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Abstract 

Knowing the conditions for a system to undergo thermal explosion is of utmost 

importance for many applications. We present a critical condition that accounts for 

reactant consumption and covers most practical situations, including low activation 

energy reactions. Our solution applies to cylindrical reactors of any radius to height 

ratio. In the case of films, it is shown that thermal explosion is virtually impossible. We 
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stationary model to describe the critical condition. The non-stationary model is the base 

of most approaches. 
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Introduction 

 

Knowledge of the critical condition to predict the occurrence of a thermal explosion is 

pertinent for a large number of applications.1 It is useful when evaluating the chemical 

risk associated to the thermal stability of compounds or reacting mixtures and in 

preventing ignition during the storage and transportation of hazardous materials or in 

chemical reactors,2–7 in determining the conditions for pyrotechnic reactions to occur,8–

10 to determine munitions cook-off temperatures,11 in preventing thermal explosion in 

batteries12,13 and, in general, in establishing the ignition condition for chemical 

engineering processes.14,15 

Over the last two decades, combustion has become a very versatile route for the 

synthesis of intermetallic or oxide powders and compacts.16–21 Combustion synthesis 

takes advantage of the heat evolved during the chemical reaction of precursor 

substances to obtain materials that would otherwise imply high-temperature processing 

techniques.16 Therefore, highly exothermic reactions of high adiabatic temperatures 

above 1800 K are needed.16 Recently, combustion synthesis of functional oxides from 

precursor salts (nitrates or metalorganic precursors) has attracted much attention due to 

the growing interest in these materials.19,22 The decomposition of oxide precursor salts 

may entail much lower adiabatic temperatures, i.e., of only several hundred kelvins. In 

other words, the range of thermodynamic and kinetic parameters involved in 

combustion synthesis has expanded considerably. One striking application is the 

combustion of bimetallic foils used for joining temperature-sensitive or dissimilar 

materials.23,24 Also, a promising new low-temperature fabrication route to synthetize 

high-performance metal oxide thin-films based on combustion has recently attracted 

much attention.25 In these particular applications, heat dissipation to the substrate is 
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very important because it can hinder combustion by avoiding the overheating needed to 

set a thermal runaway. Consequently, film thickness is a critical parameter that has been 

analyzed both experimentally24,26 and theoretically.27,28 Knowledge of the critical 

condition for combustion is also important for intermetallic reactions and thermites 

(metal-metal oxides mixtures) that are used in some pyrotechnic devices such as 

igniters. These reactions evolve at a very high rate without forming a gas phase 

product.29  

We will analyze an isoperibolic system, i.e., the sample is placed in a vessel, the 

walls of which are kept at a constant temperature Tf. The system undergoes thermal 

explosion, when reactants are heated to a temperature where the reaction becomes 

locally unstable.18,19,27,30 

Frank-Kamenetskii solution31 is probably the best known critical condition for 

thermal explosion and it has been extensively applied to describe combustion in 

condensed matter.14,32,33 In its derivation, reactant consumption is neglected and it is 

assumed that the activation energy is infinite. As we will see, the first assumption is 

accurate in some instances where thermal explosion arises at the very early stages of the 

reaction but for relatively low enthalpy reactions, such as the decomposition of oxide 

precursor salts, this may be a poor approximation.34,35 A realistic model should take into 

account reactant consumption and finite values of the activation energy.36,37 Frank-

Kamenetskii and other authors improved the analysis by taking into account reactant 

consumption31,34–36,38–43 and finite values of the activation energy.36,42  

Analytical solutions are limited to idealized geometries that allow the system to 

be reduced to a one-dimensional (1D) model. A common approach to reduce a 

cylindrical vessel to a 1D model is to assume a spherical vessel with the same volume;6 

we will show that this is quite a crude approximation. Several authors have numerically 
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explored two-dimensional models (2D)44,45 but a general analytical solution for more 

realistic geometries is still lacking. 

In this paper, we explore numerically the accuracy of existing critical conditions 

for a range of parameters that covers nearly all practical cases. We show that most 

models provide an accurate prediction for highly exothermic reactions and high 

activation energies, but they exhibit significant inaccuracies for low enthalpy or low 

activation energy reactions. We introduce minor modifications to the existing models to 

overcome these limitations. This result allows us to determine the critical thickness for 

thermal explosion to occur in a film. This analysis shows that thermal explosion is 

virtually impossible to achieve for thin-films. We also expand the critical condition to 

account for a more realistic vessel geometry. As a result of that, we obtain an analytical 

solution for the sample’s critical mass needed for a thermal explosion to occur.  

The structure of this paper is as follows. In the second section, we introduce a 

2D model that accounts for heat transport by means of diffusion and heat generation due 

to a thermally activated exothermic reaction. In the third section we compare numerical 

results against experimental data to assess the ability of the numerical model to describe 

real situations. In the fourth section we introduce a new definition of criticality and we 

analyze the accuracy of several runaway critical conditions. Afterwards, we introduce 

an improved critical condition for 1D and 2D geometries, respectively. The accuracy of 

these critical conditions is tested against the numerical and experimental data introduced 

in the third section. The final section is a practical guide to determine whether a thermal 

runaway will occur or not. 

 

The model 
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The classical theory for ignition1,14,31,40,46,47 involves heat generated locally by a 

chemical reaction and heat propagation through the sample. We ignore the effect of 

reactive gas depletion or the evolution of the system parameters during the reaction. 

