iannucci L. and McMillan A. J. (2012a). Measurement
of the fracture toughness associated with the longitudinal fibre compressive failure mode of
laminated composites. In: Composites Part A: Applied Science and Manufacturing 43.11,
pp. 1930–1938 (cit. on p. 50).

Laffan M. J., Pinho S. T., Robinson P. and McMillan a. J. (2012b). Translaminar fracture
toughness testing of composites: A review. In: Polymer Testing 31.3, pp. 481–489 (cit. on
p. 50).

Lekhnitskii S. G. (1963). Theory of elasticity of an anisotropic body. Holdenday (cit. on p. 52).

Li. V. C., Chan C.-M. and Leung C. K. (1987). Experimental determination of the tension-
softening relations for cementitious composites. In: Cement and Concrete Research 17,
pp. 441–452 (cit. on p. 36).

Li X., Hallett S. R., Wisnom M. R., et al. (2009). Experimental study of damage propaga-
tion in Over-height Compact Tension tests. In: Composites Part A: Applied Science and
Manufacturing 40.12, pp. 1891–1899 (cit. on pp. 50, 79, 82).

Lindhagen J. E., Gamstedt E. K. and Berglund L. A. (2000). Application of bridging-law
concepts to short-fibre composites. Part 3: Bridging law derivation from experimental crack
profiles. In: Composites Science and Technology 60.16, pp. 2883–2894 (cit. on pp. 39,
40).

Lindhagen J. and Berglund L. (2000). Application of bridging-law concepts to short-fibre com-
posites. Part 1: DCB test procedures for bridging law and fracture energy. In: Composites
Science and Technology 60.6, pp. 871–883 (cit. on p. 36).

Mai Y. W. (2006). Cohesive zone and crack-resistance (R)-curve of cementitious materials and
their fibre-reinforced composites. In: Engineering Fracture Mechanics 69.2002, pp. 219–
234 (cit. on p. 19).

116 Bibliography



Mai Y. W. and Hakeem M. I. (1984). Slow crack growth in bleached cellulose fibre cements.
In: Journal of Materials Science Letters 3.2, pp. 127–130 (cit. on p. 25).

Maimí P., Camanho P. P., Mayugo J. and Dávila C. G. (2007a). A continuum damage model
for composite laminates: Part I: Constitutive model. In: Mechanics of Materials 39.10,
pp. 897–908 (cit. on pp. 46, 50).

Maimí P., Camanho P. P., Mayugo J. and Dávila C. G. (2007b). A continuum damage model for
composite laminates: Part II: Computational implementation and validation. In: Mechanics
of Materials 39.10, pp. 909–919 (cit. on pp. 46, 50).

Maimí P., Trias D., González E. and Renart J. (2012). Nominal strength of quasi-brittle open
hole specimens. In: Composites Science and Technology 72.10, pp. 1203–1208 (cit. on
pp. 25, 32, 43, 50).

Maimí P, González E. V., Gascons N and Ripoll L. (2013). Size Effect Law and Critical
Distance Theories to Predict the Nominal Strength of Quasibrittle Structures. In: Applied
Mechanics Reviews 65, pp. 1–16 (cit. on p. 50).

Massabò R., Brandinelli L. and Cox B. N. (2003). Mode I weight functions for an orthotropic dou-
ble cantilever beam. In: International Journal of Engineering Science 41.13-14, pp. 1497–
1518 (cit. on p. 107).

Masters J. E. (1997). Translaminar Fracture Toughness of a Composite Wing Skin Made of
Stitched Warp-knit Fabric. In: Nasa Contractor Report November (cit. on pp. 50, 51).

Mier J. G. M. van and Vliet M. R. A. van (2002). Uniaxial tension test for the determination of
fracture parameters of concrete: state of the art. In: Engineering Fracture Mechanics 69,
pp. 235–247 (cit. on p. 30).

Mihashi H and Nomura N (1996). Correlation between characteristics of fracture process
zone and tension-softening properties of concrete. In: Nuclear Engineering and Design
165, pp. 359–376 (cit. on p. 45).

Minnetyan L. and Chamis C. C. (1996). The C(T) Specimen in Laminated Composites Testing.
In: Nasa Technical Memorandum NASA-Technical Memorandum 4712 (cit. on p. 50).

Muskhelishvili N. (1954). Some Basic Problems in the Theory of Elasticity. 4th Edition.
Noordhoff, Leyden (cit. on p. 11).

Newman J. (1983). A nonlinear fracture mechanics approach to the growth of small cracks.
In: AGARD. Vol. 5, No. 328, 6.1–6.26 (cit. on p. 43).

Bibliography 117



Olsson P. and Stigh U. (1989). On the determination of the constitutive properties of thin
interphase layers - An exact inverse solution. In: International Journal of Fracture 41.1,
pp. 71–76 (cit. on p. 37).

Ortega A., Maimí P., González E. and Ripoll L. (2014). Compact tension specimen for
orthotropic materials. In: Composites Part A: Applied Science and Manufacturing 63,
pp. 85–93 (cit. on p. 50).

Ortega A, Maimí P and González E. V. (2015). Characterization of the intralaminar fracture co-
hesive law. In: 7th International Conference on Composite Testing and Model Identification
COMPTEST 2015 (cit. on p. 39).

Ortega A., Maimí P., González E. V. and Trias D. (2016). Characterization of the translaminar
fracture cohesive law. In: Composites Part A: Applied Science and Manufacturing (cit. on
pp. 39, 66).

Parhizgar S., Zachary L. W. and Sun C. T. (1982). Application of the principles of linear
fracture mechanics to the composite materials. In: International Journal of Fracture 20.1,
pp. 3–15 (cit. on p. 50).

Paris A. J. and Paris P. C. (1988). Instantaneous Evaluation of J and C*. In: International
Journal of Fracture 38, pp. 19–21 (cit. on p. 37).

Piascik R. S. and Newman J. C. (1995). An extended compact tension specimen for fatigue
crack growth and fracture testing. In: International Journal of Fracture 76.3, R43–R48
(cit. on p. 50).

Piascik R. S., Newman J. C. and Underwood J. H. (1997). The extended compact tension
specimen. In: Fatigue & Fracture of Engineering Materials & Structures 20.4, pp. 559–563
(cit. on p. 50).

Pinho S. T., Robinson P. and Iannucci L. (2006). Fracture toughness of the tensile and
compressive fibre failure modes in laminated composites. In: Composites Science and
Technology 66.13, pp. 2069–2079 (cit. on pp. 50, 106).

Planas J and Elices M. (1999). Size effect and inverse analysis in concrete fracture. In: 19,
pp. 367–378 (cit. on pp. 29, 31).

Planas J., Elices M., Guinea G. V., et al. (2003). Generalizations and specializations of
cohesive crack models. In: Engineering Fracture Mechanics 70.14, pp. 1759–1776 (cit. on
pp. 22, 30).

Poe C. C. and Reeder J. R. (2001). Fracture Behavior of a Stitched Warp-Knit Carbon Fabric
Composite. May (cit. on p. 50).

118 Bibliography



Que N. S. (2003). Identification of cohesive crack fracture parameters using mathematical
programming. PhD thesis (cit. on p. 44).

Que N. S. and Tin-Loi F (2002). An optimization approach for indirect identification of cohesive
crack properties. In: Computer & Structures 80, pp. 1383–1392 (cit. on pp. 39, 44).

Rice J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain
Concentration by Notches and Cracks. In: 35, pp. 379–386 (cit. on p. 23).

Ritchie R. O. (2011). The conflict between strength and toughness. In: Nature materials 10,
pp. 817–822 (cit. on p. 59).

Roelfstra P. E. and Wittmann F. H. (1986). Numerical method to link strain softening with
failure of concrete. In: Fracture Toughness and Fracture Energy of Concrete. Ed. by F. H.
Wittmann. B. V., Amsterdam: Elsevier Science Publishers, pp. 163–175 (cit. on p. 39).

Sharpe J. and William N. (2008). Springer Handbook of Experimental Solid Mechanics. 1st
Edition. Springer, p. 1128 (cit. on p. 9).

Silva F. G., Xavier J., Pereira F. A., et al. (2014). Determination of cohesive laws in wood
bonded joints under mode II loading using the ENF test. In: International Journal of Adhesion
and Adhesives 51.8, pp. 54–61 (cit. on p. 39).

Sket F., Seltzer R., Molina-Aldareguía J. M., Gonzalez C. and Llorca J. (2012). Determination
of damagemicromechanisms and fracture resistance of glass fiber/epoxy cross-ply laminate
by means of X-ray computed microtomography. In: Composites Science and Technology
72.2, pp. 350–359 (cit. on p. 50).

Slepetz J. M. and Carlson L. (1975). Fracture of Composite Compact Tension Specimens.
In: Fracture Mechanics of Composites. Ed. by G. P. Sendeckyj. March. ASTM STP 593
(cit. on p. 50).

Sørensen B. F. and Jacobsen T. K. (1998). Large-scale bridging in composites: R-curves and
bridging laws. In: Composites Part A: Applied Science and Manufacturing 29.11, pp. 1443–
1451 (cit. on p. 70).

Sørensen B. F. and Jacobsen T. K. (2003). Determination of cohesive laws by the J integral
approach. In: Engineering Fracture Mechanics 70, pp. 1841–1858 (cit. on p. 36).

Sørensen B. F., Jørgensen K., Jacobsen T. K. and Østergaard R. C. (2006). DCB-specimen
loaded with uneven bending moments. In: International Journal of Fracture 141, pp. 163–
176 (cit. on p. 37).

Bibliography 119



Sørensen B. F., Gamstedt E. K., Østergaard R. C. and Goutianos S. (2008a). Micromechanical
model of cross-over fibre bridging - Prediction of mixed mode bridging laws. In: Mechanics
of Materials 40.4-5, pp. 220–234 (cit. on p. 70).

Sørensen L., Botsis J., Gmür T. and Humbert L. (2008b). Bridging tractions in mode I delami-
nation: Measurements and simulations. In: Composites Science and Technology 68.12,
pp. 2350–2358 (cit. on p. 40).

Soutis C., Fleck N. A. and Smith P. A. (1991). Failure Prediction Technique for Compression
Loaded Carbon Fibre-Epoxy Laminate with Open Holes. In: Journal of Composite Materials
25.11, pp. 1476–1498 (cit. on p. 50).

Steiger T., Sadouki H. and Wittmann F. H. (1995). Simulation and Observation of the Fracture
Process Zone. In: Proc. of Fracture Mechanics of Concrete Structures, FRAMCOS II. Vol. II,
pp. 157–168 (cit. on p. 39).

Stutz S., Cugnoni J. and Botsis J. (2011a). Crack - fiber sensor interaction and characterization
of the bridging tractions in mode I delamination. In: Engineering Fracture Mechanics 78.6,
pp. 890–900 (cit. on p. 40).

Stutz S., Cugnoni J. and Botsis J. (2011b). Studies of mode I delamination in monotonic and
fatigue loading using FBG wavelength multiplexing and numerical analysis. In: Composites
Science and Technology 71.4, pp. 443–449 (cit. on p. 40).

Suo Z (1990). Delamination Specimens for Orthotropic Materials. In: Journal of Applied
Mechanics-Transactions of the Asme 57.3, pp. 627–634 (cit. on p. 53).

Suo Z, Bao G and Fan B. (1992). Delamination R-curve phenomena due to damage. In:
Journal of the Mechanics and Physics of Solids 40.1, pp. 1–16 (cit. on pp. 37, 70).

Tada H., Paris P. C. and Irwin G. R. (2000). The stress analysis of cracks handbook. New
York: ASME Press, pp. 62–63 (cit. on p. 12).

Tan S. C. (1988). Effective Stress Fracture Models for Unnotched and Notched Multidirectional
Laminates. In: Journal of Composite Materials 22, pp. 322–340 (cit. on p. 50).

Taylor D. (2008). The theory of critical distances. In: Engineering Fracture Mechanics 75.7,
pp. 1696–1705 (cit. on p. 50).

Taylor D. (2007). The Theory of Critical Distances, a New Perspective in Fracture Mechanics.
Elsevier (cit. on p. 50).

Tschegg E. K., Humer K. and Weber H. W. (1993). Fracture tests in Mode I on fibre-reinforced
plastics. In: Journal of Materials Science 28.9, pp. 2471–2480 (cit. on p. 45).

120 Bibliography



Turon A., Camanho P. P., Costa J. and Dávila C. G. (2006). A damage model for the simulation
of delamination in advanced composites under variable-mode loading. In: Mechanics of
Materials 38.11, pp. 1072–1089 (cit. on pp. 46, 65).

Underwood J. and Kortschot M. (1993). Notch-tip Damage and Translaminar Fracture Tough-
ness Measurements from Carbon/Epoxy Laminates. In: Proceedings of 2nd International
Conference on Deformation and Fracture of Composites (cit. on p. 50).

Underwood J., Kortschot M., Lloyd W., et al. (1995). Translaminar Fracture Toughness Test
Methods and Results from Interlaboratory Tests of Carbon/Epoxy Laminates. In: National
symposium on fracture mechanics. ASTM (cit. on p. 50).

Vasiliev V. V. and Morozov E. V. (2007). Advanced Mechanics of Composite Materials (Second
Edition). Ed. by V. V. Vasiliev and E. V. Morozov. Second Edition. Oxford: Elsevier Science
Ltd (cit. on p. 2).

Whitney J. and Nuismer R. (1974). Stress Fracture Criteria for Laminated Composites Con-
taining Stress Concentrations. In: Journal of Composite Materials 8.3, pp. 253–265 (cit. on
p. 50).

Williams M. L. (1957). On the stress distribution at the base of a stationary crack. In: Journal
of Applied Mechanics 24.1, pp. 109–114 (cit. on p. 11).

Williams T. N., Newman Jr J. C. and Gullett P. M. (2011). Crack-surface displacements for
cracks emanating from a circular hole under various loading conditions. In: Fatigue &
Fracture of Engineering Materials & Structures 34.4, pp. 250–259 (cit. on p. 43).

Xu X., Wisnom M. R., Mahadik Y. and Hallett S. R. (2014). An experimental investigation into
size effects in quasi-isotropic carbon/epoxy laminates with sharp and blunt notches. In:
Composites Science and Technology 100, pp. 220–227 (cit. on p. 86).

Xu X., Wisnom M. R., Mahadik Y. and Hallett S. R. (2015). Scaling of fracture response in over-
height compact tension tests. In: Composites Part A: Applied Science and Manufacturing
69, pp. 40–48 (cit. on pp. 50, 82).

Yan J., Mecholsky J. J. andClifton K. B. (2007). How tough is bone? Application of elasticplastic
fracture mechanics to bone. In: Bone 40.2, pp. 479–484 (cit. on p. 70).

Zihai Shi (2009). Crack Analysis in Structural Concrete: Theory and Applications. 1 st.
Butterworth-Heinemann, p. 344 (cit. on p. 9).

Zobeiry N., Vaziri R. and Poursartip A. (2014). Characterization of Strain-Softening Behaviour
and Failure Mechanisms of Composites under Tension and Compression. In: Composites
Part A: Applied Science and Manufacturing 68, pp. 29–41 (cit. on pp. 38, 50, 82).

Bibliography 121





Part VI

Appendices





A
Appendix A: Polynomial fitting
functions

The polynomial function q(ā, λ, ρ) of Eq. 4.10 can be expressed in matrix form as
follows:

q(ā, λ, ρ) =




1

λ̄

ρ̄

λ̄2

λ̄ρ̄

ρ̄2

λ̄3

λ̄2ρ̄

λ̄ρ̄2




T 


1.6128 8.9466 −20.688 18.786 −5.5381

−3.2808 32.523 −94.902 116.73 −51.736

0.71078 8.4546 −11.629 −3.8438 8.454

0.34995 1.2604 15.834 −37.624 20.129

−2.1383 12.246 −29.195 37.859 −18.884

−0.46023 15.616 −34.155 25.156 −7.1906

−1.4802 12.872 −33.187 30.728 −8.6936

−0.57399 7.1987 −34.221 54.132 −26.768

−3.0283 23.403 −54.343 41.271 −6.7808







1

ā

ā2

ā3

ā4




(A.1)
where:

λ̄ = log λ , ρ̄ = log (ρ+ 1) (A.2)

The polynomial function B of Eq. 4.10 is:

B = −0.24216 + 1.4018¯̄a− 0.003505ρ̄+ 1.4908¯̄a2 − 0.058317¯̄aρ̄ (A.3)

where ¯̄a is:
¯̄a = log ā (A.4)
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The polynomial function p(ā, λ, ρ) of Eq. 4.11 can be expressed in matrix form as
follows:

p(ā, λ, ρ) =




1

λ̄

ρ̄

λ̄2

λ̄ρ̄

ρ̄2

λ̄3

λ̄2ρ̄

λ̄ρ̄2




T 


0.30817 2.1609 −5.72 6.2711 −2.4512

0.61118 −4.5341 12.698 −14.428 5.5896

0.098042 2.3871 −8.6206 10.742 −4.3791

0.1443 0.098426 0.47793 −2.5788 1.9266

−1.2451 8.9848 −22.996 26.09 −11.037

0.85309 −3.104 7.3777 −9.0334 4.0197

−0.14716 1.752 −6.0346 7.7217 −3.3098

−0.16912 0.82943 −2.7216 4.5667 −2.6053

0.12556 −0.35037 −0.53346 0.90753 −0.042327







1

ā

ā2

ā3

ā4




(A.5)
The polynomial function D of Eq. 4.11 is defined as:

D = −0.066112 + 0.75681¯̄a− 0.015ρ̄+ 0.58136¯̄a2 − 0.08451¯̄aρ̄ (A.6)

The polynomial function r(ā, λ, ρ) of Eq. 4.12 can be expressed in matrix form as
follows:

r(ā, λ, ρ) =




1

λ̄

ρ̄

λ̄2

λ̄ρ̄

ρ̄2

λ̄3

λ̄2ρ̄

λ̄ρ̄2




T 


6.7195 −47.349 129.7 −150.03 66.291

−0.15366 4.1923 −7.3129 1.6292 3.1257

−1.1389 6.2549 −12.787 14.461 −7.2961

2.2165 −14.813 32.255 −28.591 9.0782

−3.0204 16.775 −40.317 44.5 −18.129

−1.4327 11.786 −35.032 43.226 −19.277

−0.25291 0.48823 1.7188 −4.258 2.329

−3.2837 24.238 −60.512 63.226 −23.799

4.5281 −30.891 78.302 −85.562 33.658







1

ā

ā2

ā3

ā4




(A.7)
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a b s t r a c t

A solution for a Compact Tension (CT) specimen is proposed in order to obtain the linear elastic fracture
toughness, the stress intensity factor and the compliance at the load line. The solution applies for any ortho-
tropic material whose principal directions are defined by the crack direction, assuming that the crack
grows along the symmetry plane of the specimen. Given two dimensionless parameters, k and q, that
define the orthotropy of the material, the elastic response is unique. With the aid of a parameterized
Finite Element Model (FEM), a solution is obtained for any orthotropic material. The results are fitted into
an interpolating function, which shows excellent agreement with simulated data. Additionally, the initial
crack length required to produce a stable crack growth under displacement control is studied for various
material orthotropies. Finally, some failure criteria are introduced regarding the failure at the holes of the
CT and at the back end face of the specimen. Some design recommendations are given after analyzing the
failure mechanisms.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When Linear Elastic Fracture Mechanics (LEFM) were first
developed, metallic materials were the most widely used in indus-
try and this remains the case today. Since metals are considered to
be mainly isotropic, most standardized methods [1–4] for obtain-
ing the fracture properties, such as the critical fracture energy GIc

or the stress intensity factor (SIF) KIc are developed considering
isotropic materials. Despite this, most of the other materials used
in industrial applications are anisotropic in nature. Woods and
advanced materials, such as fiber reinforced composites, have been
used increasingly in recent years. Such materials are far from sat-
isfying the expectations of isotropy and, therefore, current stan-
dardized methods cannot be applied [5–7]. This situation means
new tools and procedures need to be developed in order to mea-
sure the fracture properties of anisotropic materials.