These are reasonable approximations to predict the onset of a thermal runaway but may 

result in a poor prediction of the evolution of the reaction for those systems whose 

parameters evolve during the reaction. For instance, in the occurrence of gas depletion, 

the reaction front may extinguish.48 Therefore, our analysis would provide necessary, 

but not sufficient condition, for a thermal runaway to take place. The model describes 

heat propagation in a homogeneous medium. It is a reasonable approximation to 

describe the macroscopic behavior of front propagation provided that the reaction front 

is wider than the medium inhomogeneities1 or if the time of heat exchange in the 

heterogeneous medium is much shorter than the time of chemical reaction.49 We also 

overlook heat losses from convection and radiation. Under these assumptions, and for a 

cylindrical vessel, the system is reduced to a 2D model where the rate of temperature 

change has two contributions, a conduction term and a reaction term 
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where ρ is the density, q is the specific heat of reaction and λ is thermal conductivity, z 

and r are the axial and radial coordinates, respectively (see Fig. 1) and α(r,z,t) is the 

degree of conversion (α = 0 untransformed, α = 1 totally transformed). We assume that 

initially the sample is in thermal equilibrium with the furnace walls and that the degree 

of conversion is zero throughout the sample. The boundary conditions are: 
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where H is the sample height, R is the vessel’s inner radius and Tf is the vessel 

temperature. The last condition states that the heat flux is null at the top of the sample 
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(no convention, no radiation losses). One may think that the latter assumption is a very 

rough approach to deal with decomposition reactions where a significant amount of heat 

is lost through the gases evolved. However, when gases evolve, the heat capacity of the 

sample diminishes. If the gas is thermalized with the sample, the heat evolved is almost 

completely compensated with the loss of heat capacity, so the final heat balance is 

negligible with respect to heat losses through the crucible walls.50  

The set of boundary conditions, Eq. (2), also describes a closed vessel full of 

reactant provided that H is the vessel’s half height (due to symmetry, for a cylindrical 

vessel the boundary condition fTHT )0,2(  is equivalent to 0/ 
Hz

zT ).  

As for the reaction, we assume a n-order reaction kinetics to account for the 

reactant consumption. Moreover, the reaction is thermally activated and we suppose an 

Arrhenius temperature dependence, i.e.: 

nTRE GAAe
t

)1(/ 



  . (3) 

where A and EA are the pre-exponential constant and the activation energy of the 

reaction rate constant, respectively, and RG is the universal gas constant. 

This model has been successfully applied to describe combustion in solids,32 

thermal explosion in munitions11,51 and front propagation speed in pyrotechnic systems.8 

It has also been shown that it provides a reasonable description for those systems whose 

parameters evolve with temperature and can be used in solid-gas reactions provided that 

gas exchange is fast enough and that heat transfer through the gases is negligible.52 

 

Experimental and numerical results 
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To check the ability of the numerical model to describe real processes, we have 

analyzed the decomposition of a metalorganic precursor in the form of powders: yttrium 

trifluoroacetate, Y(CF3COO)3 (Y(TFA)3). Preparation details are given in.53  

The reaction course is monitored by thermogravimetry (TG). TG records the 

mass of a sample, m(t), when it is submitted to a controlled temperature program. The 

averaged conversion fraction at any time can be easily calculated as:54 
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where min is the initial sample mass and mfin is the final mass. 

 TG analysis was performed with a Mettler Toledo thermobalance (model 

TGA/DSC1). Samples were placed inside uncovered alumina crucibles. The crucible’s 

internal and external radii are 2.5 and 3 mm, respectively. Inside the furnace a gas flow 

rate of 50 mL/min was controlled by a mass flow meter. High purity nitrogen was used. 

TG experiments were performed under isothermal conditions at 280 and 290ºC.  

The curves of the transformed fraction versus time for different initial sample 

masses are shown in Fig. 2. One can observe an evolution of the kinetics with the 

sample mass that is a characteristic feature of overheating due to the heat released by 

the chemical reaction.28 Also, when the mass changes from 35 to 38 mg the curves 

develop an abrupt step that reveals the occurrence of a thermal runaway.26,28,55,56 

Conversely, all curves measured at 280ºC are smooth. Thus, there is a critical 

temperature and a critical size above which thermal runaway occurs.  

The parameters used to simulate the decomposition of Y(TFA)3 are summarized 

in Table 1. These parameters have been determined experimentally.28 The activation 

energy and pre-exponential term have been determined from several TG measurements 

performed at different heating rates by means of isoconversional kinetic methods.54,57–59 
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In Fig. 3 we illustrate the calculated )(t  for different temperatures and sample masses. 

The evolution of the kinetics with temperature and sample size is reproduced by the 

numerical simulations. At 290ºC we observe that an abrupt step develops in the 41-42 

mg mass range; thus the predicted critical mass is in fair agreement with that determined 

from the experiments. Also, in agreement with experiments, no thermal runaway is 

observed at 280ºC.  

In contrast, the numerical simulation fails to provide an accurate description of 

the reaction course. The reason is that we have assumed a single-step first-order reaction 

model, which is a very rough approximation to the actual decomposition kinetics of 

Y(TFA)3. So, there is a fair agreement between the critical masses and temperatures 

determined from experiments and simulations despite the fact that the reaction course 

depends on the reaction model. This apparent contradiction is solved if we consider that 

the thermal runaway occurs at the early stages of the transformation; consequently, a 

first-order reaction model would correctly predict the threshold provided that it 

describes accurately enough the first stages of the reaction. 

Also, it is important to note that isothermal experiments are far from ideal; the 

furnace does not reach the isotherm instantaneously but it takes more than 10 minutes to 

fully stabilize the temperature. Since, during this time lapse, the reaction progresses, a 

compromise has been taken between furnace thermalization and null initial sample 

transformation: the experiment onset is taken when the furnace temperature is 4ºC 

below the programmed one. Though, this strategy is far from compensating the artifacts 

due to deviations from the programmed temperature. Indeed, near the thermal runaway 

threshold, the reaction course is very sensitive to temperature fluctuations around the 

programmed temperature. 
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The occurrence of a thermal runaway is controlled by two competing 

phenomena: the exothermic reaction that tends to increase the local temperature, and 

heat dissipation that lowers the temperature through heat conduction.1 The heat power 

released by the reaction is given by 

  

V

nTRE
Gen dVqAeI GA )1(/  , (5) 

where V is the sample’s volume. The heat power dissipated is, 

STdI
SDis


  , (6) 

where the closed surface S is the boundary between the sample and the vessel. 

Semenov60,61 showed that, in the subcritical parameter region, a stable low 

temperature state exists where heat generation is compensated by heat dissipation, IGen = 

IDis. In homogeneously heated systems, thermal explosion occurs when this low 

temperature state is unstable, i.e., heat generated by the reaction exceeds the heat 

removed through the walls of the vessel, IGen > IDis. Hence, the occurrence of a thermal 

runaway can be revealed from the value of the ratio between the heat generation and the 

heat removal rates, ϕ: 

DisGen II . (7) 

In Fig. 4 we have plotted the evolution of  for two different masses. For a 

sample below the critical mass (22 mg), after a transient period,  evolves to 1, i.e., it 

reaches the subcritical regime where heat generation is compensated by heat removal. 

The transient period is due to the build-up of the temperature gradient related to heat 

removal. Conversely, for a sample above the critical mass (56 mg), after the transient 

period, the sample experiences an abrupt increase of heat generation that is responsible 

for the thermal runaway. Eventually, due to the reactant consumption, the heat 

generated diminishes. Thus, when thermal runaway occurs, the evolution of  goes 

through a local maximum.  
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An example of a simulation where thermal runaway takes place is given in 

Movie 1 and Fig. 5. Movie 1 shows the evolution of α, vertical and horizontal axes 

correspond to the z and r coordinates, respectively (see Fig 1); so, the top left corner 

corresponds to the top center point in the sample. Given that when thermal runaway 

occurs the decomposition rate increases considerably, frames are taken at constant 

degree of transformation intervals; otherwise, combustion would be like a flash in the 

movie. 

In the supercritical region the system approaches the adiabatic temperature TAD, 

i.e., the temperature the sample would reach under adiabatic conditions,31 

c

q
TTT IsoADAD  . (8) 

One can observe that, locally, the temperature approaches the adiabatic one (TAD = 

602ºC). Still, the maximum temperature is 30ºC below TAD. This difference is due to the 

low reaction enthalpy. Also, due to the local overheating, a temperature front is formed 

that propagates through the sample, this feature is clearer in Movie 1.  

From Movie 1, we can observe that the combustion front is initiated at the top 

center and not at the bottom of the sample where it is in thermal contact with the 

furnace. The reason is that the vessel walls are a thermal sink that allows rapid heat 

dissipation thus preventing local overheating and, consequently, the formation of a 

combustion front there. For a sample mass near the critical value, the front is always 

initiated at the farthest location from the vessel walls, i.e., the top center of the sample, 

and propagates towards the vessel walls (for a closed vessel full of reactant the 

combustion front would initiate right in the center of the system). 

 

Critical condition for thermal explosion. 
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Dimensionless systems 

 

The model introduced in the previous section leads to a partial differential equation 

(PDE) coupled to a non-linear ordinary differential equation (ODE). As a result, thermal 

explosion is a complex system to treat both analytically and numerically. To simplify 

the analysis, simple geometries are assumed and the model is rewritten in a 

dimensionless form:31,32 
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where N=0, 1 and 2 corresponds to a thin-film, an infinite cylinder and a sphere, 

respectively. The boundary conditions are: 
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The dimensionless temperature θ, time τ and space coordinate ξ are defined as: 
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where, ti is the thermal runaway induction time scale, i.e., a time scale for the time 

elapsed before the thermal runaway,39 
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and di is a scale of the width of the zone where the reaction rate is significant:31,32 
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The 1D system is fully described by three dimensionless parameters; namely: the 

Arrhenius parameter ε, the Todes or the Zeldovich parameter θT and the Frank-

Kamenetskii parameter δ: 
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where d is a characteristic length. For a spherical vessel or an infinite cylinder it is the 

radius (d=R) and for a thin-film is the film thickness (d=H). Note that Todes parameter 

is the dimensionless adiabatic temperature.  

 

Critical condition in the limit of no reactant consumption (θT→∞) 

 

Historically, two different approaches have been followed to simplify the model: 

the stationary and the non-stationary approximations.31,32 In the stationary approach, 

the condition under which a stationary state is impossible establishes the critical 

condition. For a given symmetry the boundary problem can be solved to obtain the 

critical value.31,62–64 In particular, if we neglect the reactant consumption and we assume 

an infinite activation energy, the critical condition depends only on the Frank-

Kamenetskii parameter (see appendix A):  

)1( D
cr C  (15) 

where subscript cr stands for the parameter value at the threshold of ignition, and C(1D) 

is a constant that depends on the system’s geometry: 32.3)1( D
SpheC  for a spherical vessel, 
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0.2)1( D
CylC  for an infinite cylinder and 878.0)1( D

TFC  for a thin film. The superscript 

(1D) stands for one-dimensional heat propagation. Above this critical value, C , 

ignition occurs. 

The non-stationary approximation consist in describing the evolution of a space-

averaged temperature   and transformation degree  . It has been shown that this 

approach allows to reduce PDE systems that exhibit a low-dimensional dynamics to an 

equivalent ODE system.65 Under this approximation, the dimensionless system, Eqs. (9) 

and (10), becomes:2,31,40,66  
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where B is a constant that depends on the geometry of the system and the initial values 

of   and   are zero. Parameter B can be deduced by comparing the critical conditions 

delivered by the stationary and the non-stationary approximations in the limit case of 

infinite activation energy and no reactant consumption; )1( DCeB   (see appendix B).  

Eq. (16) has no analytical solution and its dynamics is controlled by two time 

scales; a time scale related to heat generation, ti, and a time scale related to heat 

dissipation, tD (see appendix B): 
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So the critical condition can be expressed in terms of the ratio Di tt / : 

ett D
crDcri )1(

,, / , (18) 

Eqs. (15) and (18) are formally identical, i.e., both stationary and non-stationary 

approaches lead to the same critical condition for combustion. For Di tt   heat is 
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efficiently removed and no local overheating occurs; this regime is the steady-state or 

subcritical solution. Conversely, when iD tt   thermal explosion occurs and the local 

overheating results in a temperature rise that approaches the adiabatic temperature, this 

regime corresponds to the supercritical solution. 