From an LEFM point of view, and assuming that there are no
inelastic energy dissipation mechanisms (except for those occur-
ring at the crack tip), the critical fracture toughness can be seen
as the elastic Energy Release Rate (ERR) per new unit area created.
In the case of the CT specimen, the crack length is normalized as
�a ¼ a=w, where a is the crack length measured from the load appli-
cation point and w is the span between the load point and the back
end face of the specimen, as seen in Fig. 1. Even though the
standard CT specimen has a normalized size of w ¼ 51 mm, the

formulation and the methodology here presented can be used for
other sizes of w as long as the CT geometry is respected. With
the principal directions defined as x1 parallel to the loading direc-
tion and x2 aligned to the symmetry plane, and assuming that the
crack grows along the x2 direction, a unique relation between the
specimen compliance (C) and the normalized crack length exists.
When this relation is known, it is possible to infer the crack length
from the experimental compliance curve and, in conjunction with
the load - load application point displacement (Pi–ui), it is possible,
ultimately, to obtain GIc or KIc . This procedure cannot be applied if
the crack does not propagate along the x2 direction, as occurs in the
case of some composite materials where the majority of the plies
are aligned in a direction different to x2 [8].

Up to now, the general function Cð�aÞ has only been obtained for
isotropic materials [3,4]. For other types of anisotropy, current
methods involve optically measuring the crack tip length during
the test [7], measuring the crack tip location with the aid of the
Digital Image Correlation technique [6], or the use of a Finite Ele-
ment Method program [5,6,9]. Using the SIF isotropic solution on
orthotropics materials can lead to significant error. For example,
when computing the KI of a T300/913 carbon epoxy cross-ply com-
posite material with a laminate sequence of ð90;0Þ8s with the stan-
dard isotropic solution, an error of 11% results with respect to that
obtained by a FEM model, taking into account the orthotropy of the
laminate [9]. The aim of this paper is to obtain analytical expres-
sions of the linear elastic fracture toughness, the stress intensity
factor and the compliance of the CT geometry while taking into
account the orthotropy of the material. It is important to note that

http://dx.doi.org/10.1016/j.compositesa.2014.04.012
1359-835X/� 2014 Elsevier Ltd. All rights reserved.
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the same methodology described here may be used to determine
the compliance and SIF functions of other specimen geometries,
although the equations and results presented are only valid for
the geometry of Fig. 1.

Expressions such as the ones presented here are useful to obtain
GIc or KIc from experimental results. As previously stated, they can
be found in many Fracture Mechanics handbooks [3,4] and in stan-
dardized procedures [1,2] only for the isotropic case. Obtaining the
expressions for the orthotropic case may improve the level of stan-
dardization on how to obtain fracture properties of non-isotropic
materials, instead of computing a particular FEM solution for every
different material that needs to be tested. Also, in some cases, an
explicit expression of the SIF in terms of the crack length is needed
when solving more complicated Fracture Mechanics problems,
such as crack-bridging models and cohesive models. A linear FEM
is not enough to solve this type of problems, and non-linear consti-
tutive models are needed, which require high computational time
and resources. The use of explicit expressions, like the ones pre-
sented in this paper, can help to reduce the computing times
drastically.

This paper is structured as follows: Section 2 defines the stress
field of a planar orthotropic solid as a function of two dimension-
less parameters, k and q, which define the orthotropy of the mate-
rial. Section 3 presents the procedure and assumptions of the FEM
models. Section 4 contains a parametric function of the compliance
and the SIF for a wide range of orthotropies. In Section 5, the sta-
bility of the crack growth is studied from a linear elastic point of
view. Section 6 presents some design recommendations based on
the proposed material failure criteria. Finally, Section 7 summa-
rizes the conclusions and describes the relevance of this work.

2. Stress field of a planar orthotropic solid

In a bi-dimensional problem defined by the x1–x2 plane, the
stress state of an elastic body with its boundary conditions (BCs)
prescribed only by tractions depends solely on the BCs, the geom-
etry and two dimensionless parameters that define the anisotropy
of the material [10]. Consequently, for any given isotropic material,
these values remain constant and, therefore, the stress state does
not depend on the material. This property of the stress state means
it is relatively simple to generate Cð�aÞ and stress intensity factor
curves.

Given a general anisotropic material with a linear constitutive
relation, in a bi-dimensional problem, the stress–strain relation
can be expressed as:

ei ¼
X

j¼1;2;6

bijrj; i ¼ 1;2;6 ð1Þ

where:

bij ¼
sij; for plane stress
sij � si3sj3=s33; for plane strain

�
i; j ¼ 1;2;6: ð2Þ

It is known that for any anisotropic material, the solution of the
differential equation that defines the stress state depends on the
roots of the characteristic polynomial [10]:

b11p4 � 2b16p3 þ ð2b12 þ b66Þp2 � 2b26pþ b22 ¼ 0 ð3Þ

with four complex roots in p. If the material is orthotropic with the
principal directions x1–x2 defined by the principal axes of the mate-
rial, only four independent elastic constants are needed:
b11; b12 ¼ b21; b22 and b66, since b16 ¼ b26 ¼ 0. Hence, Eq. (3) is
reduced to:

kp4 þ 2q
ffiffiffi
k
p

p2 þ 1 ¼ 0 ð4Þ

where p1 and p2 are the roots with positive imaginary parts and:

k ¼ b11

b22
; q ¼ 2b12 þ b66

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

p ð5Þ

In the plane stress case, k and q are expressed as:

k ¼ E22

E11
; q ¼

ffiffiffi
k
p

2G12
E11 � 2m12G12ð Þ ð6Þ

where E11 and E22 are the elastic moduli, G12 is the shear modulus,
and m12 is the Poisson’s ratio. In the plane strain case, k and q are
obtained by replacing E11; E22 and m12 in Eq. (6) by:

E011 ¼
E11

1� m13m31
; E022 ¼

E22

1� m23m32
; m012 ¼

m12 þ m13m32

1� m13m31
ð7Þ

To ensure the positive definiteness of the strain energy, it must
be ensured that:

k > 0 and q > �1 ð8Þ

The anisotropy of the material is easily described by the param-
eters k and q. For an isotropic material, the parameters take the
values k ¼ q ¼ 1. However, for a cubic material, it only needs to
be ensured that k ¼ 1 and that q – 1. Table 1 contains the values
of k and q for a number of materials. From the point of view of
composite laminates, the laminate anisotropy is determined by
the lay-up sequence; an in-plane isotropic lay-up may have its
principals axes oriented in any direction by definition. Some exam-
ples of laminate sequences that satisfy this condition are
½0;�60�s; ½0;�45;90�s or ½0;�36;�72�s. On the other hand, cubic
materials have a principal axis every 45�. An example of cubic lam-
inate sequence is a cross-ply laminate.

Fig. 1. Compact Tension (CT) specimen geometry, with all dimensions defined with
respect to the size w, where the dashed line represents the crack path.

Table 1
Values of k and q for seven different materials.

Material k q

T300/920 unidirectional lamina [19] 0.0657 3.7326
T300/920 ½0;�60�s isotropic 1.0 1.0
T300/920 ½0;90�s cubic 1.0 7.9302
Western White Pine wood [20] 0.0380 1.9635
Northern White Cedar wood [20] 0.0810 0.6642
Cu (FCC) [21] 1.0 0.03
Fe (BCC) [21] 1.0 0.20

86 A. Ortega et al. / Composites: Part A 63 (2014) 85–93



The relation between the applied load P and the load applica-
tion point displacement u is expressed by the compliance C which
depends on the normalized crack length �a; k and q:

u ¼ P � C ð9Þ

The compliance C can be expressed in terms of a dimensionless
function:

C ¼ C �a; k;qð Þ
h � E11

ð10Þ

where C is the normalized compliance, h is the specimen thickness
and E11 is the elastic modulus of the material along the loading
direction. This normalization has also been used by other authors
[3]. The normalized compliance C is unique for a given material
orthotropy and a normalized crack length.

The energy release rate is obtained as follows:

GI ¼
1
h
@U
@a
¼ 1

2
P2

h2E11w

@C
@�a

ð11Þ

where @U=@a is the rate of change of the stored elastic energy U
with respect to the crack length a and @C=@�a is the rate of change
in the dimensionless compliance of the specimen with respect to
the normalized crack length �a. Finally, for an orthotropic material,
the relation between the SIF and GI is defined as [11]:

K2
I ¼ GIE11

ffiffiffiffiffiffiffiffiffiffiffiffi
2k3=2

1þ q

s
ð12Þ

3. Numerical simulations

A parametric FEM model was created using Python scripting
together with ABAQUS/Standard 6.11-1 FEM software. The 4-node
bi-linear quadrilateral with reduced integration and hourglass con-
trol plane stress element (CPS4R) was used to mesh the model. This
type of element has been shown to properly capture the bending
properties when it is used as with a rectangular shape aligned with
the principal axes of bending [12]. Compared to other types of ele-
ments, the results obtained with CPS4R elements were the ones

that best matched the tabulated isotropic solution, which is based
on the Boundary Collocation Method analysis [3]. Three different
average element sizes of 1.0 mm, 0.5 mm and 0.25 mm were con-
sidered for the coarse mesh, resulting in differences of less than 1%
for the computed compliance. An average element size of 0.5 mm
was chosen for the rest of the simulations. The geometry of Fig. 1
was respected, with w ¼ 51 mm. Four different pin loading config-
urations, depicted in Fig. 2, were considered: uniformly distributed
stress, uniform radial stress, pin modeled as a rigid body with con-
tact interaction and a point load applied at the upper edge of the
hole. The resultant vertical forces were the same in all cases. As
already stated by other authors [13,14], the differences in the com-
pliance and SIF for the different loading configurations were insig-
nificant for �a > 0:4 . Despite this, for the rest of the numerical
simulations, the point load case was the one used because it gave
the smallest compliance error with respect to the isotropic case [3].
One half of the unit thickness CT specimen was modeled and sym-
metric conditions were assumed as can be seen in Fig. 3.

To obtain the compliance for a given k and q, a load of 1 N was
applied at the loading pin, while the crack nodes were released
gradually along the crack plane. The displacement u was captured
at the loading line. Also, the Virtual Crack Closure Technique
(VCCT) was applied along the crack nodes to compute the SIF.

To ensure accuracy and to validate the model, the compliance
obtained with FEM was compared with the CT isotropic solution
that can be found in various handbooks [3]. The model shows
excellent agreement with the known solution, as seen in Fig. 4,
with an error of less than 0:57%. In addition to the isotropic case,

Fig. 2. Pin hole loading configurations: (a) uniformly distributed, (b) uniform radial
stress, (c) contact interaction between pin and hole, (d) point load.

Fig. 3. Model mesh of half of the CT specimen and the applied boundary conditions,
with an average element size of 0.5 mm at the coarse mesh.

Fig. 4. Cð�aÞ against �a for an isotropic material: comparison between known [3] and
the author’s FEM solutions. Also, Cð�aÞ against �a for an orthotropic material with
k ¼ 0:902 and q ¼ 7:92: comparison between a previous FEM solution [5] and the
author’s FEM model.
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the FEM model was compared with the FEM compliance solution of
an orthotropic material computed by Laffan et al. [5]. The orthotro-
pic material is a composite lay-up of T300/920 material, with a ply
sequence of ½ð0=90Þ8=0�s. The mechanical properties of the
unidirectional lamina in the longitudinal (L) and transverse (T)
directions of the fiber are ELL ¼ 135:10 GPa, ETT ¼ 8:88 GPa,
GLT ¼ 4:54 GPa and mLT ¼ 0:32 [5], with laminate values for k and
q being 0:902 and 7:92, respectively. Although not important to
the overall results, in the FE model by Laffan et al. of Fig. 4, the
specimen hole configuration is modeled as a point load applied
directly to a node. Again, both FEM solutions are extremely similar,
as is clearly shown in Fig. 4.

The FEM SIF was also compared with the isotropic solution [3].
In this case, the error was less than 0:66%, as can be appreciated in
Fig. 5. Finally, the SIF of an orthotropic material was compared
against a previously published FEM result by Pinho et al. [9]. In this
case, the lamina properties are ELL ¼ 131:7 GPa, ETT ¼ 8:88 GPa,
GLT ¼ 4:6 GPa and mLT ¼ 0:32. The laminate sequence is ½0=90�8,
with k ¼ 1:0 and q ¼ 7:64. Again, in the FEM model by Pinho
et al., the loading is directly applied to a node. As Fig. 5 shows,
the differences between both SIF FEM curves are trivial.

Once the numerical model had been validated, in order to
obtain the compliance and SIF for different orthotropies, a total
of 55 simulations were run, with different combinations of k and
q; there were 11 values of k ranging from 0.03162 to 10.0 in con-
stant logarithmic increments, and 5 values of q ranging from 0.1 to
10.0, also in logarithmic increments. The wide range of 55 combi-
nations of k and q cover most of the orthotropic materials.

4. Compliance and stress intensity factor parametric fitting

All the compliances obtained are fitted in an interpolating func-
tion to avoid computing Cð�aÞ from a FEM model. The dependence
of the dimensionless compliance with respect to �a; k and q can
be approximated by a function of the form:

C �a; k;qð Þ ¼ qð�a; k;qÞ � kB � 1þ 0:22698 � q0:53527� �
� 1þ �a

1� �a

� �2

ð13Þ

where qð�a; k;qÞ is a fourth order polynomial of �a, in which its coef-
ficients depend on k and q, and B is a polynomial that depends on
the normalized crack length �a and q. The coefficients can be found
in A. Note that Eq. (13) is dimensionless and can be used for any size
of w as long as the CT geometry of Fig. 1 is respected.

The interpolating function was obtained as follows: first, all the
data points were divided by 1þ �að Þ= 1� �að Þð Þ2 to suppress the ver-
tical asymptote of C when �a ¼ 1 (the CT stiffness becomes 0 when
the specimen is totally split). This asymptote is the same one pre-
viously published for the isotropic case [3]. When plotted in log–
log scale, a near linear relationship is observed between C and k
for any �a and q, with a slope B that depends on �a and q. At the same
time, when plotting C with respect to q in log–log scale, it can be
seen that for small values of q the compliance is almost constant
whereas for high values of q the compliance has a constant slope.
This asymptote is described in Eq. (13) as C / 1þ c1qc2ð Þ. The tran-
sition zone is determined as q ¼ �1=c1ð Þ1=c2 . The remaining ten-
dency was fitted with the function q by using the least-squares
method. This simple but rather long procedure can also be used
to obtain C and SIF interpolating functions for other specimen
geometries.

The fitting shows good agreement with the FEM model data,
with a maximum error of less than 2.29% for a normalized crack
length ranging from 0:2 to 0:9 and for the 55 combinations of k
and q. The fitted isotropic compliance curve differs by only
1:05% with respect to the known solution. Fig. 6 shows three
examples of fitted compliances with their respective FEM data.

The SIF function of the orthotropic CT specimen is normalized
as:

KI ¼
�KIP
h
�

�a
w

� �1=2

ð14Þ

where �KI is the dimensionless SIF. Again, �KI is unique for a given
�a; k and q. It can be computed from the dimensionless compliance
as:

K2
I ¼

1
2�a

ffiffiffiffiffiffiffiffiffiffiffiffi
2k3=2

1þ q

s
@C
@�a

ð15Þ

The KI was fitted with a polynomial function to avoid comput-
ing the derivative of C with respect to �a. The KI fitting function is as
follows:

�KI �a; k;qð Þ ¼ pð�a; k;qÞ � kD � 1þ 0:006689 � q0:47151� �
� 2 2þ �að Þ

1� �að Þ3=2 �
1ffiffiffi
�a
p � 2k3=2

1þ q

 !1=4

ð16Þ

where pð�a; k;qÞ is a fourth order polynomial of �a, with coefficients
that depend on k and q, and D is a polynomial dependent on the
normalized crack length �a and q. The coefficients are also found

Fig. 5. Dimensionless SIF (Eq. (14)) against �a for an isotropic material: comparison
between known [3] and the author’s FEM solutions. Also, SIF against �a for a cubic
material with q ¼ 7:64: comparison between a previous FEM solution [9] and the
author’s FEM model.

Fig. 6. Comparison between FEM and fitted Cð�aÞ curves for three examples of
orthotropic materials.
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in A. Again, Eq. (16) is applicable to any size w where the normali-
zation defined in Eq. (14) is used.

The procedure for obtaining the interpolating function is very
similar to the one described for the dimensionless compliance.
Again, the vertical asymptote is the same as the one for the isotro-
pic case [3].

The SIF interpolating function has a maximum error of 2:37%

with respect to the FEM data, for the same range of �a; k and q as
the compliance interpolating function. For the isotropic case, the
fitted SIF differs by only 0:93% from the known solution. Fig. 7
shows good agreement of the dimensionless SIF for three orthotro-
pic materials with their respective FEM data. It is important to
recall, once more, that when using crack lengths shorter than 0.4,
the SIF and compliance functions are affected by the pin loading
configuration, as stated in Section 3. For �a > 0:4, the solutions
remain unaltered. This is also true for the widely used classic iso-
tropic solution, and not particular to the proposed expressions.
Although this may be seen as an inconvenient for initial crack
lengths shorter than 0.4, in reality, to obtain GIc or KIc from exper-
imental results, the crack growth must be self-similar, that is, the
FPZ must be completely developed. This occurs at longer crack
lengths than the initial ones. Thus, it is possible to use an initial
crack length shorter than 0.4 and use the proposed solution as soon
as the crack grows in an self-similar way for �a > 0:4.

5. Stability of the crack growth

The CT specimen was specifically designed to measure the frac-
ture toughness of a material under stable crack growth conditions.
For this reason, it is very important to have a stable crack growth as
long as possible. In this section, this stability is studied with refer-
ence to the crack length. Most standard procedures [1,2] recom-
mend an initial crack �a0 of 0:5, whereas in reality it can be
shorter. It is important to remember that for �a < 0:4, the compli-
ance and SIF are affected by the loading assumptions, as already
stated in Section 3.

Assuming that the material is elastic and exhibits a brittle or
quasi-brittle fracture propagation, a simple energy balance is suffi-
cient to determine the initial crack length in which the crack
growth is stable. From a LEFM point of view, the elastic ERR with
respect to the displacement is defined as:

GI ¼
1
2

u2E11

w
1

C2 �að Þ
@C
@�a

ð17Þ

The ERR with respect to the load can be found in Eq. (11). The
condition of stability is satisfied while @GI=@a < 0. This condition
can be understood as follows: given a crack length a, if @GI=@a is
negative this implies that in order to increase the crack, it is neces-
sary to increase GI . If the test is performed under controlled dis-
placement, the stability condition is checked with Eq. (17),
whereas if it is performed under controlled loading, the stability
condition is checked with Eq. (11). In fact, very few geometries
are stable under controlled loading conditions.

To verify the lowest �a0 under stable growth conditions,
@GI=@a < 0 is evaluated with Eq. (17) in conjunction with Eq. (15):

@

@�a
1

C2 �að Þ
@C
@�a

 !
¼ @

@�a
2�aK2

I

C2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ q
2k3=2

s !
< 0 ð18Þ

The term 1þ qð Þ=2k3=2 is always greater than 0, and does not
affect the positivity of the partial derivative. The condition is sim-
ply evaluated as:

@

@�a
2�aK2

I

C2

 !
< 0 ð19Þ

Eq. (19) was reviewed for all the FEM compliance curves and pro-
duced some interesting results. All of the studied cases showed that
a stable crack growth was achieved with an initial crack length
smaller than �a ¼ 0:5. For the majority of the 55 combinations of k
and q, the lowest observed initial crack length that ensured a stable
test was �a0 ¼ 0 except for certain combinations of k and q where
the minimum crack length was slightly higher, �a ¼ 0:14. This
behavior is observed in orthotropic materials with relatively low
values of k and extremely high values of q, when k � 0:3162 and
q P 10:0.