 

Criterion to state the occurrence of a thermal runaway 

 

For θT = ∞, the transition between the subcritical and supercritical states can be 

established rigorously (see Appendix C); in the subcritical regime the system evolves to 

a stable steady state, while in the supercritical regime, the temperature is unbounded and 

it increases steadily with time. Conversely, for finite values of θT due to reactant 

consumption the system always converges to a stable steady state. Thus, when reactant 

consumption is taken into account, Semenov’s criteria based on the boundedness of the 

supercritical state can no longer be used.36,43,67  

For highly exothermic reactions and high activation energies (θT → ∞ and ε → 

0) the separation between subcritical and supercritical regimes is sharp. The ignition 

temperature is well below the temperature of the supercritical state. In the subcritical 

state, the reaction heat is balanced by heat dissipation while in the supercritical state the 

reaction behaves nearly adiabatically: the heat evolved is some orders of magnitude 

larger than the heat dissipated. The time scale is also very different. It is some orders of 

magnitude smaller in the supercritical regime than in the subcritical regime. So, the 

particular criterion used to determine whether runaway occurs or not has little 

relevance.  
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However, things are different when the heat of reaction or the activation energy 

is relatively low (typically below 106 J/kg). Frank-Kamenetskii31 showed that the 

difference between the ignition and furnace temperatures is approximately, 

A

f
fii E

RT
TTT

2

 . (19) 

Thus, for low activation energies, iT  will be high. On the other hand, for small values 

of the reaction enthalpy, the adiabatic temperature rise, ADT , will also be small. Thus, 

in both cases the difference between the ignition and adiabatic temperatures will be 

relatively small and, therefore, the transition between the subcritical and supercritical 

regimes would be smooth. So, the critical condition for a thermal runaway depends on 

the particular criterion used to establish the boundary between both regimes.42,43  

Thomas34 derived an approximate solution of Eq. (9) that takes into account 

reactant consumption. This solution diverges in a certain parameter region, so 

Semenov’s criterion can be applied. Some authors36,42,68 studied the solution sensitivity 

at the limit of large activation energy by means of asymptotic analyses. 

Some criteria are based on a geometrical property in the temperature profile.67,69 

For instance, Thomas and Bowes70 and Adler and Enig2 proposed a criteria based on the 

existence of an inflection point before the local maximum, in the temperature-time and 

temperature-conversion profiles, respectively. This inflection point is related to a step 

temperature rise. Since initially the second derivative of the temperature is negative, a 

thermal runaway occurs provided that the second derivative is positive while the first 

derivative of temperature with respect to time is positive. 

 Several criteria are based on the parameter sensitivity, i.e., the solution becomes 

very sensitive to the values of the dimensionless control parameters43,67,69,71. For 

instance Bilous and Amundson72 considered the sensitivity of the maximum 
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temperature, θM, with respect to Frank-Kamenetskii’s parameter: the critical condition is 

given by the maximum of dθM/dδ (small deviations of δ from δcr result in the larger 

variations of θM). Zaldivar et al3 developed a criterion based on the system divergence: a 

runaway occurs when the divergence of the system (trace of the Jacobian matrix) is 

positive. A more complete overview of criteria is given by Varma et al.71 and Casson et 

al.67,69 

We propose a new criterion based on the evolution of  with the conversion 

degree. In particular, we consider that criticality is defined by the existence of a local 

maximum in the  versus   curve in which , i.e., during a time lapse heat 

generated by the reaction overcomes heat removal. This criterion is based on physical 

grounds and has the advantage of being intrinsic, i.e., it is not based on an arbitrary 

definition of the critical value of a given magnitude. Besides, it can be applied to the 

PDE model, Eqs. (1)-(3) as well as the approximate ODE system, Eq. (16). Precisely,  

for the ODE system can be derived by applying the normalization described in Eq. (11) 

into Eqs. (5) and (6) 







B

e )1(1 
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

. (20) 

Note, that  is the ratio between the two terms that determine the evolution of the space-

averaged temperature in Eq. (16). This is as expected, because these two terms are 

directly related to the contribution of heat generation and heat dissipation. 

Our criterion is independent of the particular choice of the scaling used to derive 

the dimensionless system. Moreover, our criterion is equivalent to the often used 

criterion of Adler and Enig (see Appendix D). 

Now, we will analyze how the particular choice of the runaway criterion affects 

the critical condition. First, we will determine the parameter range to be explored to 
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account for most real cases. Most bonding energies are between 50 and 500 kJ/mol 

(bond energies bellow 50 kJ/mol are characteristic of weak interactions such as Van der 

Waals bonding). Assuming Tf = 600 K, a variation of EA between 50 and 500 kJ/mol 

results in a variation of ε between 0.01 and 0.1. Indeed there is no thermal runaway for ε 

values above 1/4 (Appendix C).35 As for the Todes parameter, Morbidelli and Varma73 

showed that for first order reactions, no thermal runaway occurs for θT values below 10 

when ε > 0.15 (this limit goes down to θT=4 for ε = 0). So we will limit our numerical 

analysis to ε values between 0 and 0.1 and θT >10. 

 In Fig. 6 we compare the critical value of Frank-Kamenetskii parameter 

determined using Thomas and Bowes, Bilous and Amundson, Zaldivar et al. and energy 

balance criteria. We consider three different values of ε: 0, 0.05 and 0.1. For given 

values of ε and θT Eq. (15) is solved numerically to determine the value of δcr that fulfils 

the corresponding criteria. We have assumed thin film geometry. As expected, in the 

limit θT → ∞ all values converge to the values obtained using Semenov’s criteria 

(Appendix C). 

 Lacey42 stated that Thomas and Bowes, Adler and Enig, and Bilous and 

Amundson criteria deliver very similar results for moderate values of θT and ε. 

Morbidelli et al.43 confirmed this result and extended its validity to parametric 

sensitivity based on any system control parameter. This conclusion is also apparent in 

Fig. 6, where discrepancies are only significant for θT < 25 or ε → 0.1. The criterion of 

Zaldivar et al. is the one that exhibits the larger deviations. This criterion can be 

considered as a lower bound for the critical condition. The agreement between 

parametric sensitive (Bilous and Amundson) and the energy balance criteria is 

noteworthy ‒ they virtually predict the same value of δcr in the entire parameter region 

except for values of ε approaching 0.1. 
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Accuracy of the non-stationary model 

 

The non-stationary model is the starting point for most analytical approaches. So 

to check its accuracy we will compare it to the exact PDE system, Eqs. (1)-(3). In the 

following, to determine δcr we will use the energy balance criteria because it can be 

applied to both systems. The results are plotted in Figs. 7, 8 and 9. In Fig. 7 we have 

plotted δcr as a function of θT for ε = 0 while in Fig. 8 we have plotted δcr as a function 

of θT for θT=100. In Fig 9 we have plotted the percent deviations of the non-stationary 

model relative to the PDE system for θT values between 10 and 105 and for ε values 

between 0 and 0.1. From Figs. 7, 8 and 9 it is apparent that the non-stationary model is 

in a very nice agreement with the exact solution along the whole range of ε and θT 

values tested. 