Dimensionless load–displacement curve plots are useful to
illustrate the effect of the crack growth stability. Assuming that
the crack grows when KI ¼ KIc , the normalization of the load P
can be obtained directly from Eq. (14) as:

P ¼ P
1

KIch
ffiffiffiffi
w
p ¼ 1

KI

ffiffiffi
�a
p ð20Þ

and given �u ¼ CP, the dimensionless displacement is defined as:

�u ¼ u
E11

KIc
ffiffiffiffi
w
p ¼ C

KI

ffiffiffi
�a
p ð21Þ

Eqs. (20) and (21) depend only on known problem variables. Fig. 8
shows 3 examples of load–displacement curves: the isotropic case;
k ¼ 10; q ¼ 0:1; and k ¼ 0:03162; q ¼ 10.

Fig. 7. Comparison between FEM and fitted SIF curves for three examples of
orthotropic materials.

Fig. 8. Non-dimensional load P
� �

displacement �uð Þ curve for various material
orthotropies.
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The normalized displacement has been scaled by k in Fig. 8, in
order to obtain comparable curves for the three examples. Notice
that this scaling is introduced by replacing E11 ¼ E22=k in Eq. (21),
and thus, obtaining the same displacement normalization but in
terms of the elastic modulus in the loading direction. Observe in
Fig. 8, in the first and second cases it can be clearly noticed that
the crack grows under stable conditions. The third case represents
a very stiff material in the x1 direction with a very low shear mod-
ulus. It can be seen that the growth is stable until it reaches
P ¼ 0:45. At this point crack growth becomes unstable and the load
drops suddenly to 0:23. The minimum load that ensures a stable
crack growth is P ¼ 0:26, which corresponds to �a ¼ 0:14.

It is important to note that these recommendations are only
valid for materials that behave elastically. If the material exhibits
hardening, such as PMMA, the area ahead of the crack tip plasticiz-
es before the crack growth start. The plastically hardened area usu-
ally stores a high amount of elastic energy prior to the crack
initiation, which is released suddenly as the crack grows, resulting
in an unstable test. This phenomenon is not contemplated by the
recommendations in this section. Increasing the initial crack length
or the specimen size can reduce the instability of the test due to
the hardening of the material. In addition, the bearing effect on
the holes of the CT has not been contemplated during this analysis,
but will be covered in Section 6.

6. Design recommendations

Some undesired failure mechanisms may appear when testing a
CT specimen, preventing the experiment from being performed
properly. Blanco and Pinho [15] performed a FEM parametric anal-
ysis of the CT geometry for woven composite materials to avoid six
non-desired failure mechanisms. Five failure mechanisms were
predicted with failure criteria and the sixth was considered to be
collapse due to buckling. Others authors have also proposed some
failure mechanisms for CT of laminated composite material [16]. In
this section, we present a proposal of failure criteria which take
into account the orthotropy of the material, the specimen size, w,
and the initial crack length, a0.

6.1. Failure criteria

According to the Theory of Elasticity, the stress at any point of
the specimen can be determined in terms of the load P being
applied as r / P= whð Þ, for any component of the stress tensor. By
using Eq. (14), it is possible to express the stress state normalized
with respect to the fracture toughness and the specimen size as
follows:

r
ffiffiffiffi
w
p

KIc
/ 1

KIc

ffiffiffi
�a
p ð22Þ

The material failure can be expressed as a function of the crack
length and the orthotropy, as follows:

ru

ffiffiffiffi
w
p

KIc
¼ fMF �a; k;qð Þ ð23Þ

where fMF is the function of the considered failure mode and ru is
the material strength under a known stress state. It is important
to highlight that, in order to use this type of failure criteria, the
material toughness KIc must be known beforehand. To overcome
this problem, it is possible to simply use an approximate expected
fracture toughness of the specimen being tested.

Three failure criteria are considered in this study: two predict
collapse under compression and the third contemplates buckling
of the specimen.

6.1.1. Back end compression failure
Compression stresses at the back end of the CT appear during a

fracture test and they tend to increase as the crack grows. This may
cause the specimen to collapse under compression at the back end
before it has been completely split [16]. For some composite mate-
rials this failure can occur in the form of ply delamination. Such
phenomena have also been observed in some tougher materials
with large initiation or propagation loads and also in low compres-
sion strength materials.

The compression stresses at the back end (BE) are obtained as
follows:

rBE ¼
KIffiffiffiffi
w
p r �a; k;qð Þffiffiffi

�a
p ð24Þ

where rð�a; k;qÞ is the dimensionless back end compression stress
function. The failure criterion for the back end compression (fBE)
can be expressed as:

ruC
ffiffiffiffi
w
p

KIc
> fBE ð25Þ

where fBE ¼ r �a; k;qð Þ=
ffiffiffi
�a
p

. This stress-based failure criterion predicts
the initialization of the material failure at the back face of the
specimen. For some materials, the failure may be controlled by a
stable process due to the formation of a Fracture Process Zone
(FPZ). When dealing with composite materials, the back end failure
normally appears in the form of a kink-band. Hence, the failure
criterion expressed in Eq. (25) is a conservative prediction of the
failure.

The dimensionless back end stress rð�a; k;qÞ was obtained by fit-
ting the results of the FEM models for a wide range of material
orthotropies with the least-squares method and using the defini-
tion in Eq. (24). The function is defined as a fourth order polyno-
mial of �a, with coefficients that depend on k and q. The function
rð�a; k;qÞ is applicable for any CT size that respects the geometry
of Fig. 1, and can be found in A. The interpolating function is only
valid for orthotropic materials ranging from 0:3162 6 k � 10:0 and
0:3162 6 q � 10:0, and for crack lengths greater than �a > 0:4. The
presented solution guarantees an error of less than 4:48% with
respect to the FEM results.

6.1.2. Bearing load at the holes compression failure
It has been shown in Section 5 that the fracture test is stable for

lower values of �a0 ¼ 0:5. When the crack length is very small, the
bearing load required to propagate the crack may be so high that
it causes the collapse under compression in the area surrounding
the loading holes. The stress at the hole due to the bearing pin
can be defined as

rbearing ¼
P

hd
< aruC ð26Þ

where d is the hole diameter and a is a parameter that depends on
the stress distribution between the pin and the hole. The value of a
is normally considered to be equal to 1 or 4=p. The standard proce-
dure recommends a hole diameter of d ¼ 0:25w, but it has been
demonstrated in Section 3 that the loading configuration does not
affect the SIF of the CT specimen. Hence, the diameter can be
defined as d ¼ w=n (with n ¼ 4 in the standard recommendations).
The failure criterion for the bearing load (fbearing) can then be
expressed as:

ruC
ffiffiffiffi
w
p

KIc
> fbearing ð27Þ

where:

fbearing ¼
n

aKIc

ffiffiffi
�a
p ð28Þ
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6.1.3. Buckling structural failure
The buckling criterion does not account for a material failure

but for a structural failure. Thus, the buckling stress does not
rescale as in Eq. (23). For a given crack length �a and material ortho-
tropy, the critical buckling load is proportional to:

PBuc /
D11

w
ð29Þ

where D11 is the material stiffness along direction x1. The load P and
the SIF are obtained using Eq. (14). The failure criterion is defined
as:

D11

w3=2

1
hKIc

> fBuc ð30Þ

where fBuc depends on �a and the in-plane orthotropic and bending
constants, obtained from the roots of a characteristic polynomial
similar to the one in Eq. (3). Although a solution for fBuc has not been
found, Eq. (30) can give some insight into how the specimen size
affects the structural failure, given that D11 / h3. For example, if
the specimen size w is increased by a factor of 4, the buckling load
decreases by a factor of 8. On the other hand, if the specimen thick-
ness h is also increased by a factor of 4 the buckling load is reduced
by half, rescaling as a stress-based criterion. It should be noted that
any modifications of the thickness should be carried out with
extreme caution, because fracture toughness normally depends on
h, especially when dealing with materials that exhibit hardening.
Also, to prevent this structural failure mode, one possible solution
might be to use anti-buckling instrumentation devices [17].

6.2. Results and discussion

Two woven composite materials were tested to study the effec-
tiveness of the compression failure criteria presented. The two
woven materials used were Carbon (C) fabric type G0926 (5HS,
6 K, 370 gsm) and Glass (G) fabric type S2 (style 6781, Z-6040,
303 gsm). Both materials were supplied by Hexcel and were used

with HexFlow� RTM6 mono-component epoxy system. A laminate
of each woven composite material was manufactured. The lami-
nate made from woven carbon fabric, LC, has a ply stacking

sequence of 0C=45C
� 	

3

h i
S
, whereas the laminate made from glass

fabric, LG, has a stacking sequence of 0G=45G
� 	

5

h i
S
. The laminates

used were manufactured using a single material as described in the
work of González et al. [18]. Each laminate was tested with a CT
specimen respecting the dimensions of Fig. 1, with a size
w ¼ 51 mm and a hole diameter of 8 mm. The initial crack length
in both cases was 26 mm, thus �a0 ¼ 0:51. The properties of the
two laminates are given in Table 2. Due to the ply stacking
sequence used, both laminates have in-plane quasi-isotropic prop-
erties (k ¼ q ¼ 1).

The fracture toughness of each laminate was obtained from the
CT fracture test. The load displacement curves of both laminates
are shown in Fig. 9. The KIc of each laminate was obtained using
Eq. (14), evaluated at the maximum load value.

According to Eq. (23), the specimen will fail under compression
as soon as fMF > 1:49 for the carbon fabric laminate LC and as soon

Table 2
Laminate properties.

Laminate E11 (GPa) ruC (MPa) KIc (MPa mm1/2) h (mm)

LC 42.3 392 1869 4.24
LG 16.0 405 1193 4.58

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

Displacement [mm]

Fo
rc

e 
[N

]

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Displacement [mm]

Fo
rc

e 
[N

]

Fig. 9. Load displacement curves of the CT fracture toughness test.

Fig. 10. fbearing and fBE material failure criteria for both the carbon fabric laminate
(LC) and the glass fabric laminate (LG).
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as fMF > 2:42 for the glass fabric laminate LG. It was considered
that n ¼ 51 mm=8 mm ¼ 6:375 and a ¼ 1 when computing the
bearing failure criterion. The failures caused by the bearing load
(fbearing) and the compression at the back end (fBE) are shown in
Fig. 10.

According to the predictions, in the case of the LC and the LG
laminates, the minimum initial cracks that will prevent the failure
due to the bearing load are �abearing ¼ 0:2 and �abearing ¼ 0:068 respec-
tively. Since the initial crack length is �a0 ¼ 0:51 in both CT speci-
mens, neither will fail due to the compression at the holes. On
the other hand, the failure at the back face will occur as soon as
�aBE ¼ 0:57 and �aBE ¼ 0:795, respectively.

After the completion of the tests, the experimental results were
found to be in accordance with the predictions. Neither of the
tested materials failed due to the collapse under compression at
the holes. Both specimens failed under back end compression
stress before the end of the experiment. A few images taken at
the instant of the BE failure are shown in Fig. 11.

The experimental BE failure occurred at a crack length of
�aBE ¼ 0:66 for the LC and �aBE ¼ 0:88 for the LG. These results are
in good agreement with the predicted results, which were slightly
lower. In detail, in the case of the carbon fabric laminate, the pre-
dicted crack length was about 14% lower than the experimental
result, while for the glass fabric laminate it was only about 10%

lower. It should be noticed that the predicted results do not indi-
cate when the material is actually going to collapse but rather
when the stress is going to reach the ruC of the material. Beyond
this point a stable FPZ starts to develop which is still capable of
withstanding the stress and, therefore, the failure can occur at a
greater crack length.

From the test results, it is clear that the carbon fabric CT spec-
imen cannot be used to perform the test properly. Firstly, the initial
crack length could have been smaller than �a0 ¼ 0:5 and the speci-
men would still be able to support the bearing load at the holes. In
fact, the initial crack length could have been as small as �a0 ¼ 0:2.
On the other hand, in order to increase the �aBE, the size, w, should

have been increased. For example, �aBE would be 0.74 with a speci-
men size of w ¼ 102 mm.

As it has been shown, when designing a CT specimen, it is much
simpler and time-efficient to decide the specimen size w and the
pre-crack a0, to avoid the mentioned failures, with the aid of the
presented functions and proposed methodology, rather than by
iterating several FEM models an adjusting the values by trial and
error.

7. Conclusions

The compliance C and the stress intensity factor KI functions of
the CT specimen were obtained for a wide range of material ortho-
tropies. These functions are applicable to any specimen size w as
long as the geometry of Fig. 1 is respected. The proposed interpo-
lating functions have been shown to be highly accurate with
respect to the isotropic case as well as with previously published
results of orthotropic materials.

Because of the introduction of the two dimensionless variables
k and q, it is no longer necessary to handle four elastic properties
E11; E22; m12 and G12ð Þ in order to fully describe the elastic state of

the material. Due to the fact that C and KI are completely defined
by k and q, the problem of computing two or more elastically
equivalent solutions can now be avoided. Additionally, because
of the introduction of the interpolating functions for C and KI , it
is no longer necessary to create a FE model every time a new ortho-
tropic material needs to be tested and, consequently, less comput-
ing time is required. Even for other specimen geometries different
from the standard CT, the same procedure presented in this paper
may be used in order to obtain their compliance and ERR functions.

The second part of this work has focused on providing tools to
help design CT specimens by varying the initial crack length a0

and size w. The stability of the crack growth was discussed in terms
of the initial crack length: it was proven, from a pure elastic point
of view, that tests with initial crack lengths as short as 0 would still

Fig. 11. CT specimens of woven carbon fabric laminate (LC) and glass fabric laminate (LG) at the instant of material failure due to the Back End (BE) compression stress. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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perform stably, for the majority of the material orthotropies and
for the loading configuration defined in Fig. 1.

Stress failure criteria were introduced to take into account two
material failure mechanisms: the failure at the holes caused by the
bearing load, and the failure at the back end face caused by the
compression stress that appears during the test. Both criteria are
valid for a wide range of material orthotropies, have been shown
to be in very good agreement with experimental results, and have
proven to be a faster alternative that solving a FEM.
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Appendix A. Polynomial fitting functions

The polynomial function qð�a; k;qÞ of Eq. (13) can be expressed
in matrix form as follows:

qð�a; k;qÞ ¼

1
�k

�q
�k2

�k�q

�q2

�k3

�k2 �q
�k�q2

2
666666666666666666664

3
777777777777777777775

T 1:6128 8:9466 �20:688 18:786 �5:5381

�3:2808 32:523 �94:902 116:73 �51:736

0:71078 8:4546 �11:629 �3:8438 8:454

0:34995 1:2604 15:834 �37:624 20:129

�2:1383 12:246 �29:195 37:859 �18:884

�0:46023 15:616 �34:155 25:156 �7:1906

�1:4802 12:872 �33:187 30:728 �8:6936

�0:57399 7:1987 �34:221 54:132 �26:768

�3:0283 23:403 �54:343 41:271 �6:7808

2
666666666666666666664

3
777777777777777777775

1

�a

�a2

�a3

�a4

2
666666664

3
777777775

ðA:1Þ

where:

�k ¼ log k; �q ¼ log qþ 1ð Þ ðA:2Þ

The polynomial function B of Eq. (13) is:

B ¼ �0:24216þ 1:4018��a� 0:003505�qþ 1:4908��a2

� 0:058317��a�q ðA:3Þ

where ��a is:

��a ¼ log �a ðA:4Þ

The polynomial function pð�a; k;qÞ of Eq. (16) can be expressed
in matrix form as follows:

pð�a; k;qÞ ¼
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The polynomial function D of Eq. (16) is defined as:

D ¼ �0:066112þ 0:75681��a� 0:015�qþ 0:58136��a2

� 0:08451��a�q ðA:6Þ

The polynomial function rð�a; k;qÞ of Eq. (24) can be expressed in
matrix form as follows:
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Quasi-brittle materials such as fibre-reinforced composite materials develop a relatively large Fracture
Process Zone where material toughening mechanisms such as matrix cracking, fibre-bridging and fibre
pull-outs take place. The damage onset and damage propagation are well defined from a cohesive model
point of view, although no standard procedure has been yet developed to characterize the translaminar
Cohesive Law. The present work proposes an objective inverse method for obtaining the Cohesive Law
with the use of an analytic model capable of predicting the load–displacement curve of a Compact
Tension specimen for any arbitrary Cohesive Law shape. The softening law has been obtained for two
laminates, providing an excellent agreement with the experimental results. With the obtained softening
function, the nominal strengths of a Center Cracked Specimen and an Open Hole specimen have been
predicted for a wide range of specimen sizes.
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1. Introduction

When a material exceeds its elastic range, it develops an energy
dissipation zone where material toughening takes place. This zone
can be divided into two main regions depending on the nature of
the energy dissipation mechanisms. The first area, located ahead
of the crack tip, is where the intrinsic toughening takes place,
and it is primary associated with material plasticity. This is typical
of ductile materials such as most metals, and takes place in a
volume fraction of the material. The second area, located behind
the crack tip, is where the extrinsic dissipation mechanisms lie,
and it is the primarily source of toughening in brittle materials.
In this case the damage zone is confined to a plane [1].

Quasi-brittle materials, such as fibre-reinforced composite
materials, only exhibit extrinsic toughening, involving processes
such as fibre-bridging, fibre pull-outs and matrix micro-cracking,
which generally dissipate a high amount of energy [2]. This region
is known in the literature as the Fracture Process Zone (FPZ).
Classic fracture mechanics theories have tried to model this FPZ
to predict the structural response of quasi-brittle materials
through the use of Linear Elastic Fracture Mechanics (LEFM) in con-
junction with Resistance curves (R-curve) [3] or Bažant’s Size
Effect Law (SEL) [4]. Unfortunately these methodologies are only
applicable when the FPZ is relatively small compared to other
problem dimensions. In the case of Large-Scale Bridging (LSB),

the R-curve has proven to be Specimen Geometry (SG) and Size
dependent [5–9].

In most quasi-brittle materials, LEFM cannot be applied, i.e., the
fracture problem is not uniquely defined from a single material
parameter such as the fracture toughness (Gc) or a variable fracture
toughness defined by the R-curve. Under these circumstances,
more complex and usually non-linear models like the cohesive
zone model are needed to predict the fracture of such materials.
The cohesive model, derived from the works of Dugdale and
Barenblatt [10–12], postulates that inside the FPZ there are
cohesive stresses that tend to close the crack, and that they
decrease as the crack opens. The relation between the crack openings
and the cohesive stresses is known as the material Cohesive Law
(CL) (or laminate CL, in the case of fibre-reinforced composites)
[13]. An equivalent property related to the CL is the J-xCTOD curve,
where xCTOD stands for the crack opening measured at the initial
crack length, that relates the energy released inside the FPZ as
the crack opens [14,8]. Numerically implemented cohesive models
[13] have proven to properly match the experimental observations,
while at the same time being size and geometry independent.

The experimental measurement of the CL is still a problem of
interest to the scientific community, as there are still no standard-
ized methodologies to perform it. Ideally, it could be obtained as
the evolution of the stress measured at the initial crack tip position
(a0) as the crack opens, similarly to the methodology proposed by
Zobeiry et al. [15]. In this method, the displacement field of the
specimen is measured through the use of the Digital Image
Correlation (DIC) technique, and the FPZ boundary is estimated
where the material does not behave linear-elastically. The cohesive
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stresses are obtained by assuming the stress in the loading direc-
tion across the damaged material to be uniform and equal to the
stress of the undamaged material adjacent to the FPZ. Finally, an
optimization algorithm is used in order to find a softening function
that best fits the experimental curves. Despite the fact that this
method is time-consuming, it is capable of measuring any arbitrary
CL during the FPZ formation as well as during the self-similar crack
growth. Other common methods involve measuring the J integral,
either by measuring the strain field using the DIC technique [16,17]
or by using closed form solutions of the integral, in order to differ-
entiate it with respect to xCTOD [5,18,19]. Finally, an alternative
approach to measure the CL is through the use of an optimization
algorithm to solve the inverse problem [20–24]. The inverse anal-
ysis consists of three steps: firstly an experimental u–P curve is
recorded from laboratory tests or in situ tests; next, a computer
simulation of the test (direct method) is performed in order to find
the parameters that define the CL; finally, a suitable norm which
quantifies the discrepancy between the experimental data and
the corresponding values provided by the computer simulation is
minimized, with respect to the mentioned parameters. The present
work belongs to this last category of methodologies, and stands out
with respect to other inverse analysis based methods in two
aspects: the way the direct method is solved, and the approach
in which the CL is found. In order to so, the CL is expressed as a
piecewise function made of n linear segments, while the inverse
analysis finds the slopes and amplitudes of each segment. This pro-
cedure will be further detailed in the next section.