A noteworthy property of the ODE system, see Eq. (16), is that geometry only 

affects the numerical value of parameter δcr by a constant factor 1/B. Therefore, the 

functional dependence on ε and θT is independent of the particular geometry. To verify 

this property we will consider two (1D) geometries; a thin film and an infinite cylinder. 

From Eq. (15) it can be stated that, in the limit θT = ∞ and ε = 0, 

)1(
,

)1(
, // D

CylCylCr
D

TFTFCr CC   . Thus, if this property holds, then 

CylCr
D

Cyl
D

TFCylCrTFCr CC ,
)1()1(

,, 0.439  /   for any value of ε and θT. In Figs. 7 and 8 we 

have plotted the value of δcr determined from the PDE system for a thin film and an 

infinite cylinder. Again, the agreement is remarkable. In Fig. 9 we have plotted the 

percent deviations of CylCr ,0.439 with respect to TFCr , . Fig. 9 confirms this agreement 

for the whole range of of ε and θT values studied. Thus, the contribution of the geometry 
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can be separated from the rest of parameters. We will take advantage of this property to 

derive the runaway critical condition for a finite cylinder. 

 

Accuracy of the existing critical conditions 

 

Several authors have derived analytical critical conditions using approximate 

solutions of Eq. (16). For instance Thomas34 derived a criterion that accounts for the 

reactant consumption (finite values of θT), 
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where n is the reaction order. A formally identical solution was obtained by Kassoy et 

al.35 but replacing 2.85 by 2.946. Using a different approach, Frank-Kamenetskii74 

obtained, 
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, (22) 

Notice than in the limit of large values of θT Eqs. (21) and (22) are formally identical; 

they only differ in the value of the coefficient. Gray and Lee75 also obtained the same 

relationship but with a coefficient 2.946 instead of 2.703. 

 Lacey42 derived a critical condition that also takes into account finite values of 

the activation energy, 
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Finally Babushok et al.36 developed the more accurate series expansion for small 

values of T/1  and ε, 
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 In Fig. 7 we have plotted the prediction of δcr calculated from all these condition 

but Lacey’s condition (it diverges in the limit ε → 0). From Figs 7, 8 and 9 it is apparent 

that all the models provide an accurate prediction for highly exothermic reactions and 

high activation energies (small values of T/1  and ε), but inaccuracies are significant 

for less exothermic reactions or low activation energies. As expected, the model of 

Babushok et al. is the one that better approaches the exact solution. Only, Lacey and 

Babushok et al. critical conditions take into account finite values of the activation 

energy. Since the remaining models have been derived assuming infinite activation 

energy they are quite inaccurate when low activation energies are considered. Also, 

despite the fact that finite activation energies have been taken into account, the model of 

Lacey fails to provide an accurate prediction for low activation energies. 

 Two aspects affect the observed differences: the accuracy of the approximations 

assumed in the derivation of the model and the criterion taken to establish the 

occurrence of a thermal runaway. Note that despite the fact that all thermal runaway 

criteria converge to the same value for θT = ∞ (Fig. 6), deviations of the different 

models are quite significant for θT = ∞ (see Fig. 9). Hence, the main source of the 

deviations is related to the accuracy of the models. For this reason, the finest 

development is the one that gives the most accurate prediction. 

 

Thermal runaway condition for 1D geometry: analysis of combustion in thin-films 

 

 Despite the fact that Babushok et al. critical condition is the most accurate 

model, deviations are still relevant for low reaction enthalpies or low activation 
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energies. Also, the previous critical conditions exhibit a similar dependence on θT that 

qualitatively reproduces the observed dependence on θT. As for the dependence on 

parameter ε, it can be shown, (see Appendix C) that in the limit of θT → ∞ the critical 

condition is approximately   )1(1 D

cr
C , which agrees perfectly with Babushok et 

al., Eq. (24). So, combining the latter result with the functional dependence of the 

existing criteria we obtain: 
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parameters 2.25 and 3.76 have been fitted using a numerical method that minimizes the 

deviations relative to the exact solution in the 1.00    and 10T  range.  

In Figs. 7 and 8 one sees that Eq. (25) is the one that best fits the exact solution. 

To check the accuracy of our approximation, we have calculated the percent error in the 

calculation of δcr. The result is plotted in Fig 10 where it is apparent that our critical 

condition delivers an accurate prediction within the whole range of parameters; the 

relative error in the calculation of the critical thickness is less than 5% and below 3% 

for ε < 0.05. An inaccuracy below 3% is negligible, especially when the approximate 

nature of the model itself and the uncertainties of the system parameters are taken into 

account.  

It is well-known that a critical size exists below which no thermal runaway 

occurs.1,61 Now, we are in the position to evaluate the critical thickness for thermal 

explosion to occur in films when they are heated homogenously. In particular, we will 

analyze the possibility to synthetize metal oxide thin-films via volume combustion 

synthesis. From Figs. 6 and 7 it is apparent that the value of δcr is between 1 and 2. 

Once we now δcr, we can determine the critical film thickness from Eq. (14): 
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where a is the thermal diffusivity ( ca  ) and tR is a reaction time scale, 
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Now, we are going to estimate the physically reasonable lower bound of the critical 

thickness. For solids KJ/m103 36c  and the lowest conductivities of solid materials 

are around λ=0.1 W/(m·K),76 so, the minimum value of a is around 3×10‒8 m2/s. For 

combustion synthesis to be of practical interest reaction time should be significantly 

longer than combustion time; considering reactions that will last less than one hour in 

the absence of any overheating is of no use, so we take 3600 s as lower bound for tR. 

Adiabatic temperature rise in metal oxide precursors is of the order of few hundred 

Kelvin; in the most optimistic case, around 1000 K. Typically K600fT ,25,26 so we 

take 300 K as a lower bound. Activation energies are of the order of 100 kJ/mol, we 

take as upper estimation kJ/mol 500AE . Then θT is around 670 in the most favorable 

conditions for solid-state reactions. Therefore, in the best case scenario the critical film 

thickness is around 400 μm. Thus volume combustion synthesis of oxide thin-films is at 

least very difficult not to say impossible. This conclusion is in agreement with 

experiments showing precursors that experience thermal explosion in the form of 

powders, but not in the form of films.26,53,77–79 

 

Combustion criterion for a finite size cylindrical vessel.  
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As we have seen in section 4.4, the contribution of geometry can be separated from that 

of the rest of parameters. Thus, Eq. (25) is still valid for a 2D geometry but we need to 

determine the geometrical factor for a finite cylinder, C(2D).  