The paper is structured as follows: Section 2 provides the ana-
lytic solution to obtain the P–u curve for any given CL shape,
recently developed by the authors [9]. It also introduces the
methodology used in order to solve the inverse problem. Section 3
exposes the experimental setup and the specifications of the tested
laminates. Section 4 shows the results of the tests, as well as the
measured CL for two different laminates. Section 5 discusses the
results, and also proposes a simplified Cohesive Law shape for
one of the laminates. Also, the proposed CL is used for predicting
the nominal strength of a Center Cracked Specimen and an Open
Hole Specimen for a wide range of specimen sizes. Lastly, Section 6
exposes the Conclusions of the present work.

2. Methodology

2.1. Direct method: Dugdale’s condition

Before introducing the inverse methodology to obtain the CL, let
us first introduce the direct method, that is, a tool capable of pre-
dicting the P–u curve for a given general Cohesive Law [9].

Given a standard CT specimen of size W, like the one shown in
Fig. 1, under the action of a controlled displacement (u) and corre-
sponding load (P) applied at the pin holes, the analytic solution
presented here is capable of predicting the FPZ onset and develop-
ment, while obtaining the whole cohesive stress profile rc and the
crack opening profile x inside the FPZ, by taking into account the
laminate CL, as a crack grows in pure mode-I along the symmetry
plane. The material is assumed to be isotropic, although the same
procedure may be used for an orthotropic one. More details about
this subject will be given at the end of this section.

The starting point of the problem solution comes from the Dug-
dale’s condition, i.e., the global Stress Intensity Factor (SIF) of the
problem, K, must be null. The problem SIF is a result of all the act-
ing loads: P and rc. By applying the superposition principle, the SIF
can be expressed as the superposition of the SIF caused by each
load. Applying Dudgdale’s condition, K of the global problem must
be equal to zero:

K ¼ KP þ Krc ¼ 0 ð1Þ

where KP is the SIF caused by the point load P and Krc is the SIF
caused by the whole cohesive stress profile rc . Although the rc is
unknown and may change during the FPZ development, it can
always be discretized as a series of small constant stresses of value
equal to ri applied at the crack surface. The non-linear problem
expressed as a superposition of linear problems is shown in Fig. 2.

Given rN ¼ P Whð Þ�1 ¼ sNru and ri ¼ siru, the SIF functions are
defined as:

KP ¼ ruW
1=2sN �KP ; Krc ¼ ruW

1=2si �Kr
i ð2Þ

where �KP is the non-dimensional function of the SIF caused by the
point load P and �Kr

i is a vector that defines the non-dimensional
function of the SIF due to a unitary constant stress ri of width equal
to the discretization, and centred at a distance ai from the load line.
The length ‘dam is the damaged length of the material, measured
from a0, and combines the FPZ plus the traction free crack surface
length, as shown in Fig. 2. Both SIFs are found in Appendix A. From
Eqs. (1) and (2), if the cohesive stress profile rc is known, there is
only one load P that satisfies the Dugdale’s condition. Hence, using
Eqs. (1) and (2) it is possible to obtain sN by knowing the normalized
cohesive stresses si

sN ¼ bisi; bi ¼ �Kr
i =

�KP ð3Þ

with bi being a vector that relates each normalized constant stress

si ¼ ri=ru with the normalized load sN ¼ P Whruð Þ�1 applied at the
pin holes. The vector bi is uniquely defined by the SG and the nor-
malized length �a0 þ �‘dam.

In order to solve for the cohesive stress profile inside the FPZ,
the crack opening profile must also be found. Again, it is possible
to express the set of openings xi as a superposition of the opening
caused by each acting load

xi ¼ xP
i þx

rc
i ð4Þ

wherexi;xP
i and x

rc
i are the total crack opening, the crack opening

caused by the point load P and the crack opening caused by the
cohesive stress profile rc at a position ai. These parameters can be
expressed as:

xP
i ¼

ruW
E0

sNx̂P
i ð5Þ

xrc
i ¼

ruW
E0

sjx̂r
ij ð6Þ

Fig. 1. Compact Tension (CT) Specimen Geometry, subjected to a load P under
controlled displacement u.
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where x̂P
i is the non-dimensional function of the crack opening

caused by the point load P and x̂r
ij is the non-dimensional function

of the crack openings at a position i caused by the constant cohesive
stress at a position j. Then, it is possible to express Eqs. (3)–(6) as:

x̂i ¼ f ijsj; f ij ¼ bjx̂P
i þ x̂r

ij ; ð7Þ

where x̂i ¼ xiE
0=ðruWÞ is the non-dimensional crack opening at

position i and sj is the non-dimensional stress at position j. At this
point, by knowing the CL of the material and using Eq. (7) it is pos-
sible to obtain the normalized cohesive stresses sj and the normal-
ized crack opening x̂i ¼ xiE

0ðruWÞ at the FPZ for a given ‘dam and
consequently any problem variable. The solution algorithm is out-
lined below. First, a ‘dam is selected. Then, from an iterative process
Eq. (7) is solved for a given CL, and as a result the stress profile and
the crack openings at the FPZ are obtained. At this point, the load P
is obtained by means of Eq. (3). Lastly, the displacement u is defined
as the crack opening at ai ¼ 0, using again Eq. (7).

In order to solve the direct problem for an orthotropic material,
the SIF functions for the given orthotropy must be known. These
can be obtained from an algebraic function (an example of the
SIF function of a CT specimen subjected to a point load for an
orthotropic material can be found in [25]) or by using a FE model
[21]. Also, the load direction must be aligned with a principal
direction of the material, in order to ensure that the crack grows
along the symmetry plane.

2.2. Inverse method

The understanding of the FPZ formation within a cohesive crack
model is needed in the development of the inverse method pre-
sented in this paper. The FPZ is initialized as soon as a point of
the specimen reaches a stress equal to the material strength. Once
the ru is reached, the FPZ grows as the displacement is increased,
opening the cohesive crack and changing the cohesive stress pro-
file in relation with the laminate CL. When the crack opening at
a ¼ a0 reaches the critical opening xc , the FPZ ends its develop-
ment. At this precise point the crack growth enters a steady state,
meaning that it dissipates a constant energy Gc , while the FPZ
moves along the crack path. During this steady state growth the
cohesive crack opening profile and cohesive stress profile remain
almost constant.

Since the peak load is reached while the FPZ is still being
formed, the analysis of the cohesive stresses inside the FPZ along
the crack growth is of great interest in predicting the nominal
strength of structures. Fig. 3 gives some more accurate insight, as
it depicts the progress of the FPZ growth, and its relation with
the CL. Given the Point 1 of the P–u curve, the cohesive stresses
range from ru at the FPZ tip (next to the undamaged material),
where the crack opening is x ¼ 0, to r ¼ r1 at a crack opening
x1 measured at the end of the FPZ (next to the traction free crack),
i.e., at a distance a0 measured from the load line. In other words, to
describe the crack growth and the FPZ development until the Point
1, only a part of the CL needs to be known, i.e, the CL shape beyond

Fig. 2. Compact Tension (CT) specimen with a FPZ expressed as a superposition of linear problems.

1
2

3

Fig. 3. Depiction of three states (1–3) during the FPZ growth: (a) the P–u position, (b) the FPZ stress and crack openings and (c) the dissipated energy inside the CL. The cracks
openings x1;x2 and x3 are measured at the initial crack position a0.
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the pointx1–r1 is not needed. Observing Point 2, now the cohesive
crack opening increases to x2 and the cohesive stress decreases to
r2. In this case, to define the crack growth and the FPZ, the CL must
be known up to x2–r2. The same can be applied to Point 3, and to
every displacement increase. If all the cohesive model variables are
known during the crack growth, each point of the P–u curve has a
unique corresponding FPZ state, with the cohesive stresses defined
between 0 6 x 6 xi, where xi is the Crack Tip Opening Displace-
ment (CTOD). In other words, every infinitesimal FPZ development
increase needs an additional infinitesimal portion of the CL. This
property allows to define a piecewise CL by fitting consecutive
points in the P–u curve.

The inverse method takes advantage of the progressive FPZ
development process, being able to determine the CL from a single
CT fracture test, that is, there is no need to test other SG or sizes.
Indeed, several additional factors need to be considered that may
alter the local behaviour of the material, such as the presence of
heterogeneities (voids or defects introduced during the manufac-
turing process, the fibre tow size, etc.) or the repeatability of the
test, that may finally lead to the need of multiple repetitions of
the test. For details on the tested materials, please see Section 3.
A step-by-step algorithm to solve the inverse problem is given
below:

� Select some experimental P–u points around the peak load,
which will be used to fit the CL. The points must be picked while
the FPZ is still being formed. That is, before the experimental
P–u curve matches the LEFM one. As an example, in Fig. 4a
the point that will be fitted is located at a displacement of
1.6 mm (marked with �).
� The unknown CL is initialized with the first point at r ¼ ru

when x ¼ 0. The ru is the laminate strength, which must be
obtained from an independent laminate tensile test. This is
shown in Fig. 4b.
� The fitting process is illustrated in Fig. 4. The first branch of the
CL is fitted using the first experimental point P1–u1 selected
from the curve. The unknown branch is initialized with a slope
of 0 MPa/mm (labelled with A in 4b). Then, the P–u curve
(labelled with A in 4a) is predicted with the direct method of
Section 2.1 for the given guessed slope. As it can be seen, the

first trial slope overestimates the load for a displacement of
1.6 mm. The iterative process is continued by changing the
slope to �2000 MPa/mm (labelled with B), resulting in a pre-
dicted load lower than the experimental one. The process is
iterated by changing the slope until the predicted load matches
the experimental one within a desired error (labelled with C). In
this case, the slope found is �1500.9 MPa/mm. To automate this
process, a numerical root-finding algorithm needs to be imple-
mented. For the present work the secant-method was used, as
the obtained convergence was fast enough.
� Once the slope is found, the crack opening that defines the first
branch width x1 (marked with a � in Fig. 4b) is obtained by
computing the crack opening at the initial crack position
a ¼ a0 with Eq. (4). In conjunction with the found slope, the
stress r1 is obtained.
� The algorithm is continued for each selected point, until all the
branches that define the CL have been found.

In this manner it is possible to obtain a piecewise laminate CL.
Clearly, the number of branches obtained from this method will
depend on the number of chosen points in the P–u curve, as will
be shown in Section 4.

3. Experimental setup and test specimens

A standard Compact Tension specimen of size W ¼ 51 mm, as
the one shown in Fig. 1, was tested, with an initial crack length
of a0 ¼ 25 mm and a pin hole diameter of d ¼ 8 mm. As no stan-
dard procedure has been developed for the determination of the
translaminar fracture toughness of fibre-reinforced composite
materials using a Compact Tension specimen, the test was carried
out following the recommendations by Pinho et al. [26]. The test
was performed with a screw-driven universal testing machine,
loading the specimens at rates of 0.5 mm/min. The crack tip notch
was manufactured with a diamond coated disc, ensuring a radius
lower than 250 lm, following the recommendations by Laffan
et al. [27]. The load cell signal and the extensometer signal were
acquired and recorded with a dedicated PC. The displacement
was measured with a displacement transducer placed at the crack
surface below the load line.

Fig. 4. Inverse method approach: (a) three predicted P–u curves using the direct method obtained with (b) their corresponding Cohesive Laws. The experimental load is
overestimated with (A), underestimated with (B) and best fitted with (C). The obtained branch has an amplitude of 0.152 mm.
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Two woven fibre-reinforced composite materials were tested in
order to measure the translaminar Cohesive Law. The two woven
materials used were Carbon (C) fabric type G0926 (5HS, 6 K,
370 gsm) and Glass (G) fabric type S2 (style 6781, Z-6040,
303 gsm). Both materials were supplied by Hexcel and were man-
ufactured with HexFlow� RTM6 mono-component epoxy system,
as described in the work by González et al. [28]. The first laminate
(LG) was made only of Glass Fabric plies, with a stacking sequence

of 0G=45G
� �

5

h i
S
. The second laminate (LCG) was an hybrid one,

made of both Glass fabric and Carbon fabric plies, with a stacking

sequence of 0C=45C
� �

2
=0G=60G=� 60G

h i
S
. As it can be seen, both

laminates are in-plane quasi-isotropic. The properties of the two
laminates are given in Table 1.

During each specimen test the crack was optically measured
with a videorecorder in order to observe any external damage.
Fig. 5 show both CT specimen tested, LG and LCG, where the dam-
age inside the FPZ is easily observable.

While performing the test and during the crack growth and
crack propagation, no specimen buckling was observed. Once the
tests were performed, the specimens were inspected by means of
C-scan ultrasonic technique, using an Olympus Omni-Scan MX sys-
tem. The inspection concluded that no significant delamination
areas were present. With such observations, the assumption that
there exists a Fracture Process Zone with closure stresses is appro-
priate for the studied specimens.

4. Results

In order to obtain the CL, two specimens of each laminate
were tested. Although the inverse problem could have been
applied to each of the tested specimens, the authors have
decided to approach the problem in a different manner. Because
the CL is supposed to be a material (or laminate) property, for
each pair of tested specimens, the average P–u has been
obtained. A Gaussian method is applied to the average curve
to reduce the experimental scatter. The main benefit of using
the Gaussian method is that, instead of averaging the values
around a given experimental point, the used points in the
smoothing are weighted according to a Gaussian function. In
that manner, the end points at the data window have less influ-
ence on the averaged value than the ones near the centre. To

ensure that only a slight smoothing is performed, the data win-
dow is set to 100 experimental points, while the total data curve
is made of about 18,000 points.

As mentioned in Section 2.2, the number of branches of the
obtained CL depends on the number of points from the P–u curve
used to perform the fitting. In this manner, selecting just a single
point of the curve will result in a linear CL, whereas selecting
two points will result in a bi-linear CL. The influence of the number
of branches and the CL shape has been studied for the LG laminate.
The experimental P–u curves of both specimens are shown in
Fig. 6a, along the smoothed average curves. Three CL have been
obtained from the LG laminate, while changing the number of
points used in the fitting. The curves obtained with three (�), five
(�) and seven (�) points are shown in Fig. 6b. It is easily appreci-
ated that the three curves resemble the same shape, although
the higher number of points used, the more resolution the curve
has. It is important to notice that the fracture toughness (Gc) of
each measured curve, i.e., the area under the CL curve, is nearly
identical regardless of the number of points used in the fitting.
The measured Gc are 78.7 N/mm, 78.8 N/mm and 78.6 N/mm for
the curves with three, five and seven points, respectively, proving
that the proposed inverse method is sufficiently objective, and is
not dependent on the number of used points as long as they are
well distributed along the FPZ formation.

The CL has also been measured for the LCG laminate. Again, two
specimens were fractured, while using the smoothed average P–u
curve in the CL determination. The experimental curves and the
corresponding smoothed curve are shown in Fig. 7a. Again, three
different sets of points were used, with six (�), eight (O) and nine
(�) points. The CL measured with the inverse method are shown in
Fig. 7b.

It is again appreciated that, regardless of the number of points
used and their position, the average shape of the CL remains unal-
tered. Again, the fracture toughness was obtained from the area
under the curve for each CL. The measured Gc are 105.0 N/mm,
103.8 N/mm and 105.0 N/mm respectively, once again proving
the objectivity of the inverse methodology.

5. Discussion

To validate the accuracy of the measured CL obtained with the
proposed inverse problem approach, a predicted P–u curve has
been obtained for each laminate using the proposed direct method.
In the calculation of the predicted P–u curves, the experimentally
measured CL have been used. For both cases, the CL measured with
the (�) set of points was used.

The predicted P–u curves are shown in Fig. 8. As it can be seen,
the obtained curves for each laminate fit accurately the experimen-
tal data, thus precisely reproducing the maximum load during the
FPZ formation.

Table 1
Laminate properties.

Laminate E (GPa) ru (MPa) h (mm)

LG 19.05 521.2 4.58
LCG 34.0 469.4 4.31

Fig. 5. CT specimens of woven glass fabric laminate (LG), at a displacement of 1.86 mm and the hybrid laminate made of woven carbon fabric and woven glass fabric laminate
(LCG) at a displacement of 1.56 mm, during the FPZ formation.
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Although the experimentally determined CL are suitable for
predicting structural strengths, as they provide accurate results,
in general, they are not suitable to be implemented in any com-
mercial Finite Element Modelling program. Similarly to the work
of Zobeiry et al. [15], a better approach is to define a mathematical
function that keeps the main CL shape characteristics, while only
needing to define a few parameters. In this manner, an objective
way of comparing similar CL shapes of different laminates is pro-
vided. In the case of the LG laminate, the CL can be easily adjusted
with a trilinear CL. On the other hand, observing the LCG laminate
CL shown in Fig. 7b, several characteristic traits are easily observ-
able. Firstly, the stresses remain almost constant for relatively
small crack openings. As soon as that certain crack opening is
achieved, a sudden drop of stresses is observed, followed again

by a second stress plateau value. The CL shape can be adjusted with
a function of the form:

rðxÞ ¼
ru x 6 x1

ru � r1ð Þ exp �A x�x1ð Þ½ � þ r1 x1 6 x 6 xc

0 xP xc

8><
>: ð8Þ

where r1 is the value of the second stress plateau-value, x1 is the
crack opening that defines the end of the first stress plateau, xc

defines the crack opening at which the FPZ is totally developed
and A is a parameter that defines the exponential decrease of stres-
ses after the first constant branch. The parameters of the CL defined
in Eq. (8) have been chosen in order to adjust the LCG CL, taking the
values r1 ¼ 180 MPa, x1 ¼ 0:125 mm, xc ¼ 0:35 mm and A ¼ 50.

Fig. 6. (a) P–u curve for the two LG specimens and the corresponding smoothed average curve. (b) Three different CL obtained from three different sets of points.

Fig. 7. (a) P–u curve for the two LCG specimens and the corresponding smoothed average curve. (b) Three different CL obtained from three different sets of points.
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With the selected parameters, the obtained Gc matches the experi-
mental value of 105 N/mm. Fig. 9a shows the adjusted CL with Eq.
(8) along the experimental measured curves. The predicted P–u
curve using the suggested simplified CL is shown in Fig. 9b. As it
can be seen, it accurately reproduces the experimental results, espe-
cially during the maximum load along the FPZ formation. Moreover,
three characteristic cohesive crack openings have been labelled on
the simplified CL in Fig. 9. The first crack opening at
x ¼ 0:125 mm (�) represents the end of the first stress plateau,
the crack opening at x ¼ 0:24 mm (�) has been chosen during the
stress drop, and lastly the crack opening atx ¼ 0:35 mm (4) shows
when the FPZ has been fully developed. The three crack openings
have also been plotted on the predicted P–u in Fig. 9b, showing
the natural progress of the FPZ formation. As it can be seen, the

deviation from the elastic compliance is first noticeable at (�). It
is also remarkable to show that at (4) the FPZ has been fully devel-
oped, as the P–u curve meets the LEFM one. This property is true for
almost all notched specimens, except for extremely small ones
where the FPZ is not able to be fully developed before the specimen
breaks apart.

The purpose of the CL determination using the present method
is not only to reproduce the P–u curves of the tested CT specimens,
but also to predict the structural strength of different specimen
geometries and structures. In order to test the applicability of the
measured CL, the nominal strength of an Open Hole specimen
(OH) and the Center Cracked Specimen (CCS) has been predicted
using the simplified LCG Cohesive Law. In order to do so, the direct
method described in Section 2.1 has been applied to the OH [29]

Fig. 8. Predicted P–u curves using the experimentally measured CL for the (a) LG and (b) LCG laminates.

Fig. 9. (a) Piecewise simplified CL shape for the LCG laminate along the experimental measured ones, with labelled crack openings at x ¼ 0:125 mm, x ¼ 0:24 mm and
x ¼ 0:35 mm. (b) Predicted P–u curve using the simplified CL, along the positions at which the crack opening at the initial crack length reaches the openings defined in (a).
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and the CCS [30] geometry and the maximum strength has been
found for several specimen sizes. Both specimens are of infinite
width, where R is the hole radius for the OH specimen or half the
crack length for the CCS specimen. Fig. 10 shows the predicted
nominal strengths of both specimens for a wide range of sizes.

The nominal strength rN represents the average stress at the
failure plane of the undamaged material section when the maxi-
mum load is reached. The response of the CCS is typical of notched
specimens modelled with a cohesive model, as illustrated by
Maimí et al. [30]. For small specimens the response tends to the
plastic limit response, i.e., the entire failure plane stress is equal
to the material strength ru. From a cohesive model point of view
this can be understood as a FPZ that spans the entire specimen
width, with all the cohesive cracks placed at small openings with
stresses close to ru. As the specimens size grows, the relative
length of the FPZ with respect to the specimen width decreases,
causing, at the same time, a decrease of the average stress at the
failure plane. This tendency continues as the specimen size
increases. For a very large crack length R, the relative FPZ is so
small that it just takes a very small area ahead of the crack tip, hav-
ing the stress field defined by a K-parameter. Hence, for big speci-
men sizes the crack growth can be explained by the LEFM theory.
Fig. 10 also shows the point in which the initial crack opening for
each nominal strength achieves the values marked in Fig. 9a
(�; �;4). In concordance with the previous statements, is can be
seen that for very small specimens the cohesive cracks openings
are below x ¼ 0:125 mm, i.e, the cohesive zone is defined only
by the initial part of the CL. Also, the moment in which the nominal
strength meets the LEFM limit is placed at the point in which the
initial crack opening is equal to x ¼ xc .

For the OH specimen the response is typical of unnotched
geometries [29]. Again, for small sizes the nominal strength is
equal to the plastic limit. As the size is increased, the relative FPZ
length at the maximum load decreases, along with a decrease of
the nominal strength at the failure plane. In the extreme case of
very large specimens, the nominal strength follows the elastic
response, defined by a stress concentration factor. The FPZ is never
fully developed at the maximum load regardless of the size. In fact,
for the studied size spectrum the crack opening never exceeds

x ¼ 0:125 mm (�). As highlighted by Maimí et al. [29], the nomi-
nal strength of such structures can by predicted by means of the
initial part of the CL. In other words, the nominal strength could
be predicted by just using a constant CL defined by the rectangle
ru–x1, with a fracture toughness G1 ¼ rux1.

6. Conclusions

A novel inversemethodology tomeasure the translaminar Cohe-
sive Law has been proposed. Themethod is capable of obtaining the
Cohesive Law from a single Compact Tension fracture test by fitting
several points of the Load–Displacement distributed along the FPZ
formation. In order to apply the method, the only laminate proper-
ties needed are the elastic modulus, the laminate strength and the
specimen dimensions. The inverse method has been successfully
implemented, being able to obtain any arbitrary Cohesive Law
shape by just fitting the unknown CL shape in order to minimize
the difference between the experimental and the predicted P–u
curves. The proposed approach has been proven to be objective,
as the obtained Cohesive Law and fracture toughness are indepen-
dent of the location and number of the fitted points, provided that
they are distributed along the Fracture Process Zone formation.

Two laminates have been tested in the present work. The Cohe-
sive Law found for the first laminate (LG), made of woven Glass
Fabric plies, can be adjusted with a trilinear piecewise function
and with a Gc of 78.6 N/mm. The found Cohesive Law of the second
laminate (LCG), made of woven Glass fabric and woven Carbon fab-
ric plies, can be adjusted with a piecewise constant-stress function
followed by an exponential decrease of the stresses. In this case,
the measured Gc is 105.0 N/mm.

In order to objectively compare similar Cohesive Law shapes, a
simplified softening function has been proposed for the second
laminate, with only needing to define five parameters. The pro-
posed simplified Cohesive Law is capable of predict accurately the
P–u curve of the Compact Tension specimen, as the obtained results
are in an excellent agreement with the experimental results.

Lastly, the nominal strength of a Center Cracked Specimen and
an Open Hole specimen has been predicted using the simplified
Cohesive Law of the LCG laminate. The Size Effect on the nominal
strength has effectively been captured for both notched and
unnotched geometries. In the case of the Center Cracked Specimen
the response transitions from the plastic limit response for very
small specimens to the LEFM limit for large specimens. On the
other hand, for the Open Hole specimen, the geometry response
for large specimens tends to the classic elastic solution defined
by the stress concentration factor. It has also been concluded that
only the initial part of the Cohesive Law is needed to predict the
nominal strength of unnotched specimens, as the Fracture Process
Zone is never fully developed at the maximum load regardless of
the specimen size.
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Appendix A. Stress intensity factors equations

The non-dimensional stress intensity factor �KP caused by the
load P is defined [31]

�KP ¼ 2þ �a

1� �að Þ3=2
F1 ðA:1ÞFig. 10. Nominal strength of a CCS and an OH made of the LCG laminate against the

specimen size, obtained using the simplified CL, where R is half the width of the
initial crack length for the CCS and the hole radius for the OH.
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F1 ¼ 0:886þ 4:64�a� 13:32�a2 þ 14:72�a3 � 5:6�a4 ðA:2Þ

The stress intensity factor KQ
i caused by a point load Q applied at the

crack surface and at a distance of �ai from the load line is defined
[32]

KQ
i ¼

Q

W1=2
�KQ
i ;

�KQ
i ¼

2
p �a� �aið Þ

� �1=2

F2 ðA:3Þ

F2 ¼ 1þ A1Dþ A2D
2

� �
1� 1:05 1� �að Þ9 D=D0ð Þ3
h i

= 1� Dð Þ3=2

ðA:4Þ

D ¼ �a� �ai; D0 ¼ 0:8�aþ 0:2 ðA:5Þ

A1 ¼ 3:6þ 12:5 1� �að Þ8;
A2 ¼ 5:1� 15:32�aþ 16:58�a2 � 5:97�a3 ðA:6Þ

The non-dimensional stress intensity factor �Kr
i caused by a constant

cohesive stress of normalized width D�a and centred at ai [33]

�Kr
i ¼

1

1� �að Þ3=2 8pð Þ1=2
2B 1þ A1 þ A2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1� �að ÞB

q�

þ 1� �að Þ 5þ A1 � 3A2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1� �að ÞB

q

þ 1� �að Þ2 3� A1 þ 3A2ð Þ ln
ffiffiffi
B
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ 1� �a

p� �i���B¼�a��ai�Da=2
B¼�a��aiþDa=2

ðA:7Þ

The crack opening at a distance �ai caused by the load P is obtained

x̂P
i ¼

Z �a

�ai

2�KP �KQ
i d�a ðA:8Þ

The crack opening at a distance �ai caused by a constant cohesive
stress of normalized length D�a and centred at aj is obtained

x̂ij ¼
Z �a

�ai

2�Kr
j
�KQ
i d�a ðA:9Þ
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Abstract An analytic model has been developed for a
Compact Tension specimen subjected to a controlled

displacement and corresponding load within a cohe-
sive model framework. The model is able to capture
the material response while the Fracture Process Zone

is being developed, obtaining the evolution of multi-
ple variables such as the crack opening and the co-
hesive stresses, for an arbitrary Cohesive Law shape.
The crack growth prediction based on the R-curve and

the nominal strength prediction based on Bažant’s Size
Effect Law have been implemented using the output
variables available from the proposed analytic model.

The minimum specimen size has been found in order to
properly apply R-curve based methods. The study has
concluded that only the cohesive model is able to prop-

erly capture the changes of the Specimen Geometry and
Specimen Size, as unlike in other theories, no Linear
Elastic Fracture Mechanics assumptions are made.

Keywords R-curves · Cohesive zone modelling ·
J-integral · Bridging · Crack growth

1 Introduction

During crack nucleation and crack growth within a con-
tinuum solid, most materials develop a relatively large

Fracture Process Zone (FPZ) where energy is dissi-
pated. Fig. 1 schematically describes the FPZ present
between the traction free crack (between points a and
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b) and the elastic solid (beyond point d). This area
is divided in two regions based on the nature of the

dissipation mechanisms. The first region (bounded by
points c and d) is located ahead of the crack tip, where
non-linear material hardening takes place. Also known

as intrinsic dissipation, it is typical of metals and other
ductile materials. The second region (bounded by b and
c) is located behind the crack tip, where material soft-

ening or extrinsic dissipation occurs. The latter region is
typical of quasi-brittle materials, such as concrete, com-
posite materials and advanced ceramics (Ritchie 2011).
Depending on the relative sizes of these two zones and of

the structure, one may distinguish between ductile be-
haviour (intrinsic dissipation is dominant), quasibrittle
behavior (extrinsic dissipation is dominant) or brittle

fracture (the FPZ is very small compared to the struc-
ture size). The present work focuses on quasibrittle ma-
terials.
Linear Elastic Fracture Mechanics (LEFM) considers

Fig. 1: Representation of the Failure Process Zone.

that the entire FPZ (bounded by the points b and d
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in Fig. 1) lies at a single point at the crack tip while
the rest of the solid behaves elastically, i.e., considers a
brittle fracture. In reality this zone must have some fi-
nite size. Irwin estimated the FPZ length (`FPZ) using

the elastic stress distribution around the crack tip, by
assuming that the `FPZ is equal to the zone over which
the tensile strength has been exceeded (Irwin 1960). Ir-

win also introduced the term equivalent crack length: a
fictitious increase of the crack in order to maintain the
force balance when assuming the new stress distribu-

tion inside the FPZ.
The non-linearities that take place at the crack tip while
the FPZ is being formed can be predicted by using
LEFM in conjunction with an R-curve that defines the

apparent increase of fracture toughness as the crack
grows. This methodology can only be applied under
small-scale bridging (SSB) conditions for quasibrittle

materials or under small-scale yielding (SSY) for duc-
tile materials, i.e., when the `FPZ is small compared
to other problem dimensions, particularly when com-
pared to the crack length. This limitation is obvious

for laboratory sized specimens (Bažant 1992), and be-
comes especially true for some natural materials such
as human bone (Yan et al 2007; Koester et al 2008b)

or human dentin (Koester et al 2008a), whose natural
size limits the specimen dimensions. This restriction is
also present in some newly developed materials such as

metallic-glasses and bioinspired ceramics (Bloyer et al
1998; Bouville et al 2014; Demetriou et al 2011) where
the specimen size is limited by the manufacturing pro-
cesses. In addition, it is known that the R-curve is not

a material property, as it depends on the specimen size
as well as the Specimen Geometry (SG) (Bao and Suo
1992; Suo et al 1992; Sørensen et al 2008; Sørensen and

Jacobsen 1998). Furthermore, the methodologies to pre-
dict the structural strength based on the R-curve are
only applicable for notched specimens, as they are not
able to predict crack nucleation on smoothed surfaces.

An alternative approach to describe the FPZ forma-
tion is through the cohesive model by introducing the
Cohesive Law (CL) of the material. This methodology

goes back to the Dugdale’s strip yield model (Dugdale
1960), who introduced a constant stress inside the FPZ,
and Barenblatt (Barenblatt 1962a), who introduced a

stress function with respect to the crack opening, and
those implemented later with finite elements by Hiller-
borg by using cohesive elements (Hillerborg et al 1976)
and Bažant in a smeared way (Bažant and Oh 1983). It

should be mentioned that Dugdale’s strip yield model
was developed for perfect plasticity, although, in fact,
the model is more suitable for quasibrittle fracture:

the energy dissipation is confined in a plane (bridging
stresses) instead of taking up a volume (material hard-

ening). The use of the CL accounts for the extrinsic

energy dissipation mechanisms typical of quasi-brittle
materials, by introducing a relationship between bridg-
ing stresses and the crack opening.
The present paper is structured as follows: Section 2

defines an analytic cohesive model for a Compact Ten-
sion (CT) geometry, considering the cohesive stresses
and crack openings inside the FPZ, that is used in fur-

ther sections throughout the paper. Section 3 explores
the characteristics of the FPZ formation and the rela-
tionship between the specimen size, the CL and how it

influences the nominal strength of structures. Section 4
reviews currently available methodologies to obtain the
CL from experimental results, and Section 5 compares
the cohesive model with the fracture models based on

the R-curves and size effect theories. Lastly, Sections
6 and 7 are focussed on the results discussion and the
conclusions, respectively.

2 Compact Tension cohesive model

2.1 Generalized Dugdale-Barenblatt model

An analytic model to solve the non-linear fracture prob-
lem has been implemented based upon the Dugdale-

Barenblatt model (Dugdale 1960; Barenblatt 1959, 1962b),
where the stress singularity at the crack tip is null
due to the presence of cohesive stresses located at the
FPZ. In this case, the model is adapted to consider any

general cohesive stress profile. Although the procedure
hereby described is applied to the CT specimen, the
same method can be used to solve other Specimen Ge-

ometries (Maimı́ et al 2012; Newman 1983; Williams
et al 2011).
Given a CT specimen of size W , as shown in Fig. 2, it

experiences a crack growth along the symmetry plane,

developing a FPZ with cohesive stresses σc, under the
action of a controlled displacement (u) and correspond-
ing load (P ). The non-linear problem can be solved as a

superposition of two linear problems: one case consider-
ing a CT specimen with a crack length of a0 +`dam and
a pair of loads P located at the pin holes and a second

problem only considering the CT with closure cohesive
stresses inside the FPZ. The superposition approach is
shown in Fig.3, where the damaged length `dam is the
length measured from the initial crack length a0 to the

FPZ tip. While the FPZ is growing, `dam is equal to
the current length of the FPZ. Once the FPZ is fully
developed and the crack growth is self-similar, `dam ac-

counts for the FPZ length plus the traction free crack
length.
Due to the the presence of cohesive stresses in the

FPZ, no stress singularity is found in the model, in
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Fig. 2: Compact Tension (CT) Specimen Geometry,
subjected to a controlled displacement u and corre-
sponding load P .

other words, Dugdale’s condition must be fulfilled, and
the global SIF must be zero:

K = KP +Kσc = 0 (1)

where KP is the Stress Intensity Factor (SIF) produced
by the point load P and Kσc is the SIF caused by the

whole cohesive stress profile. Although the σc is un-
known and may change during the FPZ development,
it can always be discretized as a series of small constant

stresses of value equal to σi applied at the crack sur-
face. Defining σN = P (Wh)

−1
= sNσu and σi = siσu,

where σu is the ultimate tensile strength of the material
and h the specimen thickness:

KP = σuW
1/2sNK̄

P ; Kσc = σuW
1/2siK̄

σ
i (2)

where K̄P is the non-dimensional function of the SIF
caused by a unitary point load P and K̄σ

i is a vector
that defines the non-dimensional function of the SIF

caused by a unitary constant stress applied at the crack
surface, of width equal to the one used in the σc dis-
cretization, and centred at a distance ai measured from
the load line, as shown in 3. The equations for both SIF

can be found in A.
Using Eq. 1 and Eq. 2 it is possible to obtain sN by
knowing the normalized cohesive stresses si

sN = βisi ; βi = K̄σ
i /K̄

P (3)

with βi being a vector that relates the discretized co-
hesive stresses with the load being applied at the pin
holes, uniquely defined by the SG and the normalized
length ā0 + ¯̀

dam. These lengths are normalized with

respect to the specimen size W as ā0 = a0/W and
¯̀
dam = `dam/W .

In order to solve the cohesive stress profile inside the
FPZ, the crack opening profile must also be found. It
is possible to express the set of openings ωi as a super-
position of the opening caused by each acting load

ωi = ωPi + ωσci (4)

where ωi, ω
P
i and ωσci are the total crack opening, the

crack opening caused by the point load P and the crack
openings caused by the cohesive stress profile σc, re-
spectively. Each crack opening is obtained as

ωPi =
Wσu
E′

sN ω̂
P
i (5)

ωσci =
Wσu
E′

sjω̂
σ
ij (6)

where E′ is the equivalent plane stress or plane strain
elastic modulus, ω̂Pi is the non-dimensional function of
the crack opening caused by the unitary point load P
and ω̂σij is the non-dimensional function of the crack

opening at a position i caused by the unitary constant
cohesive stress at a position j. Both can be found in A.
At this point, it is possible to re-write Eq. 3 to 6 as

ω̂i = fijsj ; fij = βjω̂
P
i + ω̂σij ; (7)

where ω̂i = ωiE
′/(σuW ) is the non-dimensional crack

opening at position i and sj is the non-dimensional

stress at position j. By knowing sj (ω̂j) of the material
and using Eq. 7 it is possible to obtain the normalized
cohesive stresses sj and the normalized crack profile ω̂i
inside the FPZ for a given ¯̀

dam and consequently any
problem variable. The solution algorithm is outlined be-
low. First, a ¯̀

dam is selected. Then, from an iterative

process Eq. 7 is solved for a given CL, and as a result
the stress profile and the crack openings at the FPZ
are obtained. Then the load P is obtained by means of
Eq. 3. Lastly, the displacement u is defined as the crack

opening at ai = 0, using again Eq. 7.

2.2 Cohesive Law and J − wCTOD curve

Matrix cracking, fibre-bridging and fibre pull-outs take

place in fracture propagation of fibre-reinforced com-
posites. In concrete, micro-cracks appear in the cement,
and the aggregates produce friction as the crack faces
are opening (Ouyang and Shah 1993). Such quasi-brittle

materials do not exhibit hardening and have all the en-
ergy dissipation mechanisms confined in a plane. Under
these circumstances, fracture is accurately-enough rep-

resented with the use of a cohesive model, with the only
dissipation mechanisms taking place inside the FPZ
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Fig. 3: Compact Tension (CT) specimen with a failure process zone as a superposition of linear problems.

(Mai 2006). This cohesive model is not only able to cor-
rectly reproduce the crack growth, but also to predict

the crack onset and the structural strength. The Co-
hesive Law, considered to be a material property (Bao
and Suo 1992), relates the cohesive stresses inside the

FPZ with the cohesive crack openings. Because the en-
ergy being dissipated is entirely governed by the CL, it
is a key property necessary to properly model the frac-
ture mechanisms of quasi-brittle materials.

Some common CL shapes can be seen in Fig. 4a. Inde-
pendently of the shape, some features are shared among
all the possible CL types. The area under the curve

must be equal to the material fracture energy GIc, to
ensure the correct energy dissipation when the FPZ is
fully developed. The onset point of the Cohesive Law
must be equal to the material ultimate tensile strength

σu, and the FPZ is totally developed once the crack
opening at the initial crack tip has reached the criti-
cal value ωc. Lastly, to ensure a localized crack, it is

necessary that ∂σ/∂ω ≤ 0, i.e. the softening function
must be a non-increasing function, or, at least, that its
local maxima are lower than σu. Otherwise, after the

first crack had appeared, other crack would appear at
neighbouring points (Elices et al 2002).

The J-ωCTOD curve is a material property equiv-

alent to the CL. This curve expresses the energy be-
ing dissipated inside the FPZ as the cohesive crack
tip opens. Similar to the R-curve, the energy dissi-
pated grows as the FPZ is being formed, and achieves

a plateau value once the FPZ has been completely de-
veloped. It is related to the CL as (Rice 1968):

J =

∫ ωCTOD

0

σ (ω) dω (8)

where ωCTOD is the opening measured at the initial
crack tip, i.e., the opening measured at a0. Typical J-
ωCTOD curves can be seen in Fig. 4b, where J/GIc
is the normalized J integral with respect to the total
fracture toughness.