The contribution of the geometry is related to heat transport through diffusion. 

Diffusion can be approximately addressed by considering that two paths compete in 

parallel; an axial path and a radial path. Thus the diffusion length is, 

RHd D

111
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and the diffusion time for a finite cylinder is given by, 
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 Combining Eqs. (17) and (29) and keeping in mind that 878.0)1( D
TFC  and 

0.2)1( D
CylC , we obtain,  
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 C(2D) is obtained by substituting Eq. (28) into (30),  
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 To check the accuracy of Eq. (31), in Fig. 11 we have plotted the value of C(2D) 

delivered from Eq. (31) and we compare it to the value determined from the exact 

model Eqs. (1)-(3). Specifically, for different values of the aspect ratio and of the 

parameters ε and θT, we determine numerically the value of δcr at the threshold of 

combustion. Then, C(2D) is obtained from Eq. (25). Values of ε vary from 0.02 to 0.03 

and the values of θT are between 10 and 2.8×104. From Fig. 11 it is clear that Eq. (31) 

gives an accurate estimation of the geometrical factor for a finite cylinder. Note, that as 

expected, this parameter depends only on the cylinder aspect ratio, H/R. Also, in Fig. 11 



 24

we have plotted the usual approximation of assuming a sphere of the same volume, so 

that the 2D model is reduced to a 1D model.6 This approach is equivalent to assume a 

constant C(2D) = 3.32. From Fig. 11 one can verify that this approach is only useful for 

H/R values near 1. A more accurate approach is based on the Kondratiev theory of 

regular mode.31,80 Under this approach, heat transfer in the cylindrical vessel can be 

approximate to a sphere of radius 22 )2.3572/()/54.1(/3.07880 RH  . From Fig. 11 

one can verify that the value of C(2D) derived using this approach is nearly as accurate as 

Eq. (31). Indeed, it can be shown that both approaches lead to the same formal 

dependence for C(2D), Eq. (31), but with slightly different values of the coefficients: 

0.831 and 1.95 instead of 0.878 and 2.  

The steps to determine if a thermal runaway will occur are summarized in Figure 

12. 

 Finally, from Eqs. (25), (28) and (31) one can determine the sample critical 

mass: 
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Eq. (32) has been determined assuming that the vessel containing the sample is 

not covered by a lid. The case of a sample that fills a closed vessel is equivalent but 

with H being half the sample height. 

We have applied Eq. (32) to determine the critical mass for a cylindrical crucible 

filled with Y(TFA)3 powders. The physical parameters of Y(TFA)3 are indicated in 

Table 1. For a furnace temperature of 290ºC and a cylinder of radius 2.5 mm we obtain 

a critical mass of 41.0 mg that agrees very well with the value of 41.2 mg obtained from 
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the numerical simulations and in a fair agreement with the critical value around 36 mg 

determined from experiments. 

From Eq. (28) one can realize that, when one of the crucible dimensions goes to 

zero, d(2D) approaches the vanishing dimension; i.e., the shortest dimension becomes a 

very effective path for heat dissipation. Thus, thermal explosion is inhibited when the 

radius or the height are too small. This is the case of thin-films analyzed in the previous 

section. In thin-films heat is dissipated very efficiently towards the substrate due to the 

high surface to thickness aspect ratio.  

Similarly, in cylindrical vessels, the smaller dimension will limit the occurrence 

of combustion. In our case, the Al2O3 crucibles have an internal radius of 2.5 mm and a 

height of 4.5 mm. So, when completely filled, the limiting dimension is the radial one. 

From Eq. (25) one can determine the critical temperature for an infinite cylinder. Using 

the parameters of Y(TFA)3 and a radius of 2.5 mm we obtain a critical temperature of 

281.4ºC, i.e., no matter how full of Y(TFA)3 the crucible is, combustion will be 

impossible in cylindrical crucibles of radius 2.5 mm at temperatures below 281.4ºC. If 

we take into account the finite size of the crucible, Eq. (28), the critical temperature is 

283.5 ºC. Again this result is in good agreement with the numerical and experimental 

results presented in section 3. In particular, we have observed numerically and 

experimentally the occurrence of combustion for a temperature of 290ºC, but never for a 

temperature of 280ºC. 

 

Conclusions 

 

 We have introduced a new criterion to establish the boundary of thermal 

runaway. This criterion is based on the evolution of the ratio between heat 
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generation and heat removal rates. Under the non-stationary approximation this 

criterion coincides with the well-known criterion of Adler and Enig.  

 The main advantages of this new criterion is that it is based on physical grounds, 

not on an arbitrary choice of the magnitude values or the relevant parameters, it 

is independent of the particular scales used to define the dimensionless variables 

and it can be applied to the exact PDE system as well as to the approximate non-

stationary ODE model. 

 The non-stationary model gives a very accurate prediction of the critical 

condition for thermal explosion. The discrepancy between the models and the 

numerical solution is not due to the choice of the particular criteria to establish 

the boundary of thermal explosion but to the particular approximation used in 

the model development.  

  From a fit to the exact solution, we have developed a new critical condition for 

the combustion onset. This critical condition is accurate for any realistic 

combustion event; event for low enthalpy or for low energy activation reactions, 

where other criteria fail. 

 We have extended the applicability of this critical condition to a cylindrical 

vessel without any restriction on its aspect ratio. This approach leads to a 

prediction of the minimum sample mass or sample size.  

 The sample aspect ratio plays a crucial role since thermal explosion is harder to 

achieve when one of the dimensions vanishes. In particular, it is concluded that 

thermal explosion of submicrometric films is virtually impossible. 

 Numerical simulations were compared to experiments carried out on 

metalorganic powders that decompose inside a crucible. Although numerical 



 27

simulations fail to describe accurately the complete reaction course, they are 

able to predict the temperature and mass thresholds for thermal explosion. 

 

Appendix A. Stationary approach. 

 

As we have seen, in the subcritical parameter region, a stable low temperature state 

exists where heat generation is compensated by heat dissipation: so, the time derivative 

of the temperature in Eq. (9) can be neglected. Furthermore, Frank-Kamenetskii 

assumed that 1  and 1T . These are reasonable approximations for high 

enthalpy system where fAD TT  . Besides, Todes parameter is the quotient between the 

reaction and ignition time scales,61 therefore a large value of T  is consistent with the 

completion of the reaction in a much shorter time when combustion takes place. Under 

these assumptions the system is described by,31,63 
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For N=0 (thin film) Eq. (A.1) has a solution,63 
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where k is an integration constant. The value of k can be determined from the boundary 

condition, 
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Thermal explosion occurs when there is no solution for the stationary state. From Fig. 

A.1 it is apparent that above a certain value, δcr, there is no solution for Eq. (A.3). 
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Therefore, the critical condition is given by the maximum in Fig. A.1 that corresponds 

to k=1.81017. Finally, substituting this value of k into Eq. (A.3) we obtain the critical 

value δcr = 0.878458. 

 Similarly, for N= 1 (infinite cylinder) the solution of Eq. (A.1) is,63 
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Again, from the boundary condition we determine the value of k, 

042or0)( 2   kk . 
(A.5)

 

Eq. (A.5) has a solution provided that 2 . Therefore, for an infinite cylinder the 

critical condition becomes δcr = 2. 

 Finally, for N=2 (sphere) Eq. (A.1) has no analytical solution. Chambré62 has 

shown that this particular equation has been solved in astrophysical problems and that 

the critical condition for a sphere is δcr = 3.32. 

 

Appendix B. Non-stationary approach. 

 

Under the non-stationary approach and assuming 1  and 1T , Eqs. (1) and (3) 

reduce to31,41 
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Therefore, two time scales govern the dynamics of Eq. (B.1): a time scale related 

to the induction period, ti, and a time scale related to heat dissipation, tD.2,71 Thus the 

critical condition for ignition is of the form  
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D
crD tt  (B.3)
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,  , thus, Eqs. (15) and (B.3) are equivalent. If we replace 

the time in Eq. (B.1) by the dimensionless time, we obtain, 
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 And imposing a zero time derivative we obtain the steady-state solution,  



eB
  (B.5)

 So, there is a subcritical solution provided that Eq. (B.5) has a solution. In Fig. 

B.1 we have plotted the right hand side of Eq. (B.5) as a function of  . One can verify 

that above a certain critical value of δ, Eq. (B.5) has no solution. This critical value 

corresponds to the minimum of the function  /e  that is 1cr , Therefore, the critical 

condition is  

eBcr / . (B.6)

By comparing Eq. (B.6) with the critical condition delivered by the stationary approach, 

Eq. (15), one can determine the value of B for different geometries, 
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and the diffusion time scale becomes, 
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So the critical condition for ignition can be expressed as, 
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According to Eq. (1), the dependence on geometry is related to the heat dissipation 

term, so )1( D
Dt  accounts for the contribution of the geometry. Conversely, all the 

parameters related to heat generation are included in ti. So the diffusion and induction 

time scales account for the separated contribution of heat dissipation and heat 

generation, respectively. 

 

Appendix C. Approximate critical condition in the limit θT → ∞. 

 

In the limit case θT → ∞, Eq. (16) reduces to:31,40 
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Eq. (C.1) is equivalent to neglecting reactant consumption. Eq. (C.1) has two different 

asymptotic solutions: a stationary one that corresponds to the subcritical solution and a 

divergent one that is related to the supercritical regime. Therefore, the combustion 

criterion corresponds to the boundary between these two regimes. This rigorous 

criterion cannot be applied in the case of finite values of θT because reactant 

consumption ensures that the system will always evolve to a stationary solution. 

The stationary solution of Eq. (C.1) is given by 
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Likewise in Appendix B, the function )(f  has a local minimum (see Fig. B.1). Thus 

for the B/δ values that lay below this minimum there is no stationary solution, i.e., the 

temporal evolution of   diverges. Thus, the critical condition corresponds to the local 

minimum of )(f : 
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The solution of Eq. (C.3) is 
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Note that Eq. (C.3) has no solution for ε > 1/4, i.e., for ε > 1/4 there is no supercritical 

solution. Thus, the critical condition becomes: 
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If we substitute Eq. (C.4) into Eq. (C.5) and we perform a Taylor series expansion for 

small values of ε we obtain: 
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And finally, in a first order approximation the critical condition is: 
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Appendix D. Equivalence between energy balance and Adler and Enig criteria. 

 

According to Adler and Enig criterion,2,42 in the subcritical regime 

0/ 22  dd  a thermal runaway occurs when for a time lapse 0/ 22  dd  while 

0/  dd . Thus, the occurrence of a thermal runaway involves a local minimum of 

the function  dd / . Besides, from Eq. (16), 
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and combining Eqs. (20) and (D.1), 



 32














 1

1Td
d

. (D.2) 

 Thus, the criterion of Adler and Enig is equivalent to a local maximum of the 

function ϕ versus conversion. As for the condition 0/  dd , note that the heat 

balance criterion imposes that heat generation must overcome heat generation. Thus, 

from Eq. (20) 

1
)1(1










B
e

. (D.3) 

So, combining Eqs. (16) and (D.3), 

0)1(1 

 





 

 B
e . (D.4) 

Under the non-stationary approach both criteria are equivalent but with the 

advantage that the energy balance criterion does not depend on the particular choice of 

the dimensionless system and can be applied to the PDE model. 
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Notation 

 

A  Pre-exponential constant, s-1 

a thermal diffusivity, ca  , m2/s. 

c Specific heat capacity, J/(kg·K) 

B Geometrical factor of the non-stationary model, Eq. (16). 
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C Geometrical factor of the critical condition, Eqs. (15) and (25). 

d characteristic linear dimension of Frank-Kamenetskii parameter, Eq. (14), m 

di a scale of the width of the reaction zone, Eq. (13), m 

EA  Activation energy, J/mol 

H Sample height or film thickness, m 

m Sample mass, kg 

n Reaction order 

N Integer related to the geometry of the diffusion, Eq. (9). 

q Specific heat of reaction (positive for exothermic reactions), J/kg 

IGen Heat generation rate, J/s 

IDis Heat dissipation rate, J/s 

RG  Universal gas constant, J/(K·mol) 

R  Inner radius of a cylindrical or spherical reaction vessel, m 

r Radial space coordinate, m 

t Time, s 

tD Thermal diffusion time scale, Eq. (B.2), s 

ti Time scale of the adiabatic induction period, Eq. (12), s 

tR Time scale of the reaction, Eq. (27), s 

T Temperature, K 

TAD Adiabatic temperature, Eq. (8), K 

ΔTAD Adiabatic temperature rise, Eq. (8), K 

Tf Temperature of the vessel containing the system, K 

Ti Approximate ignition temperature, K 

V Volume of the sample, m3. 