It is possible to define a normalized cohesive law by

normalizing the stress s = σ/σu and the crack openings
ω̄ = ωσu/ (2GIc). Hence, it is possible to define several

CL families classified by their general shape. In this
manner, all the linear CL are defined: s = 1 − ω̄ for

ω̄ < 1; exponential: s = exp(−2ω̄) or constant: s = 1
for ω̄ < 1/2. It should be highlighted that the crack
opening normalization used in the CL (ω̄) differs from
the one introduced in Eq. 7 (ω̂). Both are related as

ω̂ = 2¯̀
M ω̄, where

¯̀
M =

`M
W

where `M =
GIcE

′

σ2
u

(9)

`M is a material characteristic length.

2.3 Model output and normalization

Introducing the normalized material CL, it is possible
to rewrite Eq. 7 as

2¯̀
M ω̄i = fijsj ; fij = βjω̂

P
i + ω̂σij ; (10)

It should be noticed that: (i) fij is a function that only
depends on the Specimen Geometry, (ii) the relation

s (ω̄) is entirely defined by the CL shape and (iii) ¯̀
M

defines the relation between the material characteristic
length and the size of the structure. In other words, for

a given SG and CL shape, the model response is only
dependant on ¯̀

M .
For a given ¯̀

dam, the load, the displacement, the Frac-
ture Process Zone length (`FPZ), the cohesive stresses,

crack openings and the traction-free crack length are
known. Furthermore, the whole model can be defined
with just four inputs, hence, any dimensionless variable

χ̄ can be expressed as a function χ̄
(
¯̀
dam, ¯̀

M , CL, SG
)
.

Being the CT a negative-geometry structure, the crack
propagation is stable under controlled displacement,

meaning that any dimensionless variable can also be
expressed as χ̄

(
ū, ¯̀

M , CL, SG
)
. The external load is

defined as P = sNWhσu, the displacements and crack
openings are ω = ω̄2GIc/σu = ω̂σuW/E

′ and the crack

and FPZ lengths are `FPZ = ¯̀
FPZW . Actually, any vari-

able can be rewritten as a function of m-times to the
n-power of ¯̀

M . This property is useful for comparing

the model outputs with respect to other particular so-
lutions.
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Fig. 4: (a) Constant, linear and exponential Cohesive Laws, and (b) their corresponding J/GIc curves.

An interesting approach to normalize the load-displacement
curve is by taking into account the LEFM theory. The

load-displacement solution according to LEFM can be
expressed as

P

hKIcW 1/2
=

1

K̄P (ā)
and u

E′

KIcW 1/2
=

C̄(ā)

K̄P (ā)

(11)

where K̄P (ā) and C̄(ā) are geometrical functions pre-

sented in A and B, respectively. In order to obtain
the same normalization with the available model out-
puts, the normalized load is obtained as sN/

√
¯̀
M while

the normalized displacement is obtained as 2
√

¯̀
M ū or

û/
√

¯̀
M , where ū and û are computed by evaluating

the normalized crack openings ω̄ and ω̂, respectively, at
load line āi = 0.

As previously mentioned, the response of the model de-
pends on the normalized shape of the CL and on nor-
malized material characteristic length ¯̀

M . Fig. 4 shows
several load-displacement curves normalized with re-

spect to the LEFM solution, for various ¯̀
M and for

a linear CL. As it can be seen, the response for small
¯̀
M (large W ) tends to the LEFM particular solution.

Each curve also features the point in which the crack tip
opening reaches a certain series of values ω̄CTOD = 0.1,
0.2 and 0.5. The corresponding position of each crack
opening on the CL are seen in Fig. 5b. The load peak

is achieved generally at small values of ω̄CTOD, with a
decreasing tendency as ¯̀

M increases, going as low as
ω̄CTOD = 0.2 for ¯̀

M = 10. On the other hand, for ex-

tremely brittle responses, the peak load is achieved as
soon as ω̄CTOD = 1. Under these circumstances, the

FPZ is small enough so that all the non-linearities can
be neglected.

To show the influence of the cohesive law shape on ma-
terial response, Fig. 6a shows three load displacement
curves for a linear, constant and exponential CL when
¯̀
M = 0.5. As it can be seen, the response around the

load peak is very sensitive to the CL shape. The outputs
related to the FPZ are also available for each point of
the load-displacement curve using the proposed model.

Fig. 6b illustrates the cohesive stress profile si and cohe-
sive crack openings ω̄i for a CT with ā0 = 0.5, ¯̀

M = 0.5,
¯̀
dam = 0.25 and a linear CL shape. It is easily observed

that, in this precise moment, the FPZ has already been
completely developed, and hence the crack growth has
become self-similar. The FPZ length is obtained from
measuring the cohesive crack surface length in which

si > 0, that is, from āi = 0.54 to āi = 0.75. In the
example showcased in the Fig. 6b, the ¯̀

FPZ = 0.21
or `FPZ = 0.42`M . Notice that this length is lower

than the predicted one for a Center Cracked Specimen
(CCS), being in this case `FPZ = 0.732`M (Bao and
Suo 1992).

3 Measuring the Cohesive Law

Assuming the Cohesive Law as a material property, it
could be characterized by means of the experimental

measure of the function σ − ω. Ideally, it could be ob-
tained as the evolution of the stress measured at the
initial crack tip a0 position as the crack opens, similarly
to the method applied to composite materials proposed

by Zobeiry et al (2014). In this method, the displace-
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Fig. 6: (a) Normalized load-displacement curves for a linear, constant and exponential CL. (b) Normalized crack

opening profile ωσu/2GIc and cohesive stresses si for a specimen with ā0 = 0.5, a linear CL, ¯̀
dam = 0.25 and

¯̀
M = 0.5.

ment field of the specimen is measured through the use
of the Digital Image Correlation (DIC) technique, and
the FPZ boundary is estimated where the material does

not behave linear-elastically. The cohesive stresses are
obtained by assuming the stress in the loading direc-
tion across the damaged material to be uniform and

equal to the stress of the undamaged material adjacent
to the FPZ. Finally, an optimization algorithm is used
in order to find a softening function that best fits the

experimental curves. Despite the fact that this method

is time-consuming, it is capable of measuring any arbi-
trary CL during the FPZ formation as well as during
the self-similar crack growth. In practice, some prob-

lems arise when trying to perform this experimental
measurement. For instance, it is not feasible measure
the strain inside an heterogeneous region such as the

FPZ, where a material discontinuity is taking place,
e.g. matrix cracking, fibre bridging and fibre pull-out.
On the other hand, the crack opening could be mea-
sured with a displacement transducer placed at the ini-
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Fig. 7: Integration path Γ and normal traction vector
t for the J-integral.

tial crack tip or with the use of the DIC, although the
obtained data would probably suffer from high scatter-
ing.

Alternatively, instead of trying to obtain the stress, the
CL could be obtained by means of the σ (ω) integra-
tion, that is, using the J-ωCTOD curve (Sørensen and

Jacobsen 2003), where J is the fracture energy dissi-
pated inside the FPZ as the crack tip opens. The CL
is obtained with Eq. 8 by differentiating J-ωCTOD, ob-
taining σ = dJ/dωCTOD. Experimentally, evaluating

the J integral can be a difficult task. Ideally, one would
like to measure the strain and stress field of the speci-
men during the whole crack formation and propagation.

Then, it would be possible to directly apply the J def-
inition

J =

∫

Γ

(
Φdx1 − ti

∂ui
∂x2

ds

)
(12)

where Φ is the elastic strain density, ti is the surface

traction vector and ui is the displacement vector. The
surface traction vector is obtained as ti = σijnj , where
nj is a unitary vector normal to the path Γ and σij is
the stress tensor. The J defined in Eq. 12 is a path-

independent integral, meaning that the measured en-
ergy that is being dissipated is invariant regardless of
the path Γ , provided it encloses the FPZ, as seen in

Fig. 7. As this method involves differentiating experi-
mental measurements, it suffers from high scattering,
and some sort of smoothing is normally needed. A so-

phisticated method to experimentally measure J is to
use the DIC technique to obtain the strain field of the
specimen during the whole fracture initiation and prop-
agation, provided that the measurement is done suf-

ficiently away from the FPZ (Catalanotti et al 2010;
Bergan et al 2014). The stress is once again obtained
with the measured strains in conjunction with the mate-

rial elastic properties. Once J-ωCTOD is known (some
example curves are showed in Fig. 4b for a constant,

linear and exponential softening curves), the CL is ob-

tained by differentiating J with respect to the crack
opening.
For some SG the closed form equation of the J-integral

can be analytically obtained from Eq. 12, resulting in
only needing to measure the acting load instead of mea-
suring the stress and strain field. For instance, when

evaluating J in a Double Cantilever Beam (DCB) sub-
jected to a bending moment M in pure mode I load-
ing the expression turns into a function of the form
J (M), with only needing to record the bending mo-

ment that is being applied as the FPZ progresses (Suo
et al 1992). Similarly, J can expressed analytically for a
DCB subjected to a pair of bending moments M1 and

M2 in mixed mode I/II loading in the form J (M1,M2)
(Sørensen et al 2006). When applying a point load P
in pure mode I loading, the expression is simplified as

J (P, θ), where θ is the rotated angle at the loading
end (Paris and Paris 1988; Olsson and Stigh 1989),
meaning that in addition to measure P , θ needs also to
be recorded experimetally (Andersson and Stigh 2004).

Unfortunately, such closed-form J-integral expressions
do not exist for a CT specimen. In this case, the only
way to measure J would be by means of the more dif-

ficult and expensive DIC technique.
Finally, an alternative approach to measure the CL is
through the use of an optimization algorithm to solve
the inverse problem (Que and Tin-Loi 2002; Silva et al

2014; Ortega et al 2015; Roelfstra and Wittmann 1986;
Steiger et al 1995; Bolzon et al 2002; Ortega et al 2016).
The inverse analysis consists of three steps: an experi-

mental u-P curve collected from experimental tests; a
computer simulation of the test in order to find the pa-
rameters that define the CL; lastly, the minimisation

of a suitable norm which quantifies the discrepancy be-
tween experimental data and the corresponding values
provided by the computer simulation, with respect to
the mentioned parameters. When addressing the prob-

lem in this fashion it is important to choose the correct
specimen size W . The specimen needs to be sufficiently
large so that at the end of the experiment the FPZ has

been completely developed, and, at the same time, it
must be sufficiently small so that its response differs
enough from the LEFM one, allowing to properly cap-
ture the CL shape.

4 R-Curve

The R-curve is extensively used to predict the non-
linear fracture properties of materials. It defines the
apparent increase of the fracture toughness as a crack
grows along a continuous solid given the presence of an

initial notch. Instead of using a LEFM fracture criterion
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G = GIc, the crack growth condition is computed with
a variable toughness provided by theR-curve. Although
normally used as a material property, it is known that
depends on the SG and size (Bao and Suo 1992; Suo

et al 1992; Sørensen et al 2008; Sørensen and Jacob-
sen 1998). From a cohesive model point of view, the
apparent increase of the fracture toughness of the ma-

terial can be understood as the formation and propaga-
tion of the FPZ (Suo et al 1992; Jacobsen and Sørensen
2001). The increase of GIc takes place while the FPZ is

growing. During this process the cohesive zone is being
developed with the cohesive stresses and crack open-
ings being related by the CL. As a consequence, even
for the same ¯̀

M and SG, the R-curve depends heav-

ily on the CL shape (Gutkin et al 2011; Jacobsen and
Sørensen 2001). When the FPZ has been completely
developed the R-curve achieves the fracture toughness

plateau value GIc. At this point, the crack growth be-
comes self-similar with the FPZ moving along the crack
path.
To measure the R-curve, a fracture test needs to be

carried out, along with the recording of the P -u curve
and also some sort of crack length measure. The most
common R-curve is defined as a crack length function

R−∆a (Irwin 1960; Krafft et al 1961), although other
commonly used approaches to define the R-curve are
the R − ωCMOD and R − ωCTOD (Elices and Planas

1993; Planas et al 1993), where ωCMOD stands for the
opening at the crack mouth, that is, at the load line or
ā = 0. A frequent practice is to use the LEFM defini-
tion of the Energy Release Rate (ERR) to measure the

increase of R, as in any fracture toughness reduction
standard procedure (ASTM 2006, 2001)

G =
1

h

∂U (P, a)

∂a
= − 1

h

∂U (u, a)

∂a
= R (13)

Eq. 13 is based on the assumption that the specimen
behaves elastically and that all the energy dissipation

mechanisms lie in a very small area ahead of the crack
tip, thus expressing the ERR as the crack length a
increases. In reality, when large-scale bridging (LSB)

occurs in quasi-brittle materials the stress field differs
greatly form the LEFM one, as the FPZ takes a con-
siderably large portion of the specimen. Thus, in such

cases, the ERR is not well defined with Eq. 13.
Another problem arises when trying to measure a. Typ-
ically, in LEFM, the crack tip is defined as a sharp
through-the-thickness edge perpendicular to the crack

growth direction. In reality, even for brittle materials,
the crack tip profile is not straight, and its shape usu-
ally depends on the specimen thickness. Additionally,

taking the cohesive model as background, the definition
of crack length looses its definition due the existence of

the FPZ.

Generally, two methods for measuring the crack length
exist: one based on an optical measure and one based on
the equivalent elastic compliance. The main disadvan-

tage of the optical measure of the crack tip position is
that this is not an objective measure as the crack length
itself is not well defined because of the presence of the

FPZ. The second most typically used methodology to
estimate a is through the equivalent crack length aeq.
The equivalent crack length is obtained by equalling
the experimental compliance of the cracked specimen

to the pure elastic case (Bažant and Planas 1998)

C =
u

P
=

C̄

hE′
(14)

where C̄ is the normalized elastic compliance, uniquely
defined given ā. The analytic expression of C̄ is found in
B for isotropic materials, and in (Ortega et al 2014) for

orthotropic materials. For specimens with low values of
¯̀
M it would be acceptable to apply this methodology,

as the FPZ length can be neglected, as is in the case of

SSB and SSY. In this case, though, the measure would
suffer from a high scatter, as the compliance C̄ would
remain almost constant during the FPZ development

(see Fig. 5a for low values of ¯̀
M ).

Some R-curves have been obtained in order to illus-
trate the ¯̀

M dependence. To obtain the curves, the out-
put variables u and P have been obtained for a CT spec-

imen with a linear CL for ¯̀
M = 0.05, 0.5 and 1, using

the analytic cohesive model defined in Section 2. First,
the compliance obtained from the model is equalled to

the elastic compliance of Eq. 14, in order to infer the
equivalent crack length aeq. Then, the fracture tough-
ness is obtained from the LEFM definition of KP

I , found
in Eq. 2:

R =
σ2
N

E′
W (K̄P )2 (15)

Fig. 8a and Fig. 8b show how the change of ¯̀
M af-

fects the R-curve. It is clearly observed that neither R-
ωCTOD nor R−∆a are material properties, as they are
¯̀
M dependant. There are several references in the lit-

erature that have also reflected this phenomena, either
experimentally (Mai and Hakeem 1984; Bolzon et al
2002; Koester et al 2008b; Bloyer et al 1998; Bouville
et al 2014; Demetriou et al 2011; Naglieri et al 2015)

or numerically (Suo et al 1992; Jacobsen and Sørensen
2001; Brocks et al 2002). Comparing R-ωCTOD with
the J-ωCTOD curve of Fig. 4b, it is seen that both are

equivalent only for small values of ¯̀
M , that is, when

the FPZ is so small that LEFM can be assumed and
consequently J = G. On the other hand, for very small

specimens, the material fracture toughness is overpre-
dicted.
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Fig. 8: Three (a) R-ωCTOD and (b) R-∆aeq/`M curves with a linear CL for ¯̀
M = 0.05, 0.5 and 1.

To be able to discern when large-scale bridging and
small-scale bridging assumptions can be made, an ad-

ditional plot has been obtained, observed in Fig. 9a. In
this case the propagation values of R, i.e. the maximum
valueRmax, has been obtained for several ¯̀

M values. As

it can be observed in Fig. 9a, the ¯̀
M values for which

the assumption of SSB is correct (and therefore LEFM
is applicable) are influenced by the CL shape. When

comparing the self-similar crack growth for a constant
CL against a linear CL, the former exhibits a shorter
FPZ length. Therefore, the assumption of SSB will be
possible for greater values of ¯̀

M (smaller specimens).

In general, the longer the tail of the CL shape is, the
longer the fully developed FPZ length will be. On the
other hand, as ¯̀

M increases, the R value becomes dis-

torted when LEFM assumptions are made, as seen in
the left region of Fig. 9a. Specifically, the standard pro-
cedure for the determination of the fracture toughness
of metallic materials ASTM E399 (ASTM 1997) and

of plastic materials ASTM D5045 (ASTM 1999) states
that the procedure to determine the R can only be ap-
plied for ¯̀

M < 0.4 (1− ā0), then for the CT specimen

presented ¯̀−1
M > 5.

As it can be seen in Fig. 9a, for large enough specimens,
it is correct to assume SSB, resulting in anR-curve that

is not size dependant. Fig. 9b shows three R-curves for
a linear, constant and exponential CL, for ¯̀−1

M = 25, in
which case SSB can be assumed.

5 R-curve from Size Effect Law

In order to prevent the dependence of ¯̀
M on the R-

curve determination, Bažant et al. (Bažant et al 1984)
suggested an alternative approach. The method con-
sisted on recording the structural strength of various

specimens of the same geometry for a wide range of
sizes, in order to obtain the resistance curve. As it has
been shown in the results of Fig. 5a, for small speci-
mens the peak load is achieved when the FPZ is barely

developed, i.e. for small crack openings, whereas for
large specimens the peak load is achieved when the
FPZ has been fully developed, i.e. for large crack open-

ings. This phenomenon is translated into an extremely
different mean stress distribution at the failure plane
for specimens of different sizes. Recording the nomi-

nal strength in such fashion makes Bažant’s R-curve a
size-independent property. In addition, this methodol-
ogy can also be applied to a SG unstable under con-
trolled displacement. However, one of the main disad-

vantages of using this method is that several specimens
of different sizes are needed in order to measure the R-
curve, while at the same the results are subjected to

the experimental scatter.
From a set of experiments it is possible to obtain a
function of the form σN (W ), defined as the Size Effect
Law (SEL). For each experiment, the nominal strength

is recorded and the ERR is computed using Eq. 15.
Although the crack length defined in K̄P is needed to
compute R, it can be inferred by imposing the invari-

ability of R with respect to the specimen size, that is,
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Fig. 9: (a) Propagation values of R for several values of ¯̀
M . (b) Three R-curves with a linear, constant and

exponential CL and with ¯̀
M = 0.04.