S Surface that encloses the sample, m2 
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z  Vertical space coordinate, m 

λ Thermal conductivity, W/(m·K) 

ρ Density, kg/m3 

 

Dimensionless parameters 

α Degree of transformation or conversion fraction 

  Volume averaged degree of transformation 

ε Arrhenius parameter, Eq. (14)  

δ Frank-Kamenetskii parameter, Eq. (14) 

   Space coordinate, Eq. (11) 

θ Temperature, Eq. (11) 

θT Todes parameter, Eq. (14) 

ϕ Ratio between the heat generation and the heat dissipation rates, Eq. (7). 

τ Time, Eq. (11)  

 

Subscripts and superscripts 

cr critical, parameter value at the runaway threshold 

(1D) 1D model 

(2D) 2D model 

TF 1D vessel geometry in the limit case R >> H (thin film or semi-infinite slab) 

Cyl 1D vessel geometry in the limit case H >> R (infinite cylinder) 

Sph Spherical vessel 
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Figure captions 

 

Figure 1. System geometry. The sample is placed inside a cylindrical vessel without a 

cover. 
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Figure 2. Thermal decomposition of Y(TFA)3 powders inside an alumina crucible for 

different initial sample masses. The furnace temperature is kept constant at 280 (dashed 

lines) and 290ºC (solid lines). 
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Figure 3. Numerical simulation of Y(TFA)3 thermal decomposition inside an alumina 

crucible. Simulation parameters of Y(TFA)3 powders are given in Table 1. The internal 

radius of the crucible is 2.5 and the thickness of the crucible wall is 0.5 mm. Thermal 

parameters of alumina are given in Table 2. The furnace temperature is set constant at 

280 (dashed lines) and 290ºC (solid lines). 
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Figure 4. Evolution of the ratio between the heat generation and the heat dissipation 

rates, , for an initial sample mass of 22 mg (dashed line) and of 56 mg (solid line) at 

290ºC (see Figure 3). 
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Figure 5. 1D numerical temperature profiles along the cylinder axis (r=0) at different 

stages of Y(TFA)3 thermal decomposition. Simulation parameters coincide with those 

of Figure 3; sample mass 56 mg. 
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Figure 6. Lines are the value of cr  determined numerically the non-stationary model, 

Eq. (16) for different runaway criteria: energy balance (solid line), Bilous and 

Amundson (dashed line), Zaldivar et al. (crosses) and Thomas and Bowes (squares). 

Three values of ε are analyzed (red ε=0, blue ε=0.05 and black ε=1) while θT is varied 

from 10 to 105. 
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Figure 7. Lines are the value of cr  determined numerically from the exact model, Eqs. 

(1)-(3), and from the non-stationary model, Eq. (16). ε is kept constant and equal to zero 

while θT is varied from 10 to 105.Two different geometries have been analyzed: a thin 

film (or semi-infinite slab) and an infinite cylinder. For the sake of comparison the 

values of cr for a cylinder has been multiplied by 0.439. Symbols are the values of cr  

determined from the critical conditions. 
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Figure 8. Lines are the value of cr  determined numerically from the exact model, Eqs. 

(1)-(3), and from the non-stationary model, Eq. (16). θT is kept constant and equal to 

100.Two different geometries have been analyzed: a thin film (or semi-infinite slab) and 

an infinite cylinder. The value of cr for a cylinder has been multiplied by 0.439. 

Symbols are the value of cr  determined from the analytical solution of Babushok et al, 

Lacey and our critical condition. 
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Figure 9. Percent deviations of cr values determined from the non-stationary model 

and several runaway conditions with respect the exact solution. Also the deviations in 

cr  determined from the thin-film and infinite cylinder geometry are shown (The value 

of cr for a cylinder has been multiplied by )1()1( / D
Cyl

D
TF CC ). 
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Figure 10. Percent deviations of cr values determined from our runaway condition, Eq. 

(25) with respect the exact solution for a thin-film and an infinite cylinder geometries. 
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Figure 11. Symbols: parameter C(2D) determined from Eq. (25). The values of δ, ε and 

θT at the threshold of thermal runaway have been calculated numerically from the exact 

system, Eqs. (1)-(3). The solid line represents the values of C(2D) determined from Eq. 

(31). The dash-dotted blue line corresponds to the value of C(2D) obtained assuming a 

sphere of the same volume and the dashed red line has been derived using Kondratiev 

approximation. 
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Figure 12. Steps to determine the occurrence of a thermal runaway. 
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Figure A.1. Frank-Kamenetskii parameter as a function of the integration constant, Eq. 

(A.3). 
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Figure B.1. Plot of  /1e  for different values of ε. 
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Movie 1. Snapshot of the evolution of the reaction for Y(TFA)3 powders inside an 

alumina crucible. The physical parameters are those indicated in Fig. 5. The movie is in 

the supplementary data. 
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Table 1. Physical parameters of Y(TFA)3. 

Thermal conductivity, λ , W/(m·K) 0.06 

Specific heat capacity, c ,J/(kg·K) 875 

Density, ρ, kg/m3 1114 

Specific heat of reaction, q, J/kg 2.75×105 

Activation energy, EA, J/mol 1.74×105 

Pre-exponential constant, A, s-1 3.4×1013 
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Table 2. Physical parameters of Al2O3. 

Thermal conductivity, λ, W/(m·K) 39 

Specific heat capacity, c, J/(kg·K) 775 

Density, ρ, kg/m3 3980 

Thermal diffusivity, m2/s 1.3×10-5 

 

 