∂R/∂W = 0, which results in the condition:

σN

(
K̄P − 2

∂K̄P

∂ā
(āeq − ā0)

)
+ 2WK̄P ∂σN

∂W
= 0 (16)

By solving this equation, it is possible to obtain āeq and
therefore the increase of crack length as ∆a = (āeq −
ā0)W . Hence, by just obtaining the function σN (W ) it
is possible to completely define the R-curve for a given

SG.
Bažant’s Size Effect Law defines the nominal strength
of a notched structure as (Bažant 1985, 1997):

σN = σuB

(
1 +

(
W

W0

)r)−1
2r

or

(
Bσu
σN

)2r

= 1 +

(
W

W0

)r
(17)

where B, W0 and r are constants to be fitted from ex-
perimental observations. In the case of very small spec-
imens W → 0, hence σN = Bσu. This limit represents

the plastic limit solution, defined when the whole fail-
ure plane achieves a constant stress equal to σu. On
the other hand, for very large specimens W → ∞,

thus obtaining the solution σN = σuB (W/W0)
−1/2

.
This represents the LEFM nominal strength solution.
Matching Eq. 17 with the CT limit solutions, the pa-

rameter B can be obtained from the moment balance
at the failure plane with a constant stress equal to
σu: B = 1/2 (1− ā0)

2
. The parameter W0 can be ob-

tained through the use of the LEFM limit solution:

W0 = `M (BK̄P
0 )−2, where K̄P

0 is K̄P (ā0). For compar-
ative purposes, B and W0 have been also obtained for a

Center Cracked Specimen (CCS) of infinite width, be-

ing B = 1 and W0 = `M (BK̄P
0 )−2 = `M/π, taking into

account that in this case W is defined as a0 (Maimı́ et al
2012). As it can be seen, B is a scalar related uniquely

with the Specimen Geometry, whereas W0 is geometry
and material dependent. The remaining parameter r
defines the shape of the transition between the plastic
and LEFM limits. It is usually defined as r = 1 since it

gives good enough results for most of the experimental
results (particularly when dealing with concrete, where
a high experimental scatter is present). When fitting

computer simulation results, however, they do not have
random scatter, and so small deviations become notice-
able. In this case, the values of r usually range from,

although not restricted to, 0.5 to 2 depending on the
SG and used CL.
Bažant’s SEL for r = 1 (standard solution) is shown
as a solid line in Fig. 10. The normalized variables

σN/ (σuB) and W/W0 = (BKP
0 )2/`M are used, in or-

der to being able to compare the solution with other SG
and CL. Using these normalized variables, the represen-

tation of Bažant’s SEL only depends on r. Furthermore,
Bažant’s SEL plotted in Fig. 10b results in a straight
line for r = 1. The results obtained with the present

cohesive model are also represented in the same figure
for a CT and CCS specimens (Maimı́ et al 2013) with
a linear and constant CL. The parameter r depends on
the SG as well as the CL, and has been determined by

best fitting Eq. 17 with the results obtained by the co-
hesive model. For the CT, r = 0.54 and r = 0.9 for a
linear and a constant CL respectively. In the case of the
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Fig. 10: (a) Bažant SEL compared to the nominal strength of a CT and CCS of infinite width specimens with a
linear and constant CL (b) and their respective linear representation.

CCS, it has been found that r = 0.89 and r = 1.88 best

fit the data, again for a linear and a constant CL. The
last value is in concordance with the value of r = 1.99
found by Bažant and Planas (1998).

The R-curve obtained from Bažant’s SEL is defined by
means of Eq. 15 and Eq. 17:

∆a

`M
=
āeq − ā0
(BK̄P

0 )2

(
K̄P

2K̄P ′(āeq − ā0)
− 1

) 1
r

;

R
GIc

= B2
(

2K̄P ′(K̄P )2r−1(āeq − ā0)1−r
) 1
r ∆a

`M
(18)

Where K̄P ′ is the derivative of the SIF with respect to

the crack length. Fig. 11 shows the R-curve obtained
with Eq. 18. In the figure, the R-curve has been com-
puted for a CT and a CCS, again for a linear and a con-

stant CL, using the corresponding parameter r found
from the SEL. For the standard case of r = 1 the equa-
tion is reduced to:

∆a

`M
=

1

(BKP
0 )2

(
K̄P

2K̄P ′
− (āeq − ā0)

)
;

R
GIc

= B22K̄P K̄P ′∆a

`M
(19)

This particular solution is also featured in Fig. 11 with
a solid line for the CT and the CCS specimens. As it can

be seen, when comparing both specimen geometries for
a given CL shape, the SEL results in very distinct R-
curves, concluding that the resistance curve determined

by means of the SEL is not a material property. At this
point, it is possible to compare the R-curves of the CT
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Fig. 11: Bažant’s R-curve for the CT and a CCS of
infinite width with the found values of r.

specimen for a linear and a constant CL, computed from
the classic LEFM definition (Section 4), seen in Fig. 9b,

and the one defined by the SEL (Section 5), seen in Fig.
11. As it can be seen, the curve defined form the SEL
slightly lies below the LEFM one. More concretely, for
the CT specimen with a constant CL, the R achieves

the propagation value GIc when ∆a/`M = 0.125 ob-
tained from LEFM, whereas in the case of the SEL,
the propagation is observed when ∆a/`M = 0.15. The

same behaviour is appreciated in the case of the linear
CL shape.
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Two advantages arise when obtaining theR-curve through
the SEL: first, it is not required for the SG to be sta-
ble under controlled displacement as only the maximum
load needs to be recorded for each experiment; secondly,

it is not required to measure any crack length during
the experiments, since it is determined by the condi-
tion that the R-curve is size-independent, that is, the

condition defined in Eq. 16. However, some drawbacks
appear during the use of this methodology. Firstly, mul-
tiple specimens of different sizes must be tested in order

to measure the R-curve, with costs increasing with the
size. Also, it has been shown that ultimately, the shape
of the curve is heavily dependent of the SG and other
theories such as the Cohesive Model may predict more

accurately the fracture of such materials. Therefore, the
R-curve should not be considered a material property.

6 Conclusions

An analytic solution has been presented in order to ob-

tain the load-displacement curve for a Compact Ten-
sion specimen given any general Cohesive Law. The
solution is completely defined by the Specimen Geom-

etry, the normalized characteristic length ¯̀
M and the

Cohesive Law. Along each point of the curve, several
model outputs are obtained, such as: the Fracture Pro-
cess Zone length, the cohesive crack openings, the cohe-

sive stresses and the traction free crack length, as well
as any other problem variable associated to the model.
From the available load and displacement outputs of the

proposed cohesive model, the R-curve has been com-
puted, from the load-displacement curve of a Compact
Tension specimen with a linear, constant and exponen-
tial Cohesive Laws. By comparing the propagation val-

ues of the R against the specimen size, it has been
determined the minimum specimen size for which it is
possible to obtain an R-curve independent of the spec-

imen size, avoiding to over-predict the material frac-
ture toughness. The specimen size recommendations
proposed by the ASTM standard have proven to be suf-

ficient for materials with a constant CL shape, although
they are not big enough for materials with a CL shape
with a long tail, such as the exponential shape, due to
the increase of the FPZ length.

The R-curve has been obtained from the Size Effect
Law, following the approach suggested by Bažant. It
has been shown that the results obtained from this

methodology are dependent on the Specimen Geome-
try, while also differing from the results obtained from
the load-displacement curve.

Lastly, it has been shown that the R-curve its a prop-
erty incompatible with the Cohesive Law. This dis-

agreement is mainly caused by the use of LEFM as-

sumptions in the R-curve definition, and specially by
the LEFM definition of the crack length. On the other
hand, the cohesive model solved for the Compact Ten-

sion geometry does not assume any LEFM hypothesis.
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A Stress Intensity Factors equations

The Stress Intensity Factor K̄P due the load P is defined
Tada et al (2000)

K̄P =
2 + ā

(1− ā)3/2
F1 (20)

F1 = 0.886 + 4.64ā− 13.32ā2 + 14.72ā3 − 5.6ā4 (21)

The Stress Intensity Factor KQi due a point load Q at a dis-
tance of āi measured from the load line, positioned at the
crack surface, is defined Newman et al (2010)

KQi =
Q

hW 1/2
K̄Qi ; K̄Qi =

(
2

π (ā− āi)

)1/2

F2 (22)

F2 =
(
1 +A1∆+A2∆

2
) [

1− 1.05 (1− ā)9 (∆/∆0)3
]
/ (1−∆)3/2

(23)

∆ =
ā− āi
1− āi

; ∆0 = 0.8ā+ 0.2 (24)

A1 = 3.6+12.5 (1− ā)8 ; A2 = 5.1−15.32ā+16.58ā2−5.97ā3

(25)

The non-dimensional stress intensity factor K̄σi caused by a
constant cohesive stress of normalized width ∆ā and centered
at ai (Mall and Newman 1985):

K̄σi =
1

(1− ā)3/2 (8π)1/2

[
2B (1 +A1 +A2)

√
B2 + (1− ā)B

+ (1− ā) (5 +A1 − 3A2)
√
B2 + (1− ā)B

+ (1− ā)2 (3−A1 + 3A2) ln
(√

B +
√
B + 1− ā

)] ∣∣∣
B=ā−āi−∆ā/2

B=ā−āi+∆ā/2
(26)

The crack opening at a distance āi caused by the load P is
obtained

ω̂Pi =

∫ ā

āi

2K̄P K̄Qi dā (27)

The crack opening at a distance āi caused by a constant
cohesive stress of normalized length ∆ā and centred at āj
is obtained

ω̂ij =

∫ ā

āi

2K̄σj K̄
Q
i dā (28)
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B Elastic CT compliance

The dimensionless elastic compliance for an isotropic material
is defined (Tada et al 2000)

C̄ =

(
1 + ā

1− ā

)2 (
2.1630 + 12.219ā− 20.065ā2 − 0.9925ā3

+20.609ā4 − 9.9314ā5
)

(29)

C Cohesive solution extended for orthotropic
materials

The differential equation that defines the stress state of an or-
thotropic material with the principal directions aligned nor-
mal to the crack growth direction depends on the roots of the
polynomial (Ortega et al 2014):

λp4 + 2ρ
√
λp2 + 1 = 0 (30)

Defining the principal directions as in Fig. 2, in the plane
stress case, λ and ρ are expressed as:

λ =
E22

E11
, ρ =

√
λ

2G12
(E11 − 2ν12G12) (31)

where E11 and E22 are the elastic moduli, G12 is the shear
modulus, and ν12 is the Poisson’s ratio. In the plane strain
case, λ and ρ are obtained by replacing E11, E22 and ν12 in
Eq. (31) by:

E′11 =
E11

1− ν13ν31
, E′22 =

E22

1− ν23ν32
, ν′12 =

ν12 + ν13ν32

1− ν13ν31

(32)

To ensure the positive definiteness of the strain energy, it
must be ensured that:

λ > 0 and ρ > −1 (33)

The anisotropy of the material is easily described by the pa-
rameters λ and ρ. For an isotropic material, the parameters
take the values λ = ρ = 1. However, for a cubic material, it
only needs to be ensured that λ = 1 and that ρ 6= 1.
In order to solve the cohesive model for an orthotropic ma-
terial, the SIF, and therefore, the other variables defined in
Section 2 need to be expressed as a function of the geometry,
λ and ρ.

K̄P (ā, λ, ρ) ; K̄Qi (ā, λ, ρ) ; K̄σi (ā, λ, ρ) (34)

βi (ā, λ, ρ) ; ω̂Pi (ā, λ, ρ) ; ω̂σij (ā, λ, ρ) (35)

The equation K̄P (ā, λ, ρ) is found in (Ortega et al 2014), as
for the rest of the Equations 34 and Equations 35, they can
be obtained using the finite elements or equivalent method.
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Abstract

This paper presents an experimental study of the translaminar fracture toughness under

tensile and compressive loads of interply hybrid polymer-matrix composite laminates. The

studied laminates were obtained by combining two of three different reinforcements: woven

carbon fabric, woven glass fabric and unidirectional carbon tape, manufactured using the

Resin Transfer Molding (RTM) process. The resulting in-plane quasi-isotropic laminates

were generated by changing each material location along the thickness.

Keywords: A. Laminate, B. Fracture toughness, C. Crack, C. Damage mechanics, C. Fibre

bridging

1. Introduction

During their life cycle, structures are subjected to traction and compression loads, which

are the most frequent cause of collapse. In the case of composite laminates under tensile and

compressive loads, fibers are responsible for transferring most of the loads. A translaminar

failure of a composite laminate is defined by the emergence of a crack that spans the entire

thickness, leading to a structural collapse. This phenomenon is usually triggered by the fiber

failure. Therefore, studying the fracture toughness of a translaminar crack is highly relevant
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to determining the damage tolerance of composite laminates.

Several studies have attempted to understand the translaminar fracture under tensile

[1–8] and compressive loads [9–13]. Some authors describe the crack growth in terms of

the Resistance curve (or R-curve, the rate of the dissipated energy with respect to the

apparent increase of crack length), while others describe it using the Cohesive Law (CL) or

its equivalent, the J-integral [14] (the rate of dissipated energy with respect to the crack

opening). Both approaches assume that all the dissipation mechanisms are confined to the

crack plane. Methods based on the R-curve are also only valid when the Fracture Process

Zone (FPZ) is very small compared to the rest of the problem dimensions.

Focusing on failure under tension, the damage onset is normally located at regions where

the stress concentration is maximum, i.e. near holes, notches, or material imperfections. The

damage mechanisms that take place at the FPZ involve fiber breakage, bridging and pull-out,

matrix cracking and delaminations. These damage mechanisms are usually confined to a small

region around the crack plane, although in some cases large matrix cracks and delaminations

may appear, defining larger damage zones. This is especially true of ply-blocked laminates

with unidirectional plies [15, 16].

On the other hand, failure under compressive loads is governed by micro-buckling of the

plies oriented along the loading direction, followed by a formation of a kink band. According

to experiments by Moran et al. [9] and Moran and Shih [10], three stages can be defined

during kinking. The first stage, called incipient kinking, is defined by kink band initiation.

When subjected to a critical load, fiber micro-bucking takes place, inducing the initiation

of a kink band. During the second stage, called transient kinking stage, the kink band

propagates across the specimen thickness, while the matrix undergoes severe shear strain. In

the third stage, known as steady-state kinking, the fibers are locked in their orientation, and

the kink band broadens by lateral propagation into softer (non-strain hardened) material.

Early kinking models such as the one by Rosen [17] are based on using traditional energy

methods to analyze the elastic buckling of fibers embedded in matrix, with a kink band
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normal to the fiber direction, ignoring the plastic or nonlinear shear deformations. On the

other hand, Argon [18] based his model on the inherent fiber misalignment and shear yield

strength of the matrix, still for a normal to the fiber direction kink band. Later, Budiansky

[19] unified Rosen’s and Argon’s formulas for an elastic-ideally plastic composite, further

generalized by Budiansky and Fleck [20] to contemplate inclined kink bands. These complex

damage mechanisms that result in the kink-band initiation and broadening are localized in

a region where the material softens. This characteristic suggests that the Cohesive Zone

Model (CZM) can be an appropriate way to characterize the material response. Unlike in

the case of tensile loads, the process of steady-state kink-band propagation is not defined

by the formation of a new free crack surface, but by a constant transfer of stresses in the

kink-band broadening regime.

Structural notch sensitivity is heavily influenced by translaminar fracture toughness, ac-

cording to studies carried out since the early models of Waddoups et al. [21] and Whitney and

Nuismer [22]. From a Cohesive Model point of view, the role of the translaminar Cohesive

Law in the notch sensitivity and size effect of laminated composites has been analyzed under

tensile loads in [23–27] and under compressive loads in [28–30]. These models completely

define the characteristics of the Failure Process Zone for a given Cohesive Law. Additionally,

determining the translaminar CL is crucial to feeding several constitutive damage models

defined at the mesoscale, where the constitutive response is defined by means of the smeared

crack band model [31–35].

In this work, a large experimental campaign was carried out to determine the fracture

properties of several interply hybrid laminates under tensile and compressive loads. These

are made from combining three different plies: unidirectional carbon tape, glass fabric, and

carbon fabric. From these materials, thirteen quasi-isotropic laminates were manufactured:

four made using plies of the same material (pure laminates) and nine with interply hybridiza-

tion. The J curves of each of the thirteen laminates were obtained for both tensile (Compact

Tension specimen) and compressive (Compact Compression specimen) loads. An in-depth
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analysis was performed, comparing the measured J curves for all the laminates, and how the

position of certain plies along the laminate thickness can influence the global performance of

the laminate.

The paper is structured as follows: in the next section the experimental campaign is

presented, along with the material and specimen specifications. The Methodology section,

the procedure used to obtain the J curve is explained. The following section contains the

results of each of the tested laminates. In the Discussion, the most relevant results are

analyzed, and the data are compared with the material response predicted by the mixing

theory. Finally, the document ends with general conclusions derived from the present work.

2. Experimental setup and test specimens

2.1. Materials

Three composite materials were tested in the experimental campaign: two woven fabrics

and a Unidirectional Carbon (UC) fiber tape, the same materials defined in the work of

González et al. [36]. The three materials were supplied by Hexcelr. The fabric materials use

HexFlowr RTM 6 mono-component epoxy system. All composites were supplied with epoxy

binders on both sides (with the binder representing about 5% of the total fabric weight).

The woven fabric plies are Carbon (C) fabric type G0926 (5HS, 6K, 370 gsm), and Glass

(G) fabric type S2 (style 6781, Z-6040, 303 gsm), while the UC is type G1157 (UD, 6 K, 270

gsm).

The elastic properties of each lamina are given in Table 1. The ply thickness, which varies

for each material (C = 0.353 mm, G = 0.229 mm and UC = 0.247 mm), was obtained from

an average of six measurements of cured non-hybrid laminates.

Table 1: Ply properties of each composite material

Material E1 (GPa) E2 (GPa) G12 (GPa) ν12 σuT (MPa) σuC (MPa)
C 59.54 54.95 5.21 0.03 804.1 534
G 19.65 19.24 3.93 0.09 557.8 493
UC 116.73 8.31 4.67 0.26 1477.1 708
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2.2. Laminates

By joining two different materials per laminate, the hybrid laminates were divided into

three sets: C-G, C-UC and G-UC. Table 2 summarizes the stacking sequences, with the

fiber direction of 0o aligned with the loading direction. In order to achieve a comparative

analysis for each set, the ply sequences were chosen as symmetric, balanced and in-plane

quasi-isotropic (although the G-UC laminates are not strictly quasi-isotropic). The number

of plies of each material was also kept consistent. As a result, the in-plane stiffness is constant

for each set, although the bending stiffness may vary from laminate to laminate. The C-G

laminates are made of n = 14 plies, with a cured laminate thickness h of 4.31 mm. In the

case of the C-UC laminates n = 14 and h = 4.22 mm, whereas for the G-UC, n = 18 and

h = 4.22 mm.

For comparative purposes, a set of laminates made of a single material was also studied. The

stacking sequences can be found in Table 3. The laminates denoted as LUC are made of UC

plies, with n = 16 and h = 4.25 mm. The laminate LC is made of C plies, with n = 12 and

h = 4.36 mm, while the laminate LG is made of G plies with n = 20 and h = 4.56 mm.

2.3. Test configurations

Tensile tests were performed on Compact Tension (CT) specimen geometries and com-

pressive tests on Compact Compression (CC) specimen geometries. These geometries are

depicted in Fig. 1, with a nominal size of W = 51 mm and a pin hole diameter of d = 8

mm. The initial crack length is a0 = 26 mm for the CT and a0 = 20 mm for the CC.

The tests were carried out following recommendations by Pinho et al. [12], as no standard

procedure has been developed for the determination of the translaminar fracture toughness

of fiber-reinforced composite materials using a CT or CC specimen. The test was performed

with a screw-driven universal testing machine, and the specimens were loaded at rates of 0.5

mm/min. The crack tip notch was manufactured with a diamond-coated disc, ensuring a

radius lower than 250 µm, following the recommendations by Laffan et al. [4]. The load cell

signal and the extensometer signal were acquired and recorded with a dedicated PC. The
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displacement was measured with a displacement transducer placed at the crack surface below

the load line.

(a) (b)

Figure 1: (a) Compact Tension (CT) and (b) Compact Compression (CC) specimen geometries.

Table 2: Hybrid laminates stacking sequences. The 0o direction is aligned with the loading
direction.

Materials Laminates

C-G L01: [0G/60G/− 60G/(0C/45C)2]S
L02: [(0C/45C)2/0

G/60G/− 60G]S
L03: [0G/(45C/0C)2/60G/− 60G]S

C-UC L04: [90UC/− 30UC/30UC/(0C/45C)2]S
L05: [(0C/45C)2/90UC/− 30UC/30UC]S

G-UC L06: [90UC/− 45UC/0UC/45UC/(0G/45G)2/0
G]S

L07: [(0G/45G)2/0
G/− 45UC/90UC/45UC/0UC]S

L08: [90UC/− 45UC/0G/45G/0UC/45UC/0G/45G/0G]S
L09: [0G/45G/0G/0UC/45UC/0G/45G/90UC/− 45UC]S
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Table 3: Single material laminates stacking sequences. The 0o direction is aligned with the loading
direction.

Materials Laminates

UC LUC1: [(90UC/− 45UC/0UC/45UC)2]S
LUC2: [(90UC)2/(−45UC)2/(0

UC)2/(45UC)2]S

C LC: [(0C/45C)3]S

G LG: [(0G/45G)5]S

3. Determination of the translaminar Cohesive Law

When characterizing the resistance of a laminate to the growth of a crack, the most

important parameter is the critical fracture energy (GC). Since the fracture energy usually

varies with the crack length, it is normally represented as the Resistance curve or R-curve, as

R(∆a). The R-curve is not a material property, as it depends on the specimen geometry and

size [37–39], which is especially true for laboratory sized specimens. According to the stan-

dard procedures, ASTM E399 [40] and ASTM D5045 [41], the specimen size must guarantee

0.2Wσ2
u > EGC , where W is the normalized specimen size, shown in Fig. 1. Alternatively,

this kind of fracture is well represented by the Cohesive Zone Model, where the key material

property is the Cohesive Law (σ(ω)) or the equivalent J-integral curve (J(ω)) [14]. The first

one defines the cohesive stresses that appear inside the Fracture Process Zone as the crack

tip opening (ω) grows, while the second one defines the dissipated energy with respect to ω.

Both properties are equivalent, and their relationship is defined as [14]:

J(ω) =

∫ ω

0

σ(ω)dω (1)

A method has been developed to measure the J(ω) or σ(ω) curve from a single load displace-

ment curve. First, a semi-analytic model is used to obtain the load displacement curve for

any given Cohesive Law shape. Second, the laminate Cohesive Law is obtained by means

of the introduced model, by best-fitting some points of the experimental load displacement
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curve. A detailed explanation of the method is presented in [6, 42].

3.1. Generalized Dugdale-Barenblatt model

The Dugdale condition [43] states that the Stress Intensity Factor (SIF) of an elastic body

in the presence of a Fracture Process Zone is null due to the existence of the closure stresses.

Hence, it is possible to relate the SIF due to the external load (P ) with the SIF due to the

cohesive stresses (σc) as : KP = Kσc . Each SIFs is expressed as:

KP = P
h
√
W
K̄P and Kσc =

√
WσiK̄

σ
i

(2)

where σi is the cohesive stress at a position i inside the Failure Process Zone and K̄P and

K̄σ
i are non-dimensional functions that depend on the geometry. The external load is, thus,

related to the cohesive stresses as

P =
hW

K̄P
σiK̄

σ
i (3)

The crack opening displacements can be obtained as the superposition of the crack openings

caused by each acting load as: ωi = ωPi + ωσci , where

ωPi = P
hE
ω̂Pi and ωσci = W

E
σjω̂

σ
ij

(4)

where ω̂Pi is the non-dimensional crack opening at position i caused by a unitary external

load P and ω̂σij is the non-dimensional opening at position i due to a unitary cohesive stress

at position j. Again, ω̂Pi and ω̂σij are non-dimensional functions that depend on the geometry.

At this point, it is possible to define a set of algebraic equations such that:

ωi = W
E
fijσj(ωj) where fij =

(
K̄P
)−1

K̄σ
j ω̂

P
i + ω̂σij (5)

These equations relate the crack opening displacements (ωi) with the cohesive stresses profile

(σj). Hence, for a given Cohesive Law, it is possible to solve Eq. 5 and obtain the cohesive
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stress and crack opening profiles at the Failure Process Zone. Lastly, once the cohesive

stresses are known, the external load P is obtained with Eq. 3.

The algorithm capable of obtaining the load displacement curve for a given Cohesive Law

is implemented as follows [42]: 1) an initial crack length is defined, which accounts for a0 plus

the FPZ length, 2) the cohesive stress and crack opening profiles inside the FPZ are obtained

by numerically solving Eq. 5 , 3) the displacement u is obtained as the crack opening at the

load line by solving Eq. 5, and the applied load P can be determined with Eq. 3, 4) the

crack length is increased and the algorithm is repeated from point 2). This algorithm can be

implemented as a standalone code, capable of obtaining the load-displacement curve in just

a few seconds, provided that the geometrical functions of Eq. 2 and Eq. 5 are known.

3.2. Algorithm to define the translaminar Cohesive Law and the J−curve

The CL is obtained by means of an algorithm that is capable of solving the inverse

problem, i. e., guessing the CL shape in order to best fit an experimental u-P curve [6].

The algorithm solves the inverse problem with the following strategy: first, some points from

the u-P curve are selected around the peak load, since at this region the FPZ is still being

developed. The selected points are used to fit the u-P curve. Taking into account that both

the length of the Failure Process Zone and the crack tip opening displacements increase as

the external displacement is applied, it is possible to adjust consecutive parts (or branches)

of the Cohesive Law. The algorithm first fits a linear segment of the CL in order to fit the

smaller of the displacements from the experimental curve. At this point, the first portion

of the CL is found, and its width is determined by the cohesive crack opening at the initial

crack tip a0. The algorithm is continued by adding as many branches as points need to be

fitted, until the whole shape is found.

3.3. Example of the process of fitting the Cohesive Law from the load displacement curve

The process of fitting the load displacement curve of a CT or CC specimen starts from

properly selecting the points from the experimental response. The load displacement curve
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Figure 2: CT specimen of Laminate L04: (a) specimen image at a P = 4350N , close to the last
fitting point (n), where no back-end damage is observed. (b) Experimental load displacement curve
with the points used to fit the Cohesive Law.

of the CT L04 specimen is shown in Figure 2b. As previously stated, the n points used in the

fitting process must be selected according to several considerations. The only source of non-

linearity in the experimental curve is caused by the cohesive stresses being developed inside

the FPZ. The first point must be selected when the non-linearity in the load displacement

curve is appreciated, as shown in Fig. 2b. The last point to select, n, must be chosen around

the region where the FPZ has been completely developed and the crack growth enters the

self-similar regime (for a CT specimen this point corresponds to a zero cohesive stress at the

initial crack length a0, whereas for the CC specimen it corresponds to a constant crushing

stress that defines the kink-band broadening). In the present example, an image of the

damaged specimen at point n is shown in Fig. 2a. As can be appreciated, the only visible

damage is localized at the crack tip region. After this point the specimen fails due to back end

compression, which results in a sudden drop of the load. Furthermore, the displacement at

point n is small enough to consider small displacements while, at the same time, no buckling

is observed. The rest of the points used to adjust the material response must be selected

between the first and last point. Usually, the experimental curves have a saw-tooth shape.

Since the present model is only capable of measuring the global softening of the material, it
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is necessary to smooth the experimental curves. This is done in two phases. First, all the

experimental u-P curves of the same laminate are averaged. Second, a fine Gaussian smooth

is performed in the resulting averaged curve. The used points are then selected from this

smoothed experimental curve. In the example shown in Fig. 2b, n = 7 points are selected.
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Figure 3: Fitted and simplified (a) Cohesive Law and (b) J(ω) curve of the L04 CT specimen.

Once the points to be fitted have been selected, the algorithm presented in the previous

section is applied. Initially, a first linear slope of the CL is found by fitting point 1. This

corresponds to line 1 in Fig. 3a. A second segment of the CL is obtained by fitting point

2, and therefore obtaining the segment 2, also shown in Fig. 3a. Once the n points have

been fitted the complete Cohesive Law, defined by n segments, is obtained. In the example,

although seven points have been selected, the obtained curve is defined by only six segments,

since the crack has already entered the self-similar growth regime after point six. The choice

of a different set of points results in a slightly different CL. Once the Cohesive Law has

been determined, the J(ω) curve of Fig. 3b is obtained by integrating σ(ω). The resulting

J(ω) obtained through this method is quite independent of the selected points from the load

displacement curve.

When observing the measured J(ω) curves from the CT specimens, they all share some

features: firstly, large portions of energy are dissipated at relatively lower crack openings.
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Also, from a certain crack opening, the rate of dissipated energy is more subtle, until reaching

a plateau value that defines the total critical fracture energy GCT . This response is translated

as Cohesive Law with a region with high stresses for small crack openings and a region made

of a long tail with small cohesive stresses. This response can be simplified as shown in Fig.

3. The most relevant parameters of the simplified law are: the total critical fracture energy

(GCT ), the critical fracture energy dissipated at small crack openings (GOT ), which can be

identified with the onset energy, the crack opening that defines the transition from the high to

low cohesive stresses (ωOT ) and, finally, the ultimate crack opening that defines the opening

required to create new net crack surface (ωCT ).

On the other hand, for the Compact Compression specimens, the J(ω) curves present a

characteristic that stands out with respect to the Compact Tension specimens: after the first

part of the curve, where large portions of energy are dissipated at small crack openings, a

second region follows, characterized by never achieving a plateau value and always increasing

the dissipated energy with a constant slope. This is translated in the Cohesive Law as a curve

with a large tail of infinite length and with a constant stress (σC). This special characteristic

is only present in the compressive specimens and is caused by the kink band broadening that

is formed as the applied displacement is increased. To characterize the compressive response

of the material, three parameters are considered: GOC as the initial fracture toughness defined

until crack opening displacement, wOC , after which point a constant stress remains σC in the

kink-band broadening regime.

4. Results

The methodologies introduced in the previous section were used to obtain the J(ω) curves

under tensile and compressive loads of all the laminates of Section 2.2. Fig. 4 shows the

experimental load displacement curves and the fitted J-curves for the single material (pure)

laminates, found in Table 3. Figures 5, 6 and 7 show the experimental load displacement

curves and the fitted J-curve of the C-G, C-UC and G-UC laminates, respectively. The
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laminate nomenclature is presented in Table 2. The black dots featured in all the load

displacement experimental curves represent the first and last point used in the fitting process

of the Cohesive Law. In the case of the CT specimens, a minimum of six points were used,

whereas for the CC specimens more than fifteen points were used.
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Figure 4: Experimental P -u curves of the (a) CT and (c) CC specimens, along their measured
J(ω) curves, (b) and (d) respectively, for the single material laminates.

Table 4 summarizes the parameters that define the simplified J(ω) curves introduced in
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Figure 5: Experimental P -u curves of the (a) CT and (c) CC specimens, along their measured
J(ω) curves, (b) and (d) respectively, for the C-G laminates.

Section 3. GOT and GOC are the onset energies and ωOT and ωOC are the critical crack

openings where these onset energies end, for tensile and compressive loads, respectively. GCT

and ωCT are the total fracture energy and the total crack opening under tensile loads, whereas

σC is the constant stress in the kink-band broadening regime.

It is worth mentioning that the laminate LUC2 fails due to excessive compression at
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Figure 6: Experimental P -u curves of the (a) CT and (c) CC specimens, along their measured
J(ω) curves, (b) and (d) respectively, for the C-UC laminates.

the back-end of the CT specimen before the Failure Process Zone at the crack tip has been

completely formed. As a consequence, the J(ω) curve cannot be completely defined. The

failure caused by the back-end compression has been observed in all the tested CT specimens,

although in the rest of the cases, the FPZ was completely developed prior to the specimen

failure. Because of this, the part of curve beyond the FPZ formation is not necessary to fit
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Figure 7: Experimental P -u curves of the (a) CT and (c) CC specimens, along their measured
J(ω) curves, (b) and (d) respectively, for the G-UC laminates.

the tensile response of the laminate.

Observing the single material laminates shown in Fig. 4, the better performance of the

unidirectional laminates with respect to the woven carbon specimens is noticeable under

tensile loads. As for the compressive response, the woven glass fiber laminates stand out

the most, as observed in the simplified curve parameters found in Table 4. Among the C-G
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Table 4: Simplified Cohesive Law parameters for each laminate. Values with ∗ were obtained prior
to the fully formation of the FPZ.

Mat. Lam. GCT GOT ωOT ωCT GOC ωOC σC

UC LUC1 147 94 0.10 0.40 75 0.41 50
LUC2 ∗150 116 0.12 ∗0.33 46 0.17 93

C LC 110 68 0.09 0.43 55 0.23 68
G LG 78 62 0.14 0.35 107 0.43 67

C-G L01 98 70 0.17 0.57 60 0.27 62
L02 106 70 0.17 0.37 82 0.38 66
L03 98 72 0.15 0.53 63 0.31 57

C-UC L04 123 87 0.15 0.49 82 0.53 68
L05 111 99 0.17 0.45 71 0.26 71

G-UC L06 102 87 0.17 0.43 80 0.38 63
L07 166 99 0.16 0.52 67 0.23 59
L08 94 70 0.10 0.54 79 0.37 66
L09 113 83 0.16 0.50 54 0.18 62

laminates shown in Fig. 5, laminate L02 presents the best performance. This laminate is

characterized by having woven glass fibers in the central plies, whereas the laminate L01 has

them in the outer plies. The worst performing laminate in this set, L03, has both material

plies mixed along the thickness.

Regarding the response of the C-UC laminates presented in Fig. 6, no improvement is

observed by the relative position of each type of ply in the laminate. Lastly, observing the

G-UC set of laminates shown in Fig. 7, the excellent performance of L07 under tensile load

is evident. The reason for this behavior is analyzed in the next section. Additionally, under

compressive load, both laminates L06 and L08 perform slightly better than their counterparts

L07 and L09. This is mainly because L06 and L08 have woven glass fiber plies in the center

of the laminate, similar to the observed response of L02.

5. Discussion

When analyzing the results of the G-UC set, laminate L07 shows an outstanding response

under a tensile load with respect to the rest of the laminates, which are made with the same
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plies but with different stacking sequences. The critical fracture energy of L07 is about

166N/mm, significantly larger than the rest of the G-UC specimens, with an average critical

fracture energy of 100N/mm. The stacking sequence of the L07 has a unidirectional thicker

00 ply at the center of the laminate, resulting in outstanding performance, mainly caused by

two phenomena. First, it is known that the fiber pull-out contributes to the laminate energy

dissipation, being a desired failure mode when a translaminar crack is present. It is also

known that thicker plies cause the fiber pull-out length to be increased, hence dissipating

more energy [44], as is in the case of L07. The second damage mechanism phenomenon is the

appearance of larger amounts of matrix cracks and delaminations in the presence of thicker

plies [15, 16]. Fig. 8 shows the X-ray image of both laminates L06 and L07. In the case of L07,

the damage zone is characterized by having larger matrix cracks and larger delaminations

which are not present in the case of L06. These matrix cracks have two significant impacts

during the damage process: first the matrix crack growth itself, which contributes to the

laminate dissipated energy, and second, the laminate crack blunting produced by the presence

of these matrix cracks, which leads to a reduction of the energy release rate of the specimen.

It should be pointed out that the J(ω) curve and CL are obtained assuming that all the

dissipation mechanisms are confined in the fracture plane. This hypothesis does not hold

true for the laminate L07, where these cracks and delaminations occur outside the fracture

plane. Hence, the determined J-curve, for this case, must be considered only qualitatively.

The mixing law, proposed by Camanho and Catalanotti [45], suggests a methodology to

predict the tensile laminate fracture toughness from the properties of each ply that makes

up the laminate. This hypothesis is also implicitly present when the fiber fracture toughness

is defined from a cross-ply specimen [4, 12, 44], when it is considered that the plies in the

loading direction are responsible for the energy dissipation, while the transverse plies only

enforce the path of the crack. Observing the stacking sequences of the laminates of each

set (L01 to L03 for C-G, L04 and L05 for C-UC, and L06 to L09 for G-UC), it can be

appreciated that the only difference is the ply position along the thickness, while the number
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Figure 8: X-ray of the laminates L06 and L07 for the CT specimens. In the laminate L07 several
matrix cracks can be observed.

of plies of each material and their orientations remain invariant. The measured J-curves show

small differences between the laminates of each set, with the exception of the aforementioned

L07. This suggests that the mixing theory will only give a rough estimate of the laminate

toughness. Therefore, despite the differences originating from the relative position of each

ply with respect to the others, it is still possible to define a mixing equation to predict

the fracture properties as a combination of each ply. Based on the work of Camanho and

Catalanotti [45], it is possible to define the mixing equation as:

J =
n∑

i

J iP ly
hiP
hL

aiP
aL

(6)

where JPly is the dissipated energy of a single ply, hP/hL is the relative thickness of each ply

with respect to the whole laminate, and aP/aL is the ratio between the dissipated energy per

unit crack length at the ply level with respect to the laminate. Camanho and Catalanotti

[45] considered aP/aL = 0 for unidirectional 900 plies and 1 for any other ply orientation.

This assumption is implicit when testing cross-ply laminates, where it is considered that

only the 00 plies contribute to the energy dissipation [4, 12, 44]. In the present work, it

is assumed that this ratio is proportional to the number of broken fibers with respect to a

unitary increase of the translaminar crack. Therefore, the ratio of broken fibers can be defined

as aP/aL = cos θ for unidirectional plies, and aP/aL = cos θ + sin θ for woven fabric plies
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(with cubic symmetry), where θ is the angle between the loading direction and the normal

of the crack plane in absolute value. Focusing on the total fracture toughness GCT of the

single material laminates (LUC1, LC and LG), it is possible to determine the critical fracture

energy under tensile load for each ply by means of Eq. 6: GUC
Ply = 244N/mm, GC

Ply = 91N/mm

and GG
Ply = 65N/mm. With the values of each material ply toughness, it is possible to reuse

Eq. 6 to predict the critical fracture energy of the hybrid laminates: GC-G
CT = 97N/mm,

GC-UC
CT = 123N/mm and GG-UC

CT = 107N/mm. These values can be compared with the average

critical energy of each set of hybrid laminates: 101N/mm, 117N/mm and 103N/mm (not

including L07 laminate), for the C-G, C-UC and G-UC sets, respectively.

Additionally, it is possible to define a J(ω) curve using Eq. 6, if a relationship between

the crack opening at the laminate level and ply level is assumed. When a translaminar crack

grows the elongation of each fiber in the FPZ is equal to the total crack opening: ω = ωPly

regardless of the ply orientation. Then, using Eq. 6, it is possible to obtain the J-curve of

each material ply from the pure laminate tests, while also obtaining the predicted J-curves

of the hybrid laminates. Fig. 9 shows the experimental J(ω)-curves from each specimen

along the predicted J(ω)-curve obtained from the mixing theory using the properties of each

material ply. The results show that the mixing theory is able to produce a rough estimate of

the hybrid laminate response. The only specimen that significantly deviates from the results

obtained in this manner is the L07, because of the presence of the ply-blocking. For the

compressive response, the mixing theory overestimates the material response for the C-G

and G-UC laminates, and underestimates the response for the C-UC laminates.
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(b) C-UC laminates
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(c) G-UC laminates

Figure 9: Experimental and predicted with the mixing law J(ω)-curves for G-C, C-UC and G-UC
laminates, measured from the CT and CC specimens.

6. Conclusions

The translaminar fracture properties of nine interply hybrid laminates were studied exper-

imentally. The laminates were obtained by mixing two of three different plies: woven carbon

fabric, woven glass fabric and unidirectional carbon tape. The data reduction method uti-

lized is capable of measuring the translaminar J(ω) and Cohesive Law from a single Compact
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Tension and Compact Compression test.

An analysis of the obtained translaminar fracture properties was performed for all the

specimens under tensile and compressive loads. The obtained response from the Compact

Tension and Compact Compression specimens show that, in general, the influence of the

position of each material ply along the thickness is minimal. When woven glass and woven

carbon plies are mixed together, and the carbon fibers are placed in the outer plies of the

laminate, a small improvement is appreciated for the case of the Compact Compression spec-

imen. In the case of unidirectional plies, blocking several plies in the loading direction leads

to an increase of the dissipated energy for the Compact Tension specimen. This phenomenon

is explained by the increase of matrix cracks and larger delaminations when ply blocking is

present, dissipating more energy during the formation, while at the same time, reducing the

stress intensity factor at the crack tip.

The ability to use the mixing theory to predict the toughness of interply hybrid laminates,

using single material ply properties, has been analyzed. The results show that the mixing

theory roughly predicts the toughness of the hybrid laminates, although the methodology is

limited, since it is not capable of capturing the influence of each material orientation with

respect to the others and explaining how the laminate stacking-sequence impacts the overall

translaminar crack growth.
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